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ABSTRACT 
It is shown that a magnetic-pressure-dominated, supersonic jet which expands (or contracts) in response to 

variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it 
relaxes to a minimum-energy configuration. In order for a continuous dissipation to take place, the effective 
reconnection time must be a fraction € < 1 of the expansion time. For a force-free jet (with a magnetic field 
satisfying \ x B = ¡xB) in the axisymmetric (m = 0) minimum-energy state, the energy per unit length that is 
dissipated on the characteristic reconnection time scale (assuming conservation of magnetic helicity) is given 
by (l/1152R2)(T//47r)2e2(/iR)6 (where R is the jet radius and T1 is the axial magnetic flux), to lowest order in e 
and piR. On the basis of this result, it is concluded that magnetic energy dissipation could, in principle, power 
the observed synchrotron emission in extragalactic radio jets such as NGC 6251. However, just as in the case 
of analogous coronal heating models, this mechanism is only viable if the reconnection time is substantially 
shorter than the nominal resistive tearing time in the jet. 
Subject headings: galaxies: jets — hydromagnetics — radiation mechanisms 

I. INTRODUCTION 

It has long been recognized that the synchrotron-radiating plasma in extragalactic radio jets must undergo continuous particle 
reacceleration in order to overcome the adiabatic and radiative losses sustained by the expanding flow (see, e.g., the review by 
Begelman, Blandford, and Rees 1984). The energy for the acceleration process has customarily been assumed to come from the bulk 
kinetic motion of the jet. Specifically, it has been suggested that a fraction of the bulk kinetic energy might be tapped through surface 
shear instabilities which could lead to a turbulent energy cascade in the jet and to the formation of internal shocks (e.g., Ferrari, 
Trussoni, and Zaninetti 1979; Smarr, Norman, and Winkler 1984). It has also been argued that the dissipation of the energy derived 
in this way could lead to efficient particle acceleration through the Fermi mechanism or by means of resonant interactions with 
MHD waves (e.g., Bicknell and Melrose 1982; Eilek and Henriksen 1984). 

Recently, however, an alternative energy source for particle acceleration has been proposed in the context of the force-free-field 
model for magnetized supersonic jets (Königl and Choudhuri 1985; hereafter Paper I). According to this model, once a jet becomes 
magnetic-pressure dominated, it tends to settle down to that equilibrium field configuration which has the lowest magnetic energy 
for the given magnetic helicity. This unique configuration can be expressed as a superposition of the first two modes (m = 0 and 
m = 1) in the Chandrasekhar-Kendall representation of linear force-free fields (Taylor 1974). Any element of the jet which propa- 
gates through a region of varying external pressure has to undergo continuous field redistribution in order to satisfy the pressure- 
balance condition at the boundary while maintaining a minimum-energy configuration. It was suggested that this rearrangement 
process might be accompanied by field-line reconnection, and that the energy liberated in this fashion could then power the 
synchrotron emission from the jet. 

The energy-dissipation scheme just described bears a strong analogy to certain recent proposals regarding the heating mechanism 
in the solar corona (Norman and Heyvaerts 1983; Heyvaerts and Priest 1984; Browning and Priest 1986). According to these 
models, the energy for the heating is derived from photospheric fluid motions which build up stresses within magnetic flux tubes that 
extend into the corona; some of this energy can then be released in the magnetically dominated region above the photosphere as the 
flux tubes relax to the lowest accessible energy state that is compatible with conservation of magnetic helicity. In much the same 
vein, one can envision the magnetic field lines in a jet being braided and twisted at the base of the flow (which is in fact, how they, 
acquire a nonvanishing helicity) and subsequently releasing the accumulated stresses through reconnection at large distances from 
the source. The main difference between these two scenarios lies in the fact that the field relaxation process in a jet is triggered by the 
changes in the external pressure which confines the super-Alfvénic flow, whereas in the solar case it is initiated by the footpoint 
motions of the quasistatic flux tubes. As a consequence of this, the evolution of a jet can be modeled as a steady state process in 
which the magnetic helicity per unit length remains constant along the flow (see Paper I), whereas the simplest footpoint motions 
considered in the coronal heating models generally involve a change in the magnetic helicity of the associated flux tubes. The basic 
principle underlying the energy dissipation mechanism remains, however, the same in both cases. 
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; Heyvaerts and Priest (1984) have investigated the conditions under which the field-redistribution process could give rise to 
^ magnetic energy dissipation. Although they have carried out this study in the context of their coronal heating model, their results 
§ are applicable also to the case of force-free jets. They found that the expected evolution depends essentially on the magnitude of one 
S parameter, e = tJtv, the ratio of the characteristic field reconnection time to the characteristic dynamical time (where corre- 
2 sponds to the duration of a radial expansion or contraction v in the case of a jet and to the photospheric footpoint transit time in 

the case of a solar flux tube). For € ^ 1 (the “instantaneous relaxation” limit), the magnetic energy dissipation is negligible since 
there is no buildup of magnetic stresses, and the field can maintain a linear force-free configuration at all times. This fact had already 
been noted in connection with certain plasma confinement schemes (see Bevir, Gimblett, and Miller 1985), and is given a general 
proof in Browning and Priest (1986) and Berger (1985). For e > 1, a buildup of a nonlinear force-free field configuration is predicted, 
with an eventual release of the stored magnetic stresses in an explosive, flare-like event (see Sturrock and Uchida 1981). Only for 
6 < 1 is it possible for magnetic energy to be dissipated continuously at a nonnegligible rate. 

In the original discussion of the field relaxation scenario in jets given in Paper I, the energy dissipation rate was calculated in the 
limit € > 0, but an algebraic error led to a finite (instead of identically vanishing) result for the m = 1 mode (see Königl and 
Choudhuri 1986). Turner (1986) has recently given an explicit calculation of the dissipation rate in this limit, and concluded that no 
magnetic energy is available for powering the synchrotron radiation. In this paper we present a new derivation of the expected 
dissipation rate in the more interesting limit e < 1. In § II we formulate the problem and give an analytic derivation of the 
dissipation rate for the axisymmetric (m = 0) minimum-energy field configuration. In § III we discuss our result and conclude that 
the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets. 

II. MAGNETIC ENERGY DISSIPATION FOR THE m = 0 MODE 
In calculating the expected magnetic energy dissipation in a super-Alfvénic, force-free jet, we adopt the “mixing time” approach 

first employed by Heyvaerts and Priest (1984) in their coronal-heating model. In this approximation it is assumed that a cylindrical 
element of the jet, which initially has an m = 0 field configuration and a radius Rh attains its final minimum-energy state at a radius 
^ in two steps. In the first step, the element is deformed from Æ; to Rf under ideal-MHD conditions, resulting in a nonlinear 
force-free field configuration. In the second step, that field configuration is allowed to relax to the linear (m = 0) force-free state 
corresponding to the new radius Rwith the difference in energies being dissipated away. This process is assumed to occur on the 
reconnection time scale Tr, which is shorter than the deformation time scale tv. 

The adopted “mixing time” approximation is illustrated in Figure 1 with the help of phase-space diagrams. Figure la (Fig. lb) 
depicts an expansion (contraction) of the jet from some initial value of the volume per unit length to a final value Vf that occurs in 
response to a change in the confining pressure pe from pt to pj. In the “instantaneous relaxation” limit, the jet remains in the m = 0 
state (represented by the Taylor path ATB), and the pedV work done by the external medium (corresponding to the area under 
ATB) is, as we have seen in Paper I, exactly equal to the change AlFm=0 in the internal magnetic energy per unit length. Fore < 1, 
we approximate the real path of the jet (represented schematically by ARB) with the two-legged trajectory ACB. In the first leg 
(AIC), the jet undergoes an ideal-MHD deformation to the final volume Vf, whereas in the second leg (CB) it relaxes to the m = 0 
state corresponding to that volume. In the case of expansion (contraction), the pedV work done on (by) the external medium along 
the path AIC (which is equal to the change |AIÎ^deal| in the magnitude of the internal magnetic energy per unit length during the 
ideal-MHD phase) is smaller (larger) than the corresponding work along the Taylor-relaxed path ATB (see the Appendix for an 
explicit demonstration of this fact). Hence, for both expansion and contraction, the energy difference AJFdis = AJ^deal — AWm = 0 
(corresponding to the area enclosed by ATBCIA) is a positive quantity, representing the magnetic energy available for dissipation. 

In what follows, we first summarize the relevant features of the m = 0 field configuration presented in Paper I, and then calculate, 
in turn, AJ^deal, AJFm = 0, and the expected dissipation rate corresponding to AJFdis. An alternative derivation of AIFdis, based on a 
direct application of the pe dV diagrams introduced in Figure 1, is given in the Appendix. 

a) The Minimum-Energy Configuration 
As discussed in Paper I, the minimum-energy equilibrium configuration corresponds to a locally linear force-free field, i.e., to a 

field satisfying \ x B = pB, with p locally a constant. As long as the product pR (where R is the radius of the locally cylindrical jet) 
is smaller than 3.11, the minimum-energy state is axisymmetric (m = 0 mode). The field components are then given (in cylindrical 
coordinates r, 0, z) by 

Br = 0 , Bd = B0J ¿pr) , Bz = B0 J0(pr) , (1) 

where J0 and Jx are Bessel functions. The associated specific magnetic energy JFm=0 (energy per unit length) is 

w /yy \tiRV0
2(nR) + AVR)] - J(i(iiR)JMR) 

m = 0 \4n) R2 { J^inR) 

where 

X¥ = 27zBqR2 

pR 
J^fiR) (3) 

is the conserved axial magnetic flux. The other quantity besides T which remains constant along the jet is the specific magnetic 
helicity K, given by 

(ZY i i^[Jo2(^) + JAßRn - 2J0(/tR)J¡(ßR) 
W) R I J^ißR) 
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Fig. Ib 
Fig. 1. Schematic illustration of the “mixing time” approximation in the pe — V plane (where pe is the confining external pressure and V is the volume per unit 

length of the jet). The diagrams in (a) and {b) correspond, respectively, to expansion and contraction of the jet from some initial minimum-energy configuration i to a 
final equilibrium state/ The segments labeled “T,” “I,” and “R” represent, respectively, the m = 0 Taylor state, the ideal-MHD configuration, and the expected 
trajectory of a real jet. The arrows indicate the path along the trajectory used in this approximation. 
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; b) Calculation of AWideal 

^ The evolution of the field under an ideal-MHD deformation can be treated by the same method that has originally been 
g developed to study the general properties of an isolated, twisted flux tube (see Parker 1979, Chap. 9). We describe the radial 
^ deformation of the jet by the mapping r—► S(r), which must satisfy the boundary conditions <SCRf) = Rf and 5(0) = 0; this mapping 
^ may represent either an expansion or a contraction. The corresponding variation in the magnetic field structure is deduced from the 

requirement that both the axial and the azimuthal fluxes be conserved during the deformation; i.e., 

BZ'i(r)rdr = BZ'ftS(r)-]S(r)dS, (5a) 

BeAr)dr = Bo,f[s(r)¥S , (5b) 
where the subscripts i and / refer to the initial and final states, respectively. Since we are dealing with axisymmetric field configu- 
rations, it is convenient to introduce the generating function for force-free fields F(r) = Be

2(r) + Bz
2(r), from which the individual field 

components can be derived by using 

Be
2 = 

1 dF 
2rdr’ 

B2 = F + 
1 dF 
2 V dr 

(6) 

(e.g., Parker 1979). By combining equations (5) and (6), we obtain the following pair of coupled first-order differential equations for 
S(r) and F/r): 

Fi(r) + 2 r 

dr 

(7a) 

(7b) 

where the initial generating function is given by 

JAniRÙ 
Vo2(ßir) + J12(ßi '■)] (8) 

(see eqs. [1] and [3]). 
According to the basic assumption underlying this calculation, the elemental step under consideration occurs on a time scale 
= lelTt;> during which the radius of the jet changes by an amount ~Tr(R/Tv) = eF- Since we only consider the case |e| < 1, we shall 

treat e as a small expansion parameter; in this formulation e can be either positive or negative, depending on whether R increases or 
decreases. We thus write 

5(r) = r + eT(r)-he2C/(r) + 0(€3), (9a) 

Ff(r) = Fi(r) + eM(r) + e2N(r) + 0(e3). (9b) 

The reason for expanding Ff(r) to second order in e is that the lowest order terms which appear in the expression for AJTdis (eq. [Í7] 
below) are 0(e2). Physically, this is because we are considering perturbations of linear force-free equilibria which represent 
extremum (i.e.,jninimum) energy states (see Browning and Priest 1986 for a formal proof). Another way of understanding this fact is 
to note that AlTdis must be a nonnegative quantity regardless of whether the jet expands (e > 0) or contracts (e < 0), so that it cannot 
scale linearly with e. It is, however, unnecessary to include the 0(e2) terms in the expression for 5(r) (eq. [9a]) when calculating A lTdis 
to that same order in € (see discussion in Browning and Priest 1986); nevertheless, we retain the function U(r) in our solution for the 
sake of self-consistency. 

We now substitute equation (9) into equation (7), expand to 0(e2), and solve for the functions T, L\ M, and N. In order to obtain a 
solution in closed form, we perform a series expansion of the function T(x) = J0

2(x) + Ji2(x) in the expression for Ffr) (eq. [8]) in 
terms of the parameter x = ^ r, which gives 

Y(x) = 1 - i x2 + x* - ^ x6 + 0(x8). (10) 

This expansion is plotted in Figure 2 together with the exact expression for 7(x). As can be seen from this figure, the truncated series 
provides an excellent approximation to the original function for small values of x, with the first perceptible deviation occurring only 
around x = 1.6. Substituting this approximation to F^r) into equation (7), we obtain, after some algebra, 

S = H 1 + e 1 -U — x2 -I-   X4 —   
8 192 4608 

x6 + 0(x8) + e 2llx2
+i 

16 48 3072 
x6 + 0(x8) + 0(e3) (11a) 

AF = Ff — F, = (t-YÍ 1 + -fxi2 + X* + X<6 

Rf\4nJ 192 4608 

+ e' 10 — ^ x2 — x4 + 7- x6 + 0(x8) 
2 32 64 + 0(e3». (11b) 
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Fig. 2.—The function Y(x) = J0

2(x) + J¡2(x) (solid curve), which represents the generating function for the m = 0 mode. Also shown are the series expansion of 
this function to sixth order in x (dashed curve) and the difference between the exact and the approximate representations (dotted curve). 

where the terms in Xt = represent the expansion of Xi
2IJ1

1(X^ in equation (8). The change in the specific magnetic energy 
associated with this ideal deformation is given by 

AHknl = —■ 
■R/ 

kFrdr + 
Ï'F‘ 

rdr 

Using equations (8), (10), and (11), together with the boundary condition S(R^ = Rf, we find 

= J?©VÍ2 + Ï^ + ¿+ + + '{3 + 1X‘+T2X' + TT2 x‘ + + °'eî 

(12) 

c) Calculation of AWm = 0 

The change in the specific magnetic energy of the m = 0 field configuration between the initial and the final states can be obtained 
from equation (2). We again use equation (11a) to calculate Rf = S(Ri)- To evaluate ßf, we employ the assumed constancy of the 
specific magnetic helicity K during the deformation. Expanding equation (4) in powers of fiR, we get 

1 + ißR)2 + ^ (fiRf + 0((i6R6) 
]• 

from which fifis found by iteration : 

ftf = /i;j 1 - eß X,.2 + ¿ + 0(Zf
6)] 

Substituting into the expanded form of equation (2), 

- A;
2 - — V,4 + 0(V,6)J + 0(e 

,4 + 3Ô72 {flR)6 + °ifl8R8) 

(13) 

(14) 

(15) 

we obtain 

jL®2 

Rt2 Utt) 
^o=—2(-^)i-e 2 + r V + —J x,* + o(x,*)] + « 3+iv+é2í'4+í¿82;‘‘+ow,)] + 0<,,)}' 

(16) 
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d) The Energy Dissipation Rate 
The specific magnetic energy which is dissipated in the characteristic “ reconnection time ” can now be found by subtracting 

equation (16) from equation (12). To lowest order in e and Xh it is given by 

1152R,-2 \4kJ ; 18432 (17) 

where the last equality follows from equation (3). As anticipated (see § llb\ this expression is quadratic in e. It is noteworthy that all 
powers of Xi lower than the sixth cancel out. In view of the comparison presented in Figure 2, we expect this expression to be fairly 
accurate even for Xt of order unity. Furthermore, since the next higher order term in e can be written simply by replacing e2 in 
equation (17) with e3 (see eq. [A7] in the Appendix), this equation should provide a good estimate of the dissipated energy so long as 
|6| is not too close to 1. 

To estimate the specific dissipation rate Pm, we divide AJFdis by the nominal relaxation time Tr. For a collimated jet moving with 
speed v in the z-direction, Tr can be approximated by €Ri/v(dR/dz)R=Rr Hence 

* e(pR)6 2 dR 
Pm = 7 BrfvR — m 18432 0 dz 

(18) 

where the subscript i has now been dropped. Equation (18) provides a direct illustration of the fact that the dissipated power 
vanishes in the limit e—► 0 (see § I). The coefficient e()uR)6/18432 in this equation represents the “dissipation efficiency” of the m = 0 
field configuration, and its derivation completes the calculation that we have set out to perform in this section. 

in. DISCUSSION 
In order to assess the astrophysical implications of the result derived in the preceding section, we evaluate equation (18) for the 

parameters appropriate to the inner region of the extended radio jet NGC 6251. (The application of the force-free equilibrium model 
to this source has been considered in detail in Paper I.) Substituting B0 = 2 x 10~5 G, t; = 8 x 108 cm s-1, R = 3 x 1021 cm, and 
dR/dz = 0.05 (see Perley, Bridle, and Willis 1984), we obtain Pm = 2.6 x 1015€(iuR)6 ergs s_ 1 cm“ ^ For 6 = 1 and pR — 2 (which are 
roughly the maximum permissible values for which eq. [8] remains applicable), we get a specific dissipation rate -2 x 1017 ergs s“1 

cm“1, which is comparable to the mean radio luminosity per unit length measured in this region. Although the radio luminosity 
provides only a lower bound to the total dissipated power, we note that the adopted values of v and B are also only lower limits to 
the actual magnitudes of these parameters in the jet. Furthermore, although the choice e = 1 was designed to optimize our estimate, 
even a lower value of € could be more than compensated for by the strong dependence of Pm on pR. In fact, in view of the apparent 
nonaxisymmetric field configuration in the jet (which in this model indicates the presence of the m = 1 mode), we expect that the 
actual value of pR in the region under consideration is 3.11 (see § lia). Even though our estimate of Pm does not apply in that regime 
(in particular, the evolution of a nonaxisymmetric field configuration cannot be described by the simple generating-function method 
adopted in § II), it is not unreasonable to expect that the dissipation rate continues to grow as pR increases and the field becomes 
progressively more sheared. We thus conclude that magnetic energy dissipation accompanying the field relaxation in a source like 
NGC 6251 could, in principle, power the observed synchrotron emission from the jet. We emphasize, in response to a question 
raised by Turner (1986), that the final field configuration envisioned in the present scheme is precisely the one that was applied in 
Paper I to the modeling of the various nonaxisymmetric radio features in NGC 6251. In this connection, we specifically distinguish 
between the protracted (but complete) relaxation process invoked in our calculation and the incomplete relaxation process con- 
sidered, for example, by Turner and Christiansen (1981), for which the existence of a nonaxisymmetric, minimum-energy final state 
has not been explicitly demonstrated. We also note that the expected strong dependence of Pm on pR may be relevant to the 
interpretation of the radio “ gaps ” observed near the origins of certain extended sources, since pR should increase with distance 
along the jet if its initial value is less than 3.11 (see Fig. 3 in Paper I; an alternative interpretation of the “gaps” is suggested in the 
next paragraph). 

The major uncertainty in our model is associated with the value of 6, which depends on the magnitude of the characteristic 
reconnection time Tr. This time scale may be expected to be of the order of the growth time tí of the resistive tearing-mode 
instability. In the linear regime of this instability, t, ~ (TdtA)1/2, where Td is the Ohmic dissipation time and ta is the Alfvén crossing 
time (both corresponding to the width of the jet). Under astrophysical circumstances (in either jets or the solar corona), the value of 
Tt calculated in this way is very much larger than the relevant dynamical time scale (whereas the proposed relaxation scheme 
requires Tr < tv). In addressing this problem, Heyvaerts and Priest (1984) and Browning and Priest (1986) suggested that, in the 
nonlinear regime, reconnection could proceed on a time scale as short as ~ 10ta. If this is indeed the minimum value of xr in a jet, 
then the condition e < 1 implies that the Alfvén Mach number of the flow cannot exceed ^(lOdR/dz)“1. Laboratory plasma 
confinement experiments (e.g., Wojtowicz et al 1985; Wright et al 1985) could conceivably help to identify the relevant relaxation 
time scale. We note that the m = 0 field configuration becomes (linearly) unstable to resistive tearing only after pR reaches 3.11 
(Gibson and Whiteman 1968). Thus, if this instability dominates the field reconnection process in the jet, then the presence of 
“ gaps ” could perhaps be attributed to the fact that the outflow first becomes strongly dissipative at the turn-on points of the m = 1 
mode. 

Another general question pertaining to our estimate concerns the efficiency with which the dissipated magnetic energy can be 
converted into synchrotron radiation. In the shear-dissipation schemes that had previously been suggested for powering the 
synchrotron emission (see § I), it was often argued that particle acceleration (leading to nonthermal radiation) provides the main 
damping mechanism for the induced turbulence (e.g., Bicknell and Melrose 1982; Eilek and Henriksen 1984). The same dissipation 
processes (including Fermi acceleration and resonant wave-particle interactions) are likely to operate also in the case of a relaxing 
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: force-free jet, since the formation of minimum-energy states is apparently directly related to the development of MHD turbulence 

^ (e.g., Montgomery, Turner, and Vahala 1978). Furthermore, in the magnetic-dissipation model, particle acceleration could also be 
è effected by DC electric fields in the field-line reconnection sites associated with the tearing-mode instability. (This mechanism is, in 
S fact, thought to play an important role in the acceleration of fast particles in solar flares; e.g., Heyvaerts 1981.) It is thus conceivable 
^ that a significant fraction of the magnetic energy released in the jet during the field relaxation process could be transformed into 

nonthermal radiation. 
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Atmospheric Research. This research was supported in part by NSF grants AST 84-51727 and AST 85-03093, and NASA grant 
NGL 14-001-001 at Chicago. 

APPENDIX 

AN ALTERNATIVE DERIVATION OF AWdis 

In this Appendix, the quantity AiFdis (eq. [17]) is derived directly from a consideration of the work done by the jet in pushing 
against the^confining external medium, without separately calculating Al^deal and AlFm=0 as in § II. For this purpose, we make use 
of the pedV diagrams introduced in Figure 1. The present calculation, in turn, serves to justify the relative positions of the various 
phase-space trajectories depicted in this figure. 

As we pointed out at the beginning of § II, the change in the internal magnetic energy per unit length during both an ideal-MHD 
deformation (labeled by “I” in Fig. 1) and a minimum-energy deformation (labeled by “T” in that figure) is exactly equal to the 
pedV work done by the external medium under conditions of pressure equilibrium at the jet boundary. For this reason, one can 
express the energy difference A Wdis = A i^deal — A JFm=0 in the form 

CŸf 
= 

Ÿi 
ÍPm = o(V) - PidealWW 

-r 
[Pm^oW — PidealC^)]^^ (Al) 

where pm=0 and pideal are, respectively, the boundary pressure values along the ATB and AIC trajectories in Figure 1, and where the 
other symbols have the same meaning as in § II. Note that equation (Al) is valid for both an expansion (Fig. la) and a contraction 
(Fig. Ih) of the jet. 

The values of R between Rt. and Rf can be conveniently labeled by introducing a parameter e' which is zero at Rt and € at Rf, 
where e is the expansion parameter that appears in equation (9). Treating e' as the new independent variable in equation (Al), we 
can rewrite it as 

AJFdis = 2ti 
Jo 

dR 
[Pm=o(e') - Pideai(e')]K(e') ^7 d€', 

where, by equation (11a), 

R(e') - 1 + e'| 1 + - X¡2 + — X* 
4608 

Xf + 0(X 
hx‘+iix‘ 3072 

Xf + 0(X¡S) 

(A2) 

+ 0(e'3) > . (A3) 

The functions pidcal(e') and pm=0(e')are obtained by noting that they are equal to I/Sti times the corresponding generating functions, 
Ff and Fh evaluated at the boundary. Using equations (8), (10), and (1 lb) (with r replaced by R[e']) as well as equation (A3), we get 

Pideali^ ) 
2 /^V 

- nRf \47t 1 + IS + ïi* x‘+ W)+ {-4 - 5 ¿ - Si + °«*>] 

+ e'2^10 + ^ ^ 2f,4 + ^ X¡6 + 0(X,.8)J + 0(e': (A4) 

Similarly, using equations (8) and (10) (with replaced by ßf[e'~\ and with Rt and r replaced by K[e']), and substituting for nf{e') 
from equation (14) (in which e is replaced by e') and for P(e') from equation (A3), we obtain 

Pm = o(e ) ■ O I1 + T?2 *'2 + léó X‘6 + 0(Z‘8) + €' -4--^ 
¿Z‘4-4Z-6 + íW) 

+ e,: 
l0+74x‘2 + l9L6x‘+imx‘+O{x*) + 0(e'3) 

Equations (A4) and (A5) can be combined to give 

Pm = o(<0 - P¡deal(e') = 
'E 

USlnR^ \4n 
l+^e' )Xi

6 + OiX*) + Oie'X?) + 0(€'3), 

(A5) 

(A6) 
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: which shows that pm=0 exceeds pldeal in the case of expansion (e' > 0), and vice versa for contraction (e' < 0). Equation (A6) thus 
^ confirms that the relative positions of the ATB and AIC trajectories in Figures la and 16 are as drawn. It also substantiates the 
S' claim, made in § II, that the work done by an expanding jet in pushing against the external medium is smaller along the path AIC 
I than along ATB, with the opposite conclusion applying to the work done on a contracting jet along these trajectories. 
^ Using equations (A3) and (A6), we can perform the integral in equation (A2) to obtain 

AlTdis = j^-2 ^)2€2[d + e)Xi
6 + 0(Y,8) + 0(cY,8)] + 0(c4) . (A7) 

Equation (A7) agrees with equation (17) to 0(e2) and also gives explicitly the e3 correction term. The reason why this term could be 
self-consistently derived with the present method is that both R(ef) (eq. [A3]) and pm=0(€') ~ Pideai(e ) (ecl- [A6]), which appear as 
factors in the integrand of equation (A2), have been expanded to 0(€f2), so the integral (over e) of their product is manifestly 
accurate to 0(e3). (The factor dR^/de' in the integrand of eq. [A2] is 0(1) if only 0(X¿

6) terms are retained.) By contrast, the fact 
that AWdis can be calculated to 0(e3) even though the basic variables are expanded only to 0(e2) is not readily recognized when the 
method of § II is used. 
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