A SURVEY OF THE BOOTES VOID ${ }^{1}$

Robert P. Kirshner ${ }^{2}$

Harvard-Smithsonian Center for Astrophysics

Augustus Oemler, Jr. ${ }^{2}$
Yale University Observatory

AND
Paul L. Schechter ${ }^{2}$ and Stephen A. Shectman ${ }^{2}$
Mount Wilson and Las Campanas Observatories
Received 1986 June 18; accepted 1986 September 2

Abstract

In an earlier paper we inferred, from the distribution of galaxy redshifts in three small fields $\sim 30^{\circ}$ apart, the existence of a $10^{6} \mathrm{Mpc}^{3}$ void in the distribution of galaxies in the constellation of Bootes. In this paper, we describe a redshift survey undertaken to test that hypothesis. Galaxies were selected by eye from 283 small fields distributed between the three original fields, and redshifts were measured for 239 of them. We confirm the existence of a large, roughly spherical void, of radius 62 Mpc , centered at $\alpha=14^{\mathrm{h}} 50, \delta=+46^{\circ}, v=15,500$ $\mathrm{km} \mathrm{s}^{-1}$. The low density of this region is of high statistical significance and does not appear easily reconcilable with any of the popular models for the growth of structure in the universe. This void does contain some unusual galaxies characterized by strong, high-excitation emission spectra, but not in sufficient numbers to compensate for the absence of more usual objects.

Subject headings: galaxies: clustering - galaxies: redshifts

I. INTRODUCTION

While conducting a deep survey of the distribution of galaxies in six small, well-separated fields in the two Galactic caps (Kirshner et al. 1983a, hereafter KOSS), we discovered that the redshift distributions in each of the three northern fields showed an identical $6000 \mathrm{~km} \mathrm{~s}^{-1}$ gap (Kirshner et al. 1981). Because these fields were separated by angles of $\sim 35^{\circ}$, this suggested the existence of a large void in the galaxy distribution of at least comparable angular diameter. Located in the constellation Bootes, this proposed feature has come to be called the Bootes Void.
At a mean recessional velocity of $15,000 \mathrm{~km} \mathrm{~s}^{-1}$, this void would have a volume greater than $10^{6} \mathrm{Mpc}^{3}$. Such a large void, if proved to be real, would put serious constraints on theories of the growth of structure in the universe, and it has been the subject of much theoretical speculation. Our hypothesis was, however, an extrapolation from limited data, and a much more extensive survey of the Bootes region was clearly needed to establish the reality of the void and delineate its structure. We have been engaged for some time on such a survey. While we have made a few preliminary reports (Kirshner et al. 1983b, 1984), the full results of our survey are presented in this paper.

In § II we describe the sample of galaxies chosen for study. In § III we present the results of a redshift survey of this sample, which confirms the reality of the void. Finally, in § IV we discuss the theoretical implications of this structure and its possible contents.

[^0]
II. OBSERVATIONS

The size and distance of the Bootes Void make a complete redshift survey of its environs an impossibly large task. Therefore, in order to sample the distribution of galaxies, 283 small fields were chosen on a grid covering the region. Each field is a square 15^{\prime} on a side, and together they cover $\sim 2 \%$ of the total area over which they are spread. The positions of the fields are given in Table 1, and their distribution on the sky is presented in Figure 1. Their unusual distribution is due to their having been chosen in three sets, each of the latter two sets being intended to refine the void outline detected in observations of the previous set.

Uniform enlargements of the fields were made from the Kitt Peak National Observatory's set of glass copies of the red plates of the Palomar Observatory Sky Survey, and copies of these photographs were distributed to the four authors. Each of us independently ranked, by eye, the brightness of all galaxies in the fields down to a limiting magnitude sufficient to give an average of about two galaxies per field. Galaxies were assigned a numerical rank, running from 1 for the brightest to n for the nth brightest. If the rankings were perfect, this set of galaxies, down to any rank, would comprise a perfect apparent magnitude-limited sample. Since our rankings were not perfect, or even consistent, we have averaged the four sets by the following technique.

If a galaxy was ranked by all four of us, a simple logarithmic mean of the four ranks was taken. However a galaxy was sometimes missing from one or more of the four ranked lists, either because it had been judged to be fainter than the cutoff brightness, or because it had been overlooked, or mistaken for a star. If the appearance or brightness of the galaxy suggested the latter case was true, the galaxy was assigned a rank equal to the mean of its logarithmic ranks on those lists on which it was included. If not, it was assumed to have an rank on the lists from which it was missing fainter than the cutoff and was

TABLE 1
Survey Fields

TABLE 1-Continued

Field	R.A. (1950)			Dec (1950)			$\mathrm{V}_{\text {lim }}$	Field	R.A.	119	950)	Dec	(195		$\mathrm{v}_{1 \mathrm{im}}$
332	14	44	54	+45	39	00	16.87	74	14	23	36	+51	54	00	16.87
262	14	52	6	+45	39	00	16.87	359	14	31	42	+51	54	00	16.87
333	14	59	12	+45	39	00	16.87	75	14	39	48	+51	54	00	16.87
263	15	6	24	+45	39	00	16.87	360	14	47	54	+51	54	00	16.87
334	15	13	30	+45	39	00	16.87	76	14	56	0	+51	54	00	16.87
264	15	20	42	+45	39	00	16.87	361	15	4	6	+51	54	00	16.87
335	15	27	48	+45	39	00	16.87	77	15	12	12	+51	54	00	16.87
265	15	35	0	+45	39	00	16.87	362	15	20	18	+51	54	00	16.87
266	15	49	18	+45	39	00	16.87	109	15	28	24	+51	54	00	16.87
56	13	48	24	+46	54	00	16.87	110	15	44	36	+51	54	00	16.87
57	14	3	0	+46	54	00	16.87	280	14	0	12	+53	9	00	16.87
336	14	10	24	+46	54	00	16.87	281	14	16		+53	9	00	16.87
58	14	17	42	+46	54	00	16.87	282	14	33	36	+53	9	00	16.87
337	14	25	0	+46	54	00	16.87	363	14	41	54	+53	9	00	16.87
59	14	32	18	+46	54	00	16.87	283	14	50	18	+53	9	00	16.87
338	14	39	36	+46	54	00	16.87	364	14	58	36	+53	9	00	16.87
60	14	46	54	+46	54	00	16.87	284	15	6	54	+53	9	00	16.87
339	14	54	18	+46	54	00	16.87	78	13	52	36	+54	24	00	16.87
61	15	1	36	+46	54	00	16.87	79	14	9	48	+54	24	00	16.87
340	15	8	54	+46	54	00	16.87	80	14	27	0	+54	24	00	16.87
62	15	16	12	+46	54	00	16.87	81	14	44	6	+54	24	00	16.87
341	15	23	30	+46	54	00	16.87	82	15	1	18	+54	24	00	16.87
63	15	30	48	+46	54	00	16.87	111	15	18	30	+54	24	00	16.87
64	15	45	30	+46	54	00	16.87	112	15	35	42	+54	24	00	16.87
105	16	0	6	+46	54	00	16.87	285	14	2	12	+55	39	00	16.87
106	16	14	48	+46	54	00	16.87	286	14	19	54	+55	39	00	16.87
267	13	56	36	+48	9	00	16.87	287	14	37	36	+55	39		16.87
268	14	11	36	+48	9	00	16.87	288	14	55	18	+55		00	16.87
342	14	19	6	+48	9	00	16.87	83	13	54	0	+56		00	16.87
269	14	26	36	+48	9	00	16.87	84	14	12	18	+56	54	00	16.87
343	14	34	6	+48	9	00	16.87	85	14	30	36	+56	54	00	16.87
270	14	41	36	$+48$	9	00	16.87	86	14	48	54	+56	54	00	16.87
344	14	49	6	+48	9	00	16.87	113	15	7	12	+56	54	00	16.87
271	14	56	30	+48	9	00	16.87	114	15	25	36	+56	54	00	16.87
345	15	4	0	+48	9	00	16.87	289	14	4	12	+58	9	00	16.87
272	15	11	30	+48	9	00	16.87	290	14	23	6	+58	9	00	16.87
346	15	19	0	+48	9	00	16.87	291	14	42	6	+58	9	00	16.87
273	15	26	30	+48	9	00	16.87	87	13	55	24	+59	24	00	16.87
347	15	34	0	+48	9	00	16.87	88	14	15	0	+59	24	00	16.87
65	13	49	48	+49	24	00	16.87	89	14		42	+59	24	00	16.87
66	14	5	12	+49	24	00	16.87	90	14	54	18	+59		00	16.87
348	14	12	54	+49	24	00	16.87	115	15	14		+59			16.87
67	14	20	30	+49	24	00	16.87	116	15	33	36	+59			16.87
349	14	28	12	+49	24	00	16.87	292	14	6	18	+60			16.87
68	14	35	54	+49	24	00	16.87	293	14	26	42	+60		00	16.87
350	14	43	36	+49	24	00	16.87	294	14	47	6	+60		00	16.87
69	14	51	18	+49	24	00	16.87	91	13	56	48	+61		00	16.87
351	14	59	0	+49	24	00	16.87	92	14	18	0	+61		00	16.87
70	15	6	36	+49	24	00	16.87	93	14	39	18	+61		00	16.87
352	15	14	18	+49	24	00	16.87	117	15	0	30	+61	54	00	16.87
71	15	22	0	+49	24	00	16.87	118	15	21	42	+61		00	16.87
353	15	29	42	+49	24	00	16.87	295	14	8	36	+63		00	16.87
107	15	37	24	+49	24	00	16.87	296	14	30	42	+63		00	17.34
108	15	52	42	+49	24	00	16.87	94	13	58	12	+64	24	00	16.87
274	13	58	24	+50	39	00	16.87	95	14	21	18	+64		00	17.34
275	14	14	12	+50	39	00	16.87	119	14	44	30	+64		00	17.34
354	14	22	0	+50	39	00	16.87	120	15	7	36	+64			17.34
276	14	29	54	+50	39	00	16.87	297	14	11		+65			16.87
355	14	37	48	+50	39	00	16.87	96	13	59		+66			16.87 17
277	14	45	42	+50	39	00	16.87	97	14	25	${ }^{6}$	+66			17.34
356	14	53	36	+50	39	00	16.87	121	14	50		+66			16.87
278	15	1	30	+50	39	00	16.87	122	15	16	${ }^{6}$	+66			16.87
357	15	9	24	+50	39	00	16.87	298	14	13		+68			16.87
279	15	17	12	+50	39	00	16.87	98	14	1	0	+69			16.87
358	15	25	6	+50	39	00	16.87	123	14		24	+69			16.87
72	13	51	12	+51	54	00	16.87	124	14	57	48	+69	24	00	16.87
73	14	7	24	+51	54	00	16.87								

assigned a best-guess rank on each of these lists. This best guess was found by an iterative technique. Assigning to the galaxy a tentative rank equal to the mean of the available ranks, and assuming a ranking error with a normal distribution of standard deviation 0.3 in the natural \log of the rank, we calculate the probability $P(R)$ that one of us would have given the galaxy a particular rank R. This $P(R)$ is zero for R less than the cutoff rank and has a monotonically decreasing positive value for all larger ranks. The most probable rank is the center
of gravity of the distribution of $P(r)$. We take this rank, average it with the other available ranks for the galaxy, and iterate until this average converges. This value we take as the final estimate of the galaxy's rank.

To calibrate our rankings and estimate their accuracy, photoelectric photometry in the J and F bands (see Kirshner, Oemler, and Schechter 1978) was obtained for 59 of the galaxies using the Mark 2 photometer on the KPNO 1.3 m telescope. The apertures used were large enough (typically $36^{\prime \prime}$) to

Fig. 1.-Distribution of survey fields (dots not to scale). The shaded squares are the three northern KOSS fields.
contain almost all the light of all but the few brightest galaxies. A plot of galaxy rank versus photoelectric F-magnitude should be exactly equivalent to the galaxy number count versus magnitude relation for this region of the sky, with the addition of three sources of error: a scatter of order the square root of the rank due to the random sampling of the galaxy population, and scatter due to errors in the photoelectric photometry and the eye rankings. While this is basically true of our data, the residuals from the mean rank-magnitude relation show two systematic trends.

First, they are a systematic function of galaxy color, redder galaxies being ranked too low (faint). The probable reason is that red galaxies tend to be of higher surface brightness than blue galaxies; their images are more saturated and appear relatively fainter. The result is that our eyeball photometry is effectively in a band to the blue of the F band by an amount

$$
\begin{equation*}
\Delta m=0.66(J-F) \tag{1}
\end{equation*}
$$

By coincidence, this shift is almost exactly that between the V and F bands (Kirshner, Oemler, and Schechter 1978), so that our ranked list actually best approximates a V-magnitudelimited sample.

The second systematic trend is a correlation of the residuals with the POSS field in which the galaxies lie, indicating a (not unexpected) field-to-field variation in the depth of the POSS plates. Of the 22 POSS fields in which we have calibrations, five appear to differ significantly from the mean, by amounts of up to 0.6 mag . These differences in field depth have been taken into account in the final calibration. Unfortunately, there are nine POSS fields, containing 27 of our 283 survey fields, for which we do not have calibrations. Extrapolating from the calibrated fields, we might expect about two of these to have significantly different zero points, producing an unaccountedfor variation in the depth of roughly 2% of our survey.

The final rank- V-magnitude relation, including color and field corrections, is presented in Figure 2. The fractional rank R is defined so that the 283d galaxy has a rank of 1.00 . The filled
circles are the galaxies with photoelectric photometry; the error bars are 1σ uncertainties in the latter. The open circles are galaxies in KOSS field NP 8 with photographic photometry. Galaxies in this field were included in the ranking process as an independent calibration, and their position in Figure 2 confirms the zero point derived from the photoelectric photometry. The solid line is a best fit to the data and follows the equation

$$
\begin{equation*}
V=16.98+1.94 \log R+\Delta \tag{2}
\end{equation*}
$$

where Δ is a correction applied to galaxies in the five POSS fields which differ significantly from the others. The scatter in the true V-magnitudes about the values predicted by equation (2) has a standard deviation of 0.29 mag , sufficiently small for our purposes-indeed, gratifyingly small considering our photometric technique. A list of the brighest 300 galaxies is presented in Table 2.

We have measured redshifts of 231 galaxies from Table 2, using the SIT and intensified reticon scanner on the Palomar 5 m telescope and the IIDS on the KPNO 2.1 m telescope. Values of $c z$, which we shall for convenience call velocities, corrected to the rest frame of the Local Group according to the precepts of de Vaucouleurs, de Vaucouleurs, and Corwin (1976, hereafter RC2), are presented in the fifth column of Table 2. We estimate these velocities to be accurate to ~ 100 $\mathrm{km} \mathrm{s}^{-1}$ (1 standard deviation). Velocities for eight galaxies, taken from RC2 and from the CfA survey (Huchra et al. 1983) are also included.

The velocity measurements are 97% complete to a fractional rank $R=0.82$; fainter than this the completeness factor is very low. Therefore we take this as the limit of what we shall call the nearly complete sample. Since the missing brighter galaxies are scattered rather uniformly throughout the rankings, this is a

Fig. 2.- V-magnitudes of galaxies vs. their estimated rank. Filled circles, galaxies in this sample with photoelectric photometry; open circles, galaxies from NP 8 with photographic photometry from KOSS.

TABLE 2
The Galaxy Sample

TABLE 2-Continued

[^1]${ }^{\mathrm{b}}$ From RC2.
reasonable approach, provided that we divide all galaxy densities derived from this sample by 0.97 . With a limiting rank of 0.82 , and using equation (2), we calculate the limiting magnitude of the nearly complete velocity sample in each survey field; this quantity is presented in the last column of Table 1.

III. THE DISTRIBUTION OF GALAXIES

To convey the three-dimensional distribution of our galaxies, we present the data in several different ways. Each has limitations, but together they give a reasonably complete idea of the structure of the region we have surveyed. In Figure 3 we present the distribution of measured velocities of our galaxies. The nearly complete sample is represented by the shaded area, and the remaining galaxies by the open area. The smooth curve is the predicted distribution of the nearly complete sample in a homogeneous universe. If the luminosity function of galaxies is of the form (Schechter 1976)

$$
\begin{equation*}
\phi(L) d L=\phi^{*}\left(L / L^{*}\right)^{\alpha} e^{-L / L *} d L / L^{*}, \tag{3}
\end{equation*}
$$

then the space density of galaxies in a shell of distance R in an apparent magnitude-limited sample is

$$
\begin{align*}
\rho\left(m_{\lim }, R\right)=\phi^{*}(R) & \Gamma\{\alpha+1, \operatorname{dex} \\
& \left.\times\left[0.4\left(M^{*}-m_{\lim }+5 \log R-5\right)\right]\right\}, \tag{4}
\end{align*}
$$

where M^{*} is the magnitude corresponding to L^{*} (see, e.g., Kirshner, Oemler, and Schechter 1979). The large photometry errors in our sample make it an imperfect approximation to a magnitude-limited sample. However, if the magnitude errors
have a normal distribution, it is straightforward to

$$
\begin{align*}
& \rho\left(m_{\mathrm{lim}}, R\right)=\frac{\phi^{*}}{2} \llbracket \Gamma(\alpha+1) \\
&-\int_{0}^{\infty} \operatorname{erf}\left\{\frac{\left[M^{*}-m_{\lim }-2.5 \log \left(L / L^{*}\right)+5 \log R-5\right]}{\sqrt{2 \sigma^{2}}}\right\} \\
&\left.\times e^{-\left(L / L^{*}\right)}\left(\frac{L}{L^{*}}\right)^{\alpha} d\left(\frac{L}{L^{*}}\right)\right] . \tag{5}
\end{align*}
$$

where σ is the standard deviation of the magnitude errors. We have used equation (5) with the values $\phi^{*}=1.5 \times 10^{-3}$, $M_{v}^{*}=-22.0$, and $\alpha=-1.25$ derived in KOSS to calculate the expected density distribution.

In Figure 4 we present the distribution of galaxies in the velocity-declination plane, with three intervals of right ascension indicated by different symbols. In addition to the expected variation in the number of galaxies with velocity described by equation (5), it should be noted that the density of galaxies varies with declination because of a corresponding variation in the number of fields.

In Figure 5 we present a stereoscopic view of the sample, from the same viewpoint as in Figure 4. This figure may be viewed by placing an index card upright between the two plots and putting the bridge of the nose against its end. After some moments of eye adjustment, the reader will get either a headache or a stereo view of the Bootes region.

All the views described above suffer in one way or another from the variable density of sample fields across the sky or the variation in the sampling function with depth, or both. In

FIG. 3.-Distribution of velocities of the sample galaxies. Shaded area, nearly complete sample; open area, other galaxies; smooth curve, distribution expected in a homogeneous universe.

Fig. 4.-Distribution in the velocity-declination plane of sample galaxies. Filled circles, galaxies with $\alpha>15^{\mathrm{h}} 10^{\mathrm{m}}$; open circles, galaxies with $14^{\mathrm{h}} 20^{\mathrm{m}}<\alpha \leq 15^{\mathrm{h}} 10^{\mathrm{m}}$; pluses, galaxies with $\alpha \leq 14^{\mathrm{h}} 20^{\mathrm{m}}$. The large circle represents the largest empty sphere that will fit within the void.

Fig. 5.-Stereoscopic view of the galaxy distribution, from the same viewpoint as Fig. 4

FIG. 6.-Contours of space density of galaxies in five velocity intervals. The lowest contour represents a density equal to 0.7 of the cosmic mean; each higher contour represents a factor of 2 increase in density. Velocity ranges $\left(\mathrm{km} \mathrm{s}^{-1}\right):(a) 7000-12,000 ;(b) 12,000-17,000 ;(c) 17,000-23,000 ;(d) 23,000-29,000 ;(e)$ 29,000-39,000.

Figure 6 we correct for these effects, using the predicted variation in the sampling function with distance, calculated using equation (5) and the galaxy parameters from KOSS, and taking into account the variation in the density of sample fields across the sky. Figure 6 presents contours of the true space density of galaxies across our survey area, in five velocity intervals. To handle the discreteness of the sample fields, these contour plots have been smoothed at each point over an area containing the nearest five fields.

Inspection of Figures 3-6 reveals three major points. First, the distribution of galaxies is very inhomogeneous, with large density excesses near velocities of 10,000 and $20,000 \mathrm{~km} \mathrm{~s}^{-1}$ and a large deficit near $15,000 \mathrm{~km} \mathrm{~s}^{-1}$. Second, unlike the velocity distribution in the three northern KOSS fields, the interval between 12,000 and $18,000 \mathrm{~km} \mathrm{~s}^{-1}$ is not completely empty. Nevertheless, there is a large void in this region. It is most apparent in Figure 6b, where it appears roughly circular in outline. Indeed, although the clumpy distribution of galaxies and the finite size of our velocity sample make it impossible to precisely determine its shape, the data are consistent with its being approximately spherical. The largest empty sphere which we can put into our sample has a radius of 63 Mpc (assuming $H_{0}=50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$) and is centered at $\alpha=14^{\mathrm{h}} 50^{\mathrm{m}}$,
$\delta=+46^{\circ}, c z=15,500 \mathrm{~km} \mathrm{~s}^{-1}$. The location and size of this sphere is indicated by the circle in Figure 4. Its volume is $1.0 \times 10^{6} \mathrm{Mpc}^{3}$.

What is the statistical significance of this empty sphere? If our galaxies had the distribution shown by the smooth curve in Figure 3, the sphere should contain 31 galaxies. If their positions were uncorrelated, the chance of the sphere containing no galaxies when 31 were expected would be $\exp (-31)=3.4 \times 10^{-14}$. However, this naive calculation ignores two important factors. One point is that, because galaxies are correlated, the number of independent points is less than 31. We calculate that number as follows. The distribution of separations between pairs of galaxies within single fields shows an excess at small separations over the number expected if galaxies were randomly distributed. About 80% of these excess pairs have velocity differences less than $500 \mathrm{~km} \mathrm{~s}^{-1}$ and almost all have velocity differences less than $1000 \mathrm{~km} \mathrm{~s}^{-1}$. We now identify all pairs (including interfield pairs) with separations of less than $5 h^{-1}$ or $10 h^{-1} \mathrm{Mpc}$ and recessional velocities $10,000<v<20,000 \mathrm{~km} \mathrm{~s}^{-1}$ and use a friends-of-friends technique to build groups out of common pairs. Using a $5 h^{-1} \mathrm{Mpc}$ separation length, we find that the 71 galaxies in this velocity range fall into 50 groups; using $10 h^{-1} \mathrm{Mpc}$ they fall into 38
groups. We may then say that the ratio of independent groups to galaxies is $\sim 40 / 71$. Thus our 31 missing galaxies represent 17.5 independent groups. Since $\exp (-17.5)=2.6 \times 10^{-8}$, the probability of a volume being empty is still very small. Using the same statistic, we calculate that there is a 1% chance that the density within the void is higher than one-quarter the cosmic mean.

However, as Politzer and Preskill (1986) have recently demonstrated, the probability of finding one such empty sphere of volume v somewhere within a larger volume V is much larger, typically by an factor of $(V / v)(17.5)^{3}$. Fortunately, our case is not typical, for two reasons. First, the volume over which we can search is not much larger than the void. Because the empty sphere subtends an angle almost as large as that of our survey region, we cannot move the sphere very far across the sky before touching the edge of our survey region. For the same reason, we cannot move it much closer. If we move it farther from us, on the other hand, the galaxy selection function decreases the density of sample galaxies so fast that the total number of expected galaxies does not increase even if we expand the size of the sphere to the limits of the survey area. Thus the spherical void is close to being the most improbable one that could exist within our survey volume.

Our case is also not typical because we sample the galaxy distribution in discrete fields. In the Appendix, we derive an expression for the void probability, analogous to equation (2) of Politzer and Preskill, which takes account of this difference in sampling. Applying this equation to our sample, we find that the probability of finding, somewhere within our survey volume, a void at least as large and as improbable as ours is larger than $\exp (-17.5)$ by a factor of only ~ 50. Thus, $P_{\text {void }} \approx 10^{-6}$.

Our original claim for the existence of a $10^{6} \mathrm{Mpc}^{3}$ void in Bootes is confirmed by this survey. However, inspection of Figures 1, 3, 4, 5, and 6 reveals a curious point. The void defined by this survey does not appear to extend as far as the three KOSS fields, on the basis of which the original discovery was made. What is to be made of this? It seems to us possible but extremely unlikely that our original velocity gap was unrelated to the void which happened to exist between the three fields. Considerations of probability alone seem to demand that the peculiar density distributions seen in the three KOSS fields be related to the void between them. The most plausible explanation is that the void, although apparently sharply bounded in front and back, is surrounded in other directions by a larger region of low density which the KOSS fields happened to penetrate at particularly empty spots. Unfortunately, our survey area does not extend sufficiently far to test this hypothesis; but the distribution of nearby clusters and superclusters described by Bahcall and Soneira (1982), and a new redshift survey of a region southeast of Bootes (Postman, Geller, and Huchra 1986), suggest that the density structures seen in our galaxy samples may extend over larger angles.

IV. DISCUSSION

a) Theoretical Implications

The general subject of large-scale structure has been reviewed by Oort (1983); Peebles (1984); and Doroshevich, Shandarin, and Zel'dovich (1983). The development of voids has been given explicit theoretical treatment by a number of investigators (for example, Peebles 1982; Sato 1982; Aarseth and Saslaw 1982; Palmer and Voglis 1983; Fujimoto 1983;

Hausman, Olson, and Roth 1983; Suto, Sato, and Sato 1984; Fillmore and Goldreich 1985). It is clear that the observed properties of voids can provide significant constraints on cosmological models: constraints which are badly needed, since the most widely used description of the clustering, the galaxy covariance function, appears unable to distinguish between very different clustering scenarios.

The popular models for the growth of clustering in the universe divide roughly into several classes. Gravitational models divide between "bottom up" or hierarchical models, in which structure grows from small to large scales, and "top down" or pancake models, in which large-scale structures form first and then fragment to produce small-scale structure. Examples of the former can be found in the work of Aarseth, Gott, and Turner (1979), and of the latter in Zel'dovich, Einasto, and Shandarin (1982). The cold dark matter model (e.g., Davis et al. 1985) is in some ways intermediate between these two classes, with structure forming on a wide range of scales almost simultaneously.

The only widely discussed nongravitational model is the explosive amplification scheme of Ostriker and Cowie (1981). More detailed work by Carr and Ikeuchi (1985), Vishniac, Ostriker, and Bertschinger (1985), and Bertschinger (1985) elaborates these ideas. There is some disagreement over whether this model can produce features as large as the Bootes Void. However, given how poorly much of the relevant astrophysics is understood, this is a rather flexible model which could probably accommodate a wide range of observational facts, and we shall confine further discussion to the better defined gravitational models.

In principle, any of the gravitational models could produce voids of any size. The pancake models would appear particularly favorable for this, because of the cell-like structure of their matter distributions. In practice, however, the observed amplitude of the galaxy covariance function provides a strong constraint on the large-scale structure of any model. We have calculated the probability of finding a void the size of the one in Bootes, using n-body models of four typical clustering scenarios. We take two hierarchical models from West, Dekel, and Oemler (1986). These models assume an initial fluctuation spectrum of the form

$$
\begin{equation*}
\langle | \delta_{k}| \rangle \propto k^{n} \tag{6}
\end{equation*}
$$

with values of n of 0 and 2 . We also use the West et al. pancake model, which has a coherence length of $30 h^{-1} \mathrm{Mpc}$. Each model contains ~ 4000 particles within a sphere of radius $50 h^{-1} \mathrm{Mpc}$. Finally, we use the cold dark matter model of Davis et al. (1985); this model contains 32,768 particles in a $128 h^{-1} \mathrm{Mpc}$ cube. All these models have been evolved and scaled so that the model covariance function matches that observed.

The density of particles in these models is much higher than that of galaxies in our survey. However, as Hamilton (1985) has shown, the probability of finding a void in a sample of a given density may be easily calculated from the statistics of a denser sample. If $P_{x}(N)$ is the probability of finding x objects in a sphere where the expectation value is N, then

$$
\begin{equation*}
P_{0}\left(N^{\prime}\right)=\sum_{x=0}^{\infty} P_{x}(N)\left(1-\frac{N^{\prime}}{N}\right)^{x} \tag{7}
\end{equation*}
$$

where $N^{\prime}<N$. Using $P_{x}(N)$ calculated from the West et al. models and the information in Figure 11 of Davis et al. (1985)

Fig. 7.-Probability of finding a spherical void where 31 galaxies were expected, as a function of the ratio of sphere size to correlation length. Filled circles, hierarchical model $n=0$; open circles, hierarchical model $n=2$; pluses, pancake model; stars, cold dark matter model; smooth curve, Soneira-Peebles model.
for the cold dark matter models, we calculate $P_{0}(31)$ for voids of various sizes.

The results of our calculations are presented in Figure 7. Since the probability of a spherical void in any model is a function only of the sample density and the ratio of the sphere size R to the correlation length R_{0}, we plot $P_{0}(31)$ versus the ratio of those lengths. The radius of our empty sphere is $31 h^{-1}$ Mpc . Although the most popular value for the galaxy correlation length is $4-5 h^{-1} \mathrm{Mpc}$, there are strong reasons for preferring a value of $8 h^{-1} \mathrm{Mpc}$ (Oemler et al. 1986). Therefore, a ratio $R / R_{0}=3.8$ corresponds to a void the size of that in Bootes.

Unfortunately, these results are of limited accuracy. Because all the simulations are of volumes not much larger than the Bootes void, and because such a large void is, as can be seen, a quite rare event, the statistical errors in the derived probabilities are quite large. Therefore, as an additional estimate of the void probability, we have calculated $P_{0}(N)$ in a SoneiraPeebles (1978) analytical model. This model has no physical basis, but it does match both the observed covariance function and the visible appearance of the large-scale distribution of galaxies in the universe. Being an analytical model, it has the advantage that we can easily construct a simulation of sufficiently large volume to minimize the statistical errors. These results are presented in Figure 7 as a smooth curve. All the models give results similar to that from the Soneira-Peebles model and suggest that the probability of finding a void the size of that in Bootes is on the order of 10^{-5}. Even after multiplying this by the factor of 50 which we derived earlier to take account of the number of independent samples available within our survey volume, the Bootes Void remains a very unlikely event in any current scenario.

It appears, then, that most popular cosmological models have difficulty explaining the presence of a void as large as that in Bootes. This may indicate the need for an entirely new theory for the formation of structure in the universe. Alternatively, it may signify that the distribution of matter is substan-
tially different from the distribution of bright galaxies, since it is only the latter that we have determined. The most popular means for producing such an effect is by biased galaxy formation (Kaiser 1984, 1985; Bardeen 1985), in which galaxies form only at the highest density points of the matter distribution. If galaxies do not trace the mass, the Bootes Void may be filled with other forms of matter, and the observational task is to find that material.

b) Contents of the Void

It will be very difficult to rule out all conceivable forms of matter as possible contents of the void, but observations of some forms already exist. Since our observations only determine the distribution of bright, normal galaxies, a logical first candidate would be unusual galaxies. Balzano and Weedman (1982) have examined the spatial distribution of Markarian galaxies with measured redshifts in the direction of Bootes. Using all such galaxies in the region $13^{\mathrm{h}} 00^{\mathrm{m}}<\alpha<16^{\mathrm{h}} 05^{\mathrm{m}}$, $25^{\circ}<\delta<75^{\circ}$, they found no underabundance of galaxies in the velocity interval of the void. However, because of the large area and limited depth of their sample, the empty region which we have delineated in this survey would have no difficulty hiding within their statistical uncertainties. In fact, Moody (1986) has shown that the Balzano and Weedman sample is consistent with the presence of a substantial void in the velocity interval $12,000<v<18,000 \mathrm{~km} \mathrm{~s}^{-1}$. Nevertheless, one of the Markarian galaxies, Mrk 845, is located well within the void.

Sanduleak and Pesch (1982) have used an objective prism on the Burrell Schmidt telescope to search for emission-line galaxies in a $5^{\circ} \times 26^{\circ}$ strip that traverses the southern edge of the void at $38^{\circ}<\delta<43^{\circ}$. Tifft et al. (1986) have examined spectra of 44 of the objects discovered in this search. Of the 31 objects which were confirmed to be emission-line galaxies, two, Case Galaxy (CG) $1457+42$ and CG $1518+39$ lie within the void boundaries. Moody (1986) has recently completed a similar survey with the Burrell Schmidt, covering twice the area of the Sanduleak and Pesch survey, and using a plate-filter combination which permitted him to detect galaxies with [O III] emission at greater redshifts. He has found ~ 50 objects, of which three are within the void. Finally, one additional void galaxy is known, I Zw 81 (Sargent 1970, called in Sargent's paper I Zw 80); it is also a strong emission-line object. ${ }^{3}$ All these galaxies are emission-line objects; all but one have strong, high-excitation emission spectra. One, Mrk 845, is a Seyfert I. Strong emission line galaxies are uncommon: for example, they comprise only a few percent of the galaxies in our survey. That these objects have emission lines is, of course, not surprising: the surveys selected for such objects. What is surprising is the abundance of these objects within the void. None of the surveys conducted so far is sufficiently deep or well defined to permit a quantitative comparison of the space distributions of normal and emission-line galaxies. Nevertheless, it is clear that the latter comprise a disproportionate share of those galaxies within the void. Within the same region in which the objective prism surveys have found six of 81 objects to be within the void, we find none of 101 . However, although relatively overabundant, it is also clear that their absolute abun-

[^2]dance is still considerably lower than the cosmic mean. They cannot, therefore, represent the matter which is missing from the normal galaxy population. It may be that these objects will tell us more about the influence of environment on star formation in galaxies than about the large-scale distribution of matter in the universe.

If the formation of galaxies within the void has been inhibited because of some form of biasing, the gas which would normally have formed galaxies should still be present. Hot gas has been searched for by Ceccarelli et al. (1983). They scanned the Bootes region in the far-infrared, looking for a change in the temperature of the microwave background caused by Compton scattering of background photons by the gas (Sunyaev and Zel'dovitch 1972). They found no such effect, with a 1σ upper limit of $1 \times 10^{-4} \mathrm{~K}$. A direct search for soft X-ray emission from hot gas may also be feasible.

If, on the other hand, the void is populated by cold gas clouds, they might be detected in absorption against background sources such as quasars or distant supernovae. One attempt to do this with IUE observations has been carried out by Brosch and Gondhalekar (1984). They found weak lines attributable to Ly α, Si IV, and C iv at the void redshift in the spectrum of PG $1351+64$ (an object, it should be noted, well to the north of the empty region we have delineated). However,
their spectra have low signal-to-noise ratios and unusual line ratios, and better data, presumably requiring Hubble Space Telescope observations, are needed.

We are left, then, with two questions which must be answered if the theoretical implications of this void are to be understood. First, what indeed is the matter content of the void? Second, how common are such large voids? The existence of smaller voids is well documented (Gregory and Thompson 1978; Tarenghi et al. 1980). The recent survey of a two-dimensional slice of the universe by de Lapparent, Geller, and Huchra (1986) suggests the existence of other large voids. It should also be noted that the void we have described is not the only one of its size in our survey volume. At least one other exists, at $\alpha=14^{\mathrm{h}} 57^{\mathrm{m}}, \delta=+41^{\circ}, c z=23,000 \mathrm{~km} \mathrm{~s}^{-1}$. Being more distant, it is of lower significance: only 13 sample galaxies are expected within this volume. All of this suggests that large voids are very common, but it is only suggestive. Much hard work will have to be done before we have a quantitative estimate of their frequency.

We thank Messrs. M. Hanna and G. Pickens for their skilled and patient efforts in the photographic reproduction of the survey fields. This work was partially supported by NSF grant AST81-19986.

APPENDIX

In this Appendix, we expand Politzer and Preskill's (1986, hereafter PP) derivation of void probabilities to include the case of discrete sample fields like those which we have used in Bootes. This discussion assumes familiarity with their paper. PP show that the probability of finding a spherical void of volume v somewhere within a survey volume V is

$$
\begin{equation*}
P_{\mathrm{void}}=C(V / v) P_{0}(N) N^{3} \tag{A1}
\end{equation*}
$$

where N is the mean density of particles per volume v, and C is a constant of order unity. If the particles are uncorrelated, $P_{0}(N)$ has the Poisson value $\exp (-N)$. This equation may be interpreted as follows. $P_{0}(N)$ is the probability that a given volume v will be empty. The total probability of finding a void is larger than this by a factor equal to the number of independent samples within the survey volume. The sphere volume v is contained within the survey volume V a number V / v times, but the number of independent samples is larger still by a factor N^{3}. Thus, since we are searching for a void by moving our sphere in three dimensions, we take a new, independent sample each time we move the sphere, in any one of the three orthogonal directions, by an amount equal to L / N, where $L=v^{1 / 3}$ is the characteristic size of the volume.

Following the reasoning in PP, to which the reader is referred for an explanation of this procedure, we can now calculate an expression analogous to equation (A1) for the case of discrete fields. Since the spacing of fields is discrete only in the two coordinates on the plane of the sky, we do the calculation in two dimensions. We assume the distribution of fields shown in Figure 8. For convenience, we use a rectangular rather than a circular area; PP show that this makes little difference, as long as the orientation of the square is fixed. The square has length L and the spacing of fields is l. The mean particle density per field is n. We can, with little loss of generality, assume that L / l is an integer, in which case we can also assume that squares are always centered on a field, since all intermediate positions will contain the same fields. Clearly, the chance of a particular square being empty

$$
\begin{equation*}
P(0)=P_{0}\left[n(L / l)^{2}\right], \tag{A2}
\end{equation*}
$$

and the number of empty squares per unit area

$$
\begin{equation*}
\rho_{0}=P_{0}\left[n(L / l)^{2}\right] / l^{2} \tag{A3}
\end{equation*}
$$

The fraction of such empty squares which are also first encounters (see PP) is approximately equal to the probability that a particular square has one or more particles in each of the areas A and B. Now, in A,

$$
\begin{align*}
P(N>0) & =P_{>0}[n(L / l)] \tag{A4}\\
& =1-P_{0}[n(L / l)]
\end{align*}
$$

so the fraction of first encounters is just $\left\{1-P_{0}[n(L / L)]\right\}^{2}$. Therefore, the total number of distinct voids per unit area is just

$$
\begin{equation*}
\rho_{0}=P_{0}(N)\left\{1-P_{0}[n(L / l)]\right\}^{2} / l^{2} \tag{A5}
\end{equation*}
$$

and the number per square is just

$$
\begin{equation*}
N=P_{0}(N)(L / l)^{2}\left\{1-P_{0}[n(L / l)]\right\}^{2} \tag{A6}
\end{equation*}
$$

FIG. 8.-Layout of fields for calculation of void probability
where $N=n(L / l)^{2}$ is the mean expected number of particles per square. If the particles are uncorrelated,

$$
\begin{equation*}
N=P_{0}(N)(L / l)^{2}\{1-\exp [n(L / l)]\}^{2} . \tag{A7}
\end{equation*}
$$

If $n(L / l) \gg 1$, which is almost true of our sample, then

$$
\begin{equation*}
N \propto P_{0}(N)(L / l)^{2} \tag{A8}
\end{equation*}
$$

in which case we obtain an independent sample whenever we move the square by a distance l. This seems obvious, but note that it is only true in the limit of high density.

It follows, then, from equations (A1) and (A8) that the number of independent samples which we have searched to find our spherical void is just equal to the number of positions within our survey volume at which we can center a $R=62 \mathrm{Mpc}$ sphere, spacing positions in right ascension and declination by the distance between survey fields, and in distance by R / N, where N is the number of independent groups, 17.5.

Aarseth, S. J., Gott, J. R., and Turner, E. L. 1979, Ap. J., 228, 664.
Aarseth, S. J., and Saslaw, W. C. 1982, Ap. J. (Letters), 258, L7.
Bahcall, N. A., and Soneira, R. M. 1982, Ap. J. (Letters), 258, L17.
Balzano, V. A., and Weedman, D. W. 1982, Ap. J. (Letters), 255, L1.
Bardeen, J. 1985, in Inner Space/Outer Space, ed. E. W. Kolb, M. S. Turner, D. Lindley, K. Olive, and D. Sekel (Chicago: University of Chicago Press), p. 212.

Bertschinger, E. 1985, Ap. J., 295, 1
Brosch, N., and Gondhalekar, P. M. 1984, Astr. Ap., 140, L43.
Carr, B. J., and Ikeuchi, S. 1985, M.N.R.A.S., 213, 497.
Ceccarelli, C., Melchiorri, F., Pietranera, L., Dall'Oglio, G., and Melchiorri, B. O. 1983, Nature, 305, 196.

Davis, M., Efstathiou, G., Frenk, C. S., and White, S. D. M. 1983, Ap. J., 292, 371.
de Lapparent, V., Geller, M. J., and Huchra, J. P. 1986, Ap. J. (Letters), 302, L1.
de Vaucouleurs, G., de Vaucouleurs, A., and Corwin, H. G. 1976, Second Reference Catalogue of Bright Galaxies (Austin: University of Texas Press) (RC2).
Doroshevich, A. G., Shandarin, S. F., and Zel'dovich, Y. A. 1983, in IAU
Symposium 104, Early Evolution of the Universe And Its Present Structure,
ed. G. O. Abell and G. Chincarini (Dordrecht: Reidel), p. 387.
Fillmore, J. A., and Goldreich, P. 1985, Ap. J., 281, 9.
Fujimoto, M. 1983, Pub. Astr. Soc. Japan, 35, 159.
Gujimoto, M. ., and Thompson, L. A. 1978, Ap. J., 222, 784.
Hamilton, A. J. S. 1985, Ap. J. (Letters), 292, L25.
Hausman, M. A., Olson, D. W., and Roth, B. D. 1983, Ap. J., 270, 351.
Huchra, J., Davis, M., Latham, D., and Tonry, J. 1983, Ap. J. Suppl., 52, 89.
Kaiser, N. 1984, Ap. J. (Letters), 284, L9.

REFERENCES
Kaiser, N. 1985, in Inner Space/Outer Space, ed. E. W. Kolb, M. S. Turner, D. Lindley, K. Olive, and D. Sekel (Chicago: University of Chicago Press), p. 258.

Kirshner, R. P., Oemler, A., and Schechter, P. L. 1978, A.J., 83, 1589.
-. 1979, A.J., 84, 951.
Kirshner, R. P., Oemler, A., Schechter, P. L., and Shectman, S. A. 1981, Ap. J. (Letters), 248, L57.
(Lett. 1983a, A.J., 88, 1285. (KOSS).
——. 1983b, in IAU Symposium 104, Early Evolution of the Universe and Its Present Structure, ed. G. O. Abell and G. Chincarini (Dordrecht: Reidel), p. 197.
p. 1984, in Eleventh Texas Symposium on Relativistic Astrophysics, ed. D. S. Evans (Ann. NY Acad. Sci., Vol. 422), p. 91.

Moody, J. W. 1986, Ph.D. thesis, University of Michigan.
Oemler, A., Shechter, P. L., Shectman, S. A., and Kirshner, R. P. 1986, in preparation.
Oort, J. 1983, Ann. Rev. Astr. Ap., 21, 373.
Ostriker, J. P., and Cowie, L. L. 1981, Ap. J. (Letters), 243, L127.
Palmer, P. L., and Voglis, N. 1983, M.N.R.A.S., 205, 543.
Peebles, P. J. E. 1982, Ap. J., 257, 438.
Polit. 1984, Science, 224, 1385.
Politzer, H. D., and Preskill, J. P. 1986, Phys. Rev. Letters, 56, 99.
Postman, M., Geller, M., and Huchra, J. B. 1986, A.J., in press.
Sanduleak, N., and Pesch, P. 1982, Ap. J. (Letters), 258, L11.
Sargent, W. L. W. 1970, Ap. J., 160, 405.
Sato, H. 1982, Progr. Theor. Phys., 68, 236.
Schechter, P. L. 1976, Ap. J., 203297.
Soneira, R. M., and Peebles, P. J. E. 1978, A.J., 83, 845.

Sunyaev, R. A., and Zel'dovich, Ya. B. 1972, Comm. Ap. Space Sci., 14, 173.
Suto, Y., Sato, K., and Sato, H. 1984, Progr. Theor. Phys., 71, 938.
Tarenghi, M., Chincarini, G., Rood, N. J., and Thompson, L. A. 1980, Ap. J., 235, 724.
Tifft, W. G., Kirshner, R. P., Gregory, S. A., and Moody, J. W. 1986, Ap. J., 310, 75.

West, M. J., Dekel, A., and Oemler, A. 1986, in preparation
Vishniac, E., Ostriker, J. P., and Bertschinger, E. 1985, Ap. J., 291, 399.
Zel'dovich, Ya. B., Einasto, H., and Shandarin, S. F. 1982, Nature, 300, 407.

Robert P. Kirshner: Center for Astrophysics, 60 Garden St., Cambridge, MA 29928
Augustus Oemler, Jr.: Department of Astronomy, Yale University, P.O. Box 6666, New Haven, CT 06511
Paul L. Schechter and Stephen A. Shectman: Mount Wilson and Las Campanas Observatories, 813 Santa Barbara St., Pasadena, CA 91101

[^0]: ${ }^{1}$ Observations reported here were made in part at the Palomar Observatory as part of a collaborative agreement between the California Institute of Technology and the Carnegie Institution of Washington.
 ${ }^{2}$ Visiting Astronomer, Kitt Peak National Observatory, National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

[^1]: ${ }^{\text {a }}$ From CfA survey.

[^2]: ${ }^{3}$ Since there are objects in this region, our continued use of the word "void" might appear a misnomer. However, since the region is apparently devoid of normal galaxies, we prefer this word over a clumsier if more accurate phrase like "very low density region."

