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KARL SCHWARZSCHILD LECTURE

THE AESTHETIC BASE OF THE GENERAL THEORY OF RELATIVITY

8. Chandrasekhar
University of Chicago
Chicago. Illinois 60637

U.S. A,

May | begin by expressing my gratitude to the officers and
councillors of the Astronomische Geselischaft for their courtesy in asking me
to give this lecture in the series estabilished In memory of Karl
Schwarzschild.

Karl Schwarzschild is. of course, one of the towering physical
sclentists of this century. The breadth and range of his contributions are
staggering: they cover the entire range of physics. astronomy. and
astrophysics of his time.

In physics, they range from electrodynamics and geometrical
optics to the then newly developing atomic theory of Bohr and Sommerfeld.
In electrodynamics. he derived a variational base for LorentZs equations of
the electron. In geometrical optics., he developed the theory of the
aberrations in optical Instruments (described by Max Born as “unsurpassed

in ciarity and rigour by later work®") and formuiated the principie underlying
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the optics of the Schmidt telescope. And in the Bohr-Sommerfeld theory,
he worked out, in his last published paper. the theory of the Stark effect
and of the Deslander term in the rotationali-vibrational spectra of diatomic
molecules. (In this last paper he introduced. for the first time, the notions

of action and angle variables.)

In Astronomy and Astrophysics. Schwarzschild’s contributions are
so many and so varied that i shall mention only those of his discoveries to
which his name is attached. We have the Schwarzschild exponent in
photographic photometry, the Schwarzschild-Miine Integral equation in the
theory of radiative transfer, the Schwarzschild criterlon for the onset of
convective instability, the Schwarzschild ellipsoidal distribution of stellar
velocities. and. of course, the Schwarzschild solution of Einstein’s equations
for describing the space-time external to a spherical distribution of mass

and of static black—holes.
And all of these in a brief twenty years!

It Is possible that the announced title of my lecture has puzzied
some of you: it is not addressed to any concrete topic as the earlier
lectures in this series have been. and | am afraid that it wiil scarcely have
any astronomical overtone. My iecture, however, wili bear on
Schwarzschild’'s attitude and approach to scientific probiems., as | can
discern them from his pubiished papers.: and it wili bear very directly on
his soilution of the equations of general reiativity.

II.

I shali consider three examples from Schwarzschiid's work which,

to my mind. illustrate his approach to scientific problems.

The first relates to his work on star-streaming. The phenomenon
was discovered by J.C. Kapteyn: and it was adequately interpreted.
almost at once. by Eddington on the basis of his and Kapteyn's hypothesis

of two star—-streams. Schwarzschild expressed his reaction to this hypothesis
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as follows™:

The magnitude of the proper motions of the stars in the two streams and
along with them, presumably also, their average distances from the sun
would appear to be equal. The stars in the two streams, during their
motion through each other, must, therefore, share common fluctuations;
and it is problematical how this can be brought about.

| have, therefore, believed that the same observational material on which
Eddington has based himself should be reworked on a more unified

hypothesis concerning stellar motions.

On these grounds, Schwarzschild formulated his ellipsoidal
distribution of the peculiar velocities of stars; and this formulation has been
the basis of all subsequent discussions bearing on stellar motions and the
dynamics of stellar systems. What is remarkabie to me, however, is his

argument: a description of nature must be natural; it cannot be ad hoc.

As a second example, | shall take a still earlier publication of
Schwarzschild. At a meeting of this Geselischaft in 1900, Schwarzschild
addressed himself to the question whether the geometry of the
three—dimensional space of astronomy might be non-Euciidean. He stated
the problem as follows.

As must be known to you, during this century [meaning the 19th century]
one has developed non-Euclidean geometry (besides Euclidean geometry),
the chief examples of which are the so-called spherical and pseudo-spherical
spaces. We can wonder how the world would appear in a spherical or a
pseudo-spherical geometry with possibly a finite radius of curvature.... One
would then find oneself, if one will, in a geometrical fairyland; and one
does not know whether the beauty of this fairyland may not in fact be

realized in nature.

We can only marvel at Schwarzschild's scientific imagination and
curiosity in addressing himself to such a question some fifteen years before
the founding of general relativity. But to Schwarzschild, it was more than
simple imagination. He actually estimated limits to the radius of curvature of

* This and the other translations from German of the originails (including
Einstein's "Geddchtnisrede” in the appendix) are the authors.
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the three—-dimensional space with the astronomical data availiable at his time
and concluded that if the space is hyperbolic its radius of curvature cannot
be less than 64 light years and that If the space is spherical its radius of
curvature must at least be 1600 light years.

We need not argue about Schwarzschiid’s particular estimates. |t
is far more relevant that Schwarzschild allowed his Imagination to

contemplate a worid that may have features of a fairyland!

My third example bears on Schwarzschild's discovery of the
solution of Einstein's vacuum-equations appropriate to the exterior of a
central spherical distribution of mass - undoubtedly the most important

discovery in relativity after its founding.

Schwarzschild’'s paper in which he derived his solution was
communicated by Einstein to the Berliner Akademle In 1916 January 13,
just about two months after Einstein himself had published the basic
equations of his theory in a short communication - his detailed paper with
full derivations was stlli six months In the future - and had deduced the
theoretical rate of the precession of the perihelion of Mercury and of the
magnitude of the deflection a iight ray wili experience as It grazes the limb
of the sun. In acknowiedging Schwarzschild’s paper, Einstein wrote on 1916
January 9,
| have read your paper with greatest interest, | had not expected that one
could obtain the exact solution of the probiem so simply. The analytical

treatment of the problem appears to me splendid.

The circumstances under which Schwarzschild derived his now
famous solution were heroic. During the spring and summer of 1915,
Schwarzschild was serving in the German army at the Eastern front. While
at the Eastern front with a small technical staff Schwarzschild contracted
pemphigus, a fatal disease: and he died on 1916 May 11. It was during
this period of iliness that Schwarzschild wrote his two papers on general
reiativity - the second one dealt with the equilibrium of a homogeneous
mass and showed that no hydrostatic equilibrium is possible if the radius of
the object is less than 9/8 of the Schwarzschild radius, 2 GM/c? - and
the fundamental one on the Bohr-Sommerfeld theory to which | have aiready
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referred.

About Schwarzschlid's last lliness. Eddington wrote in a moving
obituary notice:
His end is a sad story of long suffering from a terrible iliness contracted in
the field, borne with great courage and patience.

Parenthetically, | may add a footnote. Richard Courant told me in
the late thirtles that he had met Karl Schwarzschild proceeding to the
Eastern front while he, as a member of the general staff, was with a party
retreating from the same front; and Courant said that he was surprised that
someone as distinguished as Karl Schwarzschild wouid be proceeding

towards a front that was considered too dangerous for the general staff!

Let me return to Schwarzschild’'s original paper and his reasons
for seeking an exact soiution to the probiem which Einstein had solved
earlier by an approximate procedure. Schwarzschild began with the
statement: It is always satisfying to obtain an exact solution in a simple
form. it is even more important, in the present instance, to have the
uniqueness of the solution established and remove whatever doubts there may
be concerning Mr. Einstein's treatment of the problem, since, as it will
appear below, it is difficult, in the nature of this problem, to establish the
validity of an approximate procedure.

While Einstein in his letter of acknowledgement to Schwarzschild
(quoted earlier) argued that there can be no doubts about the validity of
his approximate procedure In solving the equations, it is significant that
Schwarzschild, undaunted. whished to solve exactly the problem which he
realized was a fundamental one in the newly formulated theory. | said
"undaunted” in view of the great much-ado that was to be made soon
afterwards (and for some decades. to the detriment of the theory) about
the “difficulty” of Einstein’s theory in general and of finding exact solutions

In particular.
I shall return later to the role of exact sofutions for the

understanding of general relativity. But | must pass on now to the main

subject of my Lecture.
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I1I.

The general theory of relativity has often been described as an
extremely beautiful theory: and it has even been compared to a work of art
(as by Rutherford and by Max Born, for example). In the same vein,
statements like the following ones by Dirac are not uncommon:

What makes the theory so acceptable to physicists, in spite of its going
against the principle of simpiicity, is its great mathematical beauty. (1939)
The Einstein theory of gravitation has a character of excellence of its
own. (1978)

These and similar characterizations of the general theory of relativity raise
the following questions:

What is the aesthetic base of the theory? And. more Iimportantly, to
what extent is an aesthetic sensibility to its exceilence relevant to the
formulation and solution of problems which wili lead to a deeper
understanding of the theory?

To answer this question without descending to dilettantism., it is
first necessary to appreclate the present peculiar position of the general
theory of reiativity with respect to Iits confirmation by observation and
experiment; and the reasons for Its inspiring confidence in spite of

inadequate empirical support.

During the past twenty years a great deal of commendable effort
has been expended to verify the Ilowest first-order departures from the
Newtonlan theory that the general theory of relativity predicts. These efforts
have been successful and the predictions of the theory relating to the
differing rates of time—keeping In locations of differing gravity. to the
deflection a light ray experiences when traversing a gravitational field and
the consequent time delay: to the precession of a Kepler orbit: and,
finaily, to the slowing down of the orbital period of a binary star in an
eccentric orbit by virtue of the emission of gravitational radiation. have ali
been confirmed within the limits of observational and experimental errors
and uncertainties. But all these effects relate to departures from the
predictions of the Newtonian theory by a few parts in a mililon: and of no

Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1986MitAG..67...19C

25

more than three or four parameters in a post—-Newtonian expansion of the
Einstein field-equations. And, so far, no predictions of generai relativity, in
the limit of strong gravitational fields, have received any confirmation: and

none seems likely in the foreseeable future.

Shouid one not argue that a confirmation of a theory. which
generalizes a theory as well tested in its domain of validity as the
Newtonlan theory. should refer to predictions which relate to major aspects
of the theory. rather than to small first-order departures from the theory
which it replaces? Would the status of Dirac’s theory of the electron. for
exampie, be what it is today if its only success consisted in accounting for
Paschen's 1916 measurements of the fine structure splittings of the lines of
ionized helium? The real confirmation of Dirac’s theory that Inspired
confidence was the discovery. in accordance with the theory. of electron-
positron pairs in cosmic-ray showers. Similarly, would our faith in Maxwell's
equations of the electromagnetic fleld be as universal as it is withéut Hertzs
experiments on the propagation of electromagnetic waves with precisely the
velocity of light and without Poincare’s proof of thelr invariance to Lorentz
transformations? in the same way, a real confirmation of the general
theory of relativity will be forthcoming only if a prediction characteristic of
the theory, and only of that theory, is confirmed. The occurrence of black
holes as one of the finai equilibrium states of massive stars in the natural
course of their evolution Is not a confirmation of a prediction of general
relativity in any real sense. The notion that light cannot escape from a
sufficiently strong gravitational field is an inference not based on any exact
prediction of the theory; it depends only on the empirical fact that iight is
affected by gravity. On the other hand, since the general theory of relativity
provides an exact description of the space-time around black holes, only a
confirmation of the metric of the space-time around black holes can be
considered as “estabilshing” the theory in any real sense. It is well known
that the Kerr soiution with two parameters provides the unique solution for
stationary black holes that can occur in the astronomical universe. But a
confirmation of the metric of the Kerr space-time (or, some aspect of it)

cannot even be contemplated in the foreseeable future.

Perhaps, | may digress here to Iindicate how one may eventualiy

have a confirmation of the space-time around a rotating Kerr black hole. If
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one imagines a Kerr black hoie with an accretion disc of free eiectrons in
the equatorial plane. then the polarization of the light emerging from it,
after traversing the strong gravitational field of the black hole. will manifest
s0 non-uniform a distribution that one should be able to map it. will
Nature be generous enough to provide a ciean example which wili enable
such a mapping? | am afraid that this is the only time my talk wili bear on

an astronomical observation.

iv

As | have said. we have. as yet, no exact feature of general
relativity that has been confirmed by observation. and none appears feasible
in the foreseeabie future. Why then do we have faith and confidence in the
theory? One should respond more explicitly than merely to say, as some
have. that our confidence derives from the "beauty of the mathematical

description of nature which the theory provides”.
To the solid ground of Nature trusts the mind that builds for aye!

So said Wordsworth. There is no solid ground for the general theory of
relativity. On what then do we build our trust? We build our trust on the
internal consistency of the theory and on its conformity with what we believe
are general physical requirements; and., above all, on its freedom from
contradiction with parts of physics not contemplated in the formulation of the

theory. Let me illustrate by some examples.

The causal character of the laws of physics requires that, given
complete initial data on a space-like 3-surface., the future Iis uniquely
determined in the space-time domain bounded by the future—directed
in—~going null rays emanating from the boundary of the spatial slice. More
formally stated: the basic equations of any physical theory must allow an
initial-value formulation which determines uniquely the future development in
the entire domain of dependence of the initlal data on a spatial slice. The
field equations of general relativity do allow such a formulation though the
proof of this fact is not straightforward: it was provided only in 1944 by
Lichnerowicz.
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As a second example. consider the notion of energy that is so
central to physics. In physics, one is accustomed to define a local energy
that is globally conserved. The fact, that an isolated body which Iis not
static or stationary will emit gravitational waves that contribute to the
energy. implies that in general relativity we cannot expect to have a local
definition of energy. But one should expect that, if space-time Iis
asymptotically flat (in some well-defined sense) one should be able to
define, globally. for the entire space (extending to Infinity) a total energy
that is positive. In 1962, Bondi was able to show that if the space-time is
asymptotically flat at nuli-infinity (l.e.., as we go to infinity along
nuil-rays) ., then one can define a mass—-function - the Bondi mass - that
Is a decreasing function of time; and, further, that the rate of decrease of
this mass-function is exactly equal to the rate at which energy is radiated
to infinity in the form of gravitational waves. But a proof that the Bondi
mass always remains positive finally emerged only in recent years (Schoen
& Yau 1981. Witten 1981, and Horowitz & Perry 1982). The proof requires
that the energy-momentum tensor. T;. satisfy some “energy conditions”.

For a perfect fluid, for which

Ty = (e + p) uju; - pg;; -

the required conditions are equivalent to

€ » |pl

The foregoing two examples, deep in the structure of the general theory of
relativity, illustrate its internal consistency - a consistency by no means

obvious or self-evident.

An even more remarkable feature of the general theory of
relativity is that it does not violate the iaws of other branches of physics
not contemplated in its formulation, such as thermodynamics or quantum
theory, so long as one does not transgress the domain of validity of the
theory. (I shall return presently to the meaning | attach to the phrase "the
domain of validity of the general theory of relativity".)

My first example derives from a consideration of the behaviour of

electron waves. described by Dirac’s equation., in the space-time of a Kerr

black hole. It is known that one can extract the rotational energy of the
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black hole by processes which result in the slowing down of its rotation.
More precisely, if we have waves, with a time (1) and an azimuthal-angle

(¢) dependence .given by

gl(otirme) (m = 0, +1, %2, ...),

with a frequency o(>0) less than the critical value

oy = —am/2Mr, (m=-1, -2, ...),

where a and M are the Kerr parameters and r, is the radius of the event
horizon, then one has super-radiance (by which one means that the
reflection coefficient for the incident waves exceeds unity). The super-
radiance is a necessary consequence of a theorem due to Hawking that
every interaction of a black hole with an external source must always result
in an increase of the surface area of the event horizon provided only that
the energy-momentum tensor of the external source is compatible with the
positive—-definite character of the energy. However. when one considers the
reflection of Dirac waves by the Kerr black hole, one finds, by a
well-defined mathematical algorism of the theory, that they do not exhibit
the phenomenon of super-radiance. Apparently. then, Hawking’s theorem s
violated. But one soon realizes that the energy momentum tensor of the
Dirac waves, provided by the quantum theory, does not satisfy the positive-
energy requirement. Had the standard algorism predicted super-radiance.
we should have had a contradiction between the premises of the general
theory of relativity and the premises of the quantum theory. But no such

contradiction occurs!

Let me consider a second example. Hawking showed in 1975
that., when one considers the curvature of space-time as providing a
classical potential for electron (or photon) scattering according to the rules
of the quantum theory, one must observe, from the event horizon of a
black hole. an emission of electrons (or photons) with a Fermi (or a
Planck) distribution at a temperature determined by the constant surface—
gravity of the event horlzon. Associated with this temperature and the rate
at which energy is lost by the emission of the particles, one can define,
formally., an entropy. When one pursues this line of reasoning. one finds
that the notion of entropy one derives is entirely consistent with all the

known laws of thermodynamics and of statistical mechanics.
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Thermodynamics and statistical mechanics were not contemplated in the
formulation of the general theory of relativity; and yet the consequence that
follow from the theory do not violate the laws of thermodynamics and of

statistical mechanics.

The foregoing iliustrations disclose not only the Internal
consistency of the general theory but aiso its consistency with the entire
domain of physics outside the realm originally contemplated. These are
probably sufficient grounds for one's confidence and faith in Einsteins

general theory of relativity.

There is another feature of the theory that is related to Its

aesthetic base.

Every valid physical theory is circumscribed by limitations inherent
to it. Thus, the Newtonian theory of gravity is limited by the requirement
that bodles should be moving with velocities small compared to that of
light. The cilassical laws of mechanics and of electrodynamics are similarly
limited by the requirement that the relevant actions are large compared to
Planck's quantum of action, h, Likewise, we may expect the general
theory of reiativity to be iimited by the requirement that the intervals of time
and of distance are large compared to the Planck scales, (hG/cs)”'
(~5.4x10™ sec.) and (AG/cH™ («1.6x107® cm). respectively (h=h/2m).

Any physical theory, which replaces an earlier theory by
overcoming its limitations. will envisage circumstances that are peculiar to
the theory and whose exact description wiii provide a basis for |its
confirmation. In the Newtonian theory of gravitation, the solution of the
two-body probiem provides an exampie: its exact solution provides a
quantitative explanation for Keplers iaws. Similarly, Bohrs theory of
one—electron systems provides an exact derivation of Balmers formula and
an exact basis for determining the ratio of the masses of the electron and
the nucleus from the departures of the Pickering series of ionized helium

from the Balmer series of hydrogen.
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We now ask: what is the essentially new feature of the general
theory of relativity? And what are the circumstances which wili reveal those

features unambiguously?

The essential features of the general theory of relativity are the
precise notions regarding space and time which it incorporates. These
notions generalize, in magisterial fashion, those that underiie the speciai
theory of relativity. We ask: are there physical circumstances in which
these new notions of the theory are manifested in their pristine purity? The
space~time around black holes provides the requisite arena. The general
theory of relativity solves the probiem of these space-times with magnificent
completeness. The space-time around black holes is uniquely specifled: it
is simple and it involves only two parameters: the mass of the black hole
and the angular momentum of the black hole; and the behaviour in the
space-time of ail known test particles is exactly predicted. None of the
physical theories that have been explored hitherto provides a problem so
characteristic of itself and a solution so complete. This feature of the
general theory of relativity appears to me as one of its most aestheticaily
satisfying aspects: and this leads me to examine. more generally, the

aesthetic base of the theory.

To examine a physical theory and to state the source of Iits
aesthetic appeal is beset with difficulties. Like all discussions relating to
beauty, it is subject to the tastes and the temperaments of the individuals;
and it is difficuit. if not impossible, to achleve objectivity. Nevertheless, it
seems to me that the question is relevant: as a practitioner of the general
theory of relativity for the past twenty and more years. | can ask myself:
what aspects of the theory appeal to my aesthetic sensibility and how do
the aesthetic ingredients of the theory influence and direct the formulation
and solution of problems that iead to a deeper understanding of the
physical and the mathematical content of the theory?

| have already referred to the theory of the black holes. It is a
remarkabie fact, to which | have aiso made reference, that the general
theory of relativity provides, for isolated stationary black holes, a unique

solution with just two parameters. As | have said on another occasion,
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Black holes are macroscopic objects with masses varying from a few solar
masses to miilions of solar masses. To the extent they may be considered
as stationary and Isolated, to that extent, they are all, every single one of
them, described exactly by the Kerr soiution. This is the only instance we
have of an exact description of a macroscopic object. Macroscopic objects,
as we see them all around us, are governed by a variety of forces, derived
from a variety of approximations to a variety of physical theories. In
contrast, the only elements in the construction of black holes are our basic
concepts of space and time. They are, thus, almost by definition, the
most perfect macroscopic objects there are in the universe. And since the
general theory of relativity provides a single unique two-parameter family of
solutlons for their description, they are the simplest objects as well.

But that Is not alll Contrary to every prior expectation. the
standard equations of mathematical physics. relating to the propagation and
scattering of electromagnetic, gravitational, and the Dirac—-electron waves,
as well as the geodesic equatlons of particles and of polarized photons. all
of them, can be separated and solved exactly. The manner of separation
of these equations has led to a re-examination of the century-old problem
of the circumstances when partial differential equations in two variables can
be separated and soived: and a rich mathematical theory has arisen. As
an examplie, | may refer to the separation of Dirac’s spinor-equation of the
electron in Kerr geometry. As a corollary, it led to the separation of
Dirac’s splnor-equation in spheroidal coordinates in Minkowski geometry of
special relativity - a separation that had been considered impossible before.

vi.

I now turn to the most difficult question to which | wish to
address myself. namely, how sensitiveness to the mathematically aesthetic
aspects of the theory enables the formulation and solution of problems of
physical significance. In answering this question. | should be precise if |
am not to descend to dilettantism. That, | am afrald, will require a
somewhat more technical language than | have used so far.

There are two major areas In general relativity In which progress
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has been made in recent years: the mathematical theory of black holes
and the mathematical theory of colliding waves. Black holes. as resulting
from the gravitational colilapse of massive stars In the late stages of stellar
evolution, are well known. But the relevance of the theory bearing on the
collision or scattering of waves by waves In general relativity requires

explanation.

in the general theory of relativity one can construct plane—fronted
gravitational waves confined between two parallel planes with a finite energy
per unit area: and, therefore. we can. in the limit, construct impulsive
gravitational waves with a &-function energy-profile. Parenthetically, | may
note that one cannot construct such impuisive waves in eiectrodynamics.
For, a &-function profile of the energy will imply a square-root of a
s—function profile for the field variables; and the square-root of a
s-function is simply not permissibie for physical description.

In 1971, Khan & Penrose considered the collision of two impuisive
gravitational waves with paraliel polarizations. And they showed that the
resuit of the collision is the development of a space-time singularity not
unlike the singularity in the interior of black holes with which we are
acquainted. This phenomenon is not manifested in any linearized version of
the theory: the occurrence of the singularity, by a focussing of the
colliding waves, In no way depends on the amplitude of the waves. Clearly,
in this context. nothing short of an exact solution of the problem will
suffice to disclose the new phenomenon. In any event, the occurrence of
a singularity in this example, suggested to Penrose that a new realm in the
physics of general relativity remained for exploration. However, there was
no substantlal progress in this area before one realized that the
mathematical theory of black holes is structurally very closely related to the
mathematical theory of colliding waves. This fact Is, in itself, surprising:
one should not have thought that two theories dealing with such disparate
physical circumstances will be as closely related as they are. Indeed, by
developing the mathematical theory of colllding waves with a view to
constructing a mathematical structure architecturally similar to the
mathematical theory of black holes. one finds that a variety of new physical
implications of the theory emerge - implications one simply could not have

foreseen.

Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1986MitAG..67...19C

33

vil.

A description of how the development to which | have referred
was accomplished is not possible without some familiarity with the language
of general relativity, any more than an analysis of a musical composition is
possible without some famiiiarity with musical notation.

We are concerned with space-times that describe stationary
axisymmetric black holes and space-times that describe the collision and
scattering of plane—-fronted waves. In the former case., the metric
coefficients are independent of the time, t. and of the azimuthal angle. ¢.
about the axis of rotation: they depend only on the two remaining spatial
coordinates, a radial coordinate r and the polar angle ©. In the latter
case, the metric coefficients are independent of two space-like coordinates,

x' and x2. both ranging from - to +w: they depend only on the time. t,

and the remaining spatial coordinate. x>, normal to the (x', xz)—planes.

It can be shown that the metric appropriate to a description of

stationary axisymmetric black-holes can be written in the form:

ds? = y(a8) [x(d? - 3 (do - wdd?)
+ 2
- e“z #3 vA [(d‘l’L) + (du)?]' (&)
A 85
where
A=n2-1,6=1-p%=sin®@ (g = cose) . (2)

n Is a radial coordinate (measured in a suitable unit) and x. w., and p, +
uz are metric functions to be determined. it may be noted. that w Is
directly related to the angular momentum of the biack hole: it is zero for
the Schwarzschild black hole which is static.

In writing the metric in the form (1), we have already arranged
for the occurrence, at n = 1, of a null-surface that wiil eventually be

identified with the event horizon of the black hole.

The central problem of the theory is to solve for x and w: once
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one has solved for them., the remaining metric function, p, + pg3, foliows

by a simple quadrature.

Assoclated with the metric (1), we have a “conjugate metric”
obtained by the transformation

t> +i¢ and o > -it . : (3)

By this "conjugation”, x and w are replaced by
X = ;?Lz_m and W = o - (4)

For the reduction of the physical problems. It is essential that we
consider, in place of x and w. the pair of functions, ¥ and ¢, where

(a8)
""j—x_' (5)

and ¢ is a potential for w defined by

5 %
®, = ;2' and ¢,”_ = - 2 W.eq (6)

n ©op
One can similarly define ¥ and & in terms x and @.

In the mathematical theory of black holes, one combines the

functions ¥ and ® and ¥ and & into the pairs of complex functions,

2zt =w+io and 2T =9 + 1o . n

and defines

2t wy 211
et = d ET =3 : (8)
zter 0 zt

Both these functions satisfy the Ernst equation,

O - 1EIZ (0 (0= n® Eqlig = (O - BDE 1)

= -2 [ -0 EPE- a - D) EPF . (9)

Turning next to space-times appropriate to the description of
colliding waves, we envisage the collision of two plane-fronted impulsive
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gravitationai waves accompanied. In general. with gravitationai and other
shock-waves with the same fronts, approaching each other from +® and
-o. Prior to the Iinstant of coliision, the space-time between the
approaching wave-fronts is flat. We are principally concerned with the
space—time that develops after the instant of coilision (though satisfying the
boundary conditions at the coliision fronts is not a negligible part of the
problem) .

The metric of the space-time after the instant of coilision can be

written in the form,

ds? = - y(a8) [x (dx®?2 +>l( (dx' - qpdx®)2]
vt 2 2
+ e M3 a [(ggA) - _Ld::)__] . ao

where. now,

A=1-192, § =1 - p?, an

n measures the time (in a suitable unit) from the Instant of collision, n
measures the distance normal to the colliding fronts at the instant of the
coilision, and x. q,. and v+uz are metric functions to be determined. it
may be noted that q, is directly related to the varying piane of polarization
of the gravitational waves: it is zero when the plane of polarization is

unchanging.

In writing the metric in the form (10), we have taken into
account, aposteriori, the fact that, as a result of the coilision, a curvature
or a coordinate singularity develops when n=1 and p=+1.

As in the case of stationary axisymmetric space-times., the
solution to the Einstein field-equations can be completed once we have
solved for the metric functions x and q, or, equivalently, for ¥ and ¢
related to x and q, by

v = 1(?(6) 12

and
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8
®.n =32 G, and &, = %—qx 2,n . (13)

In the present case. we need not consider the process of
"conjugation” since it corresponds to a simpie interchange of the roles of x!

and xz.

We now combine the functions x and q, and ¥ and ¢ into the

pair of complex functions.

Z=1yx+Iq and zZV = v + o . (14)
and define
z-1 2t
E =5 and et = . (15)
Z+1 zt+

We find that both E and et satisfy the same Ernst-equation (9).

When we turn to the consideration of charged black-holes or the
collision of gravitational waves coupled with electromagnetic waves, we must
supplement Einstein’s equations with Maxwell's equations. For space-times
with the two symmetries we are considering., the Maxwell field can be
expressed in terms of a single complex—potential H: and the entire set of
equations governing the problem can eventually be reduced to a pair of

coupled equations for

H and 2V = w + 10 + |HIZ Q\16)

where V¥ is defined as-in equations (5) and (12) and ¢ is a potential for
w or qy. defined similarly as in equations (6) and (13) but including
additional terms in H on the right-hand sides.

. There are two cases when the pair of equations governing z' and

H can be reduced to a single Ernst equations. These are:

Case (D): H=awt+n an
where Q is some real constant; and

case (ih: 2zt =1, =0, and v = 1- 1HIZ . (18)
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In case (). with the definition.

.'. Zf".l
et = O3 (19)
FARS!
we find that ET satisfies the equation,
_ 2 _ 2 _.2 _ _ 2
(1 - 4Q IEID(1O-1D Bl = (O = wDE 1. ,)
= 271 - 2)(E,n)2— a1 - 2)(E,u)2], 20

for both types of space-times we are presently considering. Moreover, it
can be shown that If E,. Is a solution of the Ernst equation (9) for the

vacuum, then

Egi.ma. = Evac, v(1-4Q% (21)

is a solution of equation (20) appropriate for the Einstein—Maxwell
equations. (It should be noted that in the stationary axisymmetric case. we
should also consider the process of conjugation when the corresponding

“tilded" variables will satisfy the same Ernst equation.)

In case (il). we find that H satisfies the Ernst equation (9) for

the vacuum so that we can write

H = Eyqe. and ¥ = 1 - |Eupe 12 (22)

The completion of the solution for the various probiems we shall
consider, particularly in the theory of colliding waves, often requires fairly
elaborate analysis. We shall not describe any of that analysis since it is
not needed for exhibiting the structure and the coherence of the entire

theory.

Viil.

The origin of the structural simiiarity of the mathematical theory of
black holes and of colliding waves stems from the circumstance that in
both cases the Einstein and the Einstein—Maxwell equations are reducible to
the same Ernst equation: and, indeed., as we shall see, even the same
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solution. This identity is obtained only by the special choice of coordinates
that assures the occurrence of an event horizon at a radial distance n=1
for black holes and the development of a singularity at time n=1 for
colliding waves. The richness and the diversity of the physical situations
that are described., in spite of this identify, resuits from the different
combinations of the metric functions which can be associated with the same
solution of the Ernst equation.

We shall consider first the solutions derived from the vacuum
equations. The solution of the Ernst equation (9), from which the soiutions
describing the diverse physicai situations foilow, is the simplest one,

namely,

E =pn + iqu . (23)

where p and q are the two real constants restricted by the requirement,

p2 + q2 =1 . (24)

Iin the theory of black holes, the solution pn + iqu., applies to gt

i.e.. to the Ernst equation for ; + I; belonging to the conjugate metric.
The solution that follows is that of Kerr. It reduces to the Schwarzschild
soiution when p = 1 and q = 0. The resuiting space-times of the
Schwarzschild and the Kerr black holes are adequately described In text
books and generally known. | shall mention oniy that these soiutions beiong
to a special aigebraic type. namely, type D in the Petrov classification.
Solutions belonging to this type have many special properties. It is to these
properties that we owe the separabiiity of all the standard equations of
mathematical physics in Kerr geometry.

Turning next to the theory of colliding waves, the fundamentali
solution is that of Khan and Penrose which describes the collision of two
purely impulsive gravitational waves with paraliel polarizations. It follows from
the soiution., E = n. of the Ernst equation for x + Iq,. The soiution,
E=pn + iqu. leads to the Nutku—Haiil solution which describes the more
general case when the colliding Iimpuisive waves have non-—paraliei

polarizations. Thus., the Khan-Penrose and the Nutku-Halil solutions piay the
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same role in the theory of colliding waves, as the Schwarzschild and the
Kerr solutions play in the theory of biack holes.

The combination, ¥ + i®, of the metric functions, aiso leads to
the same Ernst equation; and we are invited to consider the soiution
pn + Igp for EY. The solution that follows has properties that were entirely

unexpected: a horizon develops when nn = 1, in place of a curvature

singuiarity, violating a common beiief that space-like curvature singularities
are the rule when waves coliide. in this instance, we must, therefore,
extend the space-time beyond n = 1 and |ul = 1. When this extension is
made, we find that the extended space-time includes a domain which is a
mirror image of the one that was left behind and a further domain which
inciudes hyperboiic arc-like singularities reminiscent of the ring singularity in
the interlor of the Kerr biack-hole. It is remarkable that a space-time
resulting from the coliision of gravitational waves should bear such -a close
resemblance to Alice’s anticipations with respect to the world Through the
Looking Giass: “it [the passage In the Looking—Glass House]l [s very like
our passage as far as you can see, only it may be quite different on
beyond. "

The foregoing remarks. concerning the solution derived from
Y = pn + iqu. apply only when q # 0. When q = 0 and p = 1, a
space-like curvature singuiarity develops at n =1; and the space-time

cannot be extended into the future.

Finally, it should be noted that the solution derived from
et = pn + iqu is of type D and shares all the mathematical features of
space-times belonging to this type.

Turning next to the Einstein—Maxwell equations, we are led to the

soiutions appropriate to charged black-holes when we consider the solution

~

E = pn + iqu (p2 + q2 = 1-4Q% for the Ernst equation (20) for ef. in
accordance with equation (21). We obtaln the Reissner-Nordstrom solution
when q = 0 and the Kerr—-Newman solution when q # 0.

There were conceptuai difficulties in obtaining the corresponding

“elementary” soiution of the Einstein—-Maxwell equations for colliding waves.
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Penrose had raised the question: would an impulsive gravitational wave with
its assoclated s&-function singularity in the Weyi tensor Iimply a similar
s-function singularity in the energy-momentum tensor? if that should
happen. then the expression for the Maxweil tensor would involve the squére
root of the 8&-function: and "one would be at a loss to know how to
interpret such a function”. Besides, there was the formidabie problem of
satisfying the many boundary conditions at the various nuli boundaries. On
these accounts, all efforts to obtain soiutions compatible with carefully
formulated inltial conditions failed. However., when it was realized that the
Khan-Penrose and the Nutku—Halil solutions foilowed from the simpiest
solution of the Ernst equation for x + iqy., It was naturai to seek a solution
of the Einstein-Maxweli equations which wili reduce to the Nutku-Halil
solution when the Maxwell field Is switched off. The problem is not a
straightforward one: since. In the framework of the Einstein-Maxwell
equations, we do not have an Ernst equation at the ievel of the metric
functions x and q,. we have one only for el derived from v + i® + [HI2
The technical problems that are presented can be successfully overcome
and a solution can be obtained which satisfies all the necessary boundary
conditions and physical requirements, That we can obtain a physically
consistent solution by this “inverted procedure” is a manifestation of the firm
aesthetic base of the general theory of relativity.

Since we do have an Ernst equation for ¥ + i® + IH12, we can
consider the solution € = pn + iqu (p2 + q2 = 1-4Q%)., for the Ernst
equation (20) for et. When Q = 0, this solution wiill reduce to the
solution for the vacuum we have described earlier.; and we find that. like
the vacuum soiution, it develops a horizon and subsequently, timelike

singularities.

in our consideration of the Einstein—-Maxwell equations in §Vil, we
have distinguished two cases: case (i) and case (ii). They differ in
essential ways: when the electromagnetic field is switched off. the space-
time. in case (i), reduces to a non-trivial solution of the Einstein vacuum-
equations, while in case (i), it becomes flat. The solutions we have
considered hitherto belong to case (i). As we have seen. in case (i) the
complex eiectromagnetic potential, H, satisfles the Ernst equation (9) for

the vacuum. We naturally ask the nature of the space-time that will follow
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from the simplest solution, pn + Igqu., of the Ernst equation. The soiution
one then obtains (discovered by Bell and Szekeres by different methods) is
a very remarkable one: gravitation, as manifested by a non-vanishing Weyl
scalar., Is confined exciusively to the 8&-function profile describing the
impulsive gravitationai waves. In other words. except for the presence of
the impulsive waves, the space-time is conformally fiat. Thus, as an exact
solution of the Einstein-Maxwell equation, we have a conformally flat
space-time in which plane—fronted electromagnetic shock-waves,
accompanying Iimpulsive gravitational waves, collide and develop a horizon.
A further feature of the Bell-Szekeres solution is that the solution for g = 0
is entirely equivalent to the solution for q # 0. Therefore. to obtain a
solution, in this framework. which wili describe a more generai physical
situation than the Bell-Szekeres solution, we must go outside the range of
the simplest solution of the Ernst equation. For this purpose. we take
advantage of a transformation due to Ehlers which enables us to obtain a
one—parameter family of solutions from any given solution of the Ernst
equation. We therefore consider the Ehiers transform of the solution,
E = pn + igqu. We find that the resulting solutions are of type D and have
ali the features of the solution for the vacuum derived from the solution
et = pn + iqu. It Is remarkable that we should obtain a one-parameter
family of space—times with this abundant structure by applying the Ehlers

transformation to the Beil-Szekeres soiution.

In Table 1. we describe more fully the various solutions that have
been derived for black holes and for colliding waves. The pictorial pattern

of this table Is a visible manifestation of the structural unity of the subject.

The inner relationships between the theory of black holes and the
theory of colliding waves is equally visible (see Table 2), in the simpler
context when w = 0 and q; = 0. In this case., the basic equation., on

which the solutions for both theories depend. is

(A1 -1 agw) . pl.pp - [T - uz)(lgw),u], =0 . (25)

n m

This equation can be solved exactly and the solutions that are relevant in

the two theories are listed in Table 2.
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Table 1

Solution for Ernst Equation for

Killing Fleld Equations 3 et ef
Vectors
8y, dg Einstein-vacuum does not exist n
3. 3y Einstein-vacuum does not exist pn+iqu: p2+q2=1
8. 3y Einstein-Maxwell does not exist nv('l—402)
3y, 3dg Einstein—-Maxwaelli does not exist pn+iqu:
p2+qz=1_402
34. 8 5 Einstein-vacuum n Interchanges
x 3 x' and
a 3 Einstein-vacuum pntiqu: p2+q2=1 interchanges
@ x' and
ax 812 Einstein-Maxwell does not exist ET(E“c=pn+Iqu) interchanges
xv(1-4Q) x' and
84, 84 Einsteln~vacuum n interchanges
x X x and
3 85 Einstein—vacuum pntiqu: p2+q2=l Interchanges
x x x' and
34, 8, Einstein-Maxweli does not exist nv(1-4Q% interchanges
X x x' and
34, 8, Einstein—-Maxweli does not exist pntigu: p2+q2=l—4Q2 Interchanges
x x x' and
a 4. axz Einstein—Maxweli does not exist n Interchanges
x (H=Eyc) x' and
ax,, alz Einstein-Maxwelil does not exist pnt+iqu: p2+q2=l Interchanges
(H=Eq¢) x and
8 ax2 Einstein—Maxwetl| does not exist Ehlers transform of interchanges
(H=E4¢) pn+igu x and
3 4. 95 Einstein—~hydrody- pn+iqu interchanges
x x namics (e=p) x' and
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Table 1

Solution

Description

Schwarzschiid

Kerr

Relssner-Nordstrom

Kerr—-Newman

Black hole: static: spherically symmetric
event horizon

space-like singularity at centre

type D. parameter. mass

Black hole: stationary. axisymmetric

event & Cauchy horizons: ergosphere

time-like ring-singularity in equatorial plane

type D: pagameters: mass and angular momentum

Charged black-hole: static: spherically symmetric
event and Cauchy horizons

time-iike singularity at centre

type D: parameters: mass and charge

Charged black-hole: stationary, axisymmetric

event & Cauchy horizons.; ergosphere

time-like ring-singularity In equatorial plane

type D: parameters: mass. charge and angular momentum

Khan and Penrose

Colliston of impuisive gravitational waves
parailel polarizations
develops space-like curvature singularity

Nutku=Halit Coillsion of impulsive gravitational waves
non—-parallel polarizations
develops space-like curvature singularity
(weaker than Khan-Penrose)
Chandrasekhar and Collision of impulsive gravitational waves and accompanying
Xanthopoulos gravitational and electromagnetic shock waves
non-—parallel polarizations
develops space-like curvature singularity
Chandrasekhar and Coilision of impulsive gravitational waves and accompanying
Xanthopouios gravitational shock-waves
parallei polarizations
develops very strong space-like curvature singularity
type D
Chandrasekhar and Coilision of impulsive gravitational waves and accompanying
Xanthopoulos gravitational shock-waves
non-parallel polarizations
develops a horizon and subsequent time-like arc-singularities
type D
Chandrasekhar and Collisilon of impulsive gravitational waves and accompanying
Xanthopoulos gravitational and electromagnetic shock-waves
paraliel polarizations
develops a horizon and subsequent three-dimensional time-iike
singularities
type D
Chandrasekhar and Collislon of impulsive gravitational waves and accompanying
Xanthopoulos gravitational and electromagnetic shock-waves
non-paralilel polarizations
develops a horizon and subsequent time-like arc—singularities
type D
Bell-Szekeres Coliision of impuisive gravitational waves and accompanying
electromagnetic shock-waves
parallel polarizations
space-time conformally fiat
develops a horizon. permits extension with no subsequent singularities
Bell-Szekeres Same as above
Chandrasekhar and Colilsion of impuisive gravitationai waves and accompanying gravita-
Xanthopoulos tional and electromagnetic shock-waves
deveiops a horizon and subsequent time-likke arc singuiarities
type D
Chandrasekhar and Collision of impulsive gravitational and accompanying gravitational

Xanthopoulos

shock-waves and nuli~dust (R;=Ckk
non-parailel poiarizations

develops weakened space-litke singularity
transforms null-dust Into a perfect fluid with e=p
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As the foregoing discussion demonstrates, the Einstein—Maxweli
equations share many of the distinctive features of the Einstein vacuum-
equations. The only source, other than a Maxwell field, which when
coupled with gravitation, ieads to equations which retain. at least, some of
the distinctive features of the vacuum equations. is a perfect fiuid with the
equation of state, energy density (e) = pressure (p). For such a fluid,

the Ricci tensor, in accordance with Einstein’s equation, is given by

R = -4e ulu! ., (26)

where U‘

denotes the four—velocity of the fluid.

On the assumption, that In the region of the interaction of the
colliding waves, after the instant of coliision., we have as source a perfect
fluid with € = p, we find that prior to the instant of collision, the impuisive
gravitational waves must have been accompanied by nuli-dust with an

energy-momentum tensor of the form,

T = el = -»RY (27)

where E is some positive scalar function and k' denotes a null vector. In
other words., under the circumstances envisaged, a transformation of null
dust (i.e.. massless particles discribing null trajectories) into a perfect
fluid (whose stream lines follow time-like trajectories) occurs at the instant
of coliision. That such a transformation is required is, in the first instance,
surprising. But as Roger Penrose and Lee Lindblom have pointed out. the
transformation in question can take piace. equally. in the frame-work of
special relativity though this fact does not seem to have been notified
before.

In developing the theory of colliding waves in parallel with the
theory of black holes. we have, in effect, examined systematically the
consequences of adopting for the Ernst equation. in its various contexts, its
simpiest solution (or, in one case. its Ehlers transform). While this
approach may appear as an exceedingly formal one, it has nevertheless
disclosed possibilities that one could not have, in any way., foreseen, as
for example., the development of horizons and subsequent time-like
singularities or the transformation of nuil dust into a perfect fluid. In this
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instance. then., exploring general relativity, sensitive to its aesthetic base.
has led to a deepening of our understanding of the physical content of the
theory.

In his first announcement of his field equations in November

1915, Einstein concluded with the statement:
Anyone who fully comprehends this theory cannot escape Its magic.

At ieast, to one practitioner, the magic of the theory is in the harmonious

coherence of its mathematical structure.
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APPENDIX

On 29 June 1916, Einstein gave a brief memoriai address on Karl
Schwarzschild at a meeting of the Berliner Akademie. It presents a proper
measure of Schwarzschild: and | have thought it worthwhile to append the

following transiation of Einstein’s address.

On May 11 of this year [1916], Karl Schwarzschild, 42 years
old, was by death snatched away. This early demise of so gifted and
many-sided a scientist Is a grievous loss not only to this body, but also to
all his astronomer and physicist friends.
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What Is specially astonishing about Schwarzchilds theoretical work
is his easy command of mathematical methods and the almost casuai way In
which he could penetrate to the essence of astronomical or physical
questions. Rarely has so much mathematical erudition been adapted to
reasoning about physical reality. And so it was, that he grappled with many
probiems from which others shrank away on account of mathematical
difficulties. The mainsprings of Schwarzschilds motivations in his restless
theoretical quests seem less from a curiosity to learn the deeper Inner
relationships among the different aspects of Nature than from an artists
delight (n discerning delicate mathematical patterns. it [Is therefore
understandable that Schwarzschild’s earilest contributions were In celestial
mechanics, a branch of sclence whose foundations are more firmly
estabiished than any other. In this area, | may recall his investigations on
the periodic solutions of the three—body problem and Poincare’s theory of the
equlilibrium of rotating fluid masses.

Among the most Important of Schwarzschilds astronomical
contributions are his Investigations on stellar statistics, i.e., a part of
sclence which seeks by statistical methods to relate the observations on the
luminosity, the velocity, and the spectral type of stars to the structure of a
large system of many objects to which the Sun belongs. In this area,
astronomers are Indebted to him for deepening and widening their
understanding of Kapteyn's discovery.

Schwarzschlid directed his deep knowiedge of theoretical physics to
the theory of the Sun. Here, one [s grateful for his Investigations on the
equilibrium of the solar atmosphere and for considerations relating to
radiative transfer. To this area also belongs his beautiful investigations on
the pressure of iight on small spherical particles which provided an exact
basis for Arrhenius’ theory of comet tails. These investigations In theoretical
physics, while they were motivated by astronomical questions, seem to have
led Schwarzschild to be Interested In questions purely in physics. We are
Indebted to him for his Interesting contributions to the foundations of
electrodynamics. Besides, In his iast year he became Interested In the new
theory of gravitation: he succeeded in obtaining, for the first time, an exact
calculation In the new theory of gravitation. And In the very last months of
his life, much weakened by a fell disease, he yet succeeded In making
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some profound contributions to quantum theory.

To Schwarzschilds great theoretical contributions also belong his
investigations on geometrical optics In which he refined the theory of
aberrations of optical instruments of astronomicai Importance. These studies
will remaln an enduring edifice for the perfection of the tools of astronomy.

Schwarzschild's theoretical Investigations were carried out
simuitaneously with his efforts as a practical astronomer. From age 24, he
worked at observatories without interruption: 1896-99 as an Assistant In
Wien; 1901-09 as Director of the Gdéttingen Observatory; and after 1909 as
Director of the Astrophysical Institute at Potsdam. A Ilong series of
investigations testify to his efforts as an observer and as a Ileader of
astronomical observations. Moreover, his lively spirit led him to advance his
scientifc field by charting new methods of observation. He discovered, In
experimental physics, what has been named after him, how the biackening of
a photographic plate can be used for the purposes of photometry by
photographic methods. He also had the briiliant Iidea of using extra—focal
images of stars for measuring their brightness: only through this idea did
photographic photometry, besides visual methods, become feasibie.

Since 1812, this modest man has been a member of this
Akademie to whose Sitzungsberichte he has, in this short time communicated
many [mportant contributions. Now bitter circumstances have taken him away:
but his work will bear fruits and have an enduring influence on Science for
which he devoted all his strength.
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