
19
87

A
pJ

. 
. .

31
6.

 .
78

8C
 

The Astrophysical Journal, 316:788-800,1987 May 15 
© 1987. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

THE INFLUENCE OF THE CORIOLIS FORCE ON FLUX TUBES RISING THROUGH THE 
SOLAR CONVECTION ZONE 

Arnab Rai Choudhuri and Peter A. Gilman 
High Altitude Observatory, National Center for Atmospheric Research1 

Received 1986 September 19; accepted 1986 November 4 

ABSTRACT 
One hypothesis currently under active study is that solar magnetic fields are generated by dynamo action at 

the bottom of the convection zone, and then rise through the zone to the photosphere due to magnetic buoy- 
ancy. In order to study the effect of the Coriolis force due to solar rotation on the rising magnetic flux, we 
consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the 
convection zone, and then we follow the trajectory of the flux ring as it rises. If we assume the flux ring 
remains azimuthally symmetric during its ascent, then the problem can be described essentially in terms of 
two parameters: the value of the initial magnetic field in the ring when it starts, and the effective drag experi- 
enced by it (which is related to the radius of cross section of the ring). For field strengths at the bottom of the 
convection zone of order 105 G or less, we find that the Coriolis force plays a dominant role and flux rings 
starting from low latitudes at the bottom are deflected and emerge at latitudes significantly poleward of 
sunspot zones. We discuss implications of this result for the Sun and for other stars. 
Subject headings: convection — hydromagnetics — Sun: interior — Sun: magnetic fields 

I. INTRODUCTION 
During the last few years, the bottom of the solar convection 

zone is increasingly drawing the attention of solar physicists as 
the likely site for the operation of the solar dynamo. The over- 
shoot region underneath the convection zone has been esti- 
mated to have a thickness of a fraction of scale height (van 
Ballegooijen 1982; Schmitt, Rosner, and Bohn 1984). A 
dynamo operating in this region may circumvent some of the 
difficulties besetting those models which assumed dynamo 
action to take place in the convection zone. One of the major 
difficulties with convection zone dynamos is that magnetic 
buoyancy would rather quickly remove any magnetic flux from 
the convection zone without allowing sufficient time for 
dynamo amplification (Parker 1975; Moreno-Insertis 1983). 
The overshoot region is believed to be a better place for the 
storage and amplification of magnetic flux (Parker 1975; 
Spiegel and Weiss 1980; Galloway and Weiss 1981 ; Spruit and 
van Ballegooijen 1982; van Ballegooijen 1982). Probably this 
stored flux ultimately gets broken loose by the doubly diffusive 
instabilities and rises through the convection zone (Schmitt 
and Rosner 1982). Another difficulty with the convection zone 
dynamo is that, though the kinematical models of the solar 
dynamo were remarkably successful in reproducing the 
butterfly diagram and other observed features (see Moffatt 
1978, pp. 234-243, for a review), more recent self-consistent 
dynamical calculations suggest that those kinematical models 
are not internally consistent (Gilman and Miller 1981; Gilman 
1983; Glatzmaier 1985). In the kinematical models, the differ- 
ential rotation and the cyclonic convection are independently 
adjusted to reproduce the butterfly diagrams. However, when 
one tries to obtain both differential rotation and convection 
together from a self-consistent scheme, one finds that the 
values used in kinematical models for the best fit are mutually 
incompatible. Though the current dynamical models predict a 
poleward drift of dynamo waves, in contradiction with obser- 

1 The National Center for Atmospheric Research is sponsored by the 
National Science Foundation. 

vations, it may be possible to get an equatorward drift by 
restricting the dynamo to the bottom of the convection zone 
(Glatzmaier 1985). Only recently the properties of a dynamo in 
the overshoot region have begun to be studied in a quantitative 
fashion (DeLuca and Gilman 1986). If solar magnetic fields are 
produced in the overshoot region, then the convection zone 
can be thought of as a region through which the fields rise to 
the photosphere because of magnetic buoyancy or other 
effects. 

The idea of magnetic buoyancy was first suggested by 
Parker (1955), and it has since been studied through two differ- 
ent approaches. One approach is to consider a continuous 
distribution of magnetic field and study its stability (Gilman 
1970; Acheson 1978). The other approach is to study the 
behavior of a flux tube embedded in a nonmagnetic atmo- 
sphere (Spruit and van Ballegooijen 1982). Here we shall follow 
the flux tube approach. If magnetic fields are broken loose 
from the overshoot region due to double diffusive instabilities 
(Schmitt and Rosner 1982), then indeed we expect them to rise 
through the convection zone in the form of flux tubes. The aim 
of the present paper is to understand the effect of solar rotation 
on these rising flux tubes. The effect of rotation on magnetic 
buoyancy instability for a continuous field distribution has 
already been studied (Gilman 1970; Roberts and Stewartson 
1977; Acheson and Gibbons 1978; Acheson 1978, 1979; 
Schmitt and Rosner 1982; Hughes 1985), and it is seen that 
rotation can slow down the rate of instability growth. The 
analogous problem for flux tubes was treated by van Balle- 
gooijen (1983). However, we believe that we are the first to 
consider how rotation can deflect the trajectories of flux tubes 
rising through the solar convection zone. Especially, our aim 
has been to determine whether flux tubes starting from low 
latitudes at the bottom of the convection zone can be deflected 
enough by the Coriolis force to emerge eventually at a much 
higher latitude on the solar surface. As a result of our calcu- 
lations, we have come to the conclusion that the Coriolis force 
plays a much more important role in this problem than has 
been recognized so far. 
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The magnitude of the magnetic buoyancy effect is deter- 
mined by the magnetic field strength, which dictates the 
density decrease inside the tube compared to its surroundings 
at a given ambient pressure level. A plausible estimate of this 
density difference Ap can be made by considering a tube in 
total pressure and temperature equilibrium with its surround- 
ings (in the detailed calculations below, we consider more 
general thermal conditions). Then 

Ap/pe = B2ßnpe (1) 

in which pe, pe are the density and gas pressure external to the 
tube. 

If the magnetic field at these levels is maintained by a 
dynamo, and the magnetic fields are diffuse, then the field 
strength is unlikely to be more than ~ 104 G, because larger 
fields would severely inhibit dynamo action (DeLuca and 
Gilman 1986). The fields are also unlikely to be much less in 
amplitude, if they are responsible for the flux seen in emerging 
active regions at the solar surface (Galloway and Weiss 1981). 
If there is a mechanism to concentrate the fields into individual 
isolated flux tubes, such as obviously occurs near the top of the 
solar convection zone, then field strengths an order of magni- 
tude larger are possible. From equation (1), with pe & 5 x 1013 

dyn cm-2 at the bottom of the convection zone, Ap/p = 10~5 

occurs for B ä 1.1 x 105 G,Ap/p = 10-7for 1.1 x 104 G. 
In the absence of Coriolis forces, a flux ring rising due to 

magnetic buoyancy but unaffected by drag would achieve a 
velocity v « [2(Ap/p)gf\1/2 by accelerating through a length /. 
Then for gravity g & 5 x 104 cm2 s-1, and l = 3 x 109 cm, we 
get v ä 0.58 km s-1 for B = 1.1 x 105 G, and 0.058 km s-1 

for B = 1.1 x 104 G. The ratio of Coriolis force to magnetic 
buoyancy force, 12Q x t? |/| (Àp/p)g | æ 0.58 for B = 1.1 
x 105 G and ~5.8 for B = 1.1 x 104 G. Consequently, we 
should expect Coriolis forces to be important for flux tubes 
rising from the bottom of the convection zone for a wide range 
of magnetic field strengths. 

Once a flux tube is loosened from the overshoot region, it 
rises due to magnetic buoyancy. For the sake of simplicity, we 
restrict our first calculations presented here only to the axisym- 
metric case. In our model, a circular ring of flux starts from the 
bottom of the convection zone and rises while maintaining its 
symmetric shape. However, it is interesting to note that 
Schiissler (1980) has argued that such a flux ring will tend to 
maintain its symmetric shape during most of its rise through 
the convection zone and may become unstable to loop forma- 
tions only in the very top layers. After presenting the results of 
our calculations, in § V we discuss the implications of our 
results for Schiissler’s arguments and also consider what kind 
of changes we may expect in our final results if we were to relax 
the simplifying assumption of axisymmetry. It has been sug- 
gested that the top of the convection zone may be like an 
impervious boundary and may influence the motion of flux 
tubes in the underlying layers (Parker 1984; Choudhuri 1984). 
However, in the present calculations, we allow the flux rings to 
move freely to the top of the convection zone. Recently Parker 
(1986) pointed out the possibility that thermal shadows may 
play some role in suppressing magnetic buoyancy. Quantitat- 
ive tests of this concept have yet to be worked out so we neglect 
thermal shadows in the present paper. 

In the next section we derive and discuss the equations gov- 
erning the motion of axisymmetric flux rings. Two of the most 
uncertain aspects of the problem are the treatment of drag and 
the treatment of heat exchange between the flux tube and its 

surroundings. In § III we neglect the drag and present the 
results of calculations done with the two extreme assumptions 
of the flux ring being always in thermal equilibrium with its 
surroundings, and the flux ring being completely adiabatic. 
The results turn out to be qualitatively alike. A discussion of 
drag is presented in § IV, where we show how our results of 
§ III are modified. Finally the conclusions are summarized in 
the last section. 

II. FORMULATION OF THE PROBLEM 

a) The Equation of Motion for a Flux Ring 
We consider a flux ring, azimuthally symmetric around the 

axis of rotation, embedded in the convection zone. Let the 
radius of cross section <r of the tube be small compared to solar 
radius (<r RQ) so that the position of the ring can be 
described by a pair of coordinates (r, 6). In order to study the 
effect of rotation on this flux ring, we neglect the variation of 
angular velocity over the convection zone, assuming it to 
rotate as a solid body. The effect of differential rotation is 
discussed in § V and Appendix B. Let ÎÎ be the angular veloc- 
ity of the convection zone and let v be the fluid velocity with 
respect to a frame of reference corotating with angular velocity 
ÍL The equation of motion for a fluid element inside or around 
the flux ring is 

Dv 
Dt 

x v — V{Pe + Pi) + 
(V x B) X B 

An 

“l“ PS F ^drag » (2) 

where #' = £ — V(| iî x f*!2) includes the centrifugal force, and 
pe is the value the pressure would have in the absence of the 
flux ring, whereas the part pt is due to the presence of the flux 
ring (see, for example, Acheson and Hide 1973). In the solar 
convection zone, the centrifugal force is negligible compared to 
gravity so that we shall be using = g for our calculations. 

We now make the simplifying assumption that variations of 
different physical quantities within the flux ring are small. This 
assumption holds if the radius cr of the flux ring is small com- 
pared to the pressure scale height A (see Schiissler 1979 for a 
discussion about this assumption). Using subscripts i and e to 
denote physical quantities inside and outside the flux ring, and 
remembering that Vpe = peg, we integrate equation (2) over 
the flux ring. This yields 

fDu ^ \ x f J (V x B) x B 
m¡ — + 2SI x uj = (mi- me)g + \ dv —  

+ J dv(FiTig — Vpj), 

where no2 • 2nr sin 6, me = pe no2 • 2nr sin 0, and u is 
the velocity of the flux ring. The net drag on the flux ring, 
J dv(Fdrag — VpJ, has both a dissipative part and a nondis- 
sipative part. The nondissipative part arises due to the fact that 
the motion of the flux ring imparts kinetic energy to the sur- 
rounding fluid and can be taken account of by replacing by 
mi + me æ 2mf in that component of the acceleration term 
which is perpendicular to the ring2 (Lamb 1945, p. 77). Writing 

2 This is actually a result for incompressible fluids. However, since we shall 
be dealing mostly with highly subsonic motions in this paper, replacing mf by 
2m, should be a fairly good approximation for our purposes. 
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the dissipative part of the drag as D, we have 

2m‘'ft + 2iî x « ) + m.( ^ + 2fi x “ ) ' Dt 

í 

t (V x B) X B ^ 
= (™¿ - ™e)g + I dv   — + D . (3) 

For a magnetic field B = Be# inside the flux ring {B being 
constant) and zero elsewhere, the tension term can be shown to 
be 

f (V xB)xB 

J* 4« "" 

na2 sin 6 
2 

(B2 cot 6ee + B2er) 

xp2 

-—T (cos 0ee + sin 6er), Ino* 

where 'F = tio2B is the transverse flux through the ring. Using 
the expression of acceleration in spherical coordinates (see, for 
example, Symon 1971), we can write down the three com- 
ponents of equation (3) : 

2mi r 
cfe 2±de_ 
dt2 dt dt \ dt ) 

sin 6 cos 6 

sin 9 cos 6 
xp2 

~2np2COSe + Dey ^ 

and 

• n ~ dr dtj) . d0 d(t> mil r —y sin 0 -h 2 — sin 0 -h 2r — — cos 6 
dt2 dt dt dt dt 

d6 dv 
+ 2Q( r — cos 6 + — sin 6 ] = DÆ dt dt 

(6) 

Here, gs in equation (4) is the surface gravity. Neglecting the 
self-gravity of the convection zone (which contains less than 
2% of solar mass), we have written g = —gs(R0lr)2er. 

Let us now transform to the dimensionless coordinates ^ = 
v/Rq and t = 10- 3i(0/Ro)1/2- Then equations (4)-(6) become 

— £02 — £<j)2 sin2 6 — 2co£(f) sin2 6 

M(£, 9) T 
9) 

sin 9 -h /)/(£, 9, u) , (7) 

Ç9 + 2ÇÔ — ^4>2 sin 9 cos 9 — 2co£<£ sin 9 cos 9 

= - aíp a, cos 0 + D«,^’ 6’ ^ a) 

Ç<j) sin 9 + 2^([) sin 9 + 2<i;0<£ cos 9 + 2a>(^0 cos 9 + Ç sin 9) 

= D^,0,n), (9) 

where co = 103il/(gs/Ro)112 is the dimensionless rotation 
parameter, M(<^, 9) = 106 x (pe — p^ßpiis the dilution factor 
and is a measure of magnetic buoyancy, A(Ç, 9) = o2(Ç, 9)/ 
<t2(£0, 90) is the ratio of ring cross sectional area to the area 

at the bottom, Ç = Ç0’ °f the convection zone, T = 
106'F2/47imigs(72(^oj 0o) = 106Bo2ßnpi(Zo)9sZ0

Ro sin eo is a 
dimensionless measure of the magnetic tension, and D'(Ç, 9, 
u) = (lOt’ßniig^Dre,. + Deêe + 2D<l>ê<)>) is the drag. All dots 
denote differentiation with respect to t. In equations (7)-(9) we 
have indicated explicitly which quantities depend on and 9 in 
a spherically stratified convection zone. For the solar values 
gs = 2.74 x 104 cm s"2, RQ = 6.96 x 1010 cm, 
Q = 2.8 x 10“6 s-1, we have co = 4.4, t = 6.3 x 10~7i (t in 
seconds) and £ = 23dr/dt (dr/dt in km s-1). Thus t = 1 corre- 
sponds to 18 days, and £ = 1 corresponds to a speed of 0.43 km 
s-1. The dimensionless variables are introduced in such a way 
that all the terms in the equations of motion become roughly of 
order unity for our problem. 

We see from equations (7)-(9) that the motion of the flux ring 
is essentially driven by four forces : 

(1) Magnetic buoyancy [represented by M(£, 0)]. 
(2) Coriolis force (represented by terms involving co). 
(3) Magnetic tension [represented by T/A(Ç, 0)]. 
(4) Drag (represented by D ). 
It has already been noted that the Coriolis force is compara- 

ble with buoyancy when the magnetic field is 105 G or less, i.e., 
M(£, 9) < 5. Let us now consider the strength of magnetic 
tension relative to magnetic buoyancy. For a flux tube in 
thermal equilibrium with surroundings, 

T/Atf, A) _(piQsr sin Oy1 

\ 2Pi ) ■ 

Using p = 5 x 1013 dyn cm-2, p = 0.2 g cm-3 for the bottom 
of the convection zone (taken at ^ = 0.7), and p = 1.5 x 105 

dyn cm-2, p = 3 x 10“7 g cm-3 for the top, the above ratio 
turns out to be 0.24 cosec 9 and 5 x 10“3 cosec 9, respectively, 
for the bottom and the top. Hence, the magnetic tension may 
have some importance when the flux rings start, but it becomes 
negligible as the rings reach the upper surface. If the flux tube is 
adiabatic, then magnetic tension becomes unimportant even 
more quickly. 

b) Flux Ring in the Convection Zone 
To proceed further, we have to understand how to estimate 

the area increment factor A(4>, 9) and the magnetic buoyancy 
factor M(4, 0). For this we need a model of the background 
convection zone, which we assume to be adiabatically stratified 
with a small superadiabatic gradient. This superadiabatic gra- 
dient can have considerable effect on the magnetic buoyancy of 
a flux tube displaced adiabatically, but we can neglect it while 
calculating a model of the convection zone. Using the perfect 
gas law pe = Rpe Te, with constant ratio of specific heats y, it 
follows that 

Te=Te,0-ß^-^j, (^<e<l) (10) 

where 

/y - A gsRp 
\ y J R ’ 

(ID 

and Te 0 is the temperature at the bottom. If pe 0 be the pres- 
sure and density at the bottom, 

/r y«>-‘> i T " 

'’•-'’•'»fcj • '’•-'’•«fej ■ ,12) 
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Let our flux ring start with the same temperature 7], 0 — 
Te o = T0 as the surroundings at the bottom (the pressure and 
density being pt 0 and piy 0). The area increment factor A(Ç, 6) is 
always given by (neglecting the higher order terms arising from 
the small difference between pt and pe) 

6) = Pu 0 £o sin fl0 

ptÇ sin 6 

^-^o)i~1/<v"1>^°sin M 
T0Ç J Usine;- (13) 

If we assume the flux ring to be always in thermal equi- 
librium with the surroundings, then the magnetic buoyancy 
factor M(c. 0) = \ x l06(Ap/p) is given by 

M(£, 9) = 
106fi2 

167tpe 

io6fi0
2 / t^V2 ^my -1 'Z ^ sin e y 

ifotpe.o Vw Uo sin e0; 

= M(£0, e0) 1 - rn - "my ' Y ^ sin e Y 
T0£ J \<Jo sin e0; 

(14) 

On the other hand, if the flux ring moves adiabatically, keeping 
only the lowest order terms, we find 

Ap ~ B0
2 H /T.V2-^-1*/ ^ sin e y 

P ~ 87ípei o Ly VV Uo sin 60J 

+ 

where AS(¿) is the difference in entropy per unit mass between 
the inside and the outside of the flux ring (see Moreno-Insertis 
1983 for details) and Cp is the specific heat at constant pressure. 
It is easy to show that 

AS(c) r* VAT 

CP ~L Te 

(16) 

where VAT = (dT/dr) — (dT/dr)ad is the superadiabatic gra- 
dient. According to mixing length theory, the solar luminosity 
is given by 

LQ=4nr2peCpKWAT , (17) 

where k is the diffusion coefficient for the eddies. Substituting 
from equation (17) in equation (16) we get 

Am = (y —1)L0 n dl  

Cp 47ryR0 Jio 7cf2pe,0{l - [/?(£' - ^0)/r0 ' 

(18) 

Thus, for adiabatic flux rings in a superadiabatic convection 
zone, we have from equation (15) 

M(£, 9) = M(^60) 
1 

y 

/Te\(2-ywy-v/ £sin0 \ 

\T0) - \^o sin 60) 

106AS(£) 
(19) 

with the last term given by equation (18). 

III. RESULTS WITHOUT DRAG 

We found that the standard models of the convection zone 
(Spruit 1974; Däppen and Gough 1984) are approximated 
fairly well by the following choices of the parameters: 

T0 = 2.2 x 106 K , 

pe 0 = 5.8 x 1013 dyn cm-2 , 

ß = 7313 x 103 K , 
and 

y = 1.41 . 

(See eqs. [10] and [12]. We have taken = 0.7.) We now 
solve equations (7)-(9) as an initial value problem with a flux 
ring starting from rest (i.e., £ = 0 = </> = 0) at the bottom of the 
convection zone (^0 = 0.7, 0O, 0O = 0). We use the solar value 
co = 4.4, and for our choice of parameters, T = 0.25M(^o, 0o) 
cosec 0O. We evaluate A(Ç, 6) from equation (13) and put Z)'(4 
0, u) = 0. Calculations are made for the following three cases : 

1. The flux rings are assumed to be always in thermal equi- 
librium with the surroundings so that the magnetic buoyancy 
factor M(^, 9) is given by equation (14). 

2. The rings are assumed to rise adiabatically in a convec- 
tion zone without a superadiabatic gradient so that M(£, 9) is 
given by equation (19) without the last term. 

3. Adiabatic rings are in a superadiabatic convection zone 
so that M(£, 9) is given by equation (19) with the super- 
adiabatic term estimated from equation (18). 
The motivation behind considering cases (2) and (3) separately 
is to isolate the effect of the superadiabatic gradient in this 
problem. We take k = 1013 cm2 s-1 to estimate the super- 
adiabatic term. This term, 106A5'(^)/2C/„ is plotted in Figure 1. 
It is easy to see that this term is very small at the bottom of the 
convection zone. However, near the upper surface, it even- 
tually becomes the dominant term and tends to be quite large 
compared to other terms in equation (19). The total variation is 
about five orders of magnitude. 

RADIAL COORDINATE f 
Fig. 1.—The superadiabatic term 106AS(^)/2Cp appearing in eq. (19) as a 

function of depth of the convection zone. The marks on the curve correspond 
to places where the superadiabatic term equals the initial magnetic buoyancy 
M(£o, 90) = 1/10,1,10. 

© American Astronomical Society Provided by the NASA Astrophysics Data System 



19
87

A
pJ

. 
. .

31
6.

 .
78

8C
 

CHOUDHURI AND GILMAN Vol. 316 792 

We used the HAO VAX 11-750 to integrate our equations 
with the help of the program ODEN for solving initial value 
problems. For each of the three cases we solved the problem 
with three values of the magnetic buoyancy factor M(Ç0, 90) = 
10, 1, 1/10, which correspond to (Ap/p)0 = 2 x 105, 2 x 10_6, 
2 x 10“7, or equivalently to initial fields B0 = 1.7 x 105, 
5.4 x 104, 1.7 x 104 G. For these nine cases, we worked out 
the trajectories of the flux rings starting at the bottom of the 
convection zone from six different latitudes: (n/2) — 6 = 5°, 
10°, 20°, 30°, 45°, 60°. The resultant trajectories in the merid- 
ional plane are shown in Figure 2. The positions of the rings at 
equal intervals of S are indicated by dots (the values of the 
intervals S being shown by the side of each diagram). Note that 
S is expressed in dimensionless units in which 1 equals 18 days. 

Within our approximations, these results are independent of 
the area of the cross section of the flux ring. We have also 
found they are relatively insensitive to the parameter y (up to 
7 = 1.67). 

Since the Coriolis force arises only when the ring is moving, 
it is initially zero when the ring starts from rest. The initial 
motion of the ring is essentially produced by the buoyancy 
trying to move it in the radially outward direction. We have 
seen that the magnetic tension may have some importance 
when the ring is at the bottom of the convection zone. This can 
be seen by looking carefully at the trajectories starting from 
higher latitudes, where the tension force directed toward the 
rotation axis has a vectorial direction significantly different 
from buoyancy, and hence the trajectories begin with a slight 

Fig. 2.—The trajectories without drag of (1) flux rings in thermal equilibrium, (2) adiabatic flux rings in adiabatic convection zone, and (3) adiabatic flux rings in 
superadiabatic convection zone. For each of these cases, we consider three values of {Ap/p)0 = 2 x 10"5, 2 x 10"6, 2 x 10"7 [i.e., M(^0, 60) = 10, 1, 1/10, or 
equivalently B0 = 1.7 x 105, 5.4 x 104, 1.7 x 104 G]. In each of the nine cases, the flux rings start from latitudes 5°, 10°, 20°, 30°, 45°, 60°. The dots represent 
positions of the rings at intervals of S of which the values in dimensionless units (1 corresponds to 18 days) are shown by the side of each diagram. 
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departure from the radial direction [look at the 45° and 60° 
trajectories for the three (Ap/p)0 = 2 x 10“5 cases]. However, 
besides this small effect, magnetic tension plays no important 
role in our problem. 

The initial radial motion gives rise to a Coriolis force 
— 2ÍI x m in the negative </> direction. This, in turn, makes the 
ring rotate with an azimuthal velocity The component of 
the Coriolis force due to a negative is directed inward 
toward the rotation axis and eventually makes the trajectory 
turn away from the radial direction. In the following dis- 
cussion, we shall be using the words 64 inward ” and “ outward ” 
to mean inward toward and outward away from the rotation 
axis, respectively. 

From Figure 2, we can see that, as the tube rises through the 
convection zone for all but the largest initial magnetic field 
strengths (a, b, c), eventually the “ outward ” component of 
buoyancy is balanced by the “ inward ” component of Coriolis 
force of the rotating ring, and the ring just moves parallel to 
the rotation axis due to the component of buoyancy in that 
direction—reminding one of the well-known Taylor- 
Proudman theorem (Greenspan 1968). We can easily make an 
order-of-magnitude estimate of this turning time. The radial 
velocity at time t is of order M(^, 9)t producing a Coriolis 
force 2œM(Ç, 6)t. Hence the azimuthal velocity generated is 
cuM(£, 0)t2, and the corresponding “ inward ” Coriolis force 
component is 2(jo2M(Ç, 9)t2. This component compares with 
buoyancy ~M(ci;, 0) at a time 

1 
2i,2œ 

«0.16 . (20) 

We see in Figure 2 that most trajectories turn away at times of 
this order. 

We also see that some oscillations can take place before the 
forces come into balance (particularly in Figs. 2a, 2d, 2e, and 
2/). We show in Appendix A that these oscillations can be 
treated analytically with some approximations, giving a fre- 
quency of 2£L This is equivalent to a period of 0.71 in our 
dimensionless units (=13 days) and agrees well with the 
numerical results. We also see that, if we do not take account of 
the superadiabatic gradient, the trajectories remain parallel to 
the axis once they turn parallel near the inner boundary (Figs. 
2d, 2e, 2g, and 2h) whether flux ring is in thermal equilibrium 
or is adiabatic. When the superadiabatic gradient is taken into 
account, magnetic buoyancy becomes so strong near the top 
that the trajectories again tend to become radial there (Figs. 2/ 
and 2i). 

Since the flux rings eventually tend to move parallel to the 
axis, it is convenient to look at the components of velocity and 
force in cylindrical coordinates rather than spherical. Accord- 
ingly, Figure 3 shows the time evolution of the cylindrical 
velocity components (the axial component £ cos 9 — ÇÔ sin 9 
parallel to the rotation axis, the “ outward ” radial component 
Ç sin 0 + £$ cos 0, and the azimuthal component ^ sin 0) for 
a trajectory starting at 5° latitude for all the nine cases shown 
in Figure 2. We see that, after the trajectories turn around, the 
axial velocity tends to grow due to the axial component of 
magnetic buoyancy whereas the “outward” radial velocity 
shows oscillations (particularly Figs. 3d-3i) with periods 
roughly agreeing with the analytical value 0.71. Apart from the 
situations when a rapid increase takes place due to super- 
adiabatic gradient (Figs. 3c, 3/, and 3i), the “ outward ” radial 
component oscillates around zero, implying that the rings 
move axially in the mean. It is to be noted that we see the 

presence of oscillations in Figure 3 for some cases where oscil- 
lations are almost invisible in Figure 2. We can understand the 
reason if we look at the velocity amplitudes. For the (Ap/p)0 = 
2 x 10“7 cases, we see from Figure 3 that the oscillatory 
“ outward ” velocity has an amplitude of about 0.02 so that in a 
half-period it may produce an “outward” displacement of 
~ 0.007 (only about 1/40 of the depth of the convection zone). 
On the other hand, for the (Ap/p)0 = 2 x 10-5 cases, the 
“outward” radial velocity is initially about 10 times larger, 
giving rise to more visible “outward” displacement ampli- 
tudes. The azimuthal component of velocity also shows oscil- 
lations, but, in contrast to the “ outward ” radial component, 
its mean value within the convection zone tends to be negative 
rather than zero, in order to produce an “inward” Coriolis 
force counteracting the “ outward ” component of buoyancy. 

We see this “outward” force balance more clearly in Figure 
4, where the time evolution of the “ outward ” components of 
buoyancy and Coriolis force, along with their resultant, for all 
the cases depicted in Figure 3 are shown. The “outward” 
buoyancy component for the flux rings in thermal equilibrium 
drops off with time (Figs. 4a, 4d, and 4g), becoming very small 
near the upper boundary. For an adiabatic ring in the adia- 
batic convection zone also, the magnetic buoyancy decreases— 
though less rapidly (Figs. 4b, 4e, and 4h). With the 
superadiabatic gradient taken into account, the magnetic 
buoyancy becomes enormous at the upper surface as expected 
(Figs. 4c, 4f, and 4i). The Coriolis force component 2co£0 sin 0 
has the expected oscillatory behavior, with its mean tending to 
fall to a negative value equal in magnitude to the “ outward ” 
buoyancy. Hence, the resultant “outward” force after the 
turning around of the trajectories is in the form of oscillations 
around zero, explaining why there are no net “outward” 
motions of the trajectories. 

IV. INCLUSION OF DRAG 

We now study the effect of drag on our problem. Following 
Parker (1979) we use the standard expression of aerodynamic 
drag from hydrodynamics, hoping that this will provide at 
least an approximate model of the drag experienced by flux 
tubes in the solar convection zone. 

It is well known that when a cylinder moves through a fluid, 
the transverse drag in the high Reynolds number limit is 

Dj. = -^CDp<TM±
2êx , 

where u±
2 is the transverse velocity and Î’ is the unit vector in 

its direction (Goldstein 1938; Schlichting 1979). The dimen- 
sionless coefficient CD is roughly a constant (with a value of 
about 0.4) for a large range of values of the Reynolds number. 
If we express the velocity in the dimensionless units we have 
been using, then the appropriate expression of drag applicable 
to equations (7)-(9) is 

4n(T{Ç, 9) 
U \ Ci (21) 

where w/2 = £2 + ë2Ô2 is the velocity square in our dimen- 
sionless coordinates. We write the drag term in the form 

M(£q, 0O) Ä 

^2(4 0) Uv 
Then if the flux ring were to reach a terminal transverse veloc- 
ity at the bottom of the convection zone under the influence of 
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Fig. 3.—The time evolution of the cylindrical velocity components for flux rings starting from 5° latitude in each of the nine cases shown in Fig. 2. Both the time 
and the velocities are in dimensionless units defined in the text, the units of time and velocity being 18 days and 0.43 km s- \ respectively. 

buoyancy and drag alone, then the value of that terminal 
transverse velocity would be about ut

f. From equations (21) 
and (22), we can relate the radius of a flux ring cross section, 
(7(£0, 60) with ut' as follows : 

°(to,0o) = 
Cd Rq ut'

2 

47rM(£0, e0) ' 
(23) 

Table 1 shows what values of initial radius correspond to given 
values of ut' and M(^0, 60). We see that some of the entries in 
Table 1 are truly enormous, not satisfying the a <£ RQ condi- 
tion (without drag, our results are independent of tube radius). 

TABLE 1 
Radius of Flux Tube (in km) at Bottom of Convection Zone 

Corresponding to Different {Ap/p)0 and ut' Given by 
Equation (21) 

2 x 1(T5. 
2 x 10“6. 
2 x KT7. 

1 1/3 1/9 
(i.e., 0.43 km s_1) (i.e., 0.14kms_1) (i.e., 0.048 km s_1) 

2.2 x 103 

2.2 x 104 

2.2 x 105 

2.5 x 102 

2.5 x 103 

2.5 x 104 

2.7 x 101 

2.7 x 102 

2.7 x 103 

Note.—Cn = 0.4. 
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However, in order to understand the behavior of our system, 
we will formally integrate our equations of motion for all 
values of (Ap/p)0 = 2 x 10_6M(^o, 0O) and ut' included in 
Table 1, though some of them correspond to unrealistic values 
of the tube radius. It is clear from equation (23) that tubes of 
larger radii attain higher velocities. Such tubes, moving with 
higher velocities, will tend to get flattened (Parker 1975) and 
may eventually fragment as indicated by the numerical simula- 
tions of Schiissler (1979). It is possible that this process puts an 
upper limit on the radii of the flux tubes rising through the 
convection zone. 

The main effect of drag is that it puts a limit on the velocity. 

Several authors (Unno and Ribes 1976; Schiissler 1977; Kuz- 
netsov and Syrovatskii 1979; Moreno-Insertis 1983) pointed 
out that when the conditions are such as to make the terminal 
velocities smaller than convective velocities, the drag due to 
turbulent viscosity may be more important than aerodynamic 
drag. It is also conceivable that the very slowly moving flux 
tubes will be bodily carried and distorted by convection, 
breaking down the implicit assumption of our model that the 
convection zone is a passive region through which the flux 
tubes rise due to magnetic buoyancy. We are going to restrict 
our calculations to cases where w/ > 0.1, or 43 ms-1, which 
approximately means that terminal velocities will be greater 

40 

30 

20 

(^.)o=2xlO-5 10 

0 

-10 

-20 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.06 0.12 0.18 0.24 0.30 0 0.04 0.08 0.12 0.16 0.20 

0 0.4 0.8 1.2 1.6 2.0 2.4 0 0.4 0.8 1.2 1.6 2.0 2.4 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
1.0 

0.8 
0.6 
0.4 
0.2 

0 
-0.2 
-0.4 
-0.6 
-0.8 
-1.0 

0 123 4 567012345670 I 2 3 4 
TIME T (dimensionless) 

FLUX RINGS IN ADIABATIC FLUX RINGS ADIABATIC FLUX RINGS WITH 
THERMAL EQUILIBRIUM WITH ADIABATIC GRADIENT SUPERADIABATIC GRADIENT 

Fig. 4.—The components of force perpendicular to the rotation axis directed “outward.” We show their time evolution for the same cases as depicted in Fig. 3. 
Again all quantities are in dimensionless coordinates. 

m- 
2x10' r7 
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than convective values. For longitudinal drag, we use an 
expression similar to equation (23) : 

( , = _ M(£0, d0) í£(¡> sin 6\2 4> 
* A^,e)\ ut

f ) 'i^r 
(24) 

The factor <j)l\<¡)\ has the value +1 or —1 depending on the 
sign of (f> and makes sure that D#' is in the opposite direction 
with respect to 0. 

We present in Figure 5 some results showing how the trajec- 
tories for flux tubes in thermal equilibrium are modified on 
introducing drag. Inclusion of drag affects trajectories for adia- 
batic tubes in an analogous way so we do not present them 

here. The results for both isothermal and adiabatic flux tubes 
are summarized in a “ regime diagram ” (Fig. 6) that we discuss 
later. Calculations are done for the same three values of initial 
magnetic buoyancy factor M(^0, 0O) = 10, 1, 1/10. For each of 
these values, we present results for three values of the drag 
parameter ut' = 1, 1/3, 1/9 which correspond to velocities of 
430, 140, 48 m s“1. To get the trajectories, we again integrate 
the equations of motion (7)-(9) for flux tubes in thermal equi- 
librium, this time with the drag D' given by equations (22) and 
(24). The resultant trajectories are displayed in Figure 5, in 
which the drag increases from left to right. 

In Figure 5, we see that the dots along a particular trajectory 
are nearly equally spaced, indicating the terminal velocity is 

ui = l/3 ui = 1/9 

Fig. 5.—The trajectories of flux rings in thermal equilibrium incorporating drag. For each of the three values of (Ap/p)0 = 2 x 10“5, 2 x 10“6, 2 x 10“7 [i.e., 
M(£0, 0o) =10,1,1/10, or B0 = 1.7 x 105, 5.4 x 104,1.7 x 104 G], we consider three values of «/ = 1,1/3,1/9 (which correspond to velocities of 430,140,48 ms-1). 
For all the cases, flux rings start from latitudes 5°, 10°, 20°, 30°, 45°, 60°. The dots show positions of rings at intervals of S (1 unit = 18 days). 
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Fig. 6.—Different regimes in the parameter space of initial radius R0 and initial magnetic field B0 of a flux tube at the bottom of the convection zone 

not a strong function of depth. It can be shown in fact that for 
tubes in thermal equilibrium the terminal velocity 

W_L Ä T(3~2y)/4(y_1) 

in which y is the ratio of specific heats. Thus, for y near 1.5, m1 is 
almost independent of the external temperature, and therefore 
depth in the convection zone. For adiabatic tubes, however, 
the terminal velocity increases as the tube goes up, because the 
buoyancy force becomes much larger in the increased super- 
adiabatic gradient near the top of the layer. 

The two most noticeable effects of drag are that larger drags 
slow down the flux rings and tend to dampen out the oscil- 
lations. Generally we have used larger intervals S to plot tra- 
jectories for bigger drag. The effect of drag on damping is 
discussed in Appendix A. We see similar effects of drag for 
adiabatic flux tubes also. When the drag is larger, the flux rings 
move radially for a longer time before turning parallel to the 
rotation axis. In Figure 5, in the (Ap/p)0 = 2 x 10"7 cases 
(Figs. 5g, 5h, and 5/), the trajectories turn away before being 
limited by drag and the turning away time is of order 0.16 (still 
given by eq. [20]) so that the radial parts are virtually invisible 
in our plots. However, if the radial velocity is already limited 
by drag, which it will be for larger Ap/p, then the Coriolis force 
grows much less rapidly. In the presence of drag, the growing 
velocity of the flux ring in the meridional plane eventually gets 
limited in time of order ut'/M(Ç, 6), which is small for the M(<^0, 
0O) = 10 cases. In the extreme case of flux rings reaching the 
terminal speed ~ut' almost instantaneously after start, the 
Coriolis force in the negative (^-direction is 2œut\ producing, in 
time T, an azimuthal velocity 2com/t and a corresponding 
“inward” Coriolis component (2co)2m/t. Hence the turning 
time of the trajectory in this case, instead of 0.16 from equation 
(20), is 

M(£, 0) 
(2co)2ut

f * 
(25) 

For M((^, 0) = 10, we have 

t ä 0.13/w/ , 

which agrees well with the top three diagrams in Figure 5 
(a, b, and c). Equation (25) shows that the trajectories tend to 
move radially for a longer time when either (Ap/p)0 or the drag 
force is larger (i.e., ut' is smaller). 

After turning away from the radial direction, the trajectories 
show damped oscillations, moving parallel to the rotation axis 
in the mean. As we have discussed in § III, this implies that 
there is some force balance preventing the ring from moving 
radially inward or outward in the mean. From the following 
simple considerations, we can have an understanding of this 
force balance. If a is the small angle between the mean trajec- 
tory and the direction of the rotation axis, then the Coriolis 
force in the negative (^-direction is of order 2œut' sin a, and it 
reaches a force balance with drag given by equation (24) when 

2cout' sin a æ 
M(£o, 60) 
All2& 9) 

^(¡) sin 0^2 

(26) 

If the terminal azimuthal velocity obtained from equation (26) 
gives rise to the “inward” Coriolis force for balancing buoy- 
ancy, then 

2co^(f> sin 6 ä ^^2 ^ sin 0 . (27) 

From equations (26) and (27), we find 

M(£0, fl0)M2(£, 9) sinO 
Sm a * (2m)3eAll2(ï, OX3 (28) 

We easily see that in the M(^0, 0O) = 0.1, i.e., (Ap/p)0 = 2 
x 10 "7, cases, a force balance is attained for a minuscule angle 
a. We can have an observable a only when (Ap/p)0 is much 
larger. It is also clear from equation (28) that a has to be larger 
for smaller w/. We find evidence for this if we carefully look 
at the trajectories for u/ = j and ut

f = ^ in both (Ap/p)0 = 
2 x 10-5 and (Ap/p)0 = 2 x 10-6 cases (Figs. 5b, 5c, 5e, 
and 5/). 

v. CONCLUSION 

We can summarize our results in the form of a regime 
diagram. If drag is related to the radius through equations (22) 
and (23), then we have essentially a two-parameter problem. 
Suppose there is a flux ring at the bottom of the convection 
zone with given initial field B0 and initial radius R0 = cr(Ç0, 90). 
Is the motion of the flux ring going to be affected by the 
Coriolis force? The answer to this question is provided in 
Figure 6 which shows the two-dimensional parameter space of 
B0 and R0. If the terminal velocity ut' as given by equation (23) 
is less than 0.1 (dimensional velocity <43 m s-1), then the 
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velocities tend to be limited below convective velocities, and 
the flux rings may either be carried bodily by convection or 
may become very much distorted. The region of the parameter 
space where ut

f <0.1 is denoted as the convection-dominated 
regime. On the other hand, if B0 is sufficiently large, then mag- 
netic buoyancy is so strong that flux rings move out radially 
and the effect of Coriolis force is not noticeable. This is the 
magnetic buoyancy-dominated regime. The boundary curve 
separating the magnetic buoyancy-dominated regime from 
the regime where the Coriolis force plays a significant role is 
determined for the two cases of (1) flux rings in thermal equi- 
librium with their surroundings and (2) adiabatic flux rings in 
a convection zone with a superadiabatic gradient. (For the case 
of tubes in thermal equilibrium, the dashed line indicate the 
boundary is not sharp, due to oscillations in the trajectories.) 
The actual boundary in reality probably lies somewhere 
between these boundaries. These boundaries were estimated 
on the basis of a large number of numerical runs. Since 
Figure 6 is a log-log plot, no matter what criterion we use to 
separate the two regimes, the positions of the boundary curves 
do not shift much. The nine cases shown in Figure 5 are indi- 
cated by X’s in the parameter space. If flux tubes at the bottom 
of the convection zone have magnetic fields of the order of 
equipartition value and radii of the order of a fraction of the 
depth of the overshoot region, they would lie in the shaded 
region of the parameter space in Figure 6. But even if the flux 
tubes are isolated at the bottom of the convection zone and 
have significantly larger field strengths (up to 105 G), their rise 
to the top of the convection zone would be substantially 
altered by Coriolis forces. 

We see that solar flux tubes of field strength 1-3 x 104 G lie 
close to the boundary between the convection-dominated 
regime and the regime where the Coriolis force is important. If 
the flux tubes were actually within the regime of strong 
Coriolis force and all the implicit assumptions of our model 
were correct, then flux tubes starting even from low latitudes 
would have been deflected substantially poleward of the 
sunspot region and we would not see any flux at the sunspot 
latitudes. Since we do see sunspots at low latitudes we have to 
address the question of why the flux rings are not deflected by 
Coriolis force as much as suggested by our calculations. One 
obvious possibility is that all the solar flux tubes lie within the 
convection-dominated regime and are carried up to the solar 
surface by convective motions. However, in order to consider 
alternative explanations, let us critically look at the implicit 
assumptions of our model. First, we considered the convection 
zone to have solid-body rotation. The presence of differential 
rotation could conceivably influence the trajectories of flux 
rings. We show in Appendix B that, if the convection zone had 
a distribution of equal angular momentum per unit mass 
throughout, i.e., if the rotation law was 

then the flux rings would come out radially (neglecting mag- 
netic tension). However, the Q = constant case we considered 
is probably much closer to reality for the solar convection zone 

(see Duvall et al 1984), and the prospect of solving our 
problem by invoking differential rotation seems quite remote. 

The second questionable assumption used in our calcu- 
lations is the assumption that the flux rings remain symmetric 
during most of their ascent through the convection zone, as 
concluded by Schiissler (1980). We have shown that, under a 
wide range of thermal and drag conditions, such flux rings will 
emerge at much higher latitudes than where sunspots are 
found, unless their velocities of rise due to magnetic buoyancy 
are sufficiently small (<50m s-1) that they are principally 
carried up by convection. Probably loop formation takes place 
within the convection zone, and the resultant nonaxisymmetry 
may be crucial in counteracting the Coriolis force to some 
extent. First of all, if the magnetic field is frozen in the flux rings 
and the rings are to remain symmetric, then the magnetic field 
strengths keep dropping as the rings move upward into regions 
of lower pressure. However, if loop formation takes place, then 
gas may flow from the higher parts of the loop to the lower 
parts to decrease the gravitational potential, consequently 
keeping the field more compressed and hence retaining more 
magnetic buoyancy in the upper parts of the loop. In addition, 
if a flux ring does not get loosened as a whole, but has parts of 
it anchored to the bottom of the convection zone, then we 
expect the tension in the ring to play an important role in 
stopping the upper parts of a loop from moving to significantly 
higher latitudes. We plan to study the effects of non- 
axisymmetry in a subsequent paper. Since carrying out the 
calculations presented above, we have discovered that 
Moreno-Insertis (1986) has developed a numerical model for 
nonaxisymmetric loops rising in the convection zone for Carte- 
sian geometry and without rotation that confirm many of these 
thoughts. 

It is interesting to consider the implications of our calcu- 
lations for other stars with convective envelopes. The dimen- 
sionless equations (7)-(9) can at once be used to make 
calculations for other stars, using an appropriate value of the 
rotation parameter œ and integrating from an appropriate 
depth ^0. If nonaxisymmetry and partial anchoring at the 
bottom are responsible for counteracting the Coriolis force in 
the Sun, then probably they will be similarly operative in other 
stars also, causing the flux to appear at low latitudes. On the 
other hand, if the reason solar magnetic fields appear at low 
latitudes is that the flux tubes lie in the convection-dominated 
regime, then presumably there will be stars in which flux tubes 
would lie in the regime of strong Coriolis force and would 
appear on the stellar surface near the poles. Thus, a study of 
magnetic stars may eventually throw more light on the mag- 
netic buoyancy problem in the solar context. At present, on the 
basis of the calculations we have done so far, it seems clear that 
Coriolis forces should be taken into consideration when study- 
ing motions of flux tubes through stellar convection zones. 

We are grateful to Jack Miller for his help and advice in 
developing the code, and to Tom Bogdan for his constructive 
criticism of an initial draft of the manuscript and for suggesting 
improvements. We also thank Gene Parker and Ed DeLuca 
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APPENDIX A 

THE OSCILLATIONS OF FLUX RING TRAJECTORIES 

In order to have some insight into the nature of the oscillations of our flux ring trajectories, we consider a point on the flux ring 
and construct a local Cartesian coordinate system there. We take the z-axis in the direction of the rotation axis, the x-axis in the 
radially outward direction from the rotation axis, and the y-axis in the azimuthal direction (i.e., the ^-direction). Let us start from 
equation (3) neglecting the magnetic tension term. It is possible to obtain an analytical solution if we make the following 
assumptions: 

1. The drag D increases linearly with velocity, i.e., D=—ku. 
2. The WKB approximation, which neglects variations of mh me, and of the components gx, gz of gravity over a wavelength of 

oscillation, is justified. 
It is true that we considered the drag to depend quadratically on velocity in our numerical calculation, and the WKB approx- 
imation is presumably not a good approximation for the adiabatic convection zone we used. However, in spite of these caveats, we 
shall see that the analytical results obtained with these assumptions qualitatively reproduce the broad features of the oscillations 
arising in the numerical calculations, providing some insight into their origin. 

The three components of equation (3) will be 

and 

dt 
+ k\ux — 2Quy = Mgx , 

dt 
+ k \Uy + 2Qux — 0 , 

(Al) 

(A2) 

= Mgzf (A3) 

where M = (mi — m^ßm^ We thus see that the motions in the x- and y-directions are coupled together, but the z-motion is not 
coupled to them. Integration of equation (A3) gives 

uz = 
m9z 
k 

(A4) 

i.e., uz tends to approach the asymptotic value Mgjk. Combining equations (Al) and (A2), we find 

of which the solution is 

(jt + k) Ux + 4Q2Ux = kMdx 

+ c2e 
i2Çit) + 

kMgx 

4Q2 + k2 (A5) 

We thus obtain damped oscillations with frequency 2Q. This result reminds one of the well-known inertial oscillations in rotating 
fluids with a maximum allowed frequency of 2Q (see, for example, Greenspan 1968). The frequency of 2Q corresponds to a period of 
0.71 in our units, whereas our numerical calculations give periods between 0.6 and 0.8. We also see that the damping is quicker for 
larger k, implying that there should be more damping for trajectories with lower terminal velocities. This also agrees with numerical 
results. Thus we see that the above simple-minded analysis reproduces the broad qualitative features of the oscillations observed in 
the numerical simulations. 

APPENDIX B 

THE EFFECT OF DIFFERENTIAL ROTATION 

In order to consider motions of flux rings in a differentially rotating convection zone, one should write down the equations of 
motion in an inertial frame and then write 

dt = D(r, 6) + (Bl) 

where Q(r, 6) is the angular velocity of the convection zone and (d(f)/dt)rcl is that of the flux ring relative to the convection zone. We 
can get the desired equations of motion by putting Q = 0 in equations (4)-(6) and then substituting for d(j)/dt from equation (Bl), 
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remembering that we need not keep terms involving Q2(r, 9), which represent the centrifugal force present even in the absence of a 
moving flux ring and which we have been neglecting compared to gravity. This procedure gives 

x¥2 

2m^ ̂ _r(dlY_JdA\ 
dt2 \dt) 

\2 
dt Jr 

sin2 0 — 2rQ(r, 0)( ) sin2 6 
°]=~ 

(», - nM ^ sin 6 + Dr, 

r d‘9 
2 { tit* 

dr de 
+ ^ — ^ ' s*n ^ cos ^ — dt J rel 

2m{ d 

dt). 
sin 6 cos 9 

'dÿ 
r2( £)(r, Ö) + ( -^ ) ) sin2 6 

r sin 6 dt 

It is now straightforward to show that for an angular velocity distribution 

1 

0] = • 

T2 

2mj' 
cos 6 + De 

Q(r, 0)a 
r2 sin2 6 ’ 

(B2) 

(B3) 

(B4) 

(B5) 

a flux ring would move radially when we neglect tension. Noting that the azimuthal drag D# must be zero when (d<p/dt)rtl = 0, we at 
once see that 

(B6) 

is a solution of equation (B4) if Í2(r, 9) is given by equation (B5). Neglect of the tension term ¥3 cos 6/2no2 in equation (B3) now 
imples that 

is a solution of that equation when equation (B6) holds. Hence, the flux ring moves in the radial direction, with its motion described 
by equation (B2) considerably simplified on account of equations (B6) and (B7). The reason this happens is that the flux tube 
conserves angular momentum when moving (neglecting tension) and is moving in a medium whose angular momentum is indepen- 
dent of radius, so there is no restoring perturbation centrifugal force. 

REFERENCES 
Acheson, D. J. 1978, Phil. Tvans. Roy. Soc., A289,459. 
 . 1979, Solar Phys., 62,23. 
Acheson, D. J., and Gibbons, M. P. 1978, Solar Phys., 85,743. 
Acheson, D. J., and Hide, R. 1973, Rep. Prog. Phys., 36,159. 
Choudhuri, A. R. 1984, Ap. J., 281,846. 
Däppen, W., and Gough, D. O. 1984, in Theoretical Problems in Stellar 

Stability and Oscillations, ed. M. Gabriel and A. Noels (Liège: Institute 
d’Astrophysique), p. 264. 

DeLuca, E. E., and Gilman, P. A. 1986, Geophys. Ap. Fluid Dyn., 37,85. 
Duvall, J. L., Jr., Dziembowski, W. A., Goode, P. R., Gough, D. O., Harvey, J. 

W., and Leibacher, J. W. 1984, Nature, 310,22. 
Galloway, D. J., and Weiss, N. 0.1981, Ap. J., 243,945. 
Gilman, P. A. 1970, Ap. J., 162,1019. 
 . 1983, Ap. J. Suppl, 53,243. 
Gilman, P. A., and Miller, J. 1981, Ap. J. Supp., 46,211. 
Glatzmaier, G. A. 1985, Ap. J., 291,300. 
Goldstein, S. 1938, Modern Developments in Fluid Mechanics (Oxford: 

Clarendon Press), p. 418-419. 
Greenspan, H. P. 1968, The Theory of Rotating Fluids (Cambridge: Cambridge 

University Press). 
Hughes, D. W. 1985, Geophys. Ap. Fluid Dyn., 34,99. 
Kuznetsov, V. D., and Syrovatskii, S. J. 1979, Soviet Astr.-AJ, 23, 715. 
Lamb, H. 1945, Hydrodynamics (New York : Dover). 
Moffatt, H. K. 1978, Magnetic Field Generation in Electrically Conducting 

Fluids (Cambridge: Cambridge University Press). 

Moreno-Insertis, F. 1983, Astr. Ap., 122,241. 
 . 1986, Asir. Ap., 166,291. 
Parker, E. N. 1955, Ap. J., 121,491. 
 . 1975, Ap. J., 198,205. 
— . 1979, Cosmical Magnetic Fields (Oxford: Clarendon Press). 
 . 1984, Ap. J., 281, 839. 
 . 1986, preprint. 
Roberts, P. H., and Stewartson, K. 1977, Astr. Nach., 298, 311. 
Schlichting, H. 1979, Boundary-Layer Theory (7th ed., New York: McGraw- 

Hill), p. 15-19. 
Schmitt, J. H. M. M., and Rosner, R. 1983, Ap. J., 265,901. 
Schmitt, J. H. M. M., Rosner, R., and Bohn, H. U. 1984, Ap. J., 282,316. 
Schüssler, M. 1977, Astr. Ap., 56,439. 
 . 1979, Astr. Ap., 71,79. 
  —.1980, Asir. Ap., 89,26. 
Spiegel, E. A., and Weiss, N. 0.1980, Nature, 287,616. 
Spruit, H. C. 1974, Solar Phys., 34,277. 
Spruit, H. C, and van Ballegooijen, A. A. 1982, Astr. Ap., 106, 58. 
Symon, K. R. 1971, Mechanics (Reading, Mass : Addison-Wesley). 
Unno, W., and Ribes, E. 1976, Ap. J., 208,222. 
van Ballegooijen, A. A. 1982, Astr. Ap., 113,99. 
 . 1983, Astr. Ap., 118,275. 

Arnab Rai Choudhuri and Peter A. Gilman: High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 
3000, Boulder, CO 80307 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 


	Record in ADS

