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ABSTRACT 
We present the results of numerical evolutionary calculations for stars with masses in the range of 0.01-0.10 

M0. We have followed the evolution of these stars from the early stages of contraction, through deuterium 
burning, to the very late stages of degenerate cooling at ages comparable to that of the Galaxy. By varying 
the assumed surface boundary conditions, we systematically explored the sensitivity of our evolutionary 
sequences to the major uncertainties in the input physics. We find that, at a given age, the effective tem- 
peratures and bolometric luminosities of stars with masses <0.06 M© are quite well determined despite these 
uncertainties. However, the minimum mass (~0.08 M0) for which thermal equilibrium can be established via 
hydrogen burning is moderately sensitive to the assumed input physics. Our calculations are particularly 
appropriate to the interpretation of the observations of substellar objects such as Van Biesbroeck 8B. Specifi- 
cally, we find that if VB 8B has an age in excess of ~ 109 yr, then it has a mass in the range of 0.04-0.08 M0. 
We estimate the central density and temperature of VB 8B to be in the ranges of ~300-1300 g cm-3 and 
~1.0-2.0 x 106 K, respectively. We also utilize our cooling curves to generate theoretical luminosity functions 
for very low mass stars. 
Subject headings : stars : evolution — stars : interiors — stars : late-type 

I. INTRODUCTION 
There has recently been considerable renewed interest in the 

subject of brown dwarfs because of (i) the possibility that these 
objects comprise a significant fraction of the local missing mass 
in the Galactic disk (see, e.g., Bahcall 1984), and (ii) the recent 
discovery of the first bona fide brown dwarf, Van Biesbroeck 
8B (VB 8B), which has an effective temperature of only 
~1360 K (McCarthy, Probst, and Low 1985). We take, as a 
working definition of a brown dwarf, a star that has insufficient 
mass to achieve thermal equilibrium via hydrogen burning (i.e., 
insufficient mass to achieve main-sequence status). The actual 
minimum main-sequence mass depends on several factors, 
including the chemical composition of the star (Rappaport and 
Joss 1984), but it is generally agreed that for cosmic abun- 
dances, this minimum mass is ~0.08 M0 (see, e.g., Kumar 
1963«; Hoxie 1970; Grossman, Hays, and Graboske 1974, 
hereafter GHG; D’Antona and Mazzitelli 1985, hereafter DM). 
The lower mass limit for brown dwarfs is not precisely defined, 
but we consider here only stars with masses sufficiently high 
that no more than a small fraction of the stellar matter is in 
atomic or molecular form (i.e., masses M > 0.01 M0). We also 
note that 0.01 M0 is nearly equal to the minimum mass for 
which a substellar object can attain a temporary state of 
thermal equilibrium through the burning of a small amount of 
primordial deuterium (see Grossman and Graboske 
1973; GHG). 

In addition to VB 8B, several other stars have been sug- 
gested to have masses near or below the minimum mass for 
main-sequence hydrogen burning or to have effective tem- 
peratures near or below that expected for the lowest mass 

1 This work was supported in part by the National Aeronautics and Space 
Administration under contracts NAS5-24441 and NGL-22-009-638 and grant 
NSG 7643, and by the National Science Foundation under grant AST 84- 
19834. 

main-sequence star. Examples which fall into the first category 
include Luyten 726 — 8A and B and Ross 614B (see, e.g., van de 
Kamp 1969; GHG; Probst 1977; Popper 1980; and references 
cited in these works), while the latter class of stars includes LP 
271 —25 = LHS 2924 and Van Biesbroeck 8 A itself (see Probst 
and Liebert 1983). In addition, several very low mass (<0.01 
M0) unseen companions to nearby stars have also been sug- 
gested on the basis of astrometric observations (van de Kamp 
1975; Lippincott 1978). The reliability of these astrometric 
detections remains uncertain (Gatewood 1976), but several 
other astrometric candidates for brown dwarfs in binary 
systems are currently under investigation (Harrington 1986). 

In addition, the presence of low-mass (<0.1 M0) stars has 
been inferred in several interacting binary systems, including 
two binary X-ray sources and several cataclysmic variables 
with orbital periods near the minimum in their orbital period 
distribution (see, e.g., Patterson 1984). In all cases, however, 
these binary systems are studied in X-radiation or visible light, 
or both, produced by the accretion of matter from the hypothe- 
sized low-mass secondary to a collapsed star (degenerate dwarf 
or neutron star). Furthermore, the secondary stars are thought 
to have attained their present low-mass state by transferring a 
large amount of their original mass to the collapsed star (or by 
loss of mass from the binary altogether). Thus, most or all of 
these low-mass interacting stars are probably not primordial 
(i.e., they have evolved from more massive objects). Theoretical 
studies of this type of system (see Paczynski and Sienkiewicz 
1981; Rappaport, Joss, and Webbink 1982, hereafter RJW) 
have provided (i) an apparently successful explanation for the 
existence of the 80 minute minimum in the orbital period dis- 
tribution of cataclysmic variables and (ii) a description of the 
evolution of brown dwarfs that are undergoing mass loss. 

The evolutionary history of brown dwarfs can generally be 
divided into three phases: (i) an initial contraction stage (for 
ages t < 106 yr), (ii) a deuterium-burning phase (with a dura- 
tion of < 107 yr), and (iii) a degenerate cooling stage. The study 
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of the initial contraction of brown dwarfs was pioneered by 
Hayashi and Nakano (1963) and Kumar (1963b) (see also 
Hoxie 1970). A more sophisticated numerical treatment of the 
problem, which also included the deuterium-burning phase, 
was carried out by Grossman and Graboske (1973) and GHG. 
The cooling was followed until the effective temperatures 
dropped to ~ 2000 K. Such effective temperatures correspond 
to ages of <3 x 108 yr (for M < 0.05 M0), which are young 
compared to the age of the Galaxy. However, theoretical 
cooling curves extending to ages up to ~ 1010 yr are important 
to the interpretation of observed brown dwarfs and can 
provide useful guidance in the planning of searches for such 
objects. 

The first estimates of the properties of brown dwarfs during 
the late stages of degenerate cooling were made by Tarter 
(1975). Her estimates were based on model calculations (GHG 
and references therein) that she then extrapolated to lower 
effective temperatures (Te < 1200 K) and later ages than were 
covered by the models. Stevenson (1978) carried out the first 
semi-analytical calculations of the cooling of brown dwarfs to 
very low temperatures and old ages, but subject to the con- 
straint of an exactly constant stellar radius (in the limit of high 
degeneracy). More recently, Nelson, Rappaport, and Joss 
(1985; hereafter NRJ) carried out the first self-consistent 
numerical evolutionary calculations of brown dwarfs (in the 
mass range of 0.01-0.085 M0), through all three evolutionary 
phases described above, up to ages in excess of the age of the 
Galaxy. D’Antona and Mazzitelli (DM) have also recently cal- 
culated models of brown dwarfs with masses as small as 0.04 
M© but only for bolometric luminosities of ~10-5 L0 or 
greater. To the extent that the results overlap, we find reason- 
able agreement between the work of NRL and that of DM. 
Other studies of the evolution of brown dwarfs and the inter- 
pretation of the observations of VB 8B that were recently pre- 
sented at the George Mason University Workshop on Brown 
Dwarfs (notably those of Hubbard 1986; Lunine, Hubbard, 
and Marley 1986a; Nelson, Rappaport, and Joss 1986a; Ste- 
venson 1986) show good overall agreement. 

Although the theoretical cooling curves of low-mass stars 
are now in reasonably good agreement, there remain several 
large uncertainties in the input physics that must be considered 
when constructing models of such stars. In particular, (i) the 
atmospheric radiative opacities are poorly known for the tem- 
peratures of interest ( < 2500 K), and (ii) it is difficult to evalu- 
ate the microphysics that affects the thermodynamic properties 
of the matter within the zones of partial ionization and molec- 
ular dissociation in the stellar envelope. In addition, there 
remain relatively small uncertainties in the equation of state 
appropriate to the stellar interior. 

In this paper, we have refined the calculations carried out by 
NRJ and, more importantly, we have systematically explored 
the sensitivity of our results to some of the more important 
remaining uncertainties in the input physics outlined above. 
We also present more details of the evolution of the stellar 
interiors than were given by NRJ. In § II we describe our 
stellar models and discuss the methodology used to investigate 
the major uncertainties in the input physics. In § III we present 
the detailed results of our evolutionary calculations, with par- 
ticular emphasis on the sensitivity of these results to the 
residual uncertainties in the input physics. In § IV we utilize 
our cooling curves to interpret the observations of VB 8B and 
to calculate brown-dwarf luminosity functions. Our conclu- 
sions are summarized in § V. 

II. ASSUMPTIONS AND METHOD 

The evolution of low-mass stars was carried out with a sim- 
plified stellar evolution code, similar to one which we have 
previously used extensively for binary stellar evolution calcu- 
lations (see, e.g., RJW; Rappaport and Joss 1984; Nelson, 
Rappaport, and Joss 1986b) and for preliminary calculations of 
brown-dwarf evolution (NRJ). One of the main advantages in 
using such a code is that a systematic investigation of the 
sensitivity of the evolutionary sequences to various changes in 
the input physics can be readily carried out. The stellar evolu- 
tion code has the following simplifying features: (1) The hydro- 
static structure of the stellar interior is taken to be that of a 
modified n = 3/2 polytrope. (2) The photosphere is assumed to 
satisfy a simple pressure boundary condition, Ps ks = 2/3g 
(where Ps, ks, and g are the pressure, Rosseland mean radiative 
opacity, and gravitational acceleration at the photosphere, 
respectively). (3) The specific entropy, s, in the interior is 
matched directly to that at the photosphere, thus bypassing the 
complicated physics of the stellar envelope, wherein partial 
ionization and molecular dissociation zones are found. A 
similar set of assumptions has previously been used by 
Hubbard (1973) to evolve models of the Jovian planets (see 
also Hubbard and Smoluchowski 1973). In this paper, we 
explore the sensitivity of our results to the use of a simple 
pressure boundary condition and, at the same time, we test a 
wide range of possible radiative opacity laws for the stellar 
atmosphere. We also study extensively the sensitivity of our 
results to the accuracy of the entropy-matching technique that 
our code employs. 

The assumption of an n = 3/2 polytrope structure is a good 
approximation for times during the evolution when (i) the star 
is nearly completely convective or (ii) the electron gas in the 
stellar interior is substantially degenerate, or both,. In fact, if 
one assumes uniform specific entropy, as would be the case 
when the entire interior was undergoing efficient convection, 
then an n = 3/2 polytropic structure is an exact representation 
of a star composed of a fully ionized, arbitrarily degenerate, 
nonrelativistic, perfect gas. We shall assume that brown dwarfs 
are essentially isentropie throughout their interiors, since the 
interiors are unstable against convection throughout most of 
their evolution and since the resultant convection should be 
highly efficient; the validity of this assumption will be exam- 
ined in the next section. However, when interactions among 
the various constituent particles become important, the ther- 
modynamics becomes more complicated and the stellar inte- 
rior is no longer precisely described by an n = 3/2 polytrope. 
For the ranges of density and temperature of interest, the most 
important corrections to the thermodynamics of the stellar 
interior are those resulting from Coulomb interactions among 
the constituent particles of the plasma. The Coulomb contribu- 
tion to the specific entropy is not constant throughout an 
n = 3/2 polytrope, so that modifications to the polytropic 
equation of state must be incorporated in order to preserve 
uniform specific entropy. 

In our treatment of the stellar evolution, we first use the 
n = 3/2 polytropic equation of state (i.e., P = Kp513, where P 
and p are the pressure and density, respectively, and K, the 
polytropic constant, is invariant throughout the model) to 
define an approximate hydrostatic and thermal structure for 
each stellar model, and we then treat the Coulomb interactions 
as a perturbation to this structure. We rely on comparisons 
with completely isentropie models (with Coulomb corrections 
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included in the microphysics of the stellar interior) in order to 
obtain a realistic estimate of the magnitude of the effects of the 
Coulomb interactions. To this end, we constructed isentropic 
models covering a range of masses and values of specific 
entropy appropriate to the brown dwarfs under consideration. 
For an n = 3/2 polytrope composed of a nonrelativistic perfect 
gas, the ratio p/T3/2, which is proportional to the Fermi-Dirac 
integral of index j (Fi/2)> is invariant throughout the star. 
However/according to our isentropic models, p/T3/2 decreases 
with increasing distance from the stellar center, while the ratio 
of the absolute value of the Coulomb pressure, | PCoul |, to the 
total pressure increases. Interestingly, the ratio of average 
density to central density for all of the isentropic models con- 
sidered is given approximately by 

p\ 1-1-22 _ / |Ecouil\ 
M p )/ (1) 

(We shall use the subscript c to denote parameters evaluated at 
the stellar center). As 2 approaches zero, equation (1) repro- 
duces the (p/pc) relation for an n = 3/2 polytrope. Thus, equa- 
tion (1) implies that isentropic models should be less centrally 
condensed than a simple n = 3/2 polytrope. 

Our approach to calculating the stellar structure is similar to 
that which we have used previously when considering n = 3/2 
polytropes (see, e.g., RJW). Using the n = 3/2 polytropic equa- 
tion of state, with the poly tropic constant evaluated at the 
stellar center (i.e., K = Kc), we solve the Lane-Emden equation. 
Thus Kc, M, and the inferred stellar radius, R*, are interrelated 
according to Kc = 0.424GR*M1/3, as for an ordinary n = 3/2 
polytrope (with no Coulomb corrections to the equation of 
state). However, K is not uniform throughout our isentropic 
models, and consequently R* is only an approximate value for 
the stellar radius. Using equation (1), we find that the actual 
radius, R, is related to R* according to R ä (1 + 22)~ 1/3R* (for 
a star of given mass and specific entropy and for 2 1). The 
exact thermal structure of our models is not fully specified, but 
as a good approximation we take F i/2 to be a constant 
throughout each model (i.e., p/T3/2 ^ pc/T

3/2). 
An evolutionary sequence of models is computed by deter- 

mining the change, ös, in the specific entropy (which yields the 
change in Kc), so that the star evolves from one isentropic state 
to another. To calculate ôs9 we need to know the thermal 
structure of the model, since Ss is proportional to the mass 
integral of the temperature profile. We have evaluated this 
integral for our completely isentropic models and find that 

J TdM 
2 pmu (1 + 2) 
7~k D^~ 

(2) 

(see, e.g., eqs. [14]-[15] in RJW), where p is the mean molecu- 
lar weight, mu is the atomic mass unit, k is Boltzmann’s con- 
stant, and Dc is the ratio of total perfect gas pressure to ideal 
gas pressure, evaluated at the stellar center. (This result also 
holds exactly for an n = 3/2 polytrope composed of a perfect 

= 0], nonrelativistic gas). Once the surface boundary condi- 
tions are determined for a particular model in an evolutionary 
sequence, the value of ôs can be obtained from the equation 
ös = (Lnuc — L)t_1<5í, where Lnuc and L are the nuclear and 
bolometric luminosities, respectively, and ôt is the time step 
between models. Thus, a new value of Kc can be deduced that 
in turn allows the other properties of the new model to be 
computed. Through the implementation of this scheme, we 
have more accurately simulated the properties of low-mass 

stars by including Coulomb corrections to the equation of 
state (cf. RJW) as well as satisfied, to a high degree of accuracy, 
the first law of thermodynamics and the virial theorem. 

The equation of state for the interiors of our models 
describes a completely ionized, nondegenerate gas of nuclei 
undergoing Coulomb interactions immersed in a uniform 
(unpolarized), arbitrarily degenerate, perfect gas of electrons. 
We calculated the Coulomb contribution, FCouh to the Helm- 
holtz free energy of the plasma as a function of the plasma 
parameter F (the ratio of nearest neighbor Coulomb energy to 
thermal kinetic energy per nucleus) from the appropriate 
Coulomb correction, UCoul, to the internal energy. We evalu- 
ated the normalized Coulomb correction, FCoul/NkT, to the 
free energy from the expression FCojNkT = ft nr'W'-'dr, 
where ^ = UCoul/NkT. The total contribution to UCoul from 
each ionic species of the multicomponent plasma was calcu- 
lated according to the method suggested by Ichimaru (1982). 
To ensure a high level of accuracy over a wide range of F, we 
determined UCoul in three separate domains of F. In the limit of 
a weakly coupled plasma (F < 0.1), we adopted the Abe cluster 
expansion formula given by Hansen (1973). For 0.1 < F < 1, 
we devised a fitting formula wherein I/Coul(F) was fitted to 
values of the hypernetted chain (HNC) approximation (see 
Slattery, Doolen, and DeWitt 1980) for values of F between 0.1 
and 0.6, and to the Monte Carlo results of Slattery, Doolen, 
and DeWitt (1982) for F between 0.6 and 1. The resultant fit to 
Ucoui(r) agrees with published values to within ~ 1 % and was 
designed so that the fitted values of UCoul(T = 0.1) and 
UCoul(F = 1) agreed with the Abe expansion and Monte Carlo 
results, respectively. For the case of a strongly coupled plasma 
(F > 1), we used the fitting formula for UCoul published by 
Slattery, Doolen, and DeWitt (1982). Once FCoul was calculated 
from our expression for UCouh the Coulomb corrections to the 
pressure and specific entropy were easily calculated by applica- 
tion of standard thermodynamic relations. According to our 
fitting formula for FCoul, we find that FCoul/NkT at F = 1 is 
equal to —0.4385; Slattery, Doolen, and DeWitt (1982) obtain 
a more precise value of —0.4363. This difference implies an 
error in our expression for the specific entropy of ~ 0.002 (in 
units of k/mu) for the strongly coupled regime. This error is 
negligible compared to the uncertainties in entropy matching 
within our stellar models (see § III). 

Other contributions to the equation of state from quantum 
ion phenomena and electronic terms (e.g., electron exchange) 
are less important in the range of temperatures and densities 
pertinent to the degenerate cooling phase of the evolution of 
our stellar models (see § III) and have not been included in our 
calculations. For example, we find that the Helmholtz free 
energy associated with the first-order correction for quantum 
ion effects (in the Wigner expansion) is ~1% of |FCouil 
throughout the range of p and T relevant to our calculations. 
Of the electronic terms, the electron exchange correction to the 
pressure is the largest (in the high-density, low-temperature 
regime), but its magnitude is still less than ~ 50% that of the 
Coulomb correction. We also did not include thermodynamic 
effects associated with the Coulomb lattice state, since hydro- 
gen and helium do not freeze in any of our models (the phase 
transition to a lattice occurs for F « 178). 

As mentioned above, the total specific entropy in the interior 
was matched directly to the specific entropy at the photo- 
sphere. The equation of state at the photosphere is taken to be 
that of a perfect, nondegenerate gas and takes into account the 
partial association of hydrogen into molecular form. The effect 
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of excitation of rotational and vibrational states of H2 on the 
specific entropy at the photosphere was calculated by use of a 
table of energy levels from Bishop and Shih (1976). Atmo- 
spheric radiative opacities were taken from a fitting formula to 
the Alexander opacities (Alexander 1975; RJW). For low tem- 
peratures (<2500 K), the atmospheric radiative opacities 
become difficult to estimate accurately because of the contribu- 
tion from molecules and the possible formation of grains (see, 
e.g., Alexander 1975; Alexander, Johnson, and Rypma 1983). 
We therefore chose to simply parameterize the opacity coeffi- 
cients at low temperatures by setting k equal to a limiting 
value, Kmin, whenever the value of k given by fitting formula 
“A” of RJW to the Alexander (1975) opacities fell below Kmin. 
The value of ?cmin was varied from one model to another; in our 
standard models, we set log (KmiJcm2 g~r) = —1.5. 

We assumed a solar composition (X = 0.7, Z = 0.02) plus a 
primordial abundance of deuterium of 5 x 10-5 by mass 
(Gautier and Owen 1982). Nuclear burning, including weak 
and strong screening corrections, were incorporated as 
described by RJW and Rappaport, Verbunt, and Joss (1983). 
In the present calculations, the He3-burning portion of the p-p 
chain was excluded in calculating the nuclear energy gener- 
ation rate because of the breakdown of nuclear quasi- 
equilibrium, which was, in turn, a result of the low internal 
temperatures of these low-mass stars. 

Much of the uncertainty in the evolution due to the possible 
existence of nonadiabatic (superadiabatic and radiative) zones 
in the stellar envelope can be incorporated into a single param- 
eter, namely, the difference, As = ss — sh in specific entropy 
between the stellar interior (with specific entropy st) and that at 
the photosphere (specific entropy sj. Such a formulation can 
also take into account many of the other uncertainties in the 
microphysics of the stellar envelope and stellar interior, as well 
as any small inaccuracies introduced by our use of a modified 
n = 3/2 polytrope. We have chosen three algorithms for mis- 
matching the entropy in addition to our standard model with 
As = 0: (i) As = + 1 ; (ii) ss = 5/45*; and (iii) As = — 1 (where we 
have expressed specific entropy in units of k/mu). We consider 
this range of entropy mismatches to be fairly encompassing, 
based on (i) our analysis of recently calculated low- 
temperature, flux-corrected model atmospheres (Auman 1969; 
Mould 1976), which indicate that As is never greater than ~0.5 
for stars of the appropriate surface gravity (log g > 3.5), (ii) our 
own unpublished Henyey-type evolutionary calculations of 
stars at low effective temperatures (1600 < Te < 2500 K), (iii) 
the fact that sf varies only from 16 to 6 throughout the course 
of the evolution in any of our standard models (covering a 
range of nearly a factor of 104 in central density), and (iv) our 
estimate that any further changes to S; resulting from addi- 
tional corrections to the equation of state should be no larger 
in absolute value than the correction due to Coulomb inter- 
actions (which yields changes in s* of less than 0.7). 

In order to simulate the uncertainties in the atmospheric 
radiative opacities due to the formation of grains and mol- 
ecules at low temperatures, we computed evolutionary 
sequences for a range of values of /cmin with log (Kmin/cm2 

g-1) = —1.0, —1.5, —2.5, and —3.5, as well as a sequence in 
which fitting formula “ A ” of RJW was extrapolated to arbi- 
trarily low effective temperatures. We take log Kmin = —3.5 to 
be a reasonable lower bound on /cmin based on the work of 
Stabler, Palla, and Salpeter (1986), who derived low- 
temperature (>1000 K) Rosseland mean opacities for zero- 
metal compositions. The wide range of values of /cmin that we 

have considered also simulates the uncertainty arising from 
our choice of the numerical coefficient 2/3 that is used in our 
approximate pressure boundary condition. 

in. RESULTS 

We carried out evolutionary calculations for masses in the 
range of 0.01-0.10 M0. The evolution of R for our standard 
models with M = 0.01, 0.02, 0.04, 0.06, and 0.08 M0 is shown 
in Figure 1. The models all started with an initial radius of 

RQ, a. value very large compared to the star’s ultimate 
radius at late ages. For early ages, the stellar radius contracts 
with elapsed time, t, approximately as as can be demon- 
strated analytically if one assumes a completely convective 
model for which the effective temperature remains approx- 
imately constant (see, e.g., Hayashi and Nakano 1963). We 
note that for very early ages (t < 106 yr), the evolution is highly 
uncertain because of the possible effects of rapid stellar rota- 
tion and mass loss or accretion (see, e.g., Gehrz, Black, and 
Solomon 1984). Furthermore, at these early ages, the material 
in the stellar interior may not be fully ionized as we have 
assumed. For ages near 106 yr, there is an interval on each 
evolutionary curve (for M > 0.015 M0), where R remains 
nearly constant; this corresponds to the deuterium-burning 
main-sequence phase (see, also, Bodenheimer 1966 and GHG). 
After deuterium exhaustion the star contracts, and for a period 
of time the internal temperatures increase (in accordance with 
the virial theorem). For stars with masses in excess of ~0.08 
M0 the internal temperatures reach sufficiently high values to 
establish thermal equilibrium through thermonuclear burning 
via the p-p chain (which essentially terminates at He3 for the 
low internal temperatures of interest here). For lower mass 
stars, thermal equilibrium is never achieved, and the internal 
temperatures ultimately decline as electron degeneracy increas- 
ingly provides the bulk of the pressure support for the star. 
These low-mass stars are thus destined to cool forever toward 
a completely degenerate configuration. The mass-radius rela- 
tion of a fully degenerate star supported solely by the pressure 
of a perfect electron gas is given by R oc M ~1/3 ; however, when 
a more realistic equation of state is used (see, e.g., Zapolsky 
and Salpeter 1969), then R is approximately proportional to 
M“1/6 for zero-temperature stars in the mass range of interest. 

The evolution of the effective temperature for our standard 
models is presented in Figure 2. The temperatures during the 
contraction phase remain relatively constant (see, e.g., Hayashi 
and Nakano 1963) and then decline after much of the available 
gravitational energy has been exhausted. Since all stars with 
masses in the range of 0.01-0.08 M0 eventually attain a similar 
radius (to within ±20%), the higher mass stars, which initially 
have a larger store of gravitational potential energy (ocM2), 
require significantly longer times to cool to the same effective 
temperature. For late ages (5 x 108 yr < i < 2 x 1010 yr) the 
effective temperatures of stars with masses in the range of 
~ 0.01-0.06 M0 are given approximately by 

12701 
M 

0.05 M 109 yr 
K, (3) 

where the rms error in the fit is ~3% of Te. We caution that 
this fitting formula should not be extrapolated to much earlier 
ages, or to much larger masses (M > 0.07 M0). 

The results shown in Figures 1 and 2 can be combined to 
yield the evolution of the stellar luminosity, L, in our standard 
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Fig. 1—Evolution of the stellar radius, R, as a function of age, i, for the standard models of very low mass stars with masses in the range of 0.01-0.10 M0. Each 
track is labeled with the corresponding stellar mass in units of solar masses. The plateau regions evident near t = 106-107 yr are due to the burning of a small 
quantity (5 x 10“5 by mass) of primordial deuterium. 

Fig. 2.—Evolution of the effective temperature, Te as a function of age i, for the standard models of very low mass stars with masses in the range of0.01-0.10 M0. 
Each track is labeled with the corresponding stellar mass in units of solar masses. Stars with masses in excess of ~0.08 M0 ultimately achieve thermal equilibrium 
through hydrogen burning (i.e., they attain hydrogen-burning main-sequence status). Stars of lower mass cool indefinitely toward a completely degenerate 
configuration. For Te < 1000 K the displayed cooling curves become increasingly uncertain. 
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Fig. 3.—Evolution of the bolometric luminosity, L, as a function of age, t, for the standard models of very low mass stars with masses in the range of 
0.01-0.10 M0. Each track is labeled with the corresponding stellar mass in units of solar masses. 

models (see Fig. 3). For late ages, L is given approximately by 

L « 2.1 x lO"5 M 
(o.05 Mc 

2.34 

109 yr 
L<7) (4) 

The largest error in this equation results from the relatively 
poor fit of the factor involving M. Nonetheless, the rms error 
between the actual value of L in the standard models and the 
values given by equation (4) is only ~ 10% of L. Equations (3) 
and (4) are in good agreement with the results of earlier work 
by Stevenson (1978) and with the results of other more recent 
calculations (see, e.g., Stevenson 1986). 

Some of the numerical results from our standard models are 
given in Table 1. In addition to the evolution of the stellar 
parameters shown in Figures 1-3, we include in Table 1 the 
evolution of pc, 7^, an electron degeneracy parameter, Dc, the 
parameter À = ( I FCoul |/P)C, and the ratio of nuclear to bolo- 
metric luminosity (Lnuc/L). 

As discussed in § II, we also carried out a series of evolution- 
ary runs designed to test the sensitivity of our models to the 
assumption that the specific entropy in the stellar interior is 
equal to that at the photosphere. The evolution of Te for a 
0.06 M0 star with various degrees of entropy mismatch (see 
§ II for details) is shown in Figure 4. Note that early in the 
evolution of the models with As > 0, the effective temperatures 
are higher than for the model with As < 0. At later ages the 
reverse of this condition obtains. This reversal of temperatures 
is a simple consequence of the virial theorem and the fact that 
the total energy to be extracted from the stellar contraction is 
nearly fixed. For t <2 x 109 yr, the uncertainty in Te at any 
given age (defined as the half width between extreme model 
values) is less than ~15%. For i > 2 x 109 yr the uncertainty 
in Te remains fairly constant at —120 K. The corresponding 
uncertainty in the time required for a star of mass 0.06 M0 to 

cool to a given temperature is less than a factor of 2 for i > 
3 x 108 yr and for all tested variations of entropy mismatch. A 
similar series of tests, involving entropy mismatches in a model 
with M = 0.02 M0, is shown in Figure 5. In this case the 
uncertainty in Te is always less than 15%, and for t > 108 yr 
the uncertainty is only — 50 K. The uncertainty in cooling 
times for this case is less than a factor of 1.6. 

Evolutionary tracks for our 0.02 and 0.06 M0 models in the 
central-density/central-temperature (pc — Tc) plane are shown 
in Figure 6. For each stellar mass, the evolutionary track is 
marked with different values of the entropy mismatch. The 
track is labeled where the evolution of a particular model 
sequence has reached ages of 10 and 20 billion years. Note that 
once M and pc are specified in our models, Tc is uniquely 
defined; hence, for a given mass, there is only a single track in 
the pc — Tc plane. However, the surface boundary conditions 
determine the time required to reach any given point along an 
evolutionary track. Also indicated in the figure are several con- 
tours of constant electron degeneracy (as determined by the 
value of Fl/2 at the stellar center), as well as contours of con- 
stant Fc (the plasma parameter evaluated at the stellar center). 
We find that the internal temperatures at late ages vary signifi- 
cantly (by a factor of — 4) over the range of assumed entropy 
mismatches. We also note that the largest value of Fc encoun- 
tered at the stellar center is —15. Thus, although the values of 
F will increase somewhat with increasing distance from the 
stellar center, the models we have considered will not undergo 
crystallization into a Coulomb lattice over any significant frac- 
tion of their volumes for ages up to the age of the Galaxy. 
Moreover, Debye cooling should be unimportant in these low- 
mass stars (cf. Tarter 1975). 

The sensitivity of our models to uncertainties in the atmo- 
spheric radiative opacities is shown in Figures 7, 8, and 9. The 
evolution of Te for a star with M = 0.06 M0 and for a wide 
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TABLE 1 
Evolutionary Properties of Low-Mass Stars* 

log (r/yr) R/Re Te(K) log {L/Lq) log (Lnuc/L) 
M = 0.01 Mr 

6.0. 
6.2. 
6.4. 
6.6. 
6.8. 
7.0. 
7.2. 
7.4. 
7.6. 
7.8. 
8.0. 
8.2. 
8.4. 
8.6. 
8.8. 
9.0. 
9.2. 
9.4. 
9.6. 
9.8. 

10.0. 
10.2. 
10.4. 

0.241 
0.217 
0.201 
0.188 
0.179 
0.171 
0.165 
0.159 
0.154 
0.149 
0.145 
0.141 
0.138 
0.135 
0.132 
0.130 
0.127 
0.125 
0.123 
0.122 
0.120 
0.119 
0.118 

2334 
2137 
1898 
1676 
1491 
1334 
1196 
1073 
963 
862 
774 
689 
612 
543 
481 
425 
375 
330 
291 
255 
224 
196 
172 

-2.82 
-3.06 
-3.34 
-3.60 
-3.85 
-4.08 
-4.31 
-4.53 
-4.75 
-4.96 
-5.17 
-5.40 
-5.63 
-5.85 
-6.08 
-6.31 
-6.55 
-6.78 
-7.01 
-7.25 
-7.49 
-7.73 
-7.96 

4.6 
6.2 
7.9 
9.5 

11.0 
12.5 
14.1 
15.6 
17.2 
18.8 
20.4 
22.1 
23.7 
25.3 
26.8 
28.3 
29.7 
31.1 
32.4 
33.6 
34.8 
36.0 
37.1 

0.25 
0.26 
0.26 
0.26 
0.26 
0.26 
0.25 
0.25 
0.24 
0.23 
0.22 
0.21 
0.20 
0.18 
0.17 
0.16 
0.15 
0.13 
0.12 
0.11 
0.10 
0.09 
0.09 

1.34 
1.43 
1.52 
1.62 
1.71 
1.82 
1.93 
2.06 
2.20 
2.36 
2.55 
2.76 
3.01 
3.28 
3.60 
3.95 
4.35 
4.81 
5.32 
5.89 
6.53 
7.25 
8.05 

0.160 
0.162 
0.164 
0.165 
0.167 
0.168 
0.170 
0.171 
0.173 
0.174 
0.176 
0.178 
0.180 
0.181 
0.183 
0.185 
0.187 
0.189 
0.190 
0.192 
0.193 
0.195 
0.196 

-5.65 
-4.90 
-4.33 
-3.90 
-3.59 
-3.36 
-3.19 
-3.08 
-3.03 
-3.02 
-3.08 
-3.17 
-3.32 
-3.51 
-3.74 
-4.01 
-4.31 
-4.64 
-5.00 
-5.37 
-5.76 
-6.16 
-6.57 

M = 0.02 Mr- 

6.0 . 
6.2. 
6.4. 
6.6. 
6.8. 
7.0. 
7.2. 
7.4. 
7.6. 
7.8. 
8.0. 
8.2. 
8.4. 
8.6. 
8.8. 
9.0. 
9.2. 
9.4. 
9.6. 
9.8. 

10.0. 
10.2. 
10.4. 

0.321 
0.279 
0.250 
0.239 
0.236 
0.231 
0.221 
0.186 
0.150 
0.139 
0.132 
0.127 
0.124 
0.120 
0.118 
0.115 
0.113 
0.111 
0.109 
0.108 
0.106 
0.105 
0.104 

2785 
2749 
2708 
2687 
2679 
2669 
2642 
2494 
1844 
1491 
1271 
1106 
967 
851 
750 
661 
582 
512 
450 
395 
346 
303 
265 

-2.26 
-2.40 
-2.52 
-2.58 
-2.60 
-2.62 
-2.68 
-2.93 
-3.64 
-4.07 
-4.39 
-4.67 
-4.93 
-5.17 
-5.41 
-5.65 
-5.89 
-6.12 
-6.36 
-6.60 
-6.84 
-7.08 
-7.32 

4.3 
6.5 
9.1 

10.4 
10.9 
11.5 
13.2 
22.0 
41.8 
52.4 
60.3 
67.3 
73.7 
79.5 
85.1 
90.3 
95.4 

100.2 
104.8 
109.1 
113.3 
117.2 
121.0 

0.43 
0.47 
0.51 
0.52 
0.53 
0.53 
0.54 
0.58 
0.58 
0.55 
0.52 
0.49 
0.46 
0.43 
0.40 
0.37 
0.34 
0.31 
0.28 
0.26 
0.24 
0.21 
0.19 

1.15 
1.19 
1.24 
1.26 
1.27 
1.28 
1.31 
1.45 
1.82 
2.07 
2.29 
2.53 
2.78 
3.06 
3.37 
3.73 
4.12 
4.57 
5.09 
5.66 
6.32 
7.05 
7.88 

0.091 
0.091 
0.092 
0.092 
0.093 
0.093 
0.093 
0.095 
0.099 
0.101 
0.103 
0.105 
0.106 
0.108 
0.109 
0.111 
0.112 
0.113 
0.115 
0.116 
0.117 
0.119 
0.120 

-2.13 
-1.08 
-0.32 
-0.05 
-0.02 
-0.03 
-0.06 
-0.60 
-9.20 
-8.87 
-8.73 
-8.69 
-8.69 
-8.74 
-8.83 
-8.95 
-9.10 
-9.27 
-9.47 
-9.69 
-9.92 

-10.16 
-10.41 

M = 0.04 Mr 

6.0. 
6.2. 
6.4. 
6.6. 
6.8. 
7.0. 
7.2. 
7.4. 
7.6. 
7.8. 
8.0. 
8.2. 
8.4. 
8.6. 
8.8. 
9.0. 
9.2. 
9.4. 
9.6. 
9.8. 

10.0. 
10.2. 
10.4. 

0.477 
0.461 
0.456 
0.445 
0.417 
0.288 
0.218 
0.179 
0.153 
0.134 
0.121 
0.114 
0.109 
0.105 
0.102 
0.100 
0.097 
0.096 
0.094 
0.092 
0.091 
0.090 
0.089 

3016 
3016 
3016 
3015 
3013 
2982 
2919 
2833 
2713 
2548 
2245 
1879 
1612 
1392 
1217 
1068 
938 
824 
724 
635 
556 
486 
425 

-1.78 
-1.81 
-1.82 
-1.84 
-1.90 
-2.24 
-2.51 
-2.74 
-2.95 
-3.17 
-3.48 
-3.85 
-4.15 
-4.44 
-4.69 
-4.94 
-5.19 
-5.43 
-5.67 
-5.91 
-6.15 
-6.39 
-6.64 

2.8 
3.1 
3.2 
3.5 
4.2 

12.8 
29.3 
52.7 
84.4 

124.6 
169.1 
205.3 
234.1 
259.7 
282.0 
302.7 
322.1 
340.4 
357.8 
374.3 
389.9 
404.8 
418.8 

0.61 
0.63 
0.64 
0.65 
0.69 
0.95 
1.16 
1.30 
1.37 
1.37 
1.31 
1.23 
1.15 
1.07 
0.99 
0.92 
0.84 
0.77 
0.70 
0.64 
0.58 
0.52 
0.47 

1.06 
1.06 
1.06 
1.06 
1.07 
1.13 
1.22 
1.33 
1.48 
1.68 
1.95 
2.22 
2.48 
2.77 
3.07 
3.41 
3.79 
4.22 
4.71 
5.27 
5.91 
6.64 
7.46 

0.051 
0.051 
0.051 
0.051 
0.051 
0.052 
0.053 
0.054 
0.055 
0.057 
0.058 
0.060 
0.061 
0.062 
0.063 
0.065 
0.066 
0.067 
0.068 
0.069 
0.070 
0.071 
0.072 

-0.25 
-0.02 
-0.02 
-0.03 
-0.09 
-8.58 
-6.97 
-5.98 
-5.29 
-4.83 
-4.52 
-4.28 
-4.16 
-4.10 
-4.09 
-4.11 
-4.17 
-4.25 
-4.36 
-4.49 
-4.64 
-4.80 
-4.98 
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EVOLUTION OF VERY LOW MASS STARS 233 

TABLE 1—Continued 

log (i/yr) R/R0 Te(K) log (L/Lq) log (LnJL) 

M = 0.06 M0 

6.0. 
6.2. 
6.4. 
6.6. 
6.8. 
7.0. 
7.2. 
7.4. 
7.6. 
7.8. 
8.0. 
8.2. 
8.4. 
8.6. 
8.8. 
9.0. 
9.2. 
9.4. 
9.6. 
9.8. 

10.0. 
10.2. 
10.4. 

0.653 
0.645 
0.632 
0.597 
0.422 
0.312 
0.252 
0.210 
0.178 
0.154 
0.134 
0.119 
0.107 
0.099 
0.094 
0.091 
0.089 
0.087 
0.085 
0.084 
0.083 
0.081 
0.080 

3118 
3119 
3119 
3121 
3124 
3112 
3089 
3054 
3004 
2932 
2829 
2680 
2483 
2070 
1729 
1482 
1286 
1121 
979 
856 
748 
654 
570 

-1.45 
-1.46 
-1.48 
-1.52 
-1.82 
-2.09 
-2.29 
-2.47 
-2.64 
-2.81 
-2.99 
-3.19 
-3.42 
-3.80 
-4.15 
-4.45 
-4.72 
-4.98 
-5.23 
-5.48 
-5.72 
-5.97 
-6.22 

1.7 
1.8 
1.9 
2.2 
6.3 

15.4 
29.5 
50.8 
82.6 

129.0 
193.6 
279.0 
382.3 
479.1 
552.3 
608.5 
657.0 
701.0 
741.7 
779.7 
815.4 
849.1 
880.7 

0.69 
0.70 
0.71 
0.75 
1.04 
1.35 
1.61 
1.85 
2.05 
2.20 
2.29 
2.28 
2.16 
1.97 
1.79 
1.64 
1.50 
1.37 
1.24 
1.12 
1.01 
0.91 
0.82 

1.03 
1.03 
1.03 
1.03 
1.06 
1.10 
1.14 
1.19 
1.26 
1.36 
1.50 
1.71 
2.01 
2.38 
2.74 
3.10 
3.48 
3.91 
4.39 
4.94 
5.56 
6.27 
7.08 

0.036 
0.036 
0.036 
0.036 
0.036 
0.036 
0.037 
0.037 
0.038 
0.039 
0.040 
0.041 
0.042 
0.044 
0.045 
0.046 
0.047 
0.048 
0.049 
0.050 
0.051 
0.052 
0.053 

-0.03 
-0.02 
-0.03 
-0.08 
-8.78 
-6.92 
-5.69 
-4.73 
-3.94 
-3.28 
-2.76 
-2.38 
-2.16 
-1.95 
-1.83 
-1.78 
-1.77 
-1.80 
-1.85 
-1.93 
-2.02 
-2.14 
-2.27 

M = 0.08 Mg 

6.0. 
6.2. 
6.4. 
6.6. 
6.8. 
7.0. 
7.2. 
7.4. 
7.6. 
7.8. 
8.0. 
8.2. 
8.4. 
8.6. 
8.8. 
9.0. 
9.2. 
9.4. 
9.6. 
9.8. 

10.0. 
10.2. 
10.4. 

0.824 
0.811 
0.783 
0.646 
0.443 
0.348 
0.286 
0.240 
0.204 
0.175 
0.151 
0.132 
0.116 
0.105 
0.096 
0.090 
0.086 
0.083 
0.082 
0.080 
0.079 
0.077 
0.076 

3185 
3186 
3188 
3195 
3203 
3201 
3191 
3174 
3147 
3108 
3053 
2974 
2862 
2716 
2539 
2222 
1885 
1649 
1457 
1286 
1127 
978 
840 

-1.21 
-1.22 
-1.25 
-1.41 
-1.74 
-1.95 
-2.13 
-2.29 
-2.44 
-2.60 
-2.76 
-2.92 
-3.10 
-3.28 
-3.47 
-3.76 
-4.08 
-4.34 
-4.58 
-4.81 
-5.05 
-5.32 
-5.60 

1.1 
1.2 
1.3 
2.4 
7.3 

15.1 
27.3 
46.3 
75.4 

119.5 
184.7 
278.2 
403.1 
551.7 
714.8 
876.8 
992.4 

1076.9 
1150.5 
1219.9 
1288.7 
1358.1 
1427.7 

0.73 
0.74 
0.77 
0.93 
1.32 
1.65 
1.96 
2.27 
2.57 
2.85 
3.09 
3.26 
3.32 
3.24 
3.04 
2.75 
2.50 
2.30 
2.12 
1.95 
1.77 
1.59 
1.41 

1.02 
1.02 
1.02 
1.03 
1.05 
1.07 
1.10 
1.13 
1.17 
1.23 
1.32 
1.43 
1.59 
1.81 
2.11 
2.50 
2.87 
3.20 
3.56 
3.96 
4.44 
5.04 
5.78 

0.028 
0.028 
0.028 
0.028 
0.028 
0.028 
0.028 
0.029 
0.029 
0.029 
0.030 
0.031 
0.032 
0.033 
0.034 
0.035 
0.036 
0.037 
0.038 
0.039 
0.039 
0.040 
0.041 

-0.02 
-0.02 
-0.04 
-1.41 
-7.60 
-6.15 
-5.03 
-4.10 
-3.28 
-2.57 
-1.94 
-1.41 
-0.99 
-0.71 
-0.57 
-0.46 
-0.35 
-0.30 
-0.28 
-0.28 
-0.31 
-0.36 
-0.44 

Note.—pc = central density in units of g cm-3; = central temperature in units of 106 K; Dc = 
degeneracy parameter (ratio of total perfect gas pressure to ideal gas pressure, evaluated at the stellar 
center); À = ratio of Coulomb pressure to total gas pressure, evaluated at the stellar center. 

a Standard models. The results are increasingly uncertain for Te < 1000 K. 

range of opacity laws is shown in Figure 7. As described in § II, 
the opacity coefficients were taken from fitting formula “ A ” of 
RJW but with various lower limits, jcmin, imposed. We studied 
the effects on the evolution of different Kmin over a range of 
nearly four orders of magnitude. We find that for a star of mass 
0.06 M©, this wide range of minimum opacity coefficients 
yields uncertainties in the effective temperatures of only ~ 12% 
or less for all stellar ages. The corresponding uncertainty in the 
cooling times is a factor of ~ 1.5. The sensitivity to variations 
in Kmin for a 0.02 M0 stellar model is shown in Figure 8. The 
uncertainties in effective temperature at a given age are again 
less than ~12%, and the corresponding uncertainties in the 
cooling times are also similar to those for the 0.06 M0 model. 

Evolutionary tracks in the pc — Tc plane for the 0.02 M0 

and 0.06 M0 models, with various values of Kmin, are shown in 
Figure 9. The two sets of points on each of the evolutionary 
tracks indicate the evolutionary state of a model at ages of 10 
and 20 billion years, respectively. The largest value of Fc for 
any of these models is ~ 30. However, the values of Kmin corre- 
sponding to the largest values of Fc are becoming unrealistic. 
More plausible values of fcmin(~ 10-2 cm2 g~ *) yield 
maximum central values of rc « 10. Thus, as in our study of 
possible entropy mismatches, we find that crystallization and 
Debye cooling will be unimportant for nearly any plausible 
low-temperature opacity law. 

We have also tested the sensitivity of our models to the 
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Fig. 4.—Sensitivity of the cooling of a 0.06 M0 stellar model to various mismatches in the specific entropy between the stellar interior and stellar surface. Each 
track is labeled according to the algorithm by which specific entropy is mismatched {see text). 

Fig. 5.—Sensitivity of the cooling of a 0.02 M© stellar model to various mismatches in the specific entropy between the stellar interior and stellar surface. Each 
track is labeled according to the algorithm by which specific entropy is mismatched {see text). 
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log pc 

Fig. 6.—Sensitivity of the central density, pc, and central temperature, Tc, of 0.02 M0 and 0.06 M0 stellar models to various mismatches in specific entropy 
between the stellar interior and stellar surface {see text for details). Each open circle on the two curves denotes the internal properties of a particular model at an age 
of 1010 yr; the filled circles correspond to an age of 2 x 1010 yr. Fl/2 and Fc are the Fermi-Dirae integral of index 1/2 and the mean plasma parameter (each 
evaluated at the stellar center), respectively. 

log t (yr) 

Fig. 7.—Sensitivity of the cooling of a 0.06 M0 stellar model to various assumed minimum values for the atmospheric radiative opacity coefficient, fcmi] 
(expressed in units of cm2 g"1). The label log Kmin < — 3.5 refers to the fully extrapolated Alexander opacity law without grains {see text). 
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Fig. 8.—Sensitivity of the cooling of a 0.02 M© stellar model to various assumed minimum values for the atmospheric radiative opacity coefficient, Kmit 
(expressed in units of cm2 g 1). The label log Kmm < — 3.5 refers to the fully extrapolated Alexander opacity law without grains (see text). 

Fig. 9.—Sensitivity of the central density, pc, and central temperature, Tc, of 0.02 M0 and 0.06 M0 stellar models to various assumed minimum values for the 
atmospheric radiative opacity coefficient, /cmin. Each open circle on the two curves denotes the internal properties of a particular model [denoted by the value of 
l°g (KmiJcm2 g ^ at an age °f 1010 yr; the filled circles correspond to an age of 2 x 1010 yr. F1/2 and Fc are the Fermi-Dirac integral of index 1/2 and the mean 
plasma parameter (each evaluated at the stellar center), respectively. 
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EVOLUTION OF VERY LOW MASS STARS 237 

assumed equation of state for the stellar interior. In particular, 
we evaluated the effects of the Coulomb corrections to the 
equation of state and also simulated the inclusion of non- 
Coulombic terms (e.g., electron exchange effects). To do this, 
we arbitrarily varied the value of 2, the parameterized correc- 
tion to the perfect-gas equation of state (see § II), from 0.5 to 
1.5 times its actual value. We found that, at a given age, pc and 
Tc can vary by factors of up to ~2, depending on the assumed 
value of À. However, for M < 0.06 M0, the evolution of the 
observed stellar parameters (Te and L) is fairly insensitive to 
variations of the equation of state in this range. 

Although, as discussed above, the cooling tracks of stars 
with masses ~0.06 M© or smaller are not very sensitive to 
changes in the input physics, we find that the minimum mass 
required for a star to attain thermal equilibrium via hydrogen 
burning (i.e., to achieve main-sequence status) is quite sensitive 
to the assumed surface boundary conditions, the equation of 
state in the interior and, as noted in § I (see Rappaport and 
Joss 1984), the chemical composition. For example, we find 
that for plausible changes in the surface boundary conditions 
and equation of state, a star of only ~ 0.075 M© can achieve 
main-sequence status. We also find that there can be a pro- 
longed interval during which a star with a mass slightly less 
than the minimum main-sequence mass can hover near 
thermal equilibrium, and that such a star will require a time 
comparable to the age of the Galaxy to cool below the tem- 
perature of VB 8B (see also NRJ and DM). This type of behav- 
ior is independent of the exact value of the minimum main- 
sequence mass. We are currently carrying out a more detailed 
investigation of the sensitivity of the properties of stars near 
the end of the main sequence to the assumed input physics, and 
we shall report on the results of this study elsewhere (Nelson, 
Rappaport, and Joss 1986c). 

Finally, as a self-consistency check, we monitored the inte- 
rior of our models for convective instability. Conductive opa- 
cities for the stellar interior were taken from fitting formulae 
derived by Iben (1975) based on the conductive opacity calcu- 
lations by Hubbard and Lampe (1969). The results of our 
checks indicate that all of our models should be completely 
convective for í < 109 yr, and models with M < 0.02 M© are 
completely convective for ages up to 1010 yr. In particular, for 
an age equal to that of the solar system (~4.5 x 109 yr), stars 
with M < 0.03 M© are completely convective. However, we 
find that for higher mass (~0.07 M©) stars of the same age, a 
conductive core might occupy up to ~ 20% of the mass. This 
estimate is based on the temperature-density profile of an 
n — 3/2 polytrope. We have not yet, however, calculated fully 
self-consistent stellar models containing conductive cores. Our 
estimate of the regions over which conductive cores will form 
in these low-mass stars depends sensitively on the assumed 
thermal conductivity and temperature-density profile. None- 
theless, it is important to note that by the time these stars 
develop significant conductive cores, they are quite degenerate. 
Hence, the assumption of an n = 3/2 polytropic structure is 
still valid even though the temperature gradient may be much 
smaller than that needed to support convection near the stellar 
center. Thus, the principal consequence of the development of 
a conductive core should be only a slight redistribution of the 
luminosity as a function of age. 

IV. APPLICATIONS 

The cooling calculations presented in the previous section 
have a direct application to the interpretation of observations 

of VB 8B, which is reported to have a bolometric luminosity of 
~3 x 10“5 L© and an effective temperature of ~1360 K 
(McCarthy, Probst, and Low 1985). In Table 2 we list some of 
the physical properties of our standard models that have 
luminosities and effective temperatures similar to those of 
VB 8B (see also NRJ). For brown dwarfs with masses in the 
range of ~0.04-0.05 M©, the cooling tracks pass through 
ranges of effective temperature and luminosity that closely 
match those of VB 8B. However, at these masses, the model 
properties provide a good fit to the observations of VB 8B only 
for model ages of ~4-8 x 108 yr. Such ages are young com- 
pared to those that might be expected if the VB 8B system were 
drawn from a random sample of disk-population systems 
(whose mean age is several billion years; see, e.g., McCarthy, 
Probst, and Low 1985 for a related discussion). On the other 
hand, observational selection effects might favor the discovery 
of such objects when they are young and thus relatively bright. 
Our 0.06 M© model provides perhaps the best overall fit to the 
properties of VB 8B, with a luminosity close to that observed 
and a reasonable age of ~ 1 x 109 yr. For brown dwarfs of 
larger mass ( — 0.07-0.08 M©), the ages required to cool to 
Te ä 1360 K are even more plausible ( — 2-5 x 109 yr); 
however, we find the luminosities for these stars to be up to 
— 30% smaller than the observationally inferred value. This 
discrepancy would be removed if the actual effective tem- 
perature of VB 8B were only slightly higher (i.e., —1500 K) 
than the observationally inferred value, which has an uncer- 
tainty of about ± 170 K (McCarthy, Probst, and Low 1985). 

We also note that the minor apparent discrepancies between 
the inferred luminosity and age of VB 8B and the properties of 
our theoretical models might be removed by invoking models 
whose masses are just below the minimum main-sequence 
mass. Such stars may nearly achieve thermal equilibrium for a 
time comparable to the age of the Galaxy, while maintaining 
the extremely low effective temperatures that have been report- 
ed for VB 8B (DM; Dorman, Chau, and Nelson 1986; Nelson, 
Rappaport, and Joss 1986c). 

We have also utilized our cooling curves to calculate some 
illustrative theoretical luminosity functions for brown dwarfs. 
Staller and de Jong (1981) have previously carried out an 
extensive analysis of such luminosity functions and explored a 
wide range of assumptions concerning the initial mass function 
for low-mass stars. However, these authors had access only to 
earlier cooling curves (Tarter 1975; Stevenson 1978) that were 
somewhat less complete and accurate than the ones presented 
in this work. 

For simplicity, we have arbitrarily adopted a constant rate 
for the formation of low-mass (M < 0.08 M©) stars through- 

TABLE 2 
Models for VB 8Ba 

M(M0) R(Re) L(10-5Lo) í(109 yr) pc Tc(106 K) Dc
b 

0.02  0.135 5.62 0.08 57 0.53 2.19 
0.03  0.116 4.16 0.20 140 0.80 2.53 
0.04  0.104 3.36 0.43 265 1.06 2.82 
0.05  0.096 2.85 0.79 430 1.31 3.08 
0.06  0.090 2.49 1.32 640 1.55 3.33 
0.07  0.085 2.22 2.19 890 1.79 3.55 
0.08  0.081 2.01 5.15 1190 2.02 3.78 

a For an assumed effective temperature of 1360 K. 
b Ratio of total perfect gas pressure to ideal gas pressure, evaluated at the 

stellar center. 
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out the history of the galactic disk, which we take to have an 
age of 1.5 x 1010 yr. Essentially nothing is known about the 
initial mass function for stars with M < 0.08 M0. We have, 
therefore, chosen the following three illustrative forms for the 
initial mass function of stars with masses below the end of the 
hydrogen-burning main sequence : 

N(M) oc M-2-35 0.01 M0 < M < 0.08 M0, (5a) 

N(M) oc M~2-35 0.03 M0 < M < 0.08 M0 , (5b) 

N(M) oc M-1,5 0.01 M0 < M < 0.08 M0 , (5c) 

where N(M) has units of number of stars per mass increment. 
Below the lower mass limit for each of these initial mass func- 
tions we assume that N(M) = 0. The lower mass limits are 
supported by the recent calculations of Boss (1986), who 
obtained estimates of ~ 0.02-0.05 M0 for the minimum pro- 
tostellar mass that results from hierarchical fragmentation of 
interstellar clouds. The spectral index of —2.35 in equations 
(5a) and (5b) is an extrapolation of the power law derived by 
Salpeter (1955) for more massive stars, while the index of — 1.5 
in equation (5c) is suggested by the work of Miller and Scalo 
(1978). For all three functions, we have used a normalization 
that yields a solar-neighborhood (galactic midplane) mass 
density of brown dwarfs at the present epoch of ~0.08 M0 
pc-3 (Bahcall 1984). 

The results of our calculations of the luminosity functions 
for brown dwarfs are shown in Figure 10 for six different stan- 
dard photometric passbands. The definitions of zero magni- 
tude in each passband were taken from Johnson (1966). We 
also show, for each distribution of brown-dwarf magnitudes, 
an illustrative curve that represents stars on the zero-age 
hydrogen-burning main sequence (with M > 0.085 M0). To 
generate the zero-age main-sequence luminosity functions, we 
(i) again adopted a power-law form for the initial mass func- 
tion, with a spectral index of —2.35 (Salpeter 1955), (ii) normal- 
ized the initial mass function so that the mass density of 
zero-age main-sequence stars in the solar neighborhood is 
~0.08 M0 pc-3, and (iii) utilized the fitting formulae of 
Whyte and Eggleton (1980) for L and R as functions of M for 
stars on the lower main sequence. 

We draw the following conclusions from the brown-dwarf 
luminosity functions shown in Figure 10: (i) The three choices 
of initial mass function produce similar magnitude distribu- 
tions (within a factor of ~2 in space density), except at the 
longer wavelengths. This is not particularly surprising, since 
the initial mass functions are all normalized to yield a fixed 
mass density of brown dwarfs, (ii) As expected, the greater the 
relative number of higher mass stars implied by a given initial 
mass function, the greater the predicted space densities of 
brighter stars, (iii) Our results are in good agreement with 
those of Staller and de Jong (1981) for the case where they 
chose the Stevenson (1978) cooling curves and birthrate func- 
tion that was constant in time. However, Staller and de Jong 
(1981) find a greater dependence on the assumed slope and 
lower mass cutoff of the initial mass function than indicated by 

our results in Figure 10. This difference results largely from 
their choice of fixing the luminosity function at a given magni- 
tude, as opposed to our choice of normalizing the initial mass 
function to yield a specific mass density, (iv) Such luminosity 
functions can be used to predict specific numbers of stars in 
various spectral bandpasses that can be observed in the future 
with the Hubble Space Telescope and SIRTF. 

V. CONCLUSIONS 
From our evolutionary calculations of brown dwarfs we are 

able to reach a number of secure conclusions : 
1. For brown dwarfs with masses substantially below the 

end of the hydrogen-burning main sequence (i.e., <0.06 M0), 
we obtain the following results, (a) The evolution of the effec- 
tive temperature and bolometric luminosity are fairly well 
determined, despite the residual uncertainties in the input 
physics. In particular, we have shown that the evolution is 
remarkably insensitive to the choice of the atmospheric 
opacity law at low temperatures and to the amount of mis- 
match in specific entropy across the stellar envelope, (b) the 
uncertainties in the effective temperatures for stellar ages up to 
the age of the Galaxy are typically only 10%. However, as 
pointed out by a number of workers (e.g., Bahcall 1986; 
Lunine, Hubbard, and Marley 19866), there still would be large 
theoretical uncertainties in the spectral features of such low- 
temperature stars even if the effective temperatures were 
known exactly, (c) For stellar ages in excess of ~109 yr, the 
effective temperatures and luminosities can be reasonably well 
represented by power-law fitting formulae with Teozt °-29 

and L ocr1-2 (see eqs. [3] and [4]). (d) For ages up to the age 
of the Galaxy, crystallization and Debye cooling are unlikely 
to have any significant effect on the evolution. 

2. We also find that the minimum mass for a star to attain 
main-sequence status is moderately sensitive to the assumed 
input physics, particularly the surface boundary conditions. 

3. For the recently discovered brown dwarf VB 8B, we 
conclude that the theoretically inferred parameters are M = 
0.04-0.08 M0 (see also McCarthy, Probst, and Low 1985), 
pc = 300-1300 g cm“3, and Tc = 1.0-2.0 x 106 K (see also 
NRJ). A significant fraction of the pressure support for VB 8B 
is provided by electron degeneracy. There remain only some 
minor discrepancies between the models and the observations. 

4. Finally, concerning the observability of brown dwarfs as 
a class, we find that if brown dwarfs account for the local 
missing mass of the galactic disk (see, e.g., Bahcall 1984), then 
the theoretical luminosity functions for such objects are rea- 
sonably well determined (except for the contribution of stars 
just below the end of the main sequence). Our luminosity func- 
tions indicate that numerous brown dwarfs should be detect- 
able with the Hubble Space Telescope and SIRTF. 

We thank J. Lunine, S. Stabler, D. Stevenson, and S. Tre- 
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