ЗE

ARM CLASSIFICATIONS FOR SPIRAL GALAXIES

DEBRA MELOY ELMEGREEN AND BRUCE G. ELMEGREEN IBM T. J. Watson Research Center Received 1986 March 14; accepted 1986 August 25

ABSTRACT

The spiral arm classes of 762 galaxies are tabulated; 636 galaxies with low inclinations ($i < 60^{\circ}$) and radii larger than 1' were selected from the Second Reference Catalogue of Bright Galaxies and were classified on the basis of their blue images on the Palomar Observatory Sky Survey (POSS), 76 SA galaxies in the group catalog of Geller and Huchra were also classified from the POSS, and 253 galaxies in high-resolution atlases were classified from their atlas photographs. This spiral arm classification system was previously shown to correlate with the presence of density waves, and galaxies with such waves were shown to occur primarily in the densest galactic groups. The present sample indicates, in addition, that grand design galaxies (i.e., those which tend to contain prominent density wave modes) are physically larger than flocculent galaxies (which do not contain such prominent modes) by a factor of ~1.5. A larger group sample confirms the previous result that grand design galaxies are preferentially in dense groups.

Subject headings: galaxies: clustering — galaxies: general — galaxies: structure

I. INTRODUCTION

The symmetry and continuity of spiral arms in galaxies often reveal the presence of density waves. A classification system designed to emphasize such arm structure was introduced by Elmegreen and Elmegreen (1982; hereafter Paper I). This system described 12 distinct arm classes (AC), corresponding to a systematic variation in the orderliness of spiral arms. The flocculent galaxies lack bimodal symmetry and have a spirallike structure, composed only of small pieces. The grand design galaxies have a two-arm symmetry, at least over part of the galaxy, and the arms are longer and more continuous than in flocculent galaxies. Intermediate arm classes show characteristics of both the flocculent and grand design types. Table 1 summarizes the characteristics for each arm class as presented in Paper I. Galaxies with AC 1–4 are considered flocculent, and those with AC 5–12 are grand design.

Azimuthal intensity profiles of galaxies in blue and nearinfrared passbands illustrate the correspondence between spiral arm class and the presence or lack of stellar density waves (Elmegreen and Elmegreen 1984, 1985). Most of the grand design galaxies in our previous sample of 50 galaxies contain prominent infrared spirals, which probably result from density waves in the old and intermediate-age stellar disks. Most of the structure in flocculent galaxies originates in blue patches of star formation, which often have a pattern resembling simulations of stochastic self-propagating star formation (Seiden and Gerola 1982).

The correlation between arm class and density waves suggests that many of the predicted properties of density waves and star formation can be tested by comparing these properties in grand design and flocculent galaxies. For example, Romanishin (1985) found that grand design galaxies were slightly bluer than flocculent galaxies. Hodge (1985) found that H II regions in grand design galaxies are more clumped than those in flocculent galaxies. McCall and Schmidt (1986) found that the supernova rate was independent of arm class, and Elmegreen and Elmegreen (1986) found that the star formation rate per unit area was independent of arm class. Other galaxy properties, such as rotation curves, radial light profiles, atomic or molecular gas densities, the presence of small galaxy companions, and so on, should also be examined for possible correlations with arm class, to determine all of the physical processes that may stimulate density wave modes, or allow these modes to become prominent in galaxies, and to determine the influence of density waves on interstellar gas and star formation.

The purpose of this paper is to present the best possible sample of arm classifications for spiral galaxies. All spiral galaxies larger than 1' in the Second Reference Catalogue of Galaxies (de Vaucouleurs, de Vaucouleurs, and Corwin 1976) were classified from glass copies of the Palomar Observatory Sky Survey (POSS), all galaxies that appear in high-resolution photographic atlases were classified from these atlas images, and all SA galaxies in the most recent compilation of galaxy groups were classified from the POSS.

The classification system in Paper I was changed slightly for the present study. Galaxies that were given arm classifications 10 or 11 in Paper I were distinguished by their obvious stellar

TABLE 1

DESCRIPTION OF AF	rm Classes	FOR SPIRAL	GALAXIES
-------------------	------------	------------	----------

Arm Class	Description
1	Chaotic, fragmented, unsymmetric arms
2	Fragmented spiral arm pieces with no regular pattern
3	Fragmented arms uniformly distributed around the galactic center
4	Only one prominent arm; otherwise fragmented arms
5	Two symmetric, short arms in the inner regions; irregular outer arms
6	Two symmetric inner arms; feathery ringlike outer structure
7	Two symmetric, long outer arms; feathery or irregular inner arms
8	Tightly wrapped ringlike arms
9	Two symmetric inner arms; multiple long and continuous outer arms
10	No longer used; previously denoted barred galaxies
11	No longer used; previously denoted galaxies with close companions
12	Two long symmetric arms dominating the optical disk

3

1987ApJ...314...3E

 TABLE 2
 Arm Classes for Spiral Galaxies in the de Vaucouleurs Sample

	AC	6	u	ц (2	. יי		20	γα	o		6	2	12	S	ŝ		6	12	12	12	6	6	0	n.	-	ہ ہ	۰. r	_ v	۰ <i>٥</i>	5	10	S	6	9	ŝ	6	c4 \$	2 4	٦o	2	, 6	. –	6	S	•	ŝ	2 6	= 2	4	6	90	15
	NGC	6412	6467	6500	6555 6637	6643 6643	6667	6674	6600	6754	6764	6814	6824	6907	6923	6926	6943	6946	6951	6956	6962	7015	7042	7080	1/1/	7/1/	1111	1171	7300	7309	7314	7320	7392	7424	7428	7440	7479	1495	7513	7610	7678	7685	7714	7716	7723	7727	7741	8511	1753	7755	7757	7782	7819
	C				~ -		•			~ ~		-	_	ं म	0	2	10		~		~	~		~ (2		۷.			, c	۰ ۰	•		_	.0								~	10		~ 1	00	2.1					
	∢ ບ	6	~	ю,			Č,	<u>v</u>	• •		000		5	~	00	- -	5		2		~			~.	_ (- - -	- " + v			, -	,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~	6	0	~ .	. ч с	 					νο • •	~	₩÷			, vr	A	~ ~		~
	ĎŊ	561	563	563	202 2642	565	566	566	2000	567	5678	569	570	571:	5728	574(575(575	577:	577	5/8	280	583	2820	080	0000	100	100	2885	2002	592	592	5949	595:	595	5963	5963	706C	1060	208	601.	<u>606</u>	607(610	614(615	018	170	6236	6240	630(6382	000
	AC	7	0;	12	n c	14	9	~~~~	nσ	5	4	S	Э	6	S	6	S	9	6	12		n (20	ה כ	ל ע	7 4	ر د	40	14	- v	20	6	6	6	6	6	9	<u>ې</u>	71	٢σ	2	6	12	6	6	21	n e	n -	- 10	, 	4	Ś	>
	NGC	4904	4921	4939	4941 4965	4981	4995	4999 5005	5012	5033	5042	5054	5055	5068	5078	5085	5112	5134	5172	5194	5204	2718	5230	5236	1470	0470	1020	5200	5320	5324	5334	5350	5351	5364	5371	5375	5377	53/8	5305	5406	5426	5427	5430	5457	5468	5474	5474	5556	5584	5585	5595	5597	+100
	AC	-	40	21	4 O	ŝ	61	ر ب		- 4	1	6	6	5	-	ŝ	6	12	ŝ	-	- -	4 •	4 (2 1	7 1	na	n v	0 4	+ 0	2	10	3	e	e	ŝ		- ,	0 4	، د	5	1 00	6	e	6	5	•	- 0	אע	_ . د	. 6	4 (mo	л
	NGC	4490	4492	4496A	4498	4504	4517A	4519	4525	4531	4534	4535	4545	4548	4567	4571	4579	4580	4593	4597	4606	4018	4625	4035	4034	404/	4653	4654	4662	4682	4688	4689	4698	4699	4701	4707	4713	4/20	4736	4750	4772	4775	4777	4779	4780	4781	4/77	4814 4826	4877	4891	4899	4900	4704
	AC	6	4,		- 0	4	ŝ	ŝ	10	۰ <u>ــ</u>	6	2	6	1	,	ŝ		~	2	20	20	20		~ ~	v -	_ `	، ۵		. +			2	6	6	7	n '	00	V (1.0	\ _	0	1	-	~	~ ~	~ -	-	. +	. 7	• '	~ v	`
	ر د	0		× 0	- ת	. 10	0,	- 0		- 10	3	-	9	2	ŝ		2		сч (م		4 0	-	NE	- c	-	 > ਚ			000	0	 ∞		4		<u>с</u>		 - 0			5	4	5	14	ΞB		स ८	> ব		0	5		
	ĎN	403	403	403	404	404	405	405	410	411	412	412	413	414	414	415	415	415	416	418	419	420	124	471	442	474 474	425	426	427	428	429	429	430	430	431	431	432	400	43.84	438	439	439	439	441	441	441	441	442	443	445	447	448 748)
	AC	1	6 r	- 0	م ہ	5	20	ە بو	. 0	12	33	12	5	5	5	e	2	20	<i>د</i>	<i>د</i> د	7	10	2	n (n v	٦o	ς γ	n v r	م ر	·	S	5	6	6	~	2	04	0 4	r		20	12	12	ς, ι	2	40	- ע	- 0	12	6	20	יע	14
	NGC	3447	3450	3455	3464 3464	3471	3485	3486	3507	3513	3521	3583	3596	3611	3614	3621	3627	3629	3631	3642	2000	5004	2/05	5013	2681	1000	3684	3686	3687	3718	3726	3729	3756	3780	3786	3804	3810	2012	3850	3865	3887	3893	3897	3898	3913	3930	5438	3953	3963	3968	3982	3992	4027
	U.		~	_		_	_				2			÷							1							1 -									_						_	2						2		\	
	◄	6		- ' - '	0 m 0 m	6	ი. ~-	 -	1 100	.4	=	4	4	و م	÷	4		~ ·		+ ·		+ u	~ ~	- c 0 <	4 C	1 5	- 	; o		4		~	~		() I		- ~			, –	6	6	б б	1	9	~ r	~ 0 ~ 0	0 V 0 C	,		~ ~	~ ~ ~	, o , o
	ĎZ	294	296	067	298	299	299		302	302	303	303	304	305	305	305	305	305	306	105	202	512	5 I 4	314 216	216	216		318	318	320	322	325	327.	328	328	328	329	221	331	332	333	334	334	334	335	335	226	337	337	338	338	342	343
	AC	2	- \	9	n vr	9	(n v	n 0	10	6	5	5	4	6	61	ς.	4;	21		71	0 -	- \	0 4) c	15	1-		4	1	5	e	S	9	12	6	12	ר ע	r	. . ,	12	6	7	6	ŝ	<i>م</i> ر	7 1	no	' (1	12	61	- 4	r∞
	NGC	2139	2146	2196	2207	2223	2227	2268 2273B	2276	2280	2336	2339	2344	2347	2377	2389	2397	2403	2441	2442	7400	1047	0007	5757	2530	2535	2541	2543	2545	2552	2566	2575	2595	2599	2608	2614	2633	2407	2708	2712	2718	2742	2750	2763	2775	2776	2080	2835	2848	2857	2889	2903	2935
	AC	12	۰ ز	-12		. –	12	= c	ــ. ۱	. 7	9	6	e	3	S	ŝ	7	12			ہ م م	• ע	+.		_ v	ησ) (r	, 2	:	S	п	5	12	12	40	2	4 4	o 5	202	ı ۳	s.	12	12	ŝ	ŝ	6 C	עת	ი –	- 6	ŝ	νΩ Γ	~ 4	r
	NGC	906	908	918	926	941	945	949 050	886	991	1022	1042	1058	1068	1073	1084	1087	1097	1169	6/11	110/	1724	1741	1252	1255	1288	1292	1300	1309	1313	1325A	1343	1357	1365	1371	1376	1385	0401	1425	1437	1493	1530	1566	1617	1637	1640	1672	1744	1784	1792	1832	1961	2090
	, (
	¥	4	9	2-	- 2	12	۰; م	0	<u> </u>	ŝ	4	•	S	4	9	6	20	ۍ ز	29	29	<u>1</u> 4	n c	ס ע	4 C	40		Ē	: (1 თ	ŝ	6	6	12	ŝ	6 1	5	2 10	5 ע	10	۰	2	12	0	ς.		= <u>2</u>	10	4 م	·	ŝ	12	n c	10
	NGC	23	26	30	132	150	151	101	175	180	182	192	200	201	210	214	255	257	200	1/2	200		500	100	118	428	447	450	470	488	514	521	536	570	578	598	600	C10	628	658	668	673	681	691	701	706	153	277 277	828	840	841	804 877	895
1																																																					

ARM CLASSIFICATIONS FOR SPIRAL GALAXIES

IC	AC	IC	AC	IC	AC	IC	AC	IC	AC
43	2	302	4	749	5	1525	12	2522	5
167	12	342	9	983	2	1558	1	2537	2
211	12	356	3	1067	2	1953	4	2627	12
239	9	381	5	1158	5	1954	i	2580	9
267	12	469	i	1237	12	2075	9	3576	1
284	i	520	n	1291	5	2421	12 -	4182	2
								5201	i
Α	AC	Α	AC	А	AC	А	AC	A	AC
0001+14	1	0429+01	12	0911+16	6	1202-27	1	1522 + 58	2
0017 + 10	2	0447-29	1	0942-31	1	1222 + 70	2	1555 + 30	12
0043-11	1	0450-25	5	0949+43	5	1226 + 02	2	1614+47	1
0102-06	2	0505-16	2	1004 + 52	2	1226+37	2	1805 + 35	5
0118 + 12	i	0508-31	1	1008-25	1	1241 + 00	1	1906+42	12
0115+11	4	0509-14	4	1019+46	4	1241-05	1	1930+54	12
0208 + 06	1	0553 + 68	5	1020 + 71	1	1246-09	2	1945-18	n
0218+39A	. 12	0558-28	f	1021 + 15	1	1250 + 10	6	2022+05	12
0221+35	1	0608+69	i	1026+70A	1	1252 + 00	3	2029-02	5
0223-21	1	0609+71A	12	1026+70B	n	1301-03	2	2047+16	5
0224-24	1	0618-20	4	1033-24	1	1316+42	1	2207-22	5
0232 + 37	1	0704 + 61	9	1122 + 64	5	1318 + 10	1	2218 + 47	i
0235-02	12	0706 + 71	1	1137 + 46	1	1335-09	2	2231 + 32	3
0244 + 37	12	0743+59	i	1146-28	1	1338 + 54	4	2233-03	3
0245 + 03	1	0805 + 76	i	1149+52	1	1402+09	i	2237 + 37	12
0246+01	1	0814 + 21	9	1154+49	2	1416-26	12	2242+06	2
0249-01	f	0820 + 22	3	1155+38	2	1423 + 56	2	2327 + 40	1
0305-31	9	0834+51A	1	1155 + 51	n	1427 + 44	1	2334 + 00	3
0313+31	12	0909+35	1	1156+52	2	1442 + 08	2	2342 + 06	2
0343 + 70	i	0909+74	5	1200 + 41	12	1511-15	4	2357+47	2
								2359+23A	. 4

TABLE 2—Continued

bars or companion galaxies. This distinction was made because bars and companions are thought to be associated with density waves (Kormendy and Norman 1979; Elmegreen and Elmegreen 1983). Here no galaxies are assigned to classes 10 or 11, and those classified as such in Paper I have been reclassified. Only the spiral arm features themselves are considered in the present classification of galaxies. Several galaxies in Paper I were also given multiple arm classes. Such galaxies have been reclassified here into single arm classes, with the dominant characteristics determining the arm class.

II. THE CATALOGS

a) Selection Criteria

Table 2 includes all 708 spiral galaxies listed in the Second Reference Catalogue of Bright Galaxies (de Vaucouleurs, de Vaucouleurs, and Corwin 1976), with declinations $\delta > -35^{\circ}$, inclination-corrected radii at 25 mag arcsec⁻², R_{25} , greater than 1', and inclinations less than 60°; 654 galaxies could be classified, 54 galaxies which met the criteria but were too faint, had no details (were overexposed on the POSS or were too early in Hubble type to distinguish structure) or were too inclined for reliable classification are also included in Table 2, but with designations f, n, or i, respectively, instead of arm classes. The galaxies were classified from their blue images on glass copies of the Palomar Observatory Sky Survey using a 10 power illuminating ocular.

Galaxies photographed at high resolution and published in atlases are listed in Table 3. These 253 galaxies were classified from the atlas photos. Sources include the *Hubble Atlas of Galaxies* (Sandage 1961), *Atlas of Peculiar Galaxies* (Arp 1966), *Atlas de Galaxias Australes* (Sersic 1968), The Bright Southern Atlas (Sandage and Brucato 1979), The Near-Infrared Atlas (Elmegreen 1981), *Revised Shapley-Ames Catalog* (Sandage and Tammann 1983), and The Virgo Atlas (Sandage, Binggeli, and Tammann 1985). Eighty-nine galaxies from these atlases were classified even though they did not meet the selection criteria used to make Table 2. Table 4 gives arm classes for 76 galaxies (including 19 not in Table 2) with Hubble type SA from the group catalog of Geller and Huchra (1983). The list is included here because the regularity of spiral structure in nonbarred galaxies appears to be influenced by companions (Kormendy and Norman 1979; Elmegreen and Elmegreen 1983) and to be correlated with group crossing time (Elmegreen and Elmegreen 1984). The classifications were made from the POSS.

b) Self-Consistency Checks

Most galaxies in Table 2 were classified at least 3 times, separated by intervals of several months, as a consistency check. They were classified from both paper and glass copies of the POSS. In the de Vaucouleurs sample, $\sim 10\%$ of the galaxies were given different arm classes during independent examinations on the paper prints. An 8% variation occurred when the glass images were subsequently examined. The most common reclassification was from an AC 2 to 3, or vice versa, since these types are similar. AC 2 or 3 was sometimes reclassified as 4 or 5 (or vice versa), indicating that one or two small arms seemed more or less prominent at different times. Another common change was an AC 9 to AC 12, or vice versa, indicating some difficulty in deciding how much weight to give to branching or nonsymmetric structures besides the dominant two-armed symmetry. Occasionally an AC 12 was reclassified to or from AC 5, indicating some confusion in deciding whether a two-armed structure was weak or dominant. A reclassification of AC 12 into 7 occasionally occurred when a galaxy examined on the POSS was then examined at higher resolution; this confusion occurs when central regions are overexposed or too small on the POSS. For the highresolution galaxies listed in Table 3, again $\sim 10\%$ of the arm classes changed upon reclassification. In these cases the large amount of detail presented confusion; irregular features were given more or less weight at different times of classification.

Arm classifications become increasingly difficult for very small, faint galaxies. The cutoff of 1' radius for the galaxies in

NGC	AC	NGC	AC	NGC	AC	NGC	AC	NGC	AC
23	4	1832	5	3486	9	4411A	1	5033	9
45	1	1961	4	3504	8	4411B	3	5055	3
145	5	1964	9	3511	2	4412	12	5194	12
157	12	2146	1	3521	3	4413	3	5204	1
175	6	2217	6	3576	1	4414	3	5236	ĝ.
210 -	ő	2223	ğ,	3627	7	4416	5	5248	12
300	Š	2276	2	3631	ģ	4420	1	5364	9
309	ğ	2397	3	3646	ź	4430	4	5383	12
488	á	2403	4	3672	2	4432	4	5394	5
400	ő	2405	5	3756	õ	4432	1	5305	1
598	5	2442	7	3783	á	4457	1	5457	0
613	ő	2500	í	3810	ŝ	4470	2	5595	1
615	2	2500	6	2000	2	4470	5	5614	4
619	5	2525	5	2002	5	4460	9	5676	0
719	12	2525	5	3992	10	4501	9	5070	3
718	12	2341	10	4017	12	4507	2	5/28	2
772	4	2608	12	4027	4	4519	5	5806	2
//6	Ĩ	2681	8	4062	3	4523	1	5829	12
864	2	2763	9	4088	12	4535	9	5962	2
925	1	2775	3	4152	9	4536	12	5985	9
972	1	2835	- 9	4189	2	4540	3	6181	12
1058	3	2841	3	4193	2	4548	5	6215	12
1068	3	2857	12	4212	3	4567	1	6300	6
1073	5	2903	7	4234	2	4568	2	6384	9
1084	5	2976	3	4237	2	4569	5	6412	9
1097	12	2997	9	4254	9	4571	3	6643	5
1156	1	3031	12	4273	4	4579	9	6699	9
1232	9	3059	5	4274	8	4580	12	6753	8
1300	12	3081	6	4276	1	4593	5	6814	9
1302	8	3145	2	4298	2	4595	2	6946	9
1313	5	3147	3	4299	2	4618	4	6951	12
1347	4	3185	6	4302	3	4630	1	7205	5
1365	12	3256	1	4303	9	4639	2	7217	3
1398	6	3259	2	4303A	4	4647	3	7314	2
1433	6	3275	4	4304	9	4654	4	7331	3
1437	3 3	3294	ġ	4314	12	4689	3	7392	5
1452	6	3310	í	4321	12	4699	ž	7424	ğ
1493	Š	3344	ĝ	4351	5	4725	6	7479	ó
1512	6	3347	12	4376	1	4736	š	7496	12
1566	12	3351	6	4378	6	4750	2	7678	5
1569	1	3359	š	4380	2	4793	ĩ	7741	5
1617	à	3367	ă	4300	á	4800	2	7743	12
1637	5	3414	í	4304	6	4814	á	7752	12
1672	5	2445	1	4394	1	4014	2	7760	2
1702	2	2443	0	4393	2	5005	2	7703	2
 		<u> </u>	,	4403	<u> </u>		<u> </u>		4
	AC		AC	IC	AC		AC		AC
356	3	1222	12	3115	12	3268	1	3528	12
749	5	1933	4	3156	2	3476	1	3583	1
797	1	2522	5	3267	9	3517	1	4837	12
<u>A</u>	AC	Α	AC	A	AC	A	AC	А	AC
0020-01	12	0418 + 02	5	0830+19	12	1240 + 26	12	1408 + 17	12
0020 + 22	5	0650+86	12	0849-16	12	1313 + 26	12	1722 + 62	4
0149+21	12	0700 + 27	2	1103 + 30	5	1332+31	5	2234-03	2
0206 ± 41	12	0800 ± 05	1	1200 ± 09	1				

 TABLE 3

 Arm Classes for Spiral Galaxies in Atlases

TABLE 4

ARM CLASSES FOR SA GALAXIES IN GROUPS

NGC	AC	NGC	AC	NGC	AC	NGC	AC
70	9	3389	2	4378	6	5351	9
173	9	3509	1	4380	2	5364	9
198	2	3517	2	4395	1	5395	4
245	2	3631	9	4414	3	5434	9
470	3	3642	9	4450	12	5474	2
488	3	3675	3	4492	4	5477	2
598	5	3684	5	4501	9	5480	5
628	9	3719	2	4534	1	5486	2
691	3	3780	9	4567	1	5533	3
976	5	3898	3	4571	3	5668	2
1068	3	3913	2	4651	9	5676	3
1085	3	3938	9	4689	3	5953	1
2841	3	4041	9	4698	3	5962	2
2976	3	4108	3	4701	5	7673	12
3031	12	4127	2	4736	3	7757	9
3169	2	4212	3	5033	9	7782	6
3177	6	4241	3	5055	3	I4182	2
3338	9	4254	9	5194	12	A0152 + 60	6
3370	5	4298	2	5230	9	A1136 + 58	2

Table 2 represents a minimum practical size for classification from the POSS. Although a higher proportion of small angular size galaxies may be misclassified than large angular size galaxies, no evidence for a systematic bias was actually found in the data. Figure 1 shows the angular size of the galaxies in Table 1 versus the arm classes, with large dots representing averages in each arm class bin. There is no obvious correlation between average angular size and arm class. The slight increase in the proportion of AC 9 galaxies for large angular sizes is apparently not a classification bias, because this increase also occurs for the well-resolved galaxies in Table 2.

III. TWO CORRELATIONS

As discussed in the introduction, several correlations between arm class and galaxy properties have been found. A new correlation is between arm class and galaxy size. Grand design galaxies are found to be larger than flocculent galaxies. Figure 2 shows the arm class of a galaxy plotted against its physical size, as determined from its apparent size, R_{25} , multiplied by its velocity V_0 . The average size for each arm class is indicated by large dots. The average size for a grand design galaxy is ~ 1.5 times the average size for a flocculent galaxy.

This size correlation is similar to that found by Iye and Kodaira (1976) between the size of a galaxy and the van den Bergh (1960) luminosity class. (van den Bergh did not consider galaxy size, only luminosity, although the two properties are

obviously related.) The arm classification differs from the luminosity classification in the sense that the arm class emphasizes symmetry and spiral arm length, whereas the luminosity class emphasizes arm prominence or brightness relative to the galactic disk. Paper I showed that each arm class contains a wide range of luminosity classes, and vice versa (see Fig. 3 in Paper I). Although there are many exceptions, long and symmetric arms tend to be visually prominent, or "welldeveloped," as in luminosity class I, and flocculent arms tend to be faint, as in luminosity class III, for example. Thus, the correlation in Figure 2 is not surprising, but it is also not trivial. It may eventually indicate the reason why luminosity class or arm class correlate with luminosity; namely, that large galaxies tend to develop prominent wave modes more easily than small galaxies, or, perhaps wave modes make a galaxy larger because of enhanced star formation (Elmegreen and Elmegreen 1986).

This variation of size with spiral arm class implies that the sample of galaxies in Table 2, which was selected on the basis of apparent size, is not a uniform sample with respect to distance. The average velocity of galaxies with AC 2 and 3 in Table 2 is 1818 km s⁻¹, and the average velocity of galaxies with AC 9 and 12 is 2708 km s⁻¹. Thus, grand design galaxies in Table 2 are ~ 1.5 times more distant than flocculent galaxies. This systematic variation in distance implies that the ratio of flocculent to grand design galaxies in space is much

FIG. 1.—Angular sizes of the galaxies in the sample from the Second Reference Catalog are plotted against the arm classes. Large dots are the average angular sizes for each arm class. Data points for arm class were dispersed to avoid overlaps by adding random variables between -0.3 and 0.3 to the arm classes. There is no obvious correlation between average apparent size and arm class.

© American Astronomical Society • Provided by the NASA Astrophysics Data System

1987ApJ...314...3E

FIG. 2.—Relative physical sizes of the galaxies, determined from the product $R_{25} \times V_0$ (in arcmin km s⁻¹), are plotted vs. the arm classes. Large dots are the average physical sizes for each arm class. As in Fig. 1, the data points for the arm classes were randomly dispersed to avoid overlap. A correlation between physical size and arm class is evident.

FIG. 3.—Arm class is plotted against the inverse of the group crossing time, measured in units of the Hubble time, for SA galaxies in groups listed by Geller and Huchra (1983).

© American Astronomical Society • Provided by the NASA Astrophysics Data System

larger than the ratio in Table 1, larger possibly by a factor equal to the cube of the distance ratio, which is (2708 km s⁻¹/ $1818 \text{ km s}^{-1})^3 = 3.3$. Statistical surveys of spiral arm-related properties of galaxies should be made with a velocity or distance-limited subset of Table 2.

The arm classes of SA galaxies in groups were previously found to be correlated with the group crossing rate, which is a measure of the mean group density (Elmegreen and Elmegreen 1984). That correlation was based on the Huchra and Geller (1982) nearby groups, covering the whole sky down to a limiting magnitude of 13.2 mag. Figure 3 shows the arm class versus the inverse of the crossing time for SA galaxies in the groups studied by Geller and Huchra (1983), which include groups in the northern hemisphere down to a limiting magnitude of 14.5 mag. Groups with small crossing rates (low densities) have a higher fraction of flocculent galaxies.

The authors thank Dr. M. McCall for discussing the use of glass versus paper copies of the POSS, and are grateful to Dr. D. Klinglesmith and the staff at NASA Goddard Space Flight Center for their hospitality and permission to examine their glass plates.

REFERENCES

- Kormendy, J., and Norman, C. 1979, Ap. J., 233, 539.
 McCall, M., and Schmidt, F. 1986, Ap. J., 311, 548.
 Romanishin, W. 1985, Ap. J., 289, 570.
 Sandage, A. 1961, Hubble Atlas of Galaxies (Washington DC: Carnegie Institution of Washington).
 Sandage A. Binggeli B. and Tammann C. 1985, 4 J. 00, 205.

- tution of Washington). Sandage, A., Binggeli, B., and Tammann, G. 1985, A.J., **90**, 395. Sandage, A., and Brucato, R. 1979, A.J., **84**, 472. Sandage, A., and Tammann, G. 1983, *Revised Shapley-Ames Catalog* (Washington DC: Carnegie Institution of Washington). Seiden, P. E., and Gerola, H. 1982, *Fund. Cosmic Phys.*, **7**, 241. Sersic, J. L. 1968, Atlas de Galaxias Australes (Cordoba: Observatorio Astronomico). Astronomico). van den Bergh, S. 1960, *Ap. J.*, **131**, 215.

de Vaucouleurs, G., de Vaucouleurs, A., and Corwin, H. G. 1976, Second Reference Catalogue of Bright Galaxies (Austin: University of Texas Press). Elmegreen, B. G., and Elmegreen, D. M. 1983, Ap. J., 267, 31.

Arp, H. 1966, Atlas of Peculiar Galaxies (Pasadena: California Institute of

Technology).

Hodge, P. 1985, Pub. A.S.P., **96**, 688. Huchra, J., and Geller, M. 1982, Ap. J., **257**, 423. Iye, M., and Kodaira, K. 1976, Pub. Astr. Soc. Japan, **28**, 415.

BRUCE G. ELMEGREEN and DEBRA MELOY ELMEGREEN: IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598