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ABSTRACT 
We study the nature of the velocity field around large clusters in Q = 1 cosmological n-body simulations 

that have initial conditions which produce large-scale structure reasonably consistent with observations. Our 
purpose is to test the accuracy of the spherical infall models commonly used to measure the mass of the Virgo 
supercluster and to characterize the nature of the deviations from simple spherical infall. The measured infall 
velocity systematically deviates in the mean by less than 20% for shells of mean overdensity <5 < 3, but only 
when the infall is averaged over An sr. Large asphericities in the flow field are very common, even in the outer 
regions of the clusters. These asphericities result from the substantial subclustering seen on small scales in all 
the models, as well as the aspherical nature of the exterior mass distribution. The use of a spherical model for 
the Virgocentric flow as a measure of Q is shown to be subject to large systematic and random errors. A 
much better test is to use a local criterion, noting that local peculiar velocity tracks the direction and ampli- 
tude of the local peculiar gravitational force extremely well. This relationship, which must occur in linear 
theory, can be surprisingly well extended into the nonlinear perturbations of the developing clusters. 
Subject headings: cosmology — galaxies: clustering — numerical methods 

I. INTRODUCTION 

The study of the flowfield around the Virgo Cluster is a 
unique opportunity to measure the mass of a system on a scale 
much larger than is possible using virial theorem analyses 
around more distant clusters. This occurs, of course, because 
Virgo is sufficiently close for us to measure distances indepen- 
dently of redshift to precision adequate to decide whether a 
particular galaxy is in front of or behind the cluster center, and 
by how much. A review of measurements of the flowfield 
around Virgo has been given by Davis and Peebles (1983). New 
results include the work of Aaronson et al. (1986) and de Vau- 
couleurs and Peters (1984). 

The applications of the large-scale measurement are to test 
the validity of the assumption that galaxies trace the mass 
distribution, to determine whether mass-to-light ratios are 
independent of distance beyond megaparsec scales, and 
whether estimates of Q on smaller scales are reliable measures 
of the true cosmological density. Many models of the forma- 
tion of structure have suggested that the universe contains 
substantial material unclustered on small scales, or on any 
scales (Davis et al. 1981; Turner, Steigman, and Kraus 1984; 
Gelmini, Schramm, and Valle 1984; Olive, Seckel, and Vish- 
niac 1985; Suto, Kodama, and Sato 1985; Efstathiou 1985). 
Still other recent models suggest that galaxies are “biased” 
tracers of mass and are more clustered than the underlying 
matter (Kaiser 1984; Bardeen et al. 1985; Davis et al. 1985; 
Peacock and Heavens 1985). These models generally predict 
that the mass-to-light ratio of gravitating systems should 
increase with measurement scale. An accurate measurement of 
mass on the scale of Virgo (15 Mpc) is therefore the best avail- 
able test of these conjectures. 

The test of Virgocentric flow has two aspects. One assumes 
that galaxies do trace the mass on this large scale and then one 
computes the observed galaxy overdensity toward Virgo, char- 

acterizing it as either a mean overdensity ô within the sphere 
centered on Virgo with our Virgocentric radius (Silk 1974, 
1977; Peebles 1980), or by direct computation of the aniso- 
tropy of the gravitational force of all the galaxies in a complete 
sample (Davis and Huchra 1982). This measure of the gravita- 
tional force is then compared to a peculiar velocity vp9 deter- 
mined by anisotropy measures of the local Hubble flow. In a 
spherical model, vp should be the average radial infall velocity 
or departure from Hubble flow at a given radius r and would 
be determined from some measure of the local shear field. In 
the spherical model the infall velocity is well approximated 
both in the linear and nonlinear zones (for <5 < 10) (Meiksin 
1985 ;Yahil 1985) by 

Hr 

Q0-6 

(i) 

The exact form is given by parametric solution of the Fried- 
mann equation. The difficulty is that Virgo is not spherical but 
is rather flattened, with our Galaxy located in the plane of 
flattening, the supergalactic plane. The above formula for a 
spherical model is therefore only a rough guide. One indication 
of a possible problem is that the microwave dipole anisotropy, 
which measures our velocity relative to the comoving frame, 
has an amplitude of 600 ± 50 km s-1, directed 45° from the 
Virgo Cluster (Fixsen, Cheng, and Wilkinson 1983; Lubin, 
Epstein, and Smoot 1983). Perhaps the microwave anisotropy 
has been largely generated by some more distant mass inho- 
mogeneity, but if it is dominated by Virgo, then the substantial 
transverse velocity must have been generated by some non- 
spherical effect. The transverse velocity cannot simply rep- 
resent a random initial velocity because initial transverse 
velocities decay adiabatically in an expanding universe. 
Another discrepancy arises in the component of peculiar veloc- 
ity directed toward Virgo. The observational studies that focus 
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on the shear field of galaxies mostly within the local super- 
cluster (cz < 3000 km s-1) are best fitted by an infall velocity 
of 200-300 km s_1, compared to 420 ± 30 km s-1 given by 
the microwave component directed toward Virgo (Davis and 
Peebles 1983). Some observational studies that measure the 
shear field at larger distance, beyond the influence of the local 
supercluster, yield peculiar velocities consistent with the micro- 
wave anisotropy (Aaronson et al 1986; Tonry and Davis 1981, 
but see Dressier 1984). The usual interpretation is that the 
Local Supercluster is itself moving at 300-450 km s_1 in the 
direction given by the vector difference of the microwave veloc- 
ity and our infall velocity to Virgo (Tammann and Sandage 
1985). The veracity of this conclusion is dependent on the accu- 
racy and absence of systematic biases of the spherical model fit 
to the local shear field. 

Alternative models to address this and other worries have 
been suggested for Virgocentric flow, such as a homogeneous 
ellipsoid (White and Silk 1979), a flattened homogeneous 
pancake (Szalay and Silk 1983), a linear but nonspherical 
cluster (Davis and Huchra 1982), and allowance for large-scale 
density fluctuations beyond Virgo (Vittorio and Silk 1985). 
Each of these models is mathematically tractable, but none is a 
particularly better approximation to Virgo than the simple 
spherical model. The Virgo galaxy distribution is quite cen- 
trally condensed and is nonlinear, since ô at our radius is 
2.0 ± 0.2 (Davis and Huchra 1982). Furthermore, the exterior 
density field is usually ignored in these models, i.e., assumed to 
be spherically symmetric, an approximation that again is made 
for mathematical convenience but which may obviate an accu- 
rate mass determination and lead to systematic errors. Testing 
the validity of these models observationally is extremely diffi- 
cult. 

It is apparent therefore that n-body techniques might lend 
some guidance to the nature of the expected flow field around 
Virgo and other clusters. Large cosmological n-body simula- 
tions with random phase initial conditions will naturally 
produce large clusters with substantial substructure and no 
particular symmetry surrounded by other clusters and voids. 
Of course all 6 degrees of freedom are known for each particle 
in a simulation, so it is a simple matter to test the accuracy of 
the spherical infall model, or of any other model. This paper 
discusses such comparisons based on a number of n-body 
simulations run with two different simulation codes, and with 
several different classes of initial conditions similar to that 
expected in a universe dominated by cold dark matter. Most of 
the results to be discussed below are independent of the initial 
conditions. In short, we do find a number of systematic errors 
that affect Virgocentric flow analyses based on spherical 
models, but there is an effective remedy that should be used in 
future studies. Previous but less detailed comparisons of cluster 
velocity fields to n-body models have been made by Melott 
(1983) and by Bushouse et al. (1985). They studied models with 
random Poisson initial conditions and with initial conditions 
appropriate to a universe dominated by massive neutrinos ; our 
conclusions based on different initial conditions are entirely 
consistent with theirs. 

The plan of this paper is as follows: in § II we discuss the 
n-body models and the selection of clusters from these models. 
Section III describes the tests applied to the data, including 
searches for extensions of the simple spherical model. The 
mean radial velocity follows the simple spherical model for 
Ö <2 but is systematically low for higher overdensities. We 
describe expansions of the velocity and force fields in terms of 

spherical harmonics to the quadrupole order. Substantial 
dipole and quadrupole distortions in velocity are very 
common, both in the radial and transverse direction. The asp- 
hericity of the interior field is found to be poorly correlated 
with either the asphericity of the velocity or force fields, indi- 
cating the importance of the exterior mass distribution. Section 
IV describes the comparison of the force field with the velocity 
field, which in every cluster is excellent. Section V then applies 
the lessons learned to clusters in the real universe. Section VI is 
a summary of our conclusions. 

II. THE MODELS 

We have used for this project models run with a (PM) code 
written by J. V. V. and with a (PPPM) code of Efstathiou et al 
(1985). All models were evolved with 32,768 particles using an 
Einstein-de Sitter Q = 1 cosmology. The PM code has the 
capability of higher resolution along one axis and is optimized 
for study of pancake collapse (Villumsen and Gunn 1985). 
However, we did not use this feature for this project. We select- 
ed 14 clusters from five different simulations of the PM code. 
The initial conditions were in all cases appropriate to a cold 
dark matter initial spectrum with random initial phases, which 
effectively was a power law of slope —1.5 over the dynamic 
range available in the simulation (Blumenthal and Primack 
1983). In three of the runs from which we extracted nine clus- 
ters the fundamental wave was amplified along the Z axis 
above the rms expected value; in two runs the enhancement 
was a factor of 3; in the other run, the enhancement was a 
factor of 2. We term these models anisotropic, since the strong- 
est clusters tended to form in the X-Y plane. The remaining 
runs are all isotropic as there is no preferred orientation of the 
large-scale structure. Five clusters were selected from two 
PPPM runs with random phase, power-law initial conditions 
\ôk\

2cckn, n = —1 and —2. These runs are taken from a 
project to study self-similarity behavior in gravitational clus- 
tering (Frenck et al 1986). 

The effective force softening length in the PM models is 
L/64, where L is the size of the box. In the PPPM models the 
softening length is less than L/213, and these models are there- 
fore much preferred for following details of structures collaps- 
ing in comoving coordinates (Efstathiou et al 1985). In the 
present situation the cluster size is much larger than the force- 
softening length in either model, and therefore the PM models 
can be used to address the limited questions of this paper. The 
PPPM models, with their stronger short-range forces, exhibit 
larger amplitude small-scale velocity fields, but the large-scale 
behaviors are virtually indistinguishable, as shown below. 
Since it is well known that Q æ 0.1 if galaxies accurately trace 
the mass on the scale size of clusters, all of our Q = 1 models 
are too “ hot ” to directly compare to the galaxy distribution. It 
is therefore not too useful to compare the mean infall velocity 
to the RMS velocity at a given distance. Rather we shall con- 
centrate below on the low-order harmonics of the large-scale 
flow fields around clusters since these components are least 
affected by the necessary artificiality in the models of placing 
all the mass in the points. 

All models except the anisotropic models behave in a nearly 
self-similar fashion so the choice of output time is not impor- 
tant. The typical expansion factor chosen for cluster exami- 
nation was 4, which allowed clusters with a substantial number 
of points (>1000) to form. The clusters were selected to match 
the properties of the Virgo cluster, namely that the <5 = 2 
radius should occur at 2-3r0, where r0 is defined by the correl- 
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ation function, ^(r0) = 1. In this way, we can conveniently keep 
the comoving length of the simulation cube to be L = 1. A 
further selection criterion was that the cluster should be iso- 
lated from other large clusters, as Virgo appears to be. In this 
goal we were never entirely successful; neighboring smaller 
clusters usually appear within the <S = 1 radius. This probably 
makes the models even more realistic since Virgo itself has 
several close but smaller neighbors such as the Ursa Major 
clouds, the Leo clouds, the Virgo II clouds and the N5866, 
N5676 clouds, all of which are subunits to the Virgo Super- 
cluster (de Vaucouleurs 1975). 

The clusters were chosen by visual inspection of the entire 
mass distribution of each model. The centers of the clusters 
were found by iterating the center of mass inside successively 
smaller spheres centered on the cluster. The particles in the 
simulations were then ordered by increasing distance from the 
cluster center and the mean interior overdensities Ô were com- 
puted. 

1 + S(r) = 
M(r) 

(4n/3)pbr
3 ’ (2) 

where M(r) is the mass inside a sphere of radius r centered on 
the cluster, and pb is the background density of the universe. 
We bin the particles in shells of increasing overdensity. The 
shells are spaced evenly in log Ô so that the outermost shell is 
at <5 = 1. For the_ innermost shell we include all particles inside 
the overdensity <5^12. We use either eight or 16 shells depend- 
ing on the richness of the clusters. 

III. ANALYSIS 

a) Pictures 
Figures la-ld shows snapshots of the simulations at the 

output times used for the cluster analysis. Figures la and lb 
show orthogonal projections of an n = — 2 model after an 
expansion of 2.5, and Figures 1c and Id are of the n = —1 
model after an expansion factor of 4.0. The correlation length 
r0 is 0.09 for the n = —2 model and 0.04 for the n = —1 model, 
whereas the correlation slopes are approximately y = 1.8 for 
the n = —2 model, and y = 2.1 for the n = — 1 model (Frenk et 
al 1986). Note in both models that there is considerable power 
on large scales and that none of the large clusters is very iso- 
lated, This is typical of all the models. The n = —2 models 
have very pronounced filamentary structure on large scales. 
The n = — 1 models are less connected in their large-scale 
structure, and the individual clusters are therefore more iso- 
lated (Frenk et al 1986). The CDM models have structure 
intermediate between these two cases. In all cases the degree of 
subclustering present is substantial on all scales. The n = —2 
model appears more filamentary than observations, while the 
n = —1 model is perhaps less filamentary than the data. The 
range of velocity structure seen in these two models should 
therefore bracket that expected in the galaxy distribution. 

We will look in detail at one large cluster from each of these 
models. Their centers are located at (x0, y0, z0) = (0.05, 0.26, 
0.82) and (0.29, 0.59, 0.49), respectively. Figures 2a-2d shows 
two projections of an area centered on each cluster with coor- 
dinates centered about each cluster, with the same projections 
as in Figure 1. For each particle we show the projection of the 
proper velocity 

dx 
^proper = ^ + 0 ^ ’ 

where x are the comoving coordinates and a is the expansion 
factor. The scaling of the velocity vectors is arbitrary and was 
chosen for legibility. The eight circles are the overdensity con- 
tours defined by <5f = 2(I_ 1)/2 . 

Even the most cursory examination of Figure 2 shows that 
the velocity field is far from being purely radial and spherically 
symmetric. The velocity field of the first cluster is very strongly 
disturbed by the extensive subclustering. The two clusters in 
the lower right region of Figure 2a are tidally distorting the 
flow between their position and the central, more massive 
cluster, and a filament connecting the clusters is in the process 
of formation. Transverse velocities directed toward smaller 
subclusters are apparent as for example on the left sides of 
Figures 2a and 2b. From the vantage point of the cluster 
center, the flow pattern has dipole asymmetry directed toward 
the ( + x, — y) direction. Other higher order distortions are also 
apparent. 

The cluster drawn from the n = — 1 model is considerably 
more isolated, but even here the flow pattern is substantially 
distorted. Again from the vantage of the cluster center, there 
appears to be a dipole pattern directed toward the ( + x, +z) 
direction. Furthermore there are numerous subclumps within 
the <5 = 2 surface which locally distort the flow pattern. The 
deviations from a spherical infall will be further elaborated 
below. 

b) Spherically Averaged Infall 
In spite of the substantial asphericity in the flow fields, one 

could still hope that the spherical model is applicable after 
averaging over the surface of the sphere. In Figures 3a-3c the 
solid curves plot the infall velocity expected in the spherical 
model as a function of overdensity ô and Q. The filled squares 
in each plot give the mean (averaged over solid angle; see 
below) dimensionless radial peculiar velocity Vr/Hr averaged 
over the nine anisotropic, the five isotropic CDM clusters, and 
the five clusters taken from the PPPM runs, respectively. We 
can average the clusters because the dimensionless infall veloc- 
ity in spherical theory depends only on Q and ö. The error bars 
give the standard deviation between the various clusters. The 
plots are essentially unchanged if we instead plot the mass- 
averaged infall of all particles on a shell. 

The mean infall velocity for <5 < 2 is characteristic for flow 
expected in spherical models with Q = 0.9 ± 0.1, while for 2 < 
ô <3 the measured density would be Q = 0.8 ±0.15. These 
results are consistent with those found by Bushouse et al 
(1985) and Lee, Hoffman, and Ftaclas (1986). As Ô increases the 
discrepancy becomes more pronounced. We thus see that 
VJHr measures Q quite well for small Ô despite the fact that 
these models are not spherically symmetric. Conversely, 
however, in no cluster can we expect to apply the spherical 
model to regions with ô > 4. The spherical model is therefore 
reasonable for Vr/Hr < 1 where the collapse has not yet turned 
around but rapidly becomes poor at smaller radii. 

The isotropic and anisotropic CDM models (Figs. 3a and 
3b) are essentially identical in their deviation from the spherical 
model, but the models evolved with the PPPM code show 
slightly more deviation from the spherical model expectations 
for all values of Ô. The scatter between clusters is large, 
however, so this deviation may not be significant, but it might 
be expected because the PPPM models have stronger short- 
range forces so that the developing cluster can more readily 
transfer power from large- to small-scale degrees of freedom 
and become “ previrialized ” before it would have fully col- 
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Fig. 1.—Cartesian projections of the PPPM simulations. Panels (a) and (b) are of the n = —2 model; (c) and (d) are of the n = — 1 model. Panels (a) and (c) show 

A"-7 projections, and (h) and (d) show X-Z projections. 

lapsed according to spherical theory. Vr measures the mean- 
ordered “kinetic energy” of infall, but much of a particle’s 
kinetic energy may be in the form of random “ thermal energy ” 
well before the cluster fully collapses. 

c) Deviations from Spherical Infall 
To illustrate the nature of the deviations from spherical 

infall, we plot in Figures 4a-4d the same clusters shown in 
Figure 2. Now, however, the vectors plotted for each point are 
the projected velocities after subtracting out the predictions of 
the spherical model. For this prediction we use the exact 
formula, not the analytic approximation, equation (1). All velo- 

city are now relative to the mean of these points interior to 
the <5 = 11.3 surface. The scaling of the length of the velocity 
vectors is identical to that used in Figure 2. The points interior 
to the ^ = 11.3 surface are denoted as heavy solid points. The 
small-scale virialized motion around each subcluster is obvi- 
ously pronounced as expected, but there is also considerable 
residual coherence in the large-scale motion. 

It would be hopeless to try to give a full description of the 
deviations from spherical flow in each cluster, since that would 
depend upon the random position and mass of all the subunits. 
However, it is useful to characterize the gross deviations in 
terms of a few dimensionless numbers. To quantify the depar- 
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Fig. 2.—Cartesian projections of particles and velocities around clusters selected from Fig. 1. See text for positions of cluster centers. The vectors are proportional 
to the physical velocity of each point as seen from a comoving observer positioned at the cluster center. The axes have the same units as in Fig. 1. The eight circles are 
the overdensity contours defined by <5¿ = 2(,~1)/2. 

tures from spherical symmetry, we expand the velocity and 
force fields around the clusters in terms of spherical harmonics 
on each shell. If the expansion is truncated beyond the quadru- 
pole level, the fluctuations are effectively smoothed on scales 
less than 90° so that most details for each cluster are filtered 
out, while the large-scale structure of the flow field is preserved. 
Since these are vector fields we can separately consider the 
radial and transverse components Vr and Vt, Fr and Ft. For the 
most part we are interested in the radial components, so we 

need consider only the spherical harmonics of a scalar field, 

oo n 
K(0, </>)= Z I V"’mP„m(cos 6) exp (imcfi), (3) 

n = 0 m — —n 

Vn,m 2n + 1 (rc — I m I)! 
4n (n + I m |)! 

Fr(0, 0)P„m(cos 9) 

x exp ( — sin OdÿdO , (4) 
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Fig. 3a Fig. 3b 

Fig. 3c 
Fig. 3.—{a) The measured mean radial infall Vr/Hr for the isotropic CDM 

models evolved with the PM code. The error bars denote the scatter between 
clusters. The open symbols show the infall as would be measured along the 
major or minor axes of the best-fitting quadrupole distortion at each over- 
density. The expectations of exact spherical symmetry are shown as the 
smooth curves for various values of Q. {b) The same as Fig. 3a, now for the 
anisotropic CDM models evolved with the PM code, (c) The same as Fig. 3a, 
now for the power-law initial conditions evolved with the PPPM code. 

where Pn
m are associated Legendre polynomials. We will define 

the infall velocity as minus the radial velocity to avoid confu- 
sion. 

The force field is defined on a grid in the n-body codes, and it 
is easy to interpolate between grid points to compute the force 
at any point. However, a complication arises in the orthog- 
onality of the velocity terms because of the nonuniform dis- 
tribution of particles. If the velocity coefficients in equations 
(3)-(4) are determined by direct summation over all particles, 
nonzero quadrupole terms could result even in the case of 
spherically symmetric infall should the density not be constant 

over the sphere. To avoid this problem we divide the sphere 
into 128 equal areas that are equally spaced in cos 0 and in </>. 
The contribution to the velocity terms in each area is then 
normalized by the number of particles in that area. In this way 
the effect of tangential density gradients is greatly reduced. 

In a mirror symmetric collapse we expect Vr to also show 
mirror symmetry. In a collapse with mirror symmetry around 
the x-y plane we expect the tangential velocity Vt to be zero at 
the z-axis and in the x-y plane. Furthermore we expect Vt to be 
antisymmetric around 6 = ti/2. This indicates that the mono- 
pole term is zero and that the simplest axisymmetric approx- 
imation to Vt using spherical harmonics is 

Vt(0) = K2’0[P1(cos 6) - P3(cos 9)-] 

= ^2,02.5(cos 9 — cos3 9) = Vt
2,0 f sin 9 sin 29 . (5) 

This component of Vt and Ft was computed for each shell, 
choosing the z-axis as the minor axis of the radial velocity or 
force. Because the flow is compressible there is no simple rela- 
tion between FJ2,0 and F^2,0. 

These distortions are irrotational, and it is also of interest to 
measure the circulation of the flow. For this we compute 

j_ _ jjji r¡ 
c N2? r, '■ (6) 

where the sum extends over the N particles in a given shell. 
Listed in Table 1 are the rms amplitudes of the dipole AF^.1, 

[(AF/)2 = (AFr
1,m)2], radial quadrupole AVr

2 and F^2,0, 
and circulation | Vc \ when averaged over all clusters for various 
values of Ô. The anisotropic CDM, isotropic CDM, and 
PPPM clusters are tabulated separately, and the errors are the 
standard deviations when averaged across the clusters. Each of 
these velocities has been made dimensionless by dividing by 
the predicted spherical infall F¡. at a given radius. The AFJ. for 
the dipole and quadrupole terms is the difference between the 
maximum and minimum infall velocities on the sphere for the 
harmonic in question. Note that these dimensionless distor- 
tions are not particularly small. The dipole distortions are seen 
to increase with Ô in all models, although the scatter increases 
substantially with <5. The other terms are nearly independent of 
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TABLE 1 
Anisotropy Amplitude 

Model AF//J4. AFr
2/Fr Vt

2’°/Vr \ Vc \/Vr 

Isotropic: 
S= 2  0.36 + 0.01 0.81 +0.21 0.11 +0.08 0.10 + 0.01 
<5 = 4  0.50 + 0.15 0.90 + 0.42 0.16 + 0.13 0.11 +0.08 
<5 = 8  0.80 + 0.29 0.80 + 0.14 0.17 + 0.11 0.13 + 0.07 

Anisotropic: 
5= 2  0.38 + 0.17 0.80 + 0.22 0.36 + 0.16 0.10 + 0.07 
5= 4  0.28 + 0.08 0.66 + 0.23 0.31 + 0.12 0.21 + 0.11 
<5" = 8  0.64 ± 0.40 0.43 ± 0.14 0.35 ± 0.20 0.22 ± 0.09 

PPPM: 
5= 2  0.32 + 0.10 0.50 + 0.48 0.25 + 0.18 0.09 + 0.04 
5=4  0.74 + 0.34 0.45 + 0.36 0.18 + 0.14 0.21 +0.09 
<5 = 8  0.87 + 0.44 0.32 + 0.28 0.25 + 0.32 0.33 + 0.08 

Ô. The most important point to note is that the dimensionless 
distortions seem relatively independent of the class of rc-body 
model. An exception to this could be the radial quadrupole 
distortion, although the scatter across the clusters is large. 

To calibrate the distortions, consider the circulation, which 
is typically a 10%-20% effect at the 0 = 2 surface. Scaled to 
the Virgo Cluster, this would be a transverse circulation veloc- 
ity of 75-150 km s-1 for galaxies at our Virgocentric radius 
and overdensity surface. The typical irrotational transverse 
velocity would be of the same order, the typical dipole term 
would contribute effects of order +130 km s-1, and the radial 
quadrupole distortion would be nearly twice as large. These 
effects are by no means negligible and could explain the bulk of 
our transverse velocity within the local supercluster. 

An illustration of the effect of the radial quadrupole distor- 
tions is shown in Figure 3. The solid points in Figures 3a-3c 
show the mean infall when averaged over 4n sr for each over- 
density. The open octagons and squares on Figures 3a-3c 
denote the infall as seen along the major and minor axes of the 
radial quadrupole distortion which best fits each cluster. The 
scatter about the mean is not plotted but is similar to that for 
the spherical infall curves. The point to note is that the radial 
quadrupole distortions of typically +40% (Table 1) are very 
substantial deviations to the mean flow that can lead to infall 
estimates wrong by a factor of 2 if points are not sampled over 
4n sr. 

We attempted to correlate the deviations from spherical flow 
with a number of other observable parameters, mostly with 
poor results. For example, the quadrupole distortion of the 
velocity field did not always align well with the quadrupole 
distortion of the force field, particularly in the isotropic models 
for which the distortions were only occasionally well described 
by a quadrupole field. Originally we had thought there would 
be reasonable alignment of the quadrupole distortions with the 
moment of inertia tensor of the interior mass distribution, but 
in fact there was virtually no correlation at all, for a variety of 
radial weightings of the inertia tensor. The poor correlation is 
undoubtedly due to the significant contribution to the force 
field from the exterior matter. 

IV. FORCE AND VELOCITY ALIGNMENT 

After we realized that the departures from spherical sym- 
metry were not adequately described by distortions to quadru- 
pole order, we despaired until we realized we should consider a 
much simpler statistic. In linear theory the expected peculiar 
velocity vp of a particle will be parallel to the peculiar force 

vector Fand is given by (Peebles 1980) 

v p 
2 

3QoaH0 
F (7) 

We can test the validity of linear theory by calculating the 
ratio a 

a = 
\3n0AH0J \F2\ (8) 

for observed velocities and forces. In linear theory this ratio is 
unity. We are also interested in the degree of parallelism 
between the force and velocity vectors so we computed the 
mean value of the cosine of the angle between the force and 
velocity vectors. In order to test how well the deviations from 
the simple spherical model obey linear theory we subtract the 
simple spherical model from the force field and the velocity 
field. We subtract the monopole term {4nl3)Gdphr from the 
force field. The expected radial velocity in the exact spherical 
model is subtracted from the observed velocity field. We divide 
each overdensity shell into 64 segments of equal area to derive 
volume averaged values. In order to diminish the effects of 
local nonlinearities induced by subclustering we consider only 
segments with less than 10 particles in them. If all segments 
were included, the alignment would be reduced because there 
need be no alignment between force and velocity within viria- 
lized subsystems. Figures 5a, 5c, and 5c show the mean value of 
cosine of the angle between the force and velocity vectors as a 
function of overdensity. Results for the anisotropic CDM, iso- 
tropic CDM, and PPPM clusters are again plotted separately. 
The error bar is the scatter between the clusters. The solid 
triangles show that the vectors are very well aligned. Up to an 
overdensity of <5 = 4 the alignment is typically better than 25° 
with relatively little scatter. With the open triangles the simple 
spherical model is subtracted. We see that the alignment is not 
quite as good, and the scatter is increased, but it is still excel- 
lent. 

Figures 5fr, 5d, and 5/show the ratio a defined in equation (8) 
averaged over the clusters for each class of model. Note that 
a < 1 in the nonlinear regime and that there is an excellent 
correlation between this ratio and the mean interior over- 
density for the various models. The scatter between clusters is 
again relatively small, 0.05. When the simple nonlinear spher- 
ical model is subtracted, the scatter is considerably larger 
between the various models, but we see the same overall trend 
with overdensity. The smooth curve indicates the ratio we 
would observe for the simple nonlinear spherical model. This 
curve tracks the data remarkably well, in spite of the fact that 
the fluctuations, particularly the open symbols, can be highly 
nonspherical. This behavior is consistent with the expectations 
of second-order perturbation analysis (Tomita 1967). The three 
classes of models are seen to behave in a completely consistent 
fashion. The scatter is larger in the PPPM models than in the 
PM models, again probably because of increased small-scale 
structure. 

That equations (7)-(8) are a good description of the aspheri- 
cal flow velocity should, on hindsight, be no surprise, as it is 
equivalent to the Zel’dovich (1970) approximation, which is 
known to exactly describe one-dimensional pancake collapse 
up to the point of caustic formation. Efstathiou and Silk 
(1983) demonstrated that the Zel’dovich approximation alone 
gives an excellent description of large-scale kinematics in three- 
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Fig. 4—The same duster as shown in Fig. 2, now with the spherical model infall component removed and with the velocities relative to the mean of the points 
within the ¿ > 11.3 surface. 

dimensional models, but of course it cannot be expected to 
apply to highly nonlinear, collapsed regions. 

V. APPLICATION TO THE VIRGO SUPERCLUSTER FLOWFIELD 

Whether the large-scale distortions lead to an increase or 
decrease of the mean infall of galaxies near the observer 
depends less on the interior mass distribution than on the 
exterior distribution. The fact that the local group of galaxies 
lies on the flattened supercluster plane does not necessarily 

mean that our infall should be increased by the flattened 
galaxy (and mass?) distribution interior to us. In the absence of 
an exterior field, potential theory would suggest our infall 
velocity to be higher than average for the sphere, but if the 
supercluster plane extends to larger radii, our infall should be 
smaller than the average over the sphere (Peebles 1980). The 
aspherical distortions do not necessarily bias the mass estima- 
tion of the cluster in a given direction, but they definitely 
increase the statistical uncertainty of the estimates based on 
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Fig. 5.—The relation of the average local force and velocity as a function of <5. Figs. 5a, 5c, and 5e plot the average of the cosine between local force and velocity 
vectors; Figs. 5b, 5d, and 5/plot the average of the ratio of peculiar velocity to peculiar force. The smooth curve is the expected ratio for the spherical, nonlinear 
model. The error bars show the scatter across clusters. The open symbols and errors are the averages after subtracting out the spherical infall. Figs. 5a and 5b plot the 
isotropic CDM models, Figs. 5c and 5d plot the anisotropic CDM models, and Figs. 5c and 5/plot the PPPM models. 
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spherical infall theory. A +50% variation in the local infall 
value, which is the typical fluctuation of the n-body clusters, 
leads to an error of mass or Q estimation by a factor of 3. An 
error this large would obviate the possibility of using this test 
to set any useful constraint on Q. 

The asphericities in the flow field would be less of a problem 
if we could sample galaxies with equal weight from 4n sr 
around Virgo. In practice, however, this is rather difficult to 
arrange. Not only are the galaxies preferentially distributed on 
the supercluster plane, but the galaxies near to us on the front 
side of the cluster have far more weight than those on the back 
side of the cluster. Furthermore, the back side galaxies are 
usually deleted from the fits because they are in the triple value 
zone (Schechter 1980; Yahil, Sandage, and Tammann 1980; 
Tonry and Davis 1981 ; Aaronson et al 1982). The net result is 
that the harmonic distortions (e.g. dipole) are not orthogonal 
to the monopole infall and the monopole fit must have a 
random uncertainty at least as large as the amplitude of the 
dipole distortion. 

There is one systematic bias that is definitely present in the 
fits to the spherical flow models. As seen in Figure 3, the mean 
infall of the rc-body clusters is somewhat below the spherical 
model, and the fractional deviation increases with S. Only the 
spatial gradient of the peculiar flow field is observable; solid 
body rotation, for example, would not be detectable through 
measurement of anisotropy of the Hubble flow. A good deal of 
weight to the measured infall comes from galaxies within our 
Virgocentric radius. Our results demonstrate that the spher- 
ically averaged infall of these galaxies is expected to be lower 
than predicted by the spherical model; fitting the incorrect 
model leads directly to a systematic underestimate of our own 
infall velocity and Q : The seriousness of the bias depends upon 
the proximity of these inner galaxies to Virgo. A remedy would 
be either to use the infall curve found for our models in the fits, 
or to delete those galaxies within the <5 « 3 surface. Deleting 
the inner galaxies would likely result in substantially larger 
statistical error for our derived infall. The details of these con- 
siderations may be somewhat modified in Q < 1 models, which 
remains the subject of another paper. 

The only encouraging result from this study is that there is a 
simple replacement of the spherical model that readily deals 
with the asphericity of the flow field, namely the excellent cor- 
relation of peculiar velocity with peculiar gravity. To apply this 
method will require a full sky sample of galaxies with redshifts, 
from which the peculiar gravity can be directly computed on a 
shell by shell basis (assuming of course that the galaxies of the 
sample roughly trace the mass). It is probably preferable to 
give each galaxy equal weight after at least partially volume 
limiting the sample. Davis and Huchra (1982) used this tech- 
nique to compute the component of peculiar acceleration 
directed toward the galactic pole using the CfA redshift survey 
galaxies in the north, and the shallower Shapley-Ames catalog 
in the south. They found the peculiar gravity converged just on 
the back side of the Virgo cluster, which totally dominated this 
component of acceleration, even though the shells extended to 
80/T1 Mpc. 

A much better sample for his analysis are the galaxies 
detected by the IRAS satellite at 60 /un. Recently it has been 
shown (Yahil, Walker, and Rowan-Robinson 1985; Meiksin 
and Davis 1986) that there is a robust dipole anisotropy in the 
angular distribution of these galaxies that points within 30° of 
the microwave dipole anisotropy and 37° from the center of 
Virgo. The IRAS sample is deep enough to measure our total 

expected peculiar acceleration, which should be compared to 
our total peculiar velocity, as inferred from the microwave 
dipole anisotropy. 

If the IRAS galaxies do roughly trace the mass distribution 
then our peculiar gravity should be directed close to the IRAS 
anisotropy, and the 30° misalignment with our peculiar veloc- 
ity is precisely the typical deviation seen in the n-body models. 
The anisotropy of the IRAS catalog appears to be dominated 
by fluctuations within 50h ~1 Mpc of us and possibly even by 
material within 30h-1 Mpc loosely associated with the Virgo 
Supercluster. A very powerful cosmological test will be to 
measure the redshifts of the IRAS galaxies in order to accu- 
rately compute our peculiar acceleration. The usual caveat 
applies that one assumes the IRAS galaxies to trace the large- 
scale matter distribution. If the matter is less clustered than the 
sample, the Q derived will be an underestimate of the total Q, 
and vice-versa. 

The prospects for an independent measure of our peculiar 
velocity derived from Hubble anisotropy appear less prom- 
ising. Unless second distance indicators can be made much 
better than any available today, it will always be necessary to 
fit to a detailed model of the flowfield, but no simple flowfield is 
likely to be a reliable model of the Local Supercluster. One 
alternative is to fit simply for a dipole pattern that is the reflec- 
tion of our peculiar velocity relative to a distant set of clusters 
spaced around the sky. Aaronson et al (1986) have used the IR 
Tully-Fisher technique for 10 clusters at distances ranging 
from 40h~1 to \00h~1 Mpc, and they find a dipole velocity of 
800 + 200 km s "1 in a direction close to the microwave result. 
Although the significance of this result is low the agreement is 
encouraging and suggests that the microwave dipole aniso- 
tropy is entirely generated by inhomogeneities within the 
radius of these clusters, as expected from the IRAS catalog 
(Meiksin and Davis 1986). It may prove extremely difficult to 
improve upon the Aaronson et al. result. 

vi. SUMMARY 

We have studied the velocity fields around rich clusters in 
n-body simulations and have reached the following conclu- 
sions: 

1. The clusters forming from random phase initial condi- 
tions are always subclustered and are never isolated. They are 
usually triaxial. 

2. The flowfields when averaged over 4n sr fit spherical 
infall models relatively well for ^<3, but the mean infall is 
systematically low for increasing S. 

3. The flowfields have substantial asphericity on large and 
small scale. An expansion of the aspherical velocity field in 
terms of spherical harmonics up to the quadrupole order yields 
amplitudes of the radial and transverse distortions in the range 
of 20%-50% of the mean infall velocity. 

4. The asphericities in the flowfield are poorly correlated 
with the inertial tensor of the interior mass distribution, indi- 
cating they are largely influenced by the exterior mass distribu- 
tion. 

5. In spite of the serious local diviations from the spherical 
models which occur on all shells of overdensity ô, the local 
peculiar velocity field is extremely well aligned with the local 
force field, as would be expected in linear perturbation theory. 
For those points with <5 < 4, not embedded in dense sub- 
clusters, the mean deviation of force and velocity vectors is 
only 25°; the ratio of the amplitudes is close to that expected 
by equation (1). 
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The n-body models from which these results were derived do 
produce large-scale structure that is a reasonable match to 
observations, and the large clusters contained within them are 
perhaps a reasonable match to large clusters such as Virgo. If 
this is so, then our results have several implications for study of 
Virgocentric flow : 

1. Unless galaxies are drawn from An sr around Virgo the 
spherical model is unlikely to describe accurately the mean 
infall for any Ö. Since this is impossible to achieve in practice 
there is to be expected a 50% random error of the mean infall 
for any ô surface, which translates to a mass uncertainty of a 
factor 3. 

2. The fact that the mean infall for <5 > 3 is somewhat lower 
than predicted by the spherical model leads to a smaller obser- 
vable shear field in the Hubble flow and systematic underesti- 
mation of the cluster mass when fitting a simple spherical infall 
model to the observations. 

3. The most reliable measure of mass in the Virgo Super- 
cluster is likely to result from a comparison of our peculiar 
force with our total peculiar velocity, namely the microwave 
dipole anisotropy. Perhaps the galaxy catalog derived from the 
IRAS data base (Yahil, Walker, and Rowan-Robinson 1986; 
Meiksin and Davis 1986; Davis 1986), which is drawn from 
much larger solid angle than is possible from optically selected 
catalogs, will eventually yield an accurate estimate of the pecu- 
liar gravitational force acting on our local group of galaxies. 
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