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ABSTRACT 
Strange matter, a form of quark matter that is postulated to be absolutely stable, may be the true ground 

state of the hadrons. If this hypothesis is correct, neutron stars may convert to “strange stars.” The mass- 
radius relation for strange stars is very different from that of neutron stars; there is no minimum mass, and 
for mass <1 M0, M oc R3. For masses between 1 M0 and 2 M0, the radii of strange stars are ~10 km, as 
for neutron stars. Strange stars may have an exposed quark surface, which is capable of radiating at rates 
greatly exceeding the Eddington limit, but has a low emissivity for X-ray photons. The stars may have a thin 
crust with the same composition as the pre-neutron drip outer layer of a conventional neutron star crust. 
Strange stars cool efficiently via neutrino emission. It is not clear whether or not all neutron stars must 
convert into strange stars, but this seems the most likely conclusion. There may be no neutron stars, only 
strange stars. 
Subject headings: elementary particles — neutrinos — stars: interiors — stars: neutron 

evaporates completely as the universe cools to ~10 MeV 
(Alcock and Farhi 1985). 

Second, Witten pointed out that neutron stars will probably 
convert to strange matter. The reasons for this are discussed 
below, but its importance for astrophysics is clear: if the 
strange matter hypothesis is correct, there may be no neutron 
stars; instead, there may be strange stars. Accordingly, in the 
discussion which follows, we explicitly draw attention to the 
differences and similarities between neutron stars and strange 
stars. The possibility that neutron star interiors could be quark 
matter has also been discussed, and such objects are known as 
“quark stars” (e.g., Ivanenko and Kurdgelaidze 1969; Itoh 
1970; Chapline and Nauenberg 1977a, b; Freedman and 
McLerran 1978; Fechner and Joss 1978). However, we are 
exploring the possibility that the star is made of stable quark 
matter, and we refer to these objects as “ strange stars ” to draw 
attention to this important difference. Strange stars have also 
been discussed by Haensel, Zdunik, and Schaeffer (1986) and 
Baym ei a/. (1985). 

The plan of this paper is as follows. In § II we discuss the 
equilibrium composition and the equation of state for strange 
matter. In § III we look at the global properties of strange stars, 
and in § IV we discuss the surface of a strange star. The cooling 
of strange stars is discussed in § V. In § VI we discuss the issues 
involved in the conversion of neutron stars to strange stars. In 
§ VII we describe the expected phenomenology of strange stars, 
drawing particular attention to their differences from neutron 
stars. We discuss our results in § VIII. 

II. PROPERTIES OF STRANGE MATTER 

If ordinary nuclei, made of up and down quarks, are sub- 
jected to a high enough pressure, the nuclear boundaries may 
dissolve and a transition to a quark matter phase may occur. 
In this phase quarks are no longer locally confined and 
hadrons do not exist. Up and down quarks can convert to 
other flavors of quarks (strange, charm, etc.) via the weak inter- 
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I. INTRODUCTION 

The true ground state of the hadrons may be “strange 
matter,” not 56Fe (Witten 1984). Strange matter is a bulk quark 
matter phase consisting of roughly equal numbers of up, down, 
and strange quarks plus a smaller number of electrons (to 
guarantee charge neutrality) which is conjectured to have a 
lower energy per baryon than ordinary nuclei. Strange matter 
is, by hypothesis, absolutely stable; has a density comparable 
to that of atomic nuclei; and can exist in lumps ranging in size 
from a few fermis up to “ strange stars ” of radius ~ 10 km. We 
discuss the properties of strange stars in this paper. 

Various forms of quark matter have been considered by, 
among others, Ivanenko and Kurdgelaidze (1969), Itoh (1970), 
Collins and Perry (1975), Freedman and McLerran (1977a, b), 
R. L. Jaffe (unpublished), Baluni (1978a, b\ and Chin and 
Kerman (1979). Witten first explicitly considered the possibility 
that quark matter with a significant fraction of strange quarks 
might be absolutely stable. A detailed study (Farhi and Jaffe 
1984, hereafter FJ) showed that, with the uncertainties inherent 
in a strong interaction calculation, the existence of stable 
strange matter is reasonable. We assume the existence of stable 
strange matter in this paper. 

Witten also identified two astrophysical scenarios for the 
production of strange matter. First, he proposed that strange 
matter may have been produced as the universe cooled 
through the QCD phase transition at a temperature Tc 

(roughly 100-200 MeV) which is characteristic of the strong 
interaction energy scale. This model has been criticized by 
Applegate and Hogan (1985), and in any event it has been 
shown that all strange matter produced at this early epoch 

1 This work is supported in part by funds provided by the US Department 
of Energy (D.O.E.) under contract DE-AC03-76ER03069, and by NASA 
grants NSG-7643 and NGL 22-009-638. 

2 Alfred P. Sloan Foundation Fellow. 
3 CNPq Fellow. 
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actions, and they will do so in quark matter in order to lower 
the Fermi energy by increasing the degeneracy. In practice, 
only up, down, and strange quarks occur in quark matter 
because other quark flavors have masses much larger than the 
chemical potentials involved (roughly 300 MeV). 

At any pressure, three-flavor quark matter is energetically 
favored over two-flavor quark matter. Witten conjectured that 
at zero pressure, three-flavor quark matter may have a lower 
energy per baryon number than ordinary nuclei. This would 
make “strange matter” the most stable substance known. 
Ordinary nuclei would lower their energy by converting to 
strange matter, but the rates for such conversions are negligible 
under almost all conditions, except perhaps in neutron stars. 

Strange matter can be modeled as a Fermi gas of up, down, 
and strange quarks neutralized by electrons. The region the 
quarks live in is characterized by a constant energy per unit 
volume, B. This phenomenological parameter is determined by 
the underlying strong interaction dynamics but is incalculable 
given our present understanding of QCD. The other important 
parameters are the strange quark mass, ms, and the strong 
interaction coupling constant, ac. The value of the strange 
quark mass is unknown but is probably between 50 and 350 
MeV. (Up and down quark masses are negligible here.) The 
coupling ac is energy dependent and is probably large at the 
scales of interest. We include first-order ac effects in our calcu- 
lations. 

The properties of strange matter at zero pressure have been 
described by FJ, and our calculation is a straightforward 
extension to finite pressure. We work at zero temperature 
because the star’s temperature is always much smaller than the 
typical chemical potentials. Chemical equilibrium between the 
three quark flavors and the electrons is maintained by 

d—►!/ + £ + Ve, (1) 

u + e—► d + ve , (2) 

u + e + ve, (3) 

u € > S + Ve , (4) 

and 

s u <—> d-\-u (5) 

Reactions (l)-(4) result in energy loss by the star (i.e., 
cooling) since the neutrinos are lost. The loss of neutrinos 
means that the chemical potentials of the neutrinos may be set 
equal to zero. Reaction (5) contributes only to the equilibration 
of flavors. 

The properties of strange matter are determined by the ther- 
modynamic potentials (i = w, d, s, e) which are functions of 
the chemical potentials as well as ms and occ (see Appendix). 
The weak interactions (eqs. [l]-[5]) establish that 

ßd = ßs = ß , (6a) 

and 

ßu + ße = V’ (6b) 

and overall charge neutrality requires 

3«u - ïnd -$ns-ne = 0, (7) 

where rii is the number density of particle i. Equations (6) and 
(7) establish that there is only one independent chemical poten- 
tial, which we call ¡i. 

The number densities are given by4 

ni = 
dQi 
dni ’ (8) 

and the baryon number density nB = %(nu + nd + ns). The total 
energy density p is given by 

P = Z (fi¡ +/A-”;) + ß > (9) 
i 

where B is the vacuum energy density associated with this 
phase. The pressure is 

dp 
P = nB ~~~ p . (10) dnB 

The Gibbs potential per particle, G = (P + p)/nB, is simply 

dp 
G = = P« + Pd + Ps- (11) dnB 

The above equations give a complete prescription for finding 
nB, p, P, and G as functions of one parameter, p. Equation (10) 
with P = 0 is equivalent to equation (2.6) in FJ. 

In the limit, ms—> 0, ac —> 0 the equation of state becomes 

P = i(p-4P), (12) 

which was used by Witten in his approximate calculation of 
the strange star mass-radius relation. This expression is inde- 
pendent of the number of particle flavors, so it becomes exact 
for strange matter (as ms—► 0) and for two-flavor quark matter 
(as ms—> oo). For intermediate values of ms equation (12) is less 
than 4% different from the full expressions. This is because, as 
ms becomes dynamically important, the abundance of strange 
quarks decreases ; the strange quark mass is never important in 
the relationship between P and p. 

The quantities ms and ac are important in determining the 
relationship between p and nB, which in turn will determine the 
binding energy of the star. Furthermore, the small electron 
abundance depends sensitively on these parameters, because 
the electrons are only present to preserve overall charge neu- 
trality; in the limit nu = nd = ns, which occurs when ms—► 0, the 
electron abundance is zero. Neutrino cooling depends on the 
presence of electrons, and hence the neutrino emissivity 
depends sensitively on ac and ms. 

In summary, the properties of strange matter are determined 
by the physical quantities B, ac, and ms; the calculations also 
contain an (unphysical) dependence on the renormalization 
point pR (see Appendix). The equation of state P = P(p) is 
essentially determined by the vacuum energy density P; all 
other physical quantities of interest depend in addition on ac 

and ras. None of these quantities is well constrained by experi- 
ment. We will adopt representative values where appropriate, 
with the constraint that strange matter is absolutely stable (see 
FJ for a discussion of this issue). 

III. GLOBAL PROPERTIES OF STRANGE STARS 

Here we describe the mass-radius relation and local density 
of strange stars. These are obtained by integrating the 
Oppenheimer-Volkoff equations (see, e.g., Shapiro and Teu- 

4 We use units where c = h = k = 1, where c is the speed of light, h is 
Planck’s constant, and k is Boltzmann’s constant. Physical quantities will be 
expressed in units of MeV’s; where appropriate, c.g.s or astronomical units will 
also be used. 
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Fig. 1.—Density (p) vs. radius (r) for strange stars of mass (a) 0.53 M0, {b) 
1.4 M0, (c) 1.95 Mq, and (d) 1.99 M0. 

kolsky 1983) using the strange matter equation of state. We use 
equation (12) to describe the equation of state, for the reasons 
given in § II, except when we consider the relationship between 
stellar mass and total baryon number. Similar models have 
been presented by Witten (1984) and by Haensel, Zdunik, and 
Schaeffer (1985), so our discussion will be brief. 

In Figure 1 we plot p versus r for four representative models. 
The vacuum energy density5 £ = (145 MeV)4, which yields a 

5 B = (145 MeV)4 = 57 MeV fm“3; Haensel, Zdunik, and Schaeffer (1985) 
use B = 60 MeV fm “3 in their figures. 

density at the surface of the star p = 4£ = 4 x 1014 g cm-3. 
Note the very modest variation of p with r, especially evident 
in the low-mass model but apparent also in the limiting mass 
model; in contrast, a neutron star model has an envelope in 
which the density falls by many orders of magnitude. 

Using the same equation of state, we plot mass M versus 
central density pc in Figure 2. There is a vertical asymptote at 
pc = 4£, which describes a sequence of spheres of strange 
matter for which gravity is essentially irrelevant. As M grows 
larger, attraction due to gravity becomes significant and the 
central density rises. Eventually, at pc = 4.8 x 4£ = 2 x 1015 g 
cm-3, M = 2 M0, the curve M versus pc reaches a maximum; 
this maximum describes the last stable model along the 
sequence. 

The mass-radius relation for this sequence of models is 
plotted in Figure 3. This figure shows most clearly the impor- 
tant qualitative differences between neutron stars and strange 
stars. For much of the sequence, the strange stars obey 
M ocR3, since their densities are nearly uniform at p = AB. 
The curve differs markedly from M oc R3 when M > 1 M0 

because of gravity and becomes two-valued over a short range. 
In contrast, neutron stars have radii that decrease with increas- 
ing mass over much of their range. Additionally, there is a 
minimum mass for a neutron star, which occurs because at low 
density the formation of nuclei is favored; there is no minimum 
mass along the strange star sequence (until the baryon number 
declines below ~ 100). 

The striking qualitative differences between the mass-radius 
relationships of neutron stars and strange stars suggests that 
an astrophysical distinction between the two models may be 
possible. However, all masses that have been estimated for 
these objects, based on observations of binaries, are ~ 1.4 M0 
(Joss and Rappaport 1984). For this mass the strange star has 

Fig. 2.—Total mass (M) vs. central density (pc) for stable strange stars 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 
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Fig. 3.—Total mass (M) vs. radius {R) for stable strange stars 

essentially the same radius as a conventional neutron star of 
the same mass. 

We remarked in § II that the relationship between p and nB 
depended on ms and ac. This results in a dependence of the 
total mass of a strange star, for a given baryon number, on ac 
and ms. We illustrate this dependence in Figure 4 where we 
plot the mass of the star versus the total baryon number of the 
star, Nb, for two representative cases. The total binding energy 
of the star (with respect to dispersed hydrogen) is simply 
(Nb mH — M), where mH is the mass of a hydrogen atom. 

One observable of interest in the study of pulsars is the 
moment of inertia of the star. We plot the moment of inertia / 
versus M in Figure 5 for the same sequence of models. For the 

low-mass models, / is small compared to the moment of inertia 
of a neutron star. However, for stars with M æ 1.4 Ai©, the 
strange stars do not differ appreciably from neutron stars. 

Our results are in accord with those of Witten (1984) and of 
Haensel, Zdunik, and Schaeffer (1985). 

IV. THE SURFACE 

Perhaps the most interesting possibility that arises in the 
strange matter hypothesis is that large, exposed quark matter 
surfaces may exist in nature. However, as we show here, the 
existence of an exposed quark matter surface is not a necessary 
consequence of the hypothesis: a thin “crust” of “normal” 
material may cover the quark surface. We discuss these two 
possibilities separately. 

a) Bare Quark Matter Surfaces 
Since strange matter is stable at zero pressure, a strange star 

may have a surface where the density drops abruptly from 
p = 4£ æ 4 x 1014 g cm-3 to zero. The thickness of the 
“ quark surface ” will be of order 1 fm, which is a typical strong 
interaction length scale, and is also characteristic of the quark 
Fermi energies. 

The electrons are held to the quark matter electromag- 
netically, and hence there will be some thickness to the dis- 
tribution of electrons in the vicinity of the quark surface. We 
solve for this distribution using a simple Thomas-Fermi model. 
The charge carried by the quarks is taken to be uniform and 
ends sharply at the quark matter surface. The number density 
of electrons is given locally by the electron Fermi momentum 
Pe- 

Equilibrium assures that the electron chemical potential jn^ = 

Fig. 4.—Total mass (M) vs. total baryon number (NB) for strange stars for the cases (a) ms = 100 MeV, ac = 0.1 ;(b) ms = 300 MeV, ac = 0.6 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 
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M/M0 

Fig. 5.—Moment of inertia (/) vs. total mass (M) for strange stars 

— F + pe is constant,6 where V/e is the electrostatic potential. 
We know that, far outside the star, F —► 0 and ne —► 0, which 
establishes that = 0, implying pe = V. The local charge dis- 

6 This electron chemical potential, ju^, differs from ße discussed in § II 
because it refers to the electron distribution at z —> + oo. 

tribution generates the potential so Poisson’s equation reads : 

d2V 
dz2 ^3)> z < 0 

4a 
Stt 

F3 , z > 0 (14) 

where z is a space coordinate measuring height above the 
quark surface, a is the fine-structure constant, and Vq

3ßn2 is 
the quark charge density inside the quark matter. The bound- 
ary conditions for equation (14) are F-> Fq as z—► — oo, and 
F—>0 as z—> -boo. A straightforward integration shows that 
F = (3/4) Fg at z = 0. The solution to equation (14) with Vq = 
20 MeV is shown in Figure 6. 

The distribution of electrons extends several hundred fermis 
above the quark matter surface. This is the full thickness of the 
surface of the strange star. It is interesting to note that the 
electric field at the surface is ~5 x 1017 V cm-1, directed 
outward. 

The electrons are held to the surface by the enormous elec- 
tric field, and the quarks by the confinement force. The integ- 
rity of this surface is greater than for any other astrophysical 
object we know of. The Eddington limit to the luminosity of a 
self-gravitating object is irrelevant here. In principle, extremely 
high luminosities can be sustained at this surface, if heat can be 
supplied to it rapidly enough. Additionally, a rotating magne- 
tized star with an exposed quark surface will not supply the 
charged particles necessary to create a corotating magneto- 
sphere, as described first by Goldreich and Julian (1969); the 
electric field induced by the rotating magnetized star is small 
compared to the electric field at the surface. 

We must also establish whether or not the surface can 
radiate photons. This is a real issue since the expected tem- 
peratures of these stars are very low compared to the natural 
energies of the radiating particles in the quark matter. We 

Fig. 6.—Electrostatic potential (F) vs. height (z) near the surface of the strange star for two cases with Vq = 20 MeV :{a)Vc =0; {b) Vc = 10 MeV. The dashed line 
shows Vc vs. gap width (zG). The vertical line at z = 0 represents the surface of the quark matter. 
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investigate this problem by deriving the dispersion relation for 
long wavelength electromagnetic waves. Starting with 
Maxwell’s equations : 

4ne 
V ' E=— ~nd- ns) > 

V • fi = 0, 

^ n dE 4ne _ 
v X Ä - — = — (2nuvu - ndvd - nsvs), 

dB 
V x £■+—- = 0 , 

dt 

(15a) 

(15b) 

(15c) 

(15d) 

where E and B are the electric and magnetic fields, and r,- is the 
bulk velocity of quark flavor i (we neglect the electrons here). 
We consider transverse waves : 

E = Eex exp (ikz — icot), (16a) 

B — Bey exp (ikz — icot), (16b) 

Vi = Vf exp (ikz — icot) . (16c) 

which obey \ • E = 0. This means that 2nu — nd — ns = 0. If we 
consider the simple case where ms is small, the d and s quarks 
respond identically to the wave so nu = nd = ns, and further 
vd = vs. 

Equations (15d), (16a), and (16b) imply 

kE = coB , (17) 

and using equations ( 15c) and ( 16c) we can show that 

- « + œ)Eêx = x n^Vu* -Vi*^ ' ^18) 

To close the system of equations we need to compute the 
response of the quark fluid to the wave. Since the wave is 
transverse, nu = constant and there are no pressure forces, we 
have 

^19a) 

and 

Pd^= ~\ndeE ■ 

Equations (18) and (19) yield the dispersion relation 

cd2 = cop
2 + k2 , (20) 

where 

Sttoc nu
2 

3 Pu ’ 
(21) 

Equation (20) is the familiar dispersion relation for a plasma, 
where the “plasma frequency” is given by equation (21). The 
interpretation of these equations is well known; propaga- 
ting modes exist only for co > cop. An incoming photon with 
co < cop will (most likely) be reflected ; correspondingly, the 
surface is a very poor radiator for co < cop. This is a significant 
effect because for typical strange matter parameters, cop æ 19 
MeV. It is conceivable that the absence of observed thermal 
X-ray photons from these stars is a consequence of their being 
“ silver spheres ” in the X-ray, rather than blackbodies ! 

b) Thin Crusts 
The large outward-directed electric field described above 

exerts a force on a single ion that overwhelms the force of 
gravity. Clearly, this electric force is capable of supporting 
some “ normal ” material—i.e., ions and electrons. This layer of 
normal material may completely obscure the quark surface, 
with two obvious consequences. First, the inability of the 
quark surface to radiate soft photons is no longer important 
(this is like painting a silver surface with black paint). Second, 
this layer of normal material is subject to the Eddington limit, 
since it is bound to the star gravitationally. 

There is a limit to the amount of normal material that may 
be supported stably above the quark surface. This limit is set 
by the requirement that the ions not react with the strange 
matter. Since the crust is metastable—the energy of the star is 
lowered by converting the ions in the crust to strange matter— 
strong interactions between the ions at the base of the crust 
and the strange matter must be prevented if the crust is to 
persist. 

Ordinarily, strange matter does not react with ions because 
of the Coulomb barrier. As shown above, the height of this 
barrier is 3/4 the electrostatic potential deep inside the strange 
matter (see also Farhi and Jaffe 1985). There are two possible 
routes through this barrier. First, neutrons do not see the 
barrier and are readily absorbed. Any material which contains 
a component of free neutrons (not bound in nuclei), will not be 
stable in contact with strange matter. Recall that the crust of 
an ordinary neutron star consists of two distinct layers. The 
outer layer is a solid lattice of neutron-rich nuclei neutralized 
by electrons. The inner layer contains in addition a degenerate 
gas of free neutrons. The dividing line occurs at a density of 
roughly 4 x 1011 g cm-3 (Baym, Pethick, and Sutherland 
1971). In fact, most of the mass of the crust is in the inner layer. 
However, only the outer layer can exist in contact with the 
strange star surface. This outer layer represents the maximum 
crust a strange star can support. If this thin crust accretes 
material, the pressure at the base will increase until neutron 
drip occurs ; the free neutrons will be absorbed and the mass of 
the crust reduced until the neutron drips stops. 

Even if the crust contains no free neutrons, the pressure at 
the base of the layer may be sufficient to force the lowest ions 
into contact with the quark surface : the ions may be “ pushed ” 
through the Coulomb barrier. We now discuss the stability of 
the crust against this form of barrier penetration. 

The requirement of stability against ion-quark matter reac- 
tions is basically the requirement that a “gap” of sufficient 
width exists between the crust and the strange matter. This gap 
is held open by the electric field discussed above: the electric 
field is a consequence of the high Fermi pressure of the elec- 
trons in and near the strange matter. We describe this gap by 
generalizing the Thomas-Fermi model to include three layers 
as follows: 

cPy 
dz , H 

z < 0 

0 < z < zG (22) 

Zr. < Z 

where Vc is the electron Fermi momentum near the base of the 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

6A
pJ

. 
. .

31
0.

 .
2 

61
A

 

STRANGE STARS 267 No. 1, 1986 

crust: this term represents the positive charge density of the 
ions in the crust. Meaningful solutions to equation (22) occur 
only if Fc < Vq. 

A more stringent limit is obtained by computing zG, the 
width of the gap. Equation (22) has the boundary conditions 
F—» Kg as z—> —oo, K—► as z—► +oo, and K, dV/dz both 
continuous at z = 0 and at z = zG. A more restrictive bound- 
ary condition is obtained by examining the balance of forces 
on the ions at the base of the crust. Each ion feels a downward 
gravitational force and an upward electrical force which cancel 
each other. The gravitational forces are tiny compared to elec- 
trical fields in the gap so we have the condition dV/dz = 0 for 
z > zG which implies K(zG) = Vc. This condition fixes zG, once 
Vq and Vc are specified. The gap width is determined entirely by 
the electron Fermi energy in the strange matter and the pres- 
sure at the base of the crust. 

A representative solution with Vq = 20 MeV and = 10 
MeV is shown in Figure 6; the gap width zG = 328 fm. This 
figure shows all the important features of the solution dis- 
cussed here. 

The potential difference across the gap is 

3 IK4 

m-K=-vq + --^-vc, (23) 

and an approximate expression for the gap width, valid as 
ÀK = Kg — 1^ approaches zero, is 

ZG 
3 fn\1/2 AK 

2 W K2 ' 
(24) 

At this point we make a simple estimate of the rate at which 
ions penetrate the gap. The transmission coefficient T for an 
ion of energy E incident on the gap at z = zG is given, in the 
standard WKB approximation, by 

T = exp 
Çz = ZG 

Jz = 0 
\k\dz , (25) 

where 

k = t2Amp{E - ZV)y12 , (26) 

and A is the baryon number, and Z is the atomic number of the 
ions at the base of the crust. We estimate the argument t of the 
exponential in equation (25) in the limit of AK Kg. Taking 
E = ZVC (a. good approximation), we find 

3 
T~ 2 

3n ZAmn 

K 
or 

'-“(I 

1/2 A V/2 

118 
20 Mevy/y AK Y 

(27a) 

The frequency with which an ion at the base of the crust 
“ strikes ” the gap is of order the oscillation frequency of the ion 
about its lattice position. This frequency is <1 MeV, which 
translates to ~5 x 1038 strikes in 1010 yr. The transmission 
probability given by equations (25) and (27) is ~ 10“104 if 
Kg = 20 MeV, AK = 2 MeV, A = 118 and Z = 36; this shows 
that a modest gap will serve to prevent strong interactions 
between the crust and the strange matter. 

There is one inconsistency in our analysis that we should 
point out here. If Vc = 10 MeV, ^ = 118, Z = 36, the lattice 

spacing in the crust is ~200 fm, comparable to the width of the 
gap, zG. We have assumed in our analysis that the ionic charges 
are smoothly distributed; this is a shaky approximation if 
zG < the lattice spacing. However, the general features of our 
analysis are unlikely to be altered by a more careful model, and 
certainly we may conclude that if zG > 200 fm and AK > 10 
MeV, the crust is secure against strong interactions with the 
strange matter. 

The stability of the crust with respect to strong interactions 
with the strange matter is determined by neutron drip or the 
absence of a gap. If Kg > 25 MeV, where ~25 MeV is the 
electron chemical potential at which neutron drip occurs 
(Baym, Pethick, and Sutherland 1971), the mass of the crust is 
limited by neutron drip. In this case, the maximum mass crust 
which can be supported by a 1.4 M0 core is 5 x 1028 g, which 
is very small compared to the total mass of the crust on a 
conventional neutron star. If Kg < 25 MeV, then the gap width 
determines the stability of the crust and the crust will be even 
thinner. 

c) Bare or Not? 
At this stage we can reach no firm conclusion regarding this 

question. Clearly, the properties of the two types of surface are 
very different, and the history of the star must be considered. 

The universe is a dirty environment and a bare strange star 
may readily accrete some ambient material. If the accreting 
particles follow ballistic trajectories, their kinetic energies at 
the surface will ~ 100 MeV, and they will penetrate the 
Coulomb barrier and react with the strange matter. However, 
if the material accretes as a fluid, much of this 100 MeV is 
radiated away as heat during the infall. Fluid accretion is likely 
to result in the growth of a crust. For this reason we may firmly 
conclude that all X-ray pulsars have crusts. 

The situation with radio pulsars is harder to assess. The 
rotating magnetosphere is likely to prevent fluid accretion. 
However, a crust may form during the supernova explosion. 
This issue remains unresolved. 

V. COOLING OF STRANGE STARS 

Strange stars will cool more rapidly than neutron stars (in 
the absence of a pion condensate) because quark matter is a 
more effective emitter of neutrinos than neutron matter 
(Iwamoto 1980; Burrows 1980; Duncan, Shapiro, and Was- 
serman 1983, hereafter DSW). This is advantageous because of 
the apparent contradiction between cooling curves for neutron 
stars and X-ray observations of supernovae remnants (Glen 
and Sutherland 1980; Van Riper and Lamb 1981; Yakovlev 
and Urpin 1981 ; Nomoto and Tsuruta 1982). 

Quark matter cools via reactions (l)-(4); reactions (1) and (2) 
dominate because they are proportional to cos2 6C æ 0.974, 
where 0C is the Cabbibo angle. Reactions (3) and (4) are pro- 
portional to sin2 0C % 0.026. However, the strange quarks play 
an important role, discussed by DSW, in that the chemical 
equilibrium among the three quark flavors determines the elec- 
tron abundance. Since the neutrino emissivity vanishes if 
ne —► 0, there is the possibility that the neutrino emissivity will 
vanish. DSW concluded that ne can approach zero at finite 
density, and that if ms ä 100 MeV, this would occur at den- 
sities comparable to those in neutron stars; substantial 
reduction in the neutrino emissivity is possible. 

We do not obtain such dramatic reduction of emissivity in 
our calculations, because our choice of renormalization point 
is different. The reason for our choice is given in the Appendix. 
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We have calculated neutrino emissivities due to reactions 
(l)-(4) using the prescription of Iwamoto (1980). The emissivity 
is plotted versus density p in Figure 7. Note that the emissivity 
depends sensitively on ms, as noted by DSW. However, the 
dependence of the emissivity on density is less marked than in 
DSW, for reasons given in the Appendix. 

The surface temperature of the star will depend on the pre- 
sence or absence of a crust. For a bare quark star, the surface 
temperature is closer to the core temperature than for a 
neutron star (J. Applegate, private communication). In con- 
strast, a strange star with a crust has the same relationship 
between central temperature and surface temperature as a 
neutron star; this is because the temperature drop occurs only 
in the outer crust, at densities p< 10logcm~3 (see, e.g., Hern- 
quist and Applegate 1984). 

VI. THE CONVERSION OF NEUTRON STARS TO STRANGE STARS 

Strange matter is, by hypothesis, the true ground state of the 
hadrons. Nevertheless, ordinary nuclei are extremely unlikely 
to convert spontaneously into strange matter. The reason for 
this is that strange matter is stable in bulk but not for very low 
baryon number. The critical baryon number, Ac9 above which 
strange matter is stable in difficult to determine but is probably 
between 10 and 100. For a nucleus to convert to strange matter 
it must convert roughly Ac up and down quarks to strange 
quarks. (Creating a single strange quark turns a proton or 
neutron into a lambda which has a higher mass.) This requires 
Ac simultaneous weak interactions and amplitudes for these 
processes are negligibly small if Ac > 10. 

There is a similar issue facing us here. By hypothesis, all 
neutron stars are metastable with repect to strange stars with 
the same baryon number; this means that a neutron star 

redùces its mass by converting to strange matter. This state- 
ment may be expressed locally by stating that the Gibbs poten- 
tial for strange matter is lower than the Gibbs potential for 
neutron matter. However, a neutron star can only make this 
transition by creating ~ 1057 strange quarks, each involving a 
weak interaction. 

This conversion is much more likely in a neutron star than 
in an atomic nucleus. The central pressures may favor the 
production of two-flavor quark matter, which can then readily 
convert to strange matter. If the pressure is high enough, 
lambdas will appear; these may cluster to form seeds of strange 
matter. The neutron star is born hot, and “ burning ” of neu- 
trons to strange matter may occur. Cosmic-ray neutrinos may 
induce conversion, and finally, any small lumps of strange 
matter which enters a neutron star will grow by absorbing 
neutrons and convert the whole star. 

Unfortunately, we are unable to show that any of these pro- 
cesses will necessarily convert a neutron star during its lifetime. 
The question of whether all neutron stars convert remains 
open. In this section, we discuss the five possible routes men- 
tioned above but other routes may exist. 

a) Conversion Via Two-Flavor Quark Matter 

It has long been speculated that two or three flavor quark 
matter may form in the centers of neutron stars (Collins and 
Perry 1975). In particular, there may be a first-order phase 
transition between neutron matter and two-flavor quark 
matter. The two-flavor quark matter will then, on a weak inter- 
action time scale, convert to the more stable three-flavor quark 
matter. The advantage of using two-flavor quark matter as an 
intermediate step is that the conversion to strange matter does 

Fig. 7.—Neutrino emissivity (ev) versus density (p) at T = 109 K « 0.1 MeV; for (a) ac = 0.1, (b) olc = 0.2, (c) ac = 0.4, {d) ac = 0.6; and (I) ms = 100 MeV, (II) 
ms = 300 MeV. The two vertical dashed lines bracket the density range for a 1.4 M0 star; the vertical dotted line is the maximum possible central density for a 
strange star. 
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not require the simultaneous occurrence of many weak inter- 
actions in a small volume. 

The issues are best described in terms of the Gibbs potential 
per baryon, which is shown schematically in Figure 8. In 
Figure Sa, there is a first-order phase transition between 
neutron matter and two-flavor quark matter at point T. Only 
the lower of the two curves is physically accessible. As shown 
in Figure 8a, the phase transition occurs at a pressure lower 
than the central pressure of the star. 

The two-flavor quark matter can lower its Gibbs potential 
to the strange matter level by the conversion of up and down 
quarks to strange quarks. All of the two-flavor matter converts 
to strange matter. Now the strange core can accrete neutrons 
at its interface with the neutron matter. The rate of this accre- 
tion is limited by the weak interaction rate at the interface and 
may be very slow (compared to the natural speed, the speed of 
light). Nevertheless, the entire star converts to strange matter, 
with the exception (possibly) of the crust. 

Alternatively, the situation may be described by Figure Sb 
(case b). There is no transition to two-flavor quark matter in 
the star. The transition to strange matter is strongly inhibited. 

It is difficult to determine which of the possibilities is correct. 
Attempts to decide this issue suffer from the uncertainties 
inherent in QCD calculations in addition to the uncertainties 
in our understanding of nuclear matter. Baym and Chin (1976) 
favored case b, but considered only one value of B and occ 
together with some representative nuclear matter equations of 
state. Keister and Kislinger (1976) and Chapline and Nauen- 
berg (1977a, b) favored case b, but in these calculations it was 
assumed that quark matter could not be the ground state of 
QCD ! It is clear that no firm decision on this issue is possible 
at present (see Baym and Pethick 1979, and FJ for some dis- 
cussion of the difficulties involved). 

b) Clustering of Lambdas 
At sufficiently high densities A’s appear in neutron matter. If 

the neutrons are treated as a noninteracting gas of fermions, 

the A’s appear when the neutron Fermi momentum pn
2 > 

m(A)2 — m(n)2 = (601 MeV)2, which corresponds to a density 
p = 1.6 x 1015 g cm-3. The abundance of A’s grows with 
density, and n(A)/n(n) æ 0.14 when p = 2.5 x 1015 g cm-3. 
More sophisticated model calculations which include inter- 
actions between the particles produce similar abundances of 
A’s (e.g., Bethe and Johnson 1974). 

These densities are achieved in the cores of massive (M >1.5 
M0) neutron stars (see, e.g., Baym and Pethick 1979). When a 
significant number density of A’s exists, small lumps of strange 
matter may form directly, without any weak interactions. Once 
a small lump has formed it will grow and convert the whole 
star to strange matter. 

c) Burning Neutron Matter into Strange Matter 
Neutron stars are born hot, with temperatures in the range 

~ 10-20 MeV. Thermal A’s are present at these temperatures, 
and small, energetically unfavored “ strangelets ” may be 
assembled from the thermal A’s. If enough of these interme- 
diate, low baryon number objects can be formed, it may be 
possible to create a few small, stable seeds of strange matter. 
These seeds will then grow without bound and convert the star 
to strange matter. This process is analogous to burning in 
chemistry where intermediate, high-energy states act as an acti- 
vation barrier against the reaction. 

The intermediate states to which we refer are the 
“strangelets with very small baryon number” discussed in FJ. 
The masses of these states [more precisely, m(A)/A, the mass 
divided by the baryon number] are shown for two different 
calculation schemes in their Figures 4 and 6. The differences 
between the two calculations sometimes exceed 300 MeV per 
baryon, yielding an estimate of the uncertainties involved. 

Consider, for example, neutron matter with density 
p = 2 x 1014 g cm-3 which means that the neutron chemical 
potential p(n) = 989 MeV. Since A —> nn° is an allowed decay 
for the A, and g(n°) = 0, then p(A) = p(n). Similarly, since low 
baryon number strangelets are built up out of A’s and some rc’s, 

Fig. 8.—Schematic plots of the Gibbs potential per baryon vs. pressure (P) for neutron matter («), two-flavor quark matter (2) and strange matter (3). The dashed 
line at P = Pc corresponds to the central density of the star. In case (a) a first-order phase transition occurs at T ; there is no such transition in case (b). 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

6A
pJ

. 
. .

31
0.

 .
2 

61
A

 

270 ALCOCK, FARHI, AND OLINTO Vol. 310 

we have fi(A) = Aß(n), where ¡¿(A) is the chemical potential of a 
strangelet with baryon number A. We may estimate the 
number density of strangelets with baryon number A using this 
chemical potential. This analysis only makes sense for 
jj(A) < m(A% where m(A) is the mass of strangelet A ; this means 
that we are dealing with objects which have low abundances. 
Furthermore, since we are using chemical equilibrium to 
compute these abundances, the estimates will be valid as long 
as m(A) — fi(A) is an increasing function of A. There will be 
some Ab for which m(Ab) — n(Ab) reaches a maximum, which is 
the crest of the activation barrier against the burning. In other 
words, we are working on the “ uphill ” portion of the barrier. 

The equilibrium number densities of these species are: 

n(A) = g(A, T) 
m(A)T 

2n 

3/2 
exp 

Afi(n) — m(A) 
(27) 

where g(A, T) is the internal partition function of a strangelet 
of baryon number A. We can estimate the rate per unit volume 
at which strangelets of baryon number A + 1 are being made by 
using the collision rates per unit volume of A’s and strangelets 
of baryon number A. This rate is r = tt(A)n(A)<<n/>, where <<7i/> 
is the standard average of cross section and relative velocity. 
The rate is: 

r ~ 2t^° + m{A)]1/2TV2 

xexp lU + IMn) - m(A) - m(A)l ^ 

where a0 is the geometric cross section for the collision event, 
and we have optimistically assumed that all collisions result in 
growth. 

The uncertainty in the burning rate results entirely from the 
uncertainty in the argument of the exponential in equation 
(28). For instance, with g(n) = 989 MeV, T = 20 MeV, A = 10, 
and m(A)/A = 1050 MeV, the argument of the exponential is 
— 36.8, and the burning rate is ~4 x 1045 cm-3 s_1; this rate 
would assure burning to strange matter. However, if instead 
T = 10 MeV and m(A)/A — 1400 MeV, but the other param- 
eters are unchanged, the argument of the exponential is 
— 423.6 and the burning rate is ~10-124 cm-3 s-1, in which 
case no burning occurs. 

In brief, the rate of burning of neutron matter to strange 
matter is sensitively dependent on the masses of the strangelets 
with low baryon number and on the temperature. Precise esti- 
mates of these masses are not likely to become available soon. 
In consequence, this rate is, for practical purposes, somewhere 
between “ extremely large ” and “ vanishingly small.” 

d) Neutrino Sparking 
Cosmic rays of energy up to ~ 1014 MeV have been reported 

(see Hillas 1984 for a recent review). A proton of this energy, 
scattering off an interstellar proton, may produce a neutrino of 
comparable energy. These neutrinos may penetrate a neutron 
star, and suffer an inelastic collision. The result is that one 
quark is suddenly given a huge amount of energy, plausibly in 
excessif 1012 MeV! 

The quark rapidly shares this energy by interacting strongly 
with its neighbors. A small, very hot bag of thermal quarks and 
gluons is produced. Among the thermal particles are ss pairs. 
This hot sack expands and incorporates baryons, and the tem- 
perature declines. When the QCD phase transition is reached 

at T æ 200 MeV, the baryon number of the sack is ~ 1010. As 
the sack cools further, ordinary nucleons condense out of the 
quark gluon plasma. At this point, the outcome is determined 
by the fluctuations in the distribution of s and s quarks. A local 
enhancement of s quarks will favor the local production of 
strange matter. Elsewhere the excess of s quarks will result in 
the production of K+’s and K°’s. 

The outcome of a neutrino spark is difficult to assess, but it 
seems likely that it could lead to strange matter production. 

e) Seeding from Outside 
If there are small lumps of strange matter in the Galaxy, one 

may fall into a neutron star. If the lump survives the impact 
with the surface of the star and reaches the neutron-rich inte- 
rior, it will grow and convert the whole star.7 A lump which 
enters a star will come to rest after it has swept out a mass of 
order its own mass. For a lump to easily pass through the full 
pre-neutron drip crust of a 1.4 M0 neutron star, it needs a 
radius of order 10 cm corresponding to a baryon number of 
~ 1042. A smaller lump will only come to rest completely if the 
solid lattice of the crust has enough structural strength to 
support the lump. A rough calculation, comparing the gravita- 
tional force per unit area exerted by the lump to yield stress of 
the lattice, indicates that a lump with A < 1039 could be sup- 
ported by the crust. Only lumps with A > 1039 would pen- 
etrate the crust, and such large lumps would certainly not be 
destroyed during their passage through the crust. 

During the first month in the life of a neutron star its crust is 
molten and would not support a lump which is more dense 
than itself. In this phase any lump which survives the collision 
with the star would convert the star. It is not necessary for the 
incoming lump to survive intact; as long as one fragment of 
strange matter survives, the star will convert. 

VII. PHENOMENOLOGY OF STRANGE STARS 

The principal differences between strange stars and neutron 
stars that have been described above are as follows: (1) the 
mass-radius relations of the two types of object are very differ- 
ent (except that for 1.4 M0 objects the radii are essentially the 
same); (2) the surfaces of strange stars may be exposed quark 
matter, which can support extremely high fluxes, but which is 
poor emitter of soft photons; (3) if a strange star has a crust, it 
is much less massive than the crust of an ordinary neutron star; 
(4) the microscopic contituents of strange matter are charged 
particles, while most of the microscopic constituents of neutron 
stars (i.e., neutrons) are electrically neutral. We now discuss 
some of the phenomenological consequences of these differ- 
ences. 

a) Radio Pulsars 
The general properties of radio pulsars are described equally 

well by strange star models and by neutron star models. This is 
because the global properties of strange stars and neutron stars 
of mass ~ 1.4 M0 are essentially identical. Should evidence of 
very low mass radio pulsars become available, a distinction 
between the two pictures may arise. However, the radio pulsar 
with the best determined mass is PSR 1913 + 16, for which 
M = 1.41 + 0.01 M0 (Weisberg and Taylor 1984); at present 
there is no evidence for any mass much lower than this. 

A strange star, being comprised of a degenerate gas of 
charged fermions, will have a large electric conductivity. It will 

7 This may be described as the Ice-9 process (Vonnegut 1963). 
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be able to preserve a primodial magnetic field readily. In this 
regard also the strange star describes radio pulsars as well as 
the neutron star. 

A strange star with a bare surface will not supply charged 
particles to form a rotating, charged magnetosphere, as first 
described by Goldreich and Julian (1969). The reason for this is 
that the electric field in the surface, ~5 x 1017Vcm-1,is large 
compared to the maximum electric field induced by the rotat- 
ing magnetic dipole, which is certainly much less than 3 x 1015 

V cm-1 for a 1013 G magnetic field. Pulsar emission mecha- 
nisms which depend on the stellar surface as a source of plasma 
will not work if there is a bare quark surface. However, the 
conventional picture remains if the strange star has a crust. 

One of the more fascinating phenomena observed in radio 
pulsars are glitches, or sudden increases in the rotation veloc- 
ity, now reported in six objects. The first attempts to explain 
this phenomena involved star quakes of the crust which result 
in a sudden decrease in the star’s moment of inertia along with 
the associated increase in angular speed. This picture is not 
computable with our thin crust strange stars because the 
moment of inertia of the crust is far too low. A more promising 
theory for the glitch phenomenon which involves the behavior 
of superfluid neutrons deep in the crust (at densities greater 
than the neutron drip density) has been developed (see, e.g., the 
review of Pines and Alpar 1985). An important element of this 
theory is the ability of the superfluid neutrons to move freely 
across magnetic field lines. Since there are no electrically 
neutral particles in a strange star (neither in the core nor the 
crust), we have no analog of this model for strange stars. If the 
superfluid neutron model withstands continued observational 
testing, and if no satisfactory model for pulsar glitches is devel- 
oped for strange stars, it may be possible to argue against the 
strange matter hypothesis on astrophysical grounds. 

b) X-Ray Pulsars 
Since the properties of X-ray pulsars are determined by the 

mass, radius, and magnetic field configurations of the collapsed 
star, and further since all X-ray pulsars appear to have masses 
in the range 1-2 M0 (Joss and Rappaport 1984), strange stars 
and neutron stars are indistinguishable. We remind the reader 
that there is extra energy available from the conversion of 
atomic matter to strange matter, ~ 20 MeV per baryon : this is 
much less than the ~100 MeV per baryon that is released 
gravitationally during the accretion process and has no dis- 
cernible effect. 

c) X-Ray Bursters 
A convincing model for the X-ray burst phenomenon involv- 

ing unstable helium burning on the surface of an accreting 
neutron star has been carefully worked out in recent years 
(Woosley and Taam 1976; Maraschi and Cavaliere 1977; Joss 
1978; Taam and Picklum 1979; Joss and Li 1980; Ayasli and 
Joss 1982; Hanawa and Sugimota 1982; Starrfield et al 1982; 
Wallace, Woosley, and Weaver 1982). Helium burning releases 
<1 MeV per baryon, but its consequences are observable 
because the burning occurs in brief, widely separated “ flashes,” 
while the ~ 100 MeV per baryon of accretion energy is released 
continuously. 

The ~20 MeV of energy that comes from burning atomic 

matter to strange matter is released below the nuclear flash 
layer. Much of this energy is carried off by neutrinos, but a 
considerable amount of local heating will occur. This will alter 
the temperature profile in the helium burning layer; the conse- 
quences of this alteration for the helium flash model have not 
been explored. 

d) Collisions of Strange Stars 
Binary systems such as PSR 1913 + 16 have a lifetime 

against gravitational radiation that is short compared to the 
age of the universe. Inevitably the two collapsed stars will 
strike each other and merge. Since the maximum mass of a 
strange star is 2 M0, and the combined mass of the two objects 
in PSR 1913 +16 is 2.8 M0, the result is a rotating black hole. 

Some material may be thrown out of the system during the 
final collapse; Clark and Eardley (1977) suggested that as 
much as 0.1 M0 may be ejected. The ejected strange matter 
will coalesce into a relatively small number of spheres of 
strange matter, which then follow ballistic trajectories. This is a 
potential source of lumps of strange matter with mass small 
compared to a solar mass (Witten 1984). 

It is interesting to point out that the fate of ejected neutron 
matter is quite different, because neutron matter is unstable at 
zero pressure. Neutron matter which is ejected from a collaps- 
ing system will condense into a spectrum of neutron rich, 
heavy nuclei. It has been suggested that this process is the 
principal source of neutron-rich, heavy nuclei (Lattimer and 
Schramm 1976). 

e) Very High Luminosity Events 
The ability of strange stars to maintain extremely high 

luminosities for periods longer than the dynamical time scale 
of the star (~1 ms) suggests that the famous 1979 March 5 
y-ray transient (Cline ei al 1980; Evans et al. 1980) is a mani- 
festation of a hot, bare quark surface. The problem, of course, 
is how to heat the surface sufficiently quickly to reproduce the 
light curve. Work is underway on this problem. 

VIII. CONCLUSIONS 

We have described the properties of strange stars and con- 
trasted them with neutron stars. Strange stars of 1.4 M0 are in 
most respects like neutron stars; low-mass strange stars have 
smaller radii than low-mass neutron stars. There is no lower 
mass limit for strange stars. 

Strange stars may have an exposed quark surface, which can 
radiate enormous fluxes if very hot, but which is ineffective at 
radiating soft photons. Alternatively, strange stars may have a 
thin crust of atomic matter, which is supported electrostati- 
cally. 

Strange stars cool primarily by neutrino emission. 
The interesting question “Can neutron stars exist if the 

strange matter hypothesis is correct ?” unfortunately cannot be 
answered with certainty. We suspect that no neutron stars 
exist. More work on this problem is needed. 

We have benefited from useful conversations with J. Apple- 
gate, A. DeRujula, J. Harvey, R. Jaffe, P. Joss, L. McLerran, J. 
Negele, and P. Romanelli. 
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The thermodynamic potential for the u, d, and s quarks, and for the electrons, are 
4 / 2a, 
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The only mass included in these expressions is the strange quark mass ms; the masses of the u and d quarks, and of the electrons, 
are very small compared to the chemical potential and may be neglected. These potentials are evaluated at zero temperature since 
for all cases of interest the temperatures involved are small compared to the chemical potentials (// » 300 MeV); finite temperature 
effects such as heat capacity and neutrino emissivity may be treated perturbatively (e.g., § V). 

The potentials are computed to first order in the strong coupling constant ac. We have chosen the renormalization point = 313 
MeV, as in FJ. DSW chose the renormalization point pR = ms. As discussed in the text, the strange quark mass and the first-order 
strong interactions are essentially irrelevant in the determination of the global structure of a strange star, as long as strange matter is 
stable at zero pressure. However, the neutrino emissivity does depend on these interactions ; unfortunately, the calculated emissivity 
may depend sensitively on the choice of the renormalization point pÄ. 

The choice of renormalization point does not affect the calculation of physical observables if the calculation is correctly carried 
out to all orders of ac. This calculation is impracticable, and the perturbation expansion is customarily carried out to first order in 
ac. (Higher order calculations have been carried out by Freedman and McLerran 1978 and Baluni 1978b.) The truncation of the 
expansion induces a nonphysical dependence of the observables on pR. In order to minimize the impact of this dependence, it is wise 
to choose such that this nonphysical dependence is weak; if the physical observables only weakly depend on pR, one may have 
confidence in the result. For these reasons, we prefer FJ’s choice (pR = 313 MeV, which is always close to the natural energy scale) to 
DSW’s choice (pR = ms, which induces a strong dependence on pR if ms æ 100 MeV). The impact of this issue is discussed in § V. 
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