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ABSTRACT 
We investigate the dynamics of radiatively driven, optically thick outflow in this second of two papers 

addressing the observable properties of supercritical winds. When the sonic radius of the flow is well within 
the trapping radius, a simple relation links the mass-loss rate, the position of the sonic point, and the 
observed luminosity (which is always in excess of the Eddington limit). The variation of the wind velocity deep 
within the flow is determined by numerically solving the relativistic, adiabatic version of Bernoulli’s equation, 
and the result is incorporated into the radiative transfer formalism of the first paper to calculate the radiative 
properties of supercritical winds for a variety of astrophysical systems. 
Subject headings: galaxies: nuclei — hydrodynamics — quasars — radiation mechanisms — stars: winds — 

X-rays: bursts 

I. INTRODUCTION 

Optically thick winds driven by continuum radiation pres- 
sure have long been suspected of playing a role in systems 
ranging from X-ray binaries to active galactic nuclei (AGNs) 
(e.g., Meier 1982a, b, c). Recently, data have accumulated indi- 
cating that X-ray transients radiating above their Eddington 
limits Le (Lewin and Joss 1981; McCray 1981) and quasars 
with outflow rates M > ME = LElc2 (Drew and Boksenberg 
1984; Krolik et al 1985; Perry and Dyson 1985) may exist in 
nature. The purpose of this paper is to reevaluate the dynamics 
and appearance of supercritical winds (i.e., winds with M > 
Me) in the light of this evidence. We begin by summarizing 
some of the existing observational and theoretical work rele- 
vant to our investigation. 

a) X-Ray Bursters 
The observational evidence for super-Eddington lumin- 

osities in X-ray burst sources is twofold: (1) The maximum 
color temperature observed during a burst is typically ~2.5 
keV, and sometimes as high as 3 keV (Swank, Taam, and 
White 1984), while general relativistic calculations show that a 
neutron star-size blackbody with temperature T >2 keV will 
radiate above its Eddington limit (Marshall 1982). (2) The 
observed integrated burst flux, when combined with an 
assumed mean source distance of ~ 9 kpc, often indicates that 
the burst luminosity is in excess of the Eddington limit for a 1.4 
M0 object. 

By modeling the burst spectra as emission from gray 
(scattering-dominated) atmospheres, various authors have 
attempted to circumvent the first of these points by decoupling 
the observed color temperature of the burst from the effective 
temperature (defined by 0-7^ = Fb, where Fb is the bolometric 
burst flux at the source). Ebisuzaki, Hanawa, and Sugimoto 
(1984, EHS), for example, apply the standard photon diffusion 
equation (i.e., eq. [2.10]) to the photospheres of bright neutron 
stars to find that Tcolor æ t1^ Teff, where Tcolor is the scattering 

1 Also at the Department of Astrophysical, Planetary, and Atmospheric 
Sciences, University of Colorado, Boulder, CO 80309. 

2 Presidential Young Investigator. 

optical depth to the color radius (at which the observed color 
temperature equals the local electron temperature). A sub- 
sequent approximate analysis of the energy transfer due to 
inelastic scattering beyond the color photosphere (r > rcolor) 
leads EHS to conclude that Tcolor/Tff{ « 21/2 at the peak of a 
typical burst. Assuming source radii of ~12 km, this would 
allow the bursts to be Eddington limited if the distance to the 
center of the burst source distribution (roughly the Galactic 
center) were moved from ~10 to ~6-7 kpc. In later works, 
Ebisuzaki and Nomoto (1985) and London, Taam, and 
Howard (1986) endeavor to provide accurate numerical treat- 
ments of the influence of Compton scattering on X-ray burst 
spectra. Their results (which again show ^color > ^effX an exten- 
sion of those published by London, Taam, and Howard (1984), 
are illustrated by Ebisuzaki and Nomoto using a color 
temperature-luminosity diagram which agrees fairly well with 
the observed temporal behavior of one burst from the source 
MXB 1636-536 (Inoue et al 1984). 

The controversy surrounding the nature of the X-ray burst 
sources hence pivots on the question of source distance, since 
most investigators agree that the bursts probably originate on 
the surfaces of unmagnetized neutron stars (thus restricting the 
central mass to a rather narrow range). If, as seems likely at 
present, the distance to the Galactic center is ~ 9 kpc, then the 
X-ray transients have peak luminosities exceeding LE by 
factors as large as 10 (Lewin and Joss 1981), and total energies 
sufficient to propel perhaps 1019 g of matter out of the neutron 
star’s potential well (McCray 1981). 

b) Quasars and AGNs 
Analysis of the broad absorption features apparent in the 

spectra of ~5% of all quasars with redshift z > 1.5 indicates 
that gas ejected from these systems may reach velocities of up 
to 0.1c (Weymann, Carswell, and Smith 1981). If the absorp- 
tion occurs toward the outer, coasting (constant velocity) 
regions of a spherically symmetric, radiatively driven wind, 
then the mass-loss rate M = 4nr2pv is related to the column 
density AT,- of the ionic species by 

M 2N: kXi xabs a i 

Me 0, ’ ( ' ’ 
552 
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where is the asymptotic flow speed divided by c, <7f is the 
product of the Thomson cross section and the atomic weight, 
Xabs = rabs/rs ^ the distance from the continuum source to the 
absorption region in units of the Schwarzschild radius, and g* 
is the ionic fraction by weight (suitably averaged over the line 
of sight if not constant). 

While fairly reliable estimates for AT, have been obtained in 
some cases (Cañizares and Kruper 1984; Turnshek 1984), 
the value of xabs has remained elusive, since we do not even 
know if the absorption occurs near the quasar or far from it 
in the intergalactic medium (Weymann 1985, private 
communication). By studying the properties of the absorption 
region in the contexts of particular models, some progress has 
been made in bracketing the mass-loss rate for individual 
objects. Krolik et al (1985) consider the ionization equilibrium 
of absorbing gas bathed in continuum radiation, taking into 
account resonant absorption of O vm Lyoe, to derive M for the 
BL Lac object PKS 2155 — 304. By comparing their numerical 
results with observations of a sharp absorption feature at 0.6 
keV in the X-ray spectrum of the object, they find M « 
300-1000 M0 yr-1. Drew and Boksenberg (1984) apply a 
moments method developed by Castor, Lutz, and Seaton 
(1981) to the optically thin Si iv 21397 line profile of the broad 
absorption line (BAL) quasar Q1413 + 117to estimate M æ 40 
M0 yr-1, if the outflow is spherically symmetric. Perry and 
Dyson (1985) investigate shock formation as the generating 
and accelerating mechanism for clouds in the broad emission- 
line region (BLR) around a quasar or AGN. They also derive 
mass-loss rates which are high enough (M æ 10-100 M0 yr - ^ 
to push the outflow into the supercritical regime (see eq. [1.2] 
below). It is intriguing that the three treatments cited all yield 
sizable mass-loss estimates even though the studies focused on 
BL Lac objects, BAL quasars, and the BLRs of ordinary 
quasars, respectively. 

c) This Paper 

A spherically symmetric wind (or accretion flow) composed 
of fully ionized hydrogen is supercritical if 

M 
M > ME = (2.2 x 10-9Mg yr-1) —— , (1.2) 

M o 

where ME = 4nGMmH/(TT c (mH is the hydrogen mass, <rT is the 
Thomson cross section, and M is the mass of the centra1 

object). For M = lO9-11 M0, the condition becomes M > 
2-200 M0 yr-1, which is consistent with the results for AGNs 
mentioned above. As we shall argue below, luminosities in 
excess of the Eddington limit in high-energy transients can also 
be understood in terms of supercritical winds. 

The energy required to power the outflow in a supercritical 
wind might be provided by spherical supercritical accretion 
(Meier 1979), thermonuclear deflagrations or detonations in 
the outer layers of a neutron star (Hanawa and Sugimoto 
1982; Taam 1982; Wallace, Woosley, and Weaver 1982; 
Paczyhski 1983), or the rotational kinetic energy of a compact 
object spinning in a dense accretion cloud (the “ cauldron ” of 
Begelman and Rees 1983, 1984). As discussed in Becker and 
Begelman (1986, hereafter Paper I), the luminosity generated at 
the base of the flow is efficiently channeled into bulk acceler- 
ation of the gas when the scattering optical depth below the 
sonic (critical) radius rc is so large that the flow velocity of the 
wind exceeds the diffusion velocity of the photons. For spher- 

ically symmetric winds this condition can be written as 

where rt is the trapping radius (at which the diffusion velocity 
of the photons equals the flow velocity) and rs = IGM/c2 is the 
Schwarzschild radius. Since the critical point must be outside 
the Schwarzschild radius to be physically meaningful, equation 
(1.3) is a somewhat more restrictive condition on M than is 
equation (1.2). We will henceforth use the term supercritical to 
refer to winds which satisfy the more restrictive condition, in 
keeping with Paper I. In this second of two papers dealing with 
the observable properties of supercritical winds, we discuss the 
dynamics of the relativistic flow of a radiation-dominated ideal 
fluid in the Schwarzschild metric, and incorporate the results 
into the radiative transfer formalism of Paper I to calculate the 
radiative properties for a variety of astrophysical systems. 

Our discussion is organized as follows. In § II we combine 
Begelman’s (1978) work on the dynamics of spherical flows in 
the Schwarzschild metric with the radiative transfer formalism 
for r >rt developed in § V of Paper I to derive a relationship 
between the luminosity observed at infinity, the mass-loss rate, 
and the ratio xc = rc/rs. In § III we consider the conditions in 
the region where the wind energy is injected into the flow (at 
r = rh the “injection radius”). Using energy conservation, we 
are able to solve for and the wind velocity at the injection 
radius in terms of rt and the initial specific enthalpy of the 
wind. In § IV we discuss the observable properties of super- 
critical winds for which the spectrum at rt corresponds to opti- 
cally thin bremsstrahlung emission. Finally, in § V we discuss 
the application of our theory to stellar-mass high-energy tran- 
sients and to AGNs, and examine the accuracy of the various 
assumptions made here and in Paper I. 

II. DYNAMICS 

As discussed in Paper I, we assume for simplicity that all of 
the wind energy is deposited initially in a thin layer of matter 
near the base of the flow, probably through the action of some 
mechanical heating process (such as shocks or turbulence) 
which transports energy generated at a deeper level. We are 
interested in what happens when the integrated photon energy 
density (resulting from radiative cooling of the superheated 
matter in the injection region) becomes so large that the energy 
released through expansional cooling is sufficient to propel the 
gas through a sonic point and subsequently out of the gravita- 
tional potential well. In this section we apply Begelman’s 
(1978) work on the relativistic hydrodynamics of matter- 
radiation flow to the case of a supercritical wind emanating 
from a compact object. The result is a relationship between the 
luminosity observed at infinity, the mass-loss rate, and the 
position of the transsonic point, which we subsequently 
untilize in § III to constrain the physical conditions in the 
injection region. Throughout the paper, we shall be dealing 
with spherically symmetric, radiation-dominated winds (in the 
Schwarzschild metric) composed of fully ionized hydrogen and 
characterized by the proper quantities electron temperature Te, 
electron number density ne ( = p/mH), radiation pressure Pr, and 
radiation energy density L/r. We define ü as the magnitude of 
the spatial component of the wind’s four-velocity, as measured 
by a stationary observer at infinity, i.e., ü = (l/c)(dr/dT\ where t 
is the proper time. Finally, we associate the term stationary 
with reference frames that maintain a fixed position with 
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respect to the metric, while using the term comoving to refer to 
reference frames traveling outward with the local flow speed. 

a) Relativistic, Radiation-dominated Winds 
Our analysis begins with the equations governing the steady, 

spherically symmetric flow of a radiation-dominated ideal fluid 
in the Schwarzschild metric, as derived by Michel (1972): 

Qüx2=^¡Ñ’ 

(1+4T)2(1-- + u2) = B1 

(2.1) 

(2.2) 

where 2^ is constant, Q = pc2, x = r/rs, and we have defined 
the dimensionless temperature T = Pr/Q (note that T is dis- 
tinct from X and that r = xrs is the radial coordinate measured 
by a stationary observer at infinity). If the relativistic region of 
the flow is well within the trapping radius, then the pressure of 
the photons decreases adiabatically according to 

PrCCp*'3, (2.3) 

and the dimensionless local sound speed, cs, can be written as 

4T 
3(1 + 4T) 

(2.4) 

(Weinberg 1972). Equations (2.1) and (2.2) can be combined to 
obtain a wind equation (Begelman 1978, eq. [3]) which satisfies 
the critical point conditions 

u2 (2.5) 

Cs(rc) = 
4T 

3(1 + 4TC) 1 - 3ùc
2 (2.6) 

(subscript c will be used to denote critical radius quantities 
throughout). 

Note that the dimensionless flow velocity measured by a 
local observer who is stationary with respect to the metric, 

u = 
(1 — 1/x + u2)1/2 ’ 

(2.7) 

is equal to cs at r = rc ; hence rc is a sonic point in the usual 
sense. Using equations (2.3), (2.4), (2.5), and (2.6), we have 

3c2 

16(^372) 
(2.8) 

which allows us to express the constant on the right side of 
Bernoulli’s equation (2.2) as 

BAxJ (xc - 3/4)3 

xc(xc - 3/2)2 • 
(2.9) 

The diffusive luminosity L measured by an observer co- 
moving with the flow is given by the photon diffusion equation 

— 47ir2c dPr 

ne ax dr' 
(2.10) 

where dr' is measured in the comoving frame. For x^> 1, 
general relativistic effects become unimportant, and we have in 
the adiabatic case 

_L 
GMp Pr Jr"'1’- 

(2.11a) 

where dr = y(u)dr' denotes the radial increment measured by a 
stationary observer at infinity, and 

y(u) = (1 - u2y1/2 = (1 + u2)112 (2.11b) 

is the Lorentz factor. Combining equations (2.8) and (2.11a), 
the luminosity ratio can be expressed as 

,1/2 

xc - 3/2 
x V'3/ 1 d\nu\ 
2u) \ + 2 din x/ 

(2.12) 

where we have used equations (2.1) and (2.5) to write the 
density ratio in equation (2.8) as 

£_ 
Pc 

(2.13) 

Using the critical point conditions (eqs. [2.5] and [2.6]), we 
can evaluate the luminosity at the critical radius : 

h. 
Le 

1/2 

xc - 3/2 
A 1 din ü 
\ + 2 d In x 

> 1 . (2.14) 

The condition LC/LE > 1 is what one would expect on physical 
grounds, since the gravitational and radiation forces on a par- 
ticle should nearly balance at the critical point. Note that 
because the diffusive luminosity is an increasing function of x 
and Lc/Le > 1, the asymptotic diffusive luminosity is always in 
excess of the Eddington limit for the central mass. 

For x > xc, we expect the four-velocity ü to approach an 
asymptotic value if T—> 0 as x—> oo. In this limit, equation 
(2.12) becomes 

L x^2 (xy
3 

rE=
y(UJ^V2{2irJ 

(2.15) 

where the asymptotic four-velocity is defined by equations (2.2) 
and (2.9) as 

_ ^3 IX3 - (3/4)x2 - (9/16)xJ1/2 

2 xc(xc — 3/2) 

Equation (2.16) indicates that as xc—>3/2, «^—>00 (i.e., 
—> 1), so that relativistic effects become important in the 

asymptotic portion of the wind. The analysis leading to equa- 
tion (2.15) is valid provided ü effectively reaches within the 
trapping radius; otherwise, diffusion of photons becomes effi- 
cient enough to violate our assumption of an adiabatically 
decreasing photon energy density. 

b) The Luminosity Observed at Infinity 

For ü = = constant, we can obtain an equation satisfied 
by Ur in the vicinity of and beyond the trapping radius (where 
adiabatic cooling and diffusion comprise the bulk of the rele- 
vant physics) by operating on Paper I, equation (5.1) with Jo 
v3i/v.3 The result is 

d2Ur 

dr2 + 
dUr 

dr Si'.-o, (2.17) 

3 The radial coordinate in Paper I, eq. (5.1) is measured in the comoving 
frame, and should therefore be replaced with r' to be consistent with the 
notation used in this paper. To obtain eq. (2.17), we have set the differential 
element of time measured in the comoving frame, dt' = dr'/(u^c), equal to the 
differential element of proper time measured by a stationary observer at infin- 
ity, dx = dr/fi^c), where = u«,y(uj. 
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where 

(2.18) 

Two factors of yiu^) appear in equation (2.18) because the 
diffusion operator is second order in radius. Equation (2.17) is 
the a = 0 case of Paper I, equation (B7), allowing us to imme- 
diately write down the solution in terms of Kummer’s M func- 
tion (Abramowitz and Stegun 1970, chap. 13), 

UrKq3M(i4,q), 

where 

<1 = 

(2.19) 

(2.20) 

The diffusion approximation used in the derivation of equa- 
tion (2.19) breaks down at large radii as free streaming 
becomes the dominant photon transport mechanism. We can 
estimate the maximum radius treatable under the diffusion 
approximation (the photospheric radius rp= — 3ft/qp) by 
solving equation (5.11) of Paper I, which was derived by setting 
the diffusion velocity of the photons equal to the speed of light. 
With qp determined, one can substitute equation (2.19) into 
equation (2.10) [with Ur = 3Pr and r2/dr' = 3riy(M00)/dg] to 
obtain another expression for L, 

M(l/3, 3, q) 
M(l/3, 3, qp) ’ 

(2.21) 

where is the asymptotic diffusive luminosity and we have 
used equation (13.4.13) of Abramowitz and Stegun. As r—>0 
(g—► — oo), equation (2.21) approaches 

L F(3) (-tfr1/3 

—- = —— ^—— • (2 22) 
Loa r(8/3) M(l/3, 3, <zp) ’ 1 J 

using q = ( —3/2)(M/ME)[y2(M00)x]~1, we can eliminate L and 
x between equations (2.15) and (2.22) to obtain 

— = 0.7171 
Le 

.1/2 (xc - 3/4) 1/2 

xc - 3/2 [x2 - (3/4)xc - 9/16] 1/6 

1/3 
, (2.23) 

where we have also used equations (2.11b) and (2.16). We can 
estimate the quantity on the right-hand side of equation (2.23) 
to within 2% for xc > 2.5 by setting qp = —3^, which is the 
large rp form of Paper I, equation (5.11). The quantity can be 
alternatively estimated to within 20% for xc > 2.5 by setting 

3, qp) equal to unity, which corresponds to the limit 
rp->oo. 

The qualitative features of this relationship can be recovered 
phenomenologically (Rees 1976, private communication; 
Meier 1982a) by coupling the photon diffusion equation (2.10) 
with the assumptions of pure adiabatic cooling below the trap- 
ping radius and pure diffusion beyond it, and the additional 
constraints Lc æ LE and u~2 æ 4xc. One obtains the scaling 
law 

,2-24) 

for constant velocity winds, which agrees quite closely with the 
relativistic result (eq. [2.23]) for xc > 1. Both results indicate 

that the luminosity measured by a distant observer can be well 
in excess of LE if the supercritical outflow passes through a 
sonic point located deep in the potential well; such super- 
Eddington luminosities are possible because the flow is opti- 
cally thick and the radiation deep in the flow is trapped. Even 
though the diffusive luminosity surpasses the Eddington limit 
near the base of the flow and continues to grow thereafter, the 
rate of energy transport is not sufficient to wipe out the radi- 
ation pressure gradient over a dynamical time scale in such 
optically thick conditions. The diffusive luminosity builds until 
it reaches its asymptotic value (near the photosphere), as the 
flow becomes optically thin. In Figure 1, the upper, middle, and 
lower curves depict u"1 (eqs. [2.7] and [2.16]), and 
m1/3/obJ, respectively, as functions of xc, where m = M/ME, 

= LJLe (eq. [2.23]), and /obs = (1 + 0/(1 ~ The 
/obs curve corresponds to the luminosity measured by a distant 
observer stationary with respect to the central object, taking 
into account Doppler shifting. In the discussion following 
equation (2.14), we argue that must always exceed unity, and 
therefore that /obs > (1 + 0/(1 ~ O- Combining this with 
the result for mll3l~l contained in Figure 1, we find that 
radiation-dominated winds with xc > 2 5 have mass-loss rates 
exceeding ME—a state of affairs which we shall see requires a 
prodigious energy generation rate in the injection region. 

III. INJECTION RADIUS QUANTITIES 

The injection radius r,- is defined as the radius within which 
all the energy in the wind is generated and injected into the 
flow. Beyond rh local energy conservation is satisfied and the 
photon energy density decreases nearly adiabatically (out to 
r ä Tj) in the photon-dominated cases under consideration 
here. 

a) Dynamical Considerations 
The injection radius quantities 7], ph xf, and w* must satisfy 

equations (2.2), (2.8), and (2.13), where B^x,) is given by equa- 

Fig. 1.—Upper (dashed) curve depicts the reciprocal of the asymptotic wind 
velocity w“1 = «“^l + mÍ)1/2 as a function of xc, calculated using eqs. (2.7) 
and (2.16). The lower two curves illustrate the dependence of m1/3/-1 on xc, 
where m = M/ME. For the middle curve, l = = LJLE (eq. [2.23]) corre- 
sponds to the asymptotic luminosity measured in the comoving frame. For the 
lower curve, / = /obs = (1 + 10/(1 — IO/*, corresponds to the asymptotic 
luminosity measured by a stationary observer at infinity. According to the 
discussion following equation (2.14), always exceeds unity, so that /obs > 
(1 -I-10/(1 — uœ). Note that the importance of special relativity in the asymp- 
totic portion of the wind increases as xc —> 3/2. 
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tion (2.9). With 7¡ and xt fixed, these equations can be solved 
simultaneously for xc and For an established flow, it is 
interesting to ask what happens as xt is gradually decreased, 
while holding Th uh and M constant. According to equations 
(2.2) and (2.9), xc increases, since dBJdxc < 0. To interpret this 
result physically, recall that the specific enthalpy of the wind is 
given by c2(Pr + l/r + ß)/Q = c2(l + 4T); hence the value of 
Ti sets the specific enthalpy of the fluid at the injection radius, 
or equivalently the amount of energy available to accelerate 
each gram of matter out of the potential well. As decreases, 
more and more energy is required to propel a given M out to 
infinity, causing the terminal velocity of the wind to decrease. A 
decreased terminal velocity corresponds to a smaller velocity 
at the sonic surface, and hence an increased sonic radius. 

If Xi were increased instead of decreased, eventually the 
injection and sonic radii would become coincident at what we 
define as = xc = xmax. Using equation (2.8), we have 

Xmax = 2 Í1 + 87j) ' ^ 

If x,- exceeds xmax, the flow is already supersonic at the injection 
radius. 

For any value of 7], there is also a minimum value of such 
that for < xmin, the flow never passes through a critical 
point. To estimate xmin, note that for near xmin, xc > l [so 
that B^xJ « 1], which makes uc and negligibly small. Equa- 
tion (2.2) then yields 

^in = Cl-(l+4Ti)-
2]-1. (3.2) 

Figure 2 illustrates the dependence of xc on x,- for various 
values of 7]. 

In the steady-state injection scenario we envisage, energy is 
pumped into the layer of superheated matter below rt at a rate 
which is constant over many dynamical times. The super- 
heated matter in turn maintains a fixed temperature by radi- 
atively cooling until the photon pressure becomes large 
enough to drive a photospheric expansion. As radiation pres- 
sure propels the gas out of the injection region, the heating rate 
drops sharply and the specific enthalpy of the wind starts to 

Fig. 2.—Reciprocal of xc is plotted as a function of with the value of T¡ 
indicated for each curve. The minimum value of x, for each curve is the value 
that x, must exceed for the outflow to pass through a critical point (eq. [3.2] ; 
see the discussion in the text). The cross on each curve marks the point at 
which x¿ = xc = xmax (eq. [3.1] ; if x,- > xmax, xc < xf). 

decrease. The injection radius (by definition the radius at which 
the heating rate has essentially vanished) should therefore be 
about one radiation pressure scale height above the energy 
generation region (which should be near the “ surface ” of the 
compact object, at radius r0 æ rs), i.e., 

Xi = x0 + H , (3.3) 

where 

H^kJei Pri (1 - 1/*0)1/2 

mg0 Pgi rs 
< X0 (3.4) 

is the dimensionless radiation pressure scale height measured 
by an observer at infinity, x0 = r0/rs, fh is the average particle 
mass, g0 = GM(1 — Xo ^ 1/2A*o is the local gravitational accel- 
eration (Weinberg 1972), and Pri and Pgi are the photon and 
gas pressures at the injection radius, respectively. The accuracy 
of equation (3.4) is limited to 0(Mt), as the hydrostatic approx- 
imation implicit in the derivation breaks down for velocities 
approaching c. 

b) Radiative Transfer 

In Paper I we develop a radiative transfer formalism which 
describes the effects of Compton scattering, adiabatic cooling, 
and diffusion on a photon distribution injected initially into 
the base of a supercritical wind. The spatial evolution within 
the “ Comptonization region ” (the region within which 
Compton scattering alters the spectrum) of the various physi- 
cal quantities treated by the theory is expressed through their 
dependence on the frequency-independent Compton y- 
parameter (Paper I, eq. [2.10]), defined in the relativistic case 
as 

y(r) = 
*rMeo-Tfcre dr 

J,, mec
2 ù 

(3.5) 

where me is the electron mass and r is measured by a stationary 
observer at infinity. We define the “Comptonization radius,” 
rß, as the radius at which y effectively reaches its asymptotic 
value, defined as ß. 

The spectral results for the Comptonization region are 
linked in Paper I, § V with solutions valid in a region which 
encompasses the trapping radius to predict the (comoving) 
spectrum observed at infinity. We show that for rß/rt 1 
(which corresponds to rß/rt <0 in the relativistic case treated 
here), the exact value of rß is irrelevant, since the Comp- 
tonization region is buried deep within the adiabatic (trapped) 
portion of the wind. In Paper I we assumed that the flow 
velocity essentially reached its asymptotic value within 
the Comptonization region. To check the self-consistency 
of this assumption, we compute the value of u(rß) for each set 
of model parameters considered, finding in most cases that 
u(rß) > 0.75 

For the scattering dominated winds treated here and in 
Paper I, the radiation field can be far from Planckian; a rea- 
sonable conjecture is that the electron temperature tracks the 
inverse Compton temperature of the photons, 

_ h Jq" v4hdv 
IC 4/c Jo v3ñdv 

(3.6) 

(defined here without regard to stimulated processes), since 
thermalization of the photons occurs via Compton scattering 
at such high radiation intensities. If the scattering were purely 
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elastic (Thomson scattering), then the inverse Compton tem- 
perature would decrease adiabatically as 1 = ; the effect 
of inelastic scattering on the electron (i.e., inverse Compton) 
temperature is expressed by the “ temperature function ” 

(3.7) 

[where/(0) = 1], which when used along with equation (2.1) to 
eliminate Te and ne in equation (3.5) yields 

^(r) dt_ 

.o m 

where the constant A is defined as 

(3.8) 

AsrJn«aIkT± (39) 

Ui me c IXi üf Me me c 

The asymptotic value of the y-parameter (ß) scales as the 
square root of A (Paper I, eq. [6.5]) for bremsstrahlung, 
making A the injection radius parameter which most sensiti- 
vely differentiates between the radiative properties of different 
astrophysical systems. 

IV. OBSERVABLE PROPERTIES 

To calculate the physical properties of a model wind, one 
begins by choosing values for 7], the central mass M, the 
dimensionless energy generation radius x0, and either M/ME 
or L/Le (determined from observations of the object under 
consideration). Using 7] and x0, equations (3.3) and (3.4) set 
the dimensionless injection radius xh from which one can 
calculate and xc by solving equations (2.2), (2.8), (2.9), and 
(2.13). With x^ fixed, equations (2.2), (2.8), and (2.13) yield 
u(x) (which is in general a double-valued function because of 
the quadratic term in eq. [2.2]; one branch corresponds to 
inflow and the other to outflow), and using the chosen value 
for M/Me (or L/LE), equation (2.23) determines L/LE (or 
M/Me), so that either way one may compute and nei using 
equation (2.1). With our knowledge of M, uh and the photon 
energy density at the injection radius Uri = ZpiTiC2, we can 
calculate the heating rate per unit area [accurate to 0(uj] by 
summing the kinetic and advected fluxes at the injection 
radius, 

Fi = ÍUriUiC + jPiufc3 , (4.1) 

where ut is given by equation (2.7). 
To determine the radiative properties of our model wind, 

we first need to set Tei in equation (3.9) for A. It is conve- 
nient to consider an optically thin bremsstrahlung injection 
spectrum, since this case is treated in detail in Paper I (see 
eq. [4.3] and § VI). The emissivity (averaged over the injec- 
tion region) €,• is given in the case of bremsstrahlung by Cf = 
eff ä (1.4 x 10_27)WgO Tg/2(1-1-4.4 x 10_loTei) in cgs units, 
where ne0 is the mean electron number density in the 
injection region (generally ~few times nei). The net heat- 
ing rate per unit area is given in terms of the emissivity by (1 
— *o x) 1/2 (where the factor in parenthesis adjusts the 
radiation pressure scale height to the local frame), which in a 
steady state must equal Ft given by equation (4.1), allowing 
us to estimate Tei. We next need to specify the form of the 
temperature function f(y) (eq. [3.7]). In Paper I, we show 
that within what we term the “ equilibration region ” (rt < 
r < req, the region within which Te rapidly equilibrates to 

Tic),f(y) obeys 

4(R-K)y R - f\R{K - 1\K 

R — 1 

and that for req<r < rp,f(y) varies as 

f(y) = 
B 

1 + Cy ’ 

(4.2) 

(4.3) 

where the constants B and C are set by R using equation 
(6.6) of Paper 1,7c = TlCi/Teh and 

R = 2 ■+ 1 = 
mHc 
~kf~ 

7] + 1 . (4.4) 

Using equations (4.2) and (4.3), the integral on the left side 
of equation (3.8) can be expressed as 

[y dt_ 

I m 

\ 
4(R - k) 

In R-Á eg 1 

1 
+ B 

R-lJ\K-fe 

C , 2 y-y^+^ (y y¡q) (4.5) 

for y > yeq. where ycq = y(req) and /eq =/(yeq). By numeri- 
cally carrying out the integration on the right side of equa- 
tion (3.8), we can solve for y(r) and ß. In Figure 3 we display 
y as a function of r for various values of x0, Th Tei, and 
M/Me. The specific luminosity measured by a stationary 
observer at infinity is given by 

Lv(v) = 
32/i7r2r2 

, (4.6) 

where x = hv/kTe(rß) and the occupation number ñ is calcu- 
lated using equation (5.4) of Paper I. In Figure 4 we show 
plots of the specific luminosity for parameters typical of 
X-ray bursters (Fig. 4a) and AGNs (Fig. 4b), when the 
initial spectrum corresponds to optically thin bremsstrah- 
lung. For comparison, we have included Planck functions 

Fig. 3.—Variation of the Compton y-parameter (eq. [3.5]) is plotted as a 
function of r/rf. Solid curves were calculated using the X-ray burster param- 
eters listed in note (a) of Table 1, with the upper, middle, and lower curves 
corresponding to M/AiE = 104, 103, and 102, respectively. Dashed curves were 
calculated using the AGN parameters listed in note (b) of Table 1, with the 
upper, middle, and lower curves corresponding to M/ME = 2.5 x 103, 103, and 
102, respectively. 
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Fig. 4.—Specific luminosity measured by a stationary observer at infinity 
(eq. [4.6]) is plotted for a bremsstrahlung injection spectrum with rß!rt = 0.1 
using {a) the X-ray burster parameters listed in note (a) of Table 1, along with 
M/Me =130; {b) the AGN parameters listed in note (b) of Table 1, along with 
M/Me = 800. For comparison, we have included Planck functions {dashed 
lines) evaluated at the color and effective temperatures of the calculated 
spectra. For the plots in (a), /obs = 12.1, Tcolor = 1.8 x 107 K, Teff = 7.0 x 106 

K, and rp = 86.3 rs. For the plots in (b), lobs = 3.7, Tcolot = 3.2 x 104 K, Teff 
= 6.5 x 103 K, and rp = 2022 rs. The spectral hardening that is characteristic 
of static scattering atmospheres is also apparent in these dynamical cases; 
unlike the static scenarios, the emergent luminosities far exceed LE. 

In concluding this section, we point out that if one knows 
the values of M, x0, M, and Tcolor for a particular object, 
then all of the other parameters can be determined uniquely. 
Beginning with equation (2.23), one obtains xc for given M 
and L^. Using the resulting run of u(x) and equations (2.8), 
(2.13), (3.3), and (3.4), Xj and can be computed for a given 
x0. The next step is to pick an initial guess for Tei, which in 
turn provides values for A (eq. [3.9]) and for R (eq. [4.4]). 
Equation (3.8) then yields ß and rß, which we can subse- 
quently use in equation (4.8) to calculate Tcolor. By repeating 
the procedure until one has obtained the value of Tei that 
leads to the correct Tcolor, all of the parameters can be set 
uniquely. In such a case, the presence of a dip in the photon 
(v2ñ) spectrum would provide an independent value for ß 
(Paper I, § V), and thus an autonomous check on the self- 
consistency of the theory. 

Finally, in Table 1 we summarize the results obtained 
for the heating rate per unit area (eq. [4.1]), the ad- 
verted photon flux at the injection radius Fa (the second term 
in eq. [4.1]), the dimensionless heating rate 4nrf the 
dimensionless luminosity observed at infinity /obs = 
(L^/LeXI + 40/(1—10, the color temperature, and injec- 
tion region emissivity and number density neh the ß (the 
asymptotic value of y), for various values of Th Teh x0, 
M/Me, and M. The heating rate is typically > LE, since 
most of the radiative energy initially deposited in the wind is 
used up in accelerating the matter out of the potential well. 

with temperatures equal to the observed color temperature 
and the effective temperature at the photosphere. 

The color temperature of the spectrum apparent to an 
observer comoving with the flow is equal to xpTe(rß)/2.829 

where x — XP 
at the peak of the observed energy spectrum. 

To calculate the color temperature measured by a distant 
observer who is stationary with respect to the central object, 
we use 

A + u V/2 

Tcolol = 0355xpTe(rß)(j--^j , (4.7) 

where the factor [(1 + u^/il — tO]1/2 accounts for the 
Doppler shift between the moving and stationary frames. 
Using equation (3.7), the color temperature can be written in 
terms of Tei as 

0355xpTeif(ß) 
1/2 

(4.8) 

In Figure 5 we plot the log of the color temperature as a 
function of log Tei for various values of x0, Th and a = 
(M/MgXTyiO11 K). To understand the power-law relation- 
ship evidenced by the straight lines, note that by choosing 
values for Th x0, and MTeh we have implicitly set xh uh xc, 
and u^. Taking rß to be some fixed fraction of r,, mass con- 
servation (eq. [2.1]) then yields nf(rß)/neicc M'2ü(rßy

1. 
Combining this with the conditions AdTocaT^1 and ü(rß) & 
Mqq, we obtain ne(rß)/nei oc Since xP and f(y) are relatively 
insensitive functions of 7] and Teh and /(ß) ~ ß_1 ~ A_1/2 

for bremsstrahlung (Paper I, eq. [6.5]), equation (4.8) yields 
the proportionality 

TcolorxA-7/6Te
5/3, (4.9) 

which is borne out in Figure 5. 

V. DISCUSSION AND SUMMARY 

Here and in Paper I we have made various assumptions 
concerning the importance of the physical processes not 
treated in detail. We now reexamine the validity of each 
assumption, for an initial spectrum corresponding to optically 
thin bremsstrahlung emission. 

Fig. 5.—Color temperature measured by a stationary observer at infinity 
(eq. [4.8]) is plotted as a function of Tei for a bremsstrahlung injection spec- 
trum with rß/rt = 0.1 and the indicated value of a = (M/M^T^/IO11 K). Solid 
lines were calculated using the X-ray burster parameters x0 = 2.5, 7] = 0.1, 
xc = 3.53, Mf = 0.28, and = 0.57, for which A = 43a. Dashed lines were 
calculated using the AGN parameters x0 = 3.0, 7j = 0.05, xc = 20.44, u, = 
0.03, and = 0.20, for which A = 3061a. As discussed in the text, the straight 
lines reflect the proportionality Tcolor oc A “ 7/6 T3/3. 
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TABLE 1 
Model Results for X-Ray Bursters and AGNs 

M Fi F a Tcolor e,. nei M_ 
(M0) (ergs cm 2 s A) (ergs cm 2 s ^ 4nrf FJLE lohs (K) (ergs cm 3 s ^ (cm 3) ß ME 

1.4a 3.9 x 1026 3.6 x 1026 50.8 11.1 2.6 x 107 9.8 x 1020 7.0 x 1019 1.26 102 

3.9 x 1027 3.6 x 1027 507.5 24.0 1.5 x 106 9.8 x 1021 7.0 x 1020 4.75 103 

3.9 i 1028 3.6 x 1028 5074.5 51.6 9.9 x 104 9.8 x 1022 7.0 x 1021 15.87 104 

109 b  2.1 x 1017 2.1 x 1017 23.6 1.8 5.2 x 105 9.6 x 102 7.1 x 1011 3.35 102 

2.1 x 1018 2.1 x 1018 235.9 3.9 2.4 x 104 9.6 x 103 7.1 x 1012 11.44 103 

2.1 x 1019 2.1 x 1019 2358.7 8.5 1.5 x 103 9.6 x 104 7.1 x 1013 37.05 104 

a For the X-ray burster (M = 1.4 M0) cases, we also have rß!rt = 0.1, rp/rt = 2.0, x0 = 2.5, 7] = 0.1, Tei = 109 K, xc = 3.53, = 3.25, Mf = 0.28, 
= 0.57, and UrJUei = 2179. 

b For the AGN (M = 109 M©) cases, we also have r^/r, = 0.1, rp/r( = 5.3, x0 = 3.0, 7] = 0.05, Tei = 108 K, xc = 20.44, x¿ = 3.6, Mt = 0.03, 
= 0.20, and Uri/Uei = 10894. 

a) Bremsstrahlung Self-Absorption 
As discussed in § VI of Paper I, the bremsstrahlung self- 

absorption cutoff in the injection region, Xo = hv0/kTei, must 
satisfy 

Xo , (5.1a) 

where 

—= (0.72 K3 cm>ci T¡¡3 ^ , (5.1b) 
1-e xo Pgi 

in order to ensure that a large number of low-energy photons 
survive the injection region (i.e., in order to keep the spectrum 
optically thin), as we have assumed. 

Likewise, the bremsstrahlung self-absorption cutoff due to 
thermalization within the Comptonization region, xc 

= 

hvc/kTe(rß\ must satisfy 

Xc « 1 , (5.2a) 

where 

ATth = 1 = (4.1 x 10"23 K7/2 cm5) 

represents the average number of free-free thermalizations 
(absorptions) experienced by a photon of frequency vc between 
r = and r = rß. Since we expect that ^ \ve can estimate 
Xc by supposing that the density change across the Comp- 
tonization region is negligible, yielding 

Xc < (6.0 x 105 K9/4 cm3/2)ng/2 T^r^Wß112 • (5.2c) 

b) Stimulated Compton Scattering 
Our neglect of stimulated Compton scattering is justified if 

the cutoff for the process, xs = hvs/kTeh satisfies 

Xs<U (5.3a) 

where 

ñ(vs, rt) = l = - e - 3 (5.3b) 

is the phase space density of photons at the injection radius. 
The effect of stimulated Compton scattering must be taken 
into account when the occupation number exceeds unity. 

c) Double Compton Absorption 
The cutoff for the importance of double Compton absorp- 

tion in the injection region, 

hvDC [~«wr / he y kTe¡ 
Xdc~ kTei \_4n2 \kTeJ mec

2 

must satisfy 

Xdc ^ 1 (5.4b) 

(Lightman 1981; nr is the photon number density and a is the 
fine-structure constant) in order to justify our neglect of the 
process, which becomes increasingly important in highly radi- 
ation dominated cases. 

d) Validity of the Assumptions 
All of the critical quantities listed above have been calcu- 

lated along with the other model results and found to satisfy 
their respective criteria for the parameter domains discussed 
here. A more serious restriction on the theory is that imposed 
by our neglect of Klein-Nishina and pair production effects in 
the injection region, where the temperature may reach ~ 17% 
of me c2 if our model is applied to X-ray burst sources, and 
considerably higher values if it is applied to gamma-ray tran- 
sients; for AGNs the high-temperature effects are probably 
unimportant. 

e) Conclusion 
In the two papers composing this series, we have developed 

a theory which self-consistently describes both the radiative 
and the dynamical properties of supercritical winds. Such 
winds may play an important role in mass-losing quasars and 
AGNs, and could also be significant in the context of X-ray 
transients. By focusing our attention on supercritical cases, we 
are able (in Paper I) to simplify our treatment of the radiative 
transfer by dividing the wind into regions within which no 
more than two of the relevant physical processes (Compton 
scattering, adiabatic cooling, and diffusion) are important at 
once. 

In this paper, we have examined the dynamics of super- 
critical winds and linked our results with those of Paper I to 
calculate the observable properties of such winds. The main 
results are contained in Figures 1, 4, and 5, and Table 1. In 
Figure 1 we see that luminosities far in excess of LE can obtain 
if the supercritical outflow passes through a sonic point located 
deep within the relativistic potential. Such super-Eddington 

1/2 
(5.4a) 
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luminosities are possible because the sonic radius of the flow is 
well within the trapping radius. In Figure 4 we compare our 
results for the specific luminosity with Planck functions at the 
color and effective temperatures, and in Figure 5 we depict the 
color temperature observed at infinity (for a bremsstrahlung 
initial spectrum) as a function of Tei and other model param- 
eters. Color temperatures high enough (~3 x 107 K) to 
accommodate observations of X-ray bursts (Lewin and Joss 
1981) and low enough (< 3 x 104 K) to explain the ultraviolet 
and soft X-ray features associated with AGNs (Blandford 
1984; Arnaud et al 1985) can be produced by the scenario 
presented here. 

It has been pointed out to us that our treatment of the 
problem makes no reference to the type of outer boundary 
condition (relating the emerging flux of radiation to conditions 
at some reference optical depth) which comes into play in static 
electron scattering atmospheres. When the scattering gas is in 
hydrostatic equilibrium, diffusion dominates the radiation 
transport throughout the entire atmosphere, and the outer 
boundary condition determines the rate of escape of the 
photons (Ivanov 1973). The difference here is that the atmo- 
sphere is moving, and consequently it is dynamical effects 
which determine the photon escape rate. The conclusions pre- 
sented in this paper are valid provided the throttle in the flow 

(at r = rc) is well within the trapping radius, so that most of the 
momentum transfer occurs before diffusion becomes impor- 
tant. 

In the case of X-ray bursts, the heating rates typically called 
for by the theory are far beyond the capabilities of an energy 
generation mechanism proposed so far. We direct the theory 
more toward quasars and AGNs because the energy gener- 
ation rates are potentially much higher for black holes than for 
neutron stars (which seem to be associated with X-ray 
transients), and because all of the densities in the theory scale 
as M “1 (which makes most of our assumptions more plausible 
at higher values of M). Although we have not included all of 
the physics which one might deem appropriate in treating the 
problem, we nevertheless feel that such supercritical wind 
models provide an interesting alternative to the status quo 
interpretation of ultraviolet and moderate energy X-ray con- 
tinuum features. 
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