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ABSTRACT 
This is the first of several papers reporting our analysis and interpretation of observations of the pulsed 

X-ray emission from Vela X-l. Here we consider the interrelated tasks of determining the neutron star orbit 
and calculating pulse emission times in the rest frame of the source. Our underlying motivation is to utilize 
this time series for analysis of fluctuations in the pulse emission frequency, which we interpret as noise in the 
neutron star rotation rate. However, the redness and strength of this noise in Vela X-l pose a nontrivial com- 
plication, because the parameters of the neutron star orbit are estimated by pulse timing and hence are them- 
selves affected by fluctuations in the pulse emission frequency. A second challenge is presented by substantial 
fluctuations in the Vela X-l pulse shape that, if ignored, would significantly reduce both the precision of the 
orbital solution and our ability to study fluctuations in the rotation rate. Our report emphasizes the analysis 
techniques that have been developed to obtain the most precise orbital solution possible in the face of these 
difficulties. These techniques are general and may be applied to other pulsars that exhibit substantial fluctua- 
tions in pulse shape and frequency, such as Her X-l and Cen X-3. 
Subject headings: pulsars — stars: individual — stars: neutron — X-rays: binaries 

I. INTRODUCTION 

Fluctuations have been detected in the intrinsic pulse fre- 
quencies of most carefully studied rotation- and accretion- 
powered pulsars (see Cordes and Helfand 1980; Boynton 1981 ; 
Henrichs 1983; Inoue 1984). These fluctuations are believed to 
reflect changes in the rotation rate of the neutron star crust 
that may be due to torques produced by physical processes 
either outside or inside the star.3 In the case of accretion- 
powered pulsars, the external torque depends on the flow 
pattern of the accreting plasma and is expected to vary with the 
accretion rate. The internal torque depends on the nature of 
the coupling between the liquid interior and the crust. Thus, 
analysis of fluctuations in the pulse frequency and X-ray flux of 
an accretion-powered pulsar provides information both about 
the accretion flow and about the structure of the star itself. 

The study of these fluctuations is a particularly powerful 
way to determine the properties of X-ray stars, because the 
physics of neutron star rotation has been investigated in detail 
and is relatively simple compared to much other X-ray source 
physics. Moreover, stellar rotation rates can be measured pre- 
cisely with modern X-ray detectors and analysis techniques. 
Thus, a direct, quantitative confrontation between theory and 
observation is possible. 

This paper is the first of several in which we report in detail 
the results of our study of the accretion-powered pulsar Vela 
X-l using pulse-timing techniques. As discussed by Lamb 
(1979), Vela X-l was chosen for this study for three reasons. 
First, it is widely believed to be a slow rotator (in the sense of 

1 Also Department of Physics, University of Washington. 
2 Also Department of Astronomy, University of Illinois at Urbana- 

Champaign ; and Visiting Scholar, Stanford University. 
3 For Vela X-l in particular, the evidence that fluctuations in the pulse 

frequency on time scales longer than a few days are due to fluctuations in the 
neutron star rotation rate is compelling (Deeter et al. 1986c). 

Eisner and Lamb 1976, 1977) and is thought to be accreting 
matter from the stellar wind of its companion (Lamb 1977; 
Dupree et al 1980; Kallman and White 1982). It therefore 
provides an example for study that differs in both respects from 
the previously studied accretion-powered pulsar Her X-l, 
which is a fast rotator (Eisner and Lamb 1976) accreting from a 
disk (Pringle and Rees 1972; Lamb, Pethick, and Pines 1973). 
Second, there were preliminary indications of large fluctua- 
tions in the pulse frequency of Vela X-l from prior studies (see, 
for example, Becker et al 1978). Finally, as a practical matter, 
the celestial position of Vela X-l and the HE AO 1 observing 
schedule permitted us to plan and complete a complex series of 
pointed observations designed specifically to study the noise in 
the rotation rate. 

In addition to the HE AO 1 data, we also utilized previously 
recorded but unpublished OSO 8 observations from 1978 May, 
and an SAS 3 observation made in 1979 January specifically to 
support this study. We have also made use of results from 
previously published observations. 

Our investigation confirms the existence of large, short-term 
changes in the neutron star spin rate (Nagase et al 1984a; van 
der Klis and Bonnet-Bidaud 1984), in which the sign of the 
neutron star angular acceleration reverses on time scales as 
short as 2 or 3 days. We show that these fluctuations in spin 
rate are consistent with the occurrence of a succession of per- 
turbations that are not resolved by the present observations 
but have the statistical character of a random walk in pulse 
frequency. The power density spectrum of the fluctuations in 
pulse phase produced by such a random walk falls steeply with 
increasing (analysis) frequency. As a result, most of the power is 
concentrated at low frequencies. We refer to noise with this 
type of spectrum as “ red noise.” Both the change in the appar- 
ent secular trend of the pulse frequency from spin-up to spin- 
down in 1979 and the smaller frequency variations observed on 
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shorter time scales are quantitatively consistent with this red 
noise process. Our results place important constraints on the 
properties of the neutron star and accretion flow in Vela X-l, 
as mentioned in a summary of this work published previously 
(Boynton et al. 1984). 

In this study, the strength and steepness of the spectrum of 
fluctuations in the rotation rate of Vela X-l presented several 
challenges. Two are specific to determining the pulse-phase 
time series and the elements of the binary orbit. First, in order 
to study the behavior of the pulse frequency at the neutron 
star, it is necessary to remove the apparent variations in the 
pulse frequency caused by the orbital motion of the neutron 
star. This is a nontrivial complication, because the estimates of 
orbital elements are based on the pulse phase observations and 
are therefore affected by the intrinsic phase variations that we 
seek to study. In fact, for our observations of Vela X-l, the 
power density of the red noise in pulse phase caused by fluctua- 
tions in the rotation rate of the star dominates that of all other 
noise by an order of magnitude at the orbital frequency. In 
dealing with this challenge, we encounter a second, that of 
estimating the effect of this red noise on the precision of the 
orbital parameters. By solving this error propagation problem 
we are able to construct a properly weighted average of all 
available orbital solutions, including both those determined 
here and those taken from the literature. This procedure yields 
a set of orbital elements with nominally minimum uncertainty 
and therefore provides the “ best ” approximation to the source 
rest frame available from the data. 

A third challenge, unrelated to fluctuations in the rotation 
rate, is to reduce the uncertainty in pulse phase caused by 
fluctuations in pulse shape that are far larger than those 
attributable to the finite number of photons. This “excess” 
noise in pulse shape predominantly affects the low harmonics 
of the pulse waveform. As we discuss in a second paper (Deeter 
et al. 1986h, hereafter Paper II), the excess fluctuations in pulse 
shape are observed to contribute a white component to the 
spectrum of the noise in pulse phase, even though the spectrum 
of the shape fluctuations is quite red. We find the noise in 
phase induced by excess pulse shape fluctuations can be signifi- 
cantly reduced by filtering the pulses prior to the determi- 
nation of pulse phase. For our highest quality HE AO 1 data, 
this technique reduces the variance of the phase estimates by a 
factor of 4. 

This first paper describes the observations, the method used 
to estimate pulse phase, and the determination of the orbit, 
emphasizing the elements of our analysis devised to deal with 
the fluctuations in the stellar rotation rate and the pulse shape 
variations characteristic of Vela X-l, Her X-l (Boynton and 
Deeter 1979; Boynton 1981), and other accretion-powered 
pulsars. More detailed discussions of some of the techniques 
used here may be found in Deeter, Boynton, and Pravdo (1981, 
hereafter DBF) and Deeter and Boynton (1985, hereafter DB). 
These methods have general applicability to such pulsars and 
have not previously appeared in the literature. 

In Paper II we shall discuss the construction of a record of 
the pulse frequency at the neutron star and the computation of 
the power density spectrum of fluctuations in the intrinsic 
pulse frequency. A full discussion of the implications of this 
study for the properties of the neutron star and the temporal 
and velocity structure of the accretion flow will be published 
elsewhere (Lamb et al. 1986). 

The remainder of the paper is organized as follows. In § II 
we summarize the new observations we used, and in § III we 

describe the method used to handle the interrelated problems 
of determining the binary orbit and the pulse phases in the 
source rest frame. We discuss in § IV the mechanics of pulse 
folding and filtering, the technique used to estimate pulse 
phase, and our analysis of the uncertainty in the pulse phase. In 
§ V we indicate how we estimated the parameters of the 
neutron star orbit using only the new data. There we discuss 
our choice of orbital parameters, which differs in an important 
way from that of most previous authors. We describe the effect 
of the observed fluctuations in the rotation rate of the neutron 
star on estimates of the orbital parameters and discuss the 
solutions that result from our analysis. In § VI we describe how 
we combine selected, independent orbital solutions in order to 
construct a mean orbit for Vela X-l. In § VII we describe the 
effects of the different noise components encountered in pulse- 
timing studies, compare different approaches to obtaining 
orbital solutions from pulse timing, and discuss some of the 
implications of our results for the design of pulse-timing 
experiments. In § VIII we summarize the principal results 
reported here. 

II. OBSERVATIONS 

New data for this study were obtained from 12 HE AO 1 
pointed observations, utilizing both the A-l and A-2 experi- 
ments, and an 5^15 3 observation. Each of these observations 
was scheduled specifically for this study, except for one seren- 
dipitous pointing. In addition, we were able to use a previously 
recorded but unpublished block of OSO 8 data. The OSO 8 
observations provide continuous coverage of a 36 day interval 
from 1978 May 9 to June 14, while the HE AO 1 pointings 
sparsely sample the 61 day interval from 1978 November 1 to 
December 31. The SAS 3 observation continuously covers a 
four-day interval from 1979 January 15 to 19. Ajournai of the 
observations is given in Table 1. 

The 11 planned, half-day iíIL40 1 observations were delib- 
erately made with octave spacings of 1.5, 3, 6, 12, and 24 days, 
in order to facilitate construction of a power density spectrum 
of pulse-phase variations. We shall therefore defer discussion of 

TABLE 1 
Journal of Observations 

Time Interval 
Observation (JD — 2,443,000) Satellite and Detector 

1   637.64-672.47 OSO S/module A 
2   813.82-814.42 tf £340 7/A-1 module 3 
3   837.25-837.74 HE AO 7/A-l module 3 
4    843.18-843.45 HE AO l/A-2 MED, HED 
5   850.00-850.46 HE AO 7/A-l module 7 

850.00-850.46 HEAO l/A-2 MED, HED 
6   855.66-856.15 HEAO l/A-2 MED, HED 
7   858.93-859.40 77E340 7/A-l module 7 

858.93-859.40 HEAO l/A-2 MED, HED 
8   860.43-860.86 HEAO l/A-2 MED, HED 
9   861.83-862.32 HEAO l/A-2 MED, HED 

862.21-862.26 HEAO 7/A-l module 7 
10   863.29-863.72 HEAO l/A-2 MED, HED 

863.29-863.72 HEAO 7/A-l module 7 
11   864.76-865.24 HEAO l/A-2 MED, HED 

864.76-865.24 HEAO 7/A-l molule 7 
12   867.87-868.42 HEAO 7/A-l module 7 

867.87-868.42 HEAO l/A-2 MED, HED 
13      873.64-874.17 HEAO l/A-2 MED, HED 
14   888.40-892.99 SAS 5/HTC, XTC 
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the rationale for this sampling structure to Paper II, where 
calculation of the power spectrum is described. 

The characteristics of the detectors that were used to collect 
the data are given in Table 2. The count rates from the OSO 8 
and HEAO 1 detectors were corrected for variations in the 
illuminated area caused by the motion of the spacecraft. The 
corresponding correction for the SAS 3 count rates was 
unavailable ; however, the variations in the illuminated areas of 
the SAS 3 detectors occurred on a sufficiently long time scale 
that the pulse-timing analysis is not affected. 

III. METHODOLOGY 

The major goals of this paper are to determine the best 
possible orbit for each data set reported here and to obtain the 
best possible combined orbit for Vela X-l, using our solutions 
together with similar orbits available in the literature. This 
orbit can then be removed uniformly from the pulse-timing 
observations, leaving insofar as is possible only phase varia- 
tions inherent to the rotation of the neutron star and the pulse 
emission process. 

In § I we alluded to the problem of obtaining a high-quality 
orbital solution in the presence of red noise. One method of 
dealing with random changes in pulse frequency that interfere 
with the estimation of model parameters is to introduce a poly- 
nomial into the fitted function in order to “absorb” such 
changes to the greatest extent possible. For instance, in analyz- 
ing Crab pulsar data, Groth (1975) used this technique to 
suppress the effect of red noise in rotation on the estimated 
secular spin-down rate. An auxiliary polynomial is also com- 
monly used to “remove” any secular trend in the pulse fre- 
quency when solving for the orbital elements of pulsars in 
binaries (see Taylor and Weisberg 1982; Ôgelman et al. 1977; 
DBF). 

Here, we combine these two techniques by including a poly- 
nomial of sufficient degree to absorb indiscriminately both 
random and secular variations in pulse phase, while simulta- 
neously fitting a periodic orbital function. The higher the poly- 
nomial degree, the more completely the noise is absorbed; but 
also, the higher the degree, the more the polynomial interferes 
with the orbital function. Eventually, the regression problem 
becomes ill conditioned. By examining the effect on the param- 
eter uncertainties of the residual red noise as well as the white 

noise introduced by fluctuations in pulse shape, it is possible to 
choose a polynomial degree that minimizes the overall param- 
eter uncertainties for a given set of data, taking into account all 
sources of noise. 

Our method is to partition the data into blocks with dura- 
tions of several orbits, separately derive an orbit for each 
block, and then average the resulting ensemble of orbital ele- 
ments. This “ local ” approach seems intuitively appealing, par- 
ticularly when one is confronted with data containing large 
gaps, and has several substantial advantages over the alterna- 
tive of a single “ global ” orbital solution obtained directly from 
all available data. Because the method is a general one applic- 
able to other noisy pulsars, we discuss it in some detail in § VII. 

In the case of our Vela X-l data, the sampling structure 
suggests a natural partitioning into two blocks: (1) the OSO 8 
observations of 1978 May and (2) the HEAO 1 and SAS 3 set 
begun in 1978 November. Each block effectively covers about 
four and nine binary orbits respectively, while the gap between 
them is approximately 16 orbits. An orbital solution was 
obtained for each block of data by first choosing provisional 
values for all important parameters, such as the pulse fre- 
quency and the elements of the binary orbit. Short intervals of 
flux data were then folded at the (constant) provisional pulse 
frequency in the frame that is comoving with the source 
according to the provisional orbit. The resulting submaster 
pulse templates were used to determine the residual pulse 
phases, relative to the provisional pulse frequency and binary 
orbit, by comparing them with a master template. Finally, the 
residual phases were analyzed for corrections to the provisional 
values of the parameters, while simultaneously fitting an 
appropriate noise-absorbing polynomial (no such polynomial 
was included during the pulse-folding process).4 

This approach is close in spirit to that discussed by Epstein 
(1977), sharing with it several important features. First, time in 
the source rest frame is taken correctly as the independent 
variable both for computing the orbital term and for expand- 
ing the pulse phase as a Taylor’s series in order to determine 

4 For the sake of brevity, from now on we refer to residual pulse phases 
simply as pulse phases. The precise meaning of the term “pulse phase” will 
change as the analysis proceeds, but at any given point the meaning should be 
clear from the context. 

TABLE 2 
Characteristics of the Detectors Used3 

Time Detector 
Satellite and Resolution Area Nominal Energy Ranges 

Detector (s) (cm2) (keV) 

OSO ^/module A  10.5b 263 2.0-30.0 
HEAO 7/A-l module 3   0.64 1650 0.7-1.3, 1.3-2.0, 2.0-6.0, 6.0-11.3, 11.3-43.3C 

0.7-1.3, 1.3-2.0, 2.0-6.2, 6.2-12.1, 12.1-47.5d 

HEAO 7/A-l module 7   0.64 1900 0.1-0.6, 0.6-2.1, 2.1-8.3, 8.3-15.4, 15.4-18.9 
HEAO 7/A-2 MED    5.12 820 2.0-20.0 
HEAO 7/A-2 HED  5.12 820 2.0-7.5,7.5-60 
SAS3/HTC  0.83 80 1.0-2.5,2.5-5.0,5.0-10.0 
SAS3/XTC    0.83 115 8.0-18.0, 18.0-27.0, 27.0-35.0 

3 Descriptions of the satellites and detectors are available as follows: OSO 8, Serlemitsos et al. 1976; 
HEAO 7 A-l, Chubb 1976; HEAO 1 A-2, Rothschild et al 1979; SAS 3, McClintock et al. 1976, Buff 
et al. 1977. 

b Rotation period of the satellite. The detector is skewed relative to the spin axis ; the time on source for 
each rotation and the effective time resolution are both ~2.5 s. 

c Energy ranges for observation 2. 
d Energy ranges for observation 3. 
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the rotation frequency and its derivatives. Second, since the 
Doppler shift specified by the provisional orbit has already 
been removed, pulse folding can be conducted at constant 
pulse frequency without smearing the pulse shape. Finally, esti- 
mating the small corrections to the provisional orbital param- 
eters is essentially a linear problem. If the corrections are not 
small, the entire procedure can be repeated with corrected 
values of the parameters until the desired precision is attained. 

IV. ESTIMATION OF PULSE PHASES 

As the first step in implementing this methodology, we trans- 
formed all times of observation to times at the solar system 
barycenter. The subsequent provisional transformation to time 
measured in the frame of the neutron star was based on an 
orbit for Vela X-l computed as a joint fit to 1975 June-July 
and 1978 November data from SAS 3 by Rappaport, Joss, and 
Stothers (1980). This solution included a term for cb, the apsidal 
advance rate, and yielded a value consistent with zero. For the 
purpose of pulse folding, we set œ equal to zero. The pulse 
smearing caused by inaccuracy in the provisional orbit and by 
variations in pulse frequency was found to be no more than 1 s 
for the OSO 8 data (12 hr superposition span), and no more 
than 0.1 s for the HE AO 1 data (1 hr span). The resulting 
attenuation in harmonic amplitude becomes significant at 
about the 20th and 200th harmonics respectively, well beyond 
the point at which the harmonics disappear into noise. 

Pulse phases were estimated using a version of the common 
method of pulse folding and cross-correlation. We first formed 
submaster templates by pulse folding. The shape of these 
folded pulses varied far more than expected from photon sta- 
tistics alone, and these excess fluctuations in pulse shape did 
not have the character of white noise (equal power in the fluc- 
tuation of each harmonic component of the pulse). As dis- 
cussed by DB, optimal estimation of pulse phase in this 
situation can be achieved by filtering the folded pulses, using a 
filter whose properties are determined by the spectrum of the 
noise in pulse shape. By adopting this modification of the basic 
cross-correlation scheme, we were able to improve substan- 
tially the precision of the phase estimates derived from the 
high-quality HE AO 1 data. 

In §§ IVa-IVd we first discuss the construction of submaster 
and master templates and the cross-correlation technique for 
estimating pulse phases. Next we introduce a filtering pro- 
cedure designed to decrease the uncertainty in the phase esti- 
mates by reducing the influence of the noisiest harmonics. We 
then describe how we evaluate the effectiveness of filtering by 
comparing the measured uncertainties in phase estimates 
obtained from filtered and unfiltered pulses. Finally, we use 
this information to tie together phases from different instru- 
ments and consolidate phases from different energy channels to 
produce a single, final series of pulse-phase estimates and 
associated uncertainties. 

a) Construction of Pulse T emploies 

Submaster templates were formed for each energy channel of 
each detector by folding short segments of the count rate data 
using constant provisional pulse periods of 282.793 s for the 
1978 May data and 282.7492 s for the 1978 November-1979 
January data. In the case of the HEAO 1 data, one submaster 
was constructed from the data acquired in a 1 hr interval 
during each satellite orbit. In the case of the SAS 3 and OSO 8 
satellites, which had much lower count rates, we used data 
spanning 6 and 12 hr intervals respectively in forming each 
submaster. 

The submaster templates were constructed by distributing 

the count rate data into 64 equal time bins. Binning on this 
small interval over-resolves our data in the sense that noise 
completely dominates structure on the bin-to-bin time scale. 
No information is lost by over-resolution, however, and we 
discuss in § IVh reduction of the resolution to an optimum 
value. Each integration interval overlapped one to three bins. 
The number of counts in each integration interval was there- 
fore distributed pro rata among the bins overlapped. 

Once the count rate data had been folded to produce sub- 
master templates, these templates were expanded in a Fourier 
series, as described by DB. Depending on the application, 
either this harmonic representation or a time domain descrip- 
tion based on binning was used for subsequent analysis. In the 
following discussions we take advantage of whichever rep- 
resentation lends greater clarity. 

Master templates used in the cross-correlation were formed 
for each energy channel of each detector by superposing the 
corresponding submaster templates. This superposition 
required prior alignment of the submaster templates to much 
greater accuracy than that provided by the pulse ephemeris 
used in constructing the submasters. We therefore adopted a 
two-step procedure. 

As the first step, we formed a temporary master template for 
each experiment {OSO 8, HEAO 7, and SAS 3) by a 
“ bootstrap ” method, using only the energy channel with the 
highest counting rate. In this method, cross-correlation was 
used to determine the phase of each submaster template 
formed from the selected high-count-rate channel relative to 
the partial master pulse formed from the previous submasters. 
This phase was used to align the submaster with the partial 
master, and these pulses were then combined to form a new, 
updated partial master. The final partial master—composed of 
all the submasters—was adopted as the temporary master tem- 
plate for that energy channel. 

In the second step, we refined this superposition procedure 
to construct final master pulses for every energy channel of 
each experiment. To begin this step, we conjointly aligned con- 
current submaster templates from the various energy channels 
of each experiment. This alignment was based on the single 
phase offset obtained by cross-correlating the submaster from 
the selected high-count-rate channel with the corresponding 
master template for that experiment. In forming the OSO 8 and 
SAS 3 master templates, we utilized all the aligned submaster 
templates. For the HEAO 1 master templates, we used only 
those submasters corresponding to satellite orbits with concur- 
rent A-l and A-2 data. This procedure ensured that there were 
no avoidable phase shifts between the master templates corre- 
sponding to different energy channels of the same experiment. 
The three HEAO 1 A-2 master templates formed by averaging 
the aligned submasters are shown in Figure 1. 

The offset between a submaster and its corresponding 
master template was taken as the phase shift necessary to 
produce a maximum in their cross-correlation, which is for- 
mally equivalent to solving for a minimum variance super- 
position of the two templates (DB). To compute the 
cross-correlation, we assume that each submaster #(</>) is a 
scaled and shifted version of the master template /i(0), that is, 

g(<j>) = ah(<l) + r), (1) 

for some a and t. We adopt units in which h{(¡)) is dimensionless 
and a is the mean count rate. The templates obtained by pulse- 
folding actual data are defined only at the discrete set of points 

(pj=lP, j = 0, n — 1 , (2) J n 
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Fig. 1.—(left) HEAO 1 master pulse templates constructed from Fourier 
representations truncated at the 16th harmonic. From top to bottom, these 
pulses are derived from the 2-20, 2-7.5, and 7.5-60 keV energy channels of the 
HEAO 1 A-2 observations of Vela X-l. (right) Filtered versions of the master 
templates shown on left. 

where P is the reference pulse period and n is the number of 
bins in a pulse period. We adopt the abbreviations 

Qj = d(<l>j) > hj = hiÿj), ; = 0, ..., rc - 1 (3) 

and estimate the pulse offset from the maximum in the discrete 
cross-correlation 

Q= , /c = 0, ..., n - 1 . (4) 

The phase offset is then given by inverse interpolation on the 
discrete cross-correlation near the maximum at bin K, 

'=n^~2(^"CX+12CC+C (5) n L 2(Ck + 1 — 2Ck + CK-i)_ 
In this formula a positive t denotes an early pulse arrival 
(negative O — C). 

Because the observations made in 1978 May were treated 
independently from those made in 1978 November-1979 
January, no attempt was made to align master templates 
formed from these two blocks of data. However, we wanted to 
consider the SAS 3 and HEAO 1 data as part of the same time 
series. To do so, we had to determine the relative phase offset 
between the masters for the two sets. The SAS 3 masters were 
aligned with the HEAO 1 masters by cross-correlating one 
master template formed with data from an HEAO 1 energy 
channel with one formed with data from an SAS 3 energy 
channel. The two master templates that most closely matched 
each other in shape were those derived from the HEAO 7 A-l 
15.4-18.9 keV channel and the SAS 3 XTCA (8-18 keV) 
channel. We found that the phase of the SAS 3 master relative 
to the HEAO 1 master was —9.2 + 0.5 s. Consequently, 
— 9.2 s was added to all phases derived from the SAS 3 data. 

b) Filtering of Templates 
The uncertainty in the pulse-phase estimate derived from a 

given submaster may be due to a variety of causes but is 

bounded below by the uncertainty induced by the noise in 
pulse shape due to photon statistics. This error propagation 
problem has been discussed in several settings (Groth 1975; 
Downs and Reichley 1983; DB). In the notation of the present 
paper, the variance in the phase estimate due to white noise in 
the flux time series is 

of = var (t) = 
o2Ja2 

P-1 ío [W)]2# ’ 
(6) 

where of is the variance in the mean count rate a.5 For photon 
statistics, of = a/ßT, where ß is the ratio of detector “live” 
time to the total time span T over which the pulse is folded. 

It is well known that the Vela X-l pulse shape varies greatly, 
even from pulse to pulse (see, e.g., Staubert et al 1980). For 
high-count-rate data, these variations substantially exceed 
those due to photon statistics. The pulse shapes for the 
HEAO 1 data, for example, show a mean-square scatter ~20 
times that expected from photon statistics alone. For such 
data, it is the excess fluctuations in the pulse shape that limit 
the precision of the pulse phase estimates. Because the excess 
noise in the Vela X-l pulse shape is not white, filtering the 
pulse templates before performing the cross-correlation 
analysis substantially improves the precision of the pulse esti- 
mates derived from the HEAO 1 data. 

The reason for this improvement can be understood as 
follows. Each phase estimate obtained using the cross- 
correlation technique may be regarded as a weighted average 
of the phases of the individual harmonics that comprise the 
submaster template in question, with weights chosen to be 
optimum for white pulse-shape noise (equal variances in all the 
harmonic coefficients of the template). Thus, a pulse phase 
estimate obtained by cross-correlating a given submaster tem- 
plate with the appropriate master template has minimum 
variance only if the shape noise in the submaster template is 
white (DB). 

Viewing the problem in this way suggests a procedure that 
will improve the precision of the phase estimates when the 
pulse-shape noise is not white but nevertheless consists of inde- 
pendent harmonic components : alter the weighting of the har- 
monic coefficients in the templates so that the pulse shape 
noise is made white. This procedure alters the relative ampli- 
tudes of the harmonics in the templates while leaving their 
relative phases unchanged. It may be implemented in the time 
domain by convolving the templates with a filter whose trans- 
fer function is proportional to l/SCO, where S(f) is the power 
spectral density of the pulse-shape noise. We assume that the 
shape noise can be written as independent harmonic com- 
ponents, in which case filtering is a statistically correct pro- 
cedure to reduce the scatter in the phase estimates (DB). 
However, we did not directly verify that the harmonics are 
independent in the present data analysis. Consequently, our 
method of flattening the power spectrum of the pulse-shape 
fluctuations does not guarantee that they are made truly white. 
The filtering procedure did, however, result in a significant 
improvement in the precision of pulse timing for the HEAO 1 
data presented here. 

5 By employing a harmonic representation of the mean pulse shape (DB), 
we may write h(t) = Hk cos k(Qt — 0k), where Q is the pulse frequency and 
the sum include all harmonics with statistically significant amplitudes. From 
eqn. (6) one can then see how the harmonic content and frequency of the pulse 
affect the propagation of fractional fluctuations in amplitude into fluctuations 
in pulse phase, cr? = 2(oa/a)2(Q2 k2Hk)~

l. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

6A
pJ

. 
. .

30
7.

 .
54

5B
 

BOYNTON ET AL. Vol. 307 550 

The tapering of the filter at high frequencies is just as impor- 
tant as its shape at low frequencies. In order to minimize the 
variance of the phase estimates, it is necessary to discard har- 
monic terms in the master template that do not stand out 
above noise (see DB). Since the amplitudes of the harmonics in 
our templates decrease rapidly with increasing harmonic 
number, simply setting the response of the filter to zero at the 
first harmonic that falls below noise and at all higher harmo- 
nics is an adequate tapering. We therefore introduced a cutoff 
at the 12th harmonic in the filter applied to the OSO 8 data 
and at the 16th harmonic in the filter applied to the HE AO 1 
data. By retaining only lower harmonics in the Fourier rep- 
resentations of the pulse wave forms, we also avoid a potential 
bias in the phase estimates caused by a “noise spike” in the 
cross-correlation arising from the awio-correlation of each sub- 
master with its copy in the master template (DB). 

We determined the power spectrum of the pulse-shape fluc- 
tuations from the residual pulses, where a residual pulse is 
defined as the difference between an aligned and scaled version 
of a submaster pulse and the corresponding master pulse, 

A§((/)) = ^ ^ - t) -/i(0) • (7) 

Averaging the squares of the Fourier coefficients of these 
residual pulses, harmonic by harmonic, then provides the dis- 
crete power spectrum of the shape noise at harmonics of the 
pulse frequency. Power spectra of the pulse-shape noise and 
also of the pulse shape itself (as defined by the master template) 
were constructed separately for each energy channel. In Figure 

Fig. 2.—(a) Squared Fourier transform of the master pulse formed from the 
HEAO 1 A-2, 2-7.5 keV data, (b) Average of the squared Fourier transforms of 
the residual pulses for the same data. This curve has been divided by 69 (the 
number of submasters) to provide an indication of the noise level in the master 
pulse. Therefore, the harmonics in the master pulse which stand out above 
noise can be determined by inspection, (c) Average squared Fourier transforms 
of the residual pulses for the 2-7.5 keV data after two iterations of the filtering 
procedure designed to flatten the spectrum, as described in the text. 

2 the power density spectrum of the HEAO 1 A-2 master tem- 
plate (2-7.5 keV) is shown along with the corresponding spec- 
trum of pulse-shape fluctuations. Note that the spectrum of 
shape fluctuations is quite red, indicating that the lowest har- 
monics of the pulse shape are the most variable. 

From each power spectrum we can construct the symmetric 
cosine filter 

m 
m = E [S(/k)r

1/2 COS 2nfk (f) , (8) 
k=l 

wherein m is the maximum harmonic used,/fc = k/P is the fre- 
quency of the kth harmonic of the pulse frequency, and 0 is the 
pulse phase in seconds. Recomputation of the pulse-shape 
noise for the filtered submaster and master templates should 
yield a power spectrum which is reasonably flat. We dis- 
covered, however, that the spectrum for the filtered pulses was 
still slightly red, due to the use of a nonoptimum scale factor a 
based on the unfiltered pulses (see eq. [7]). A second-pass filter, 
based on the power spectrum constructed from the filtered 
pulses using revised scale factors, produced twice-filtered 
pulses that possess an adequately flat shape noise power spec- 
trum (see Fig. 2).6 The three filtered master templates for the 
HEAO 1 A-2 experiment are shown in Figure 1, along with 
their unfiltered predecessors. 

Finally, each filtered submaster was cross-correlated with 
the corresponding filtered master (for each energy channel and 
experiment), and phase estimates were subsequently deter- 
mined through the application of equation (5). These pulse 
phase estimates have minimum variance (over all possible 
linear filters) under the assumptions stated for the pulse shape 
noise. Again, rather than attempt to test the validity of these 
assumptions in detail, principally whether the phases of pulse- 
shape harmonics are truly independent, we chose to examine 
directly whether filtering improves the stability of phase esti- 
mates by evaluating their local scatter. In § IVc we show that 
such filtering does markedly improve the precision of phase 
estimates derived from the high-quality HEAO 1 data but does 
not improve the precision for the OSO 8 and SAS 3 data, 
where the white pulse-shape noise due to the finite number of 
photons is much stronger. 

c) Phase Uncertainties and Evaluation of Filtering 
A measure of the uncertainty of the pulse phase estimates is 

needed in order to evaluate whether filtering provides any 
improvement. In this discussion it is important to distinguish 
the spectrum of fluctuations in pulse s/iape from the spectrum 
of fluctuations in pulse phase induced by the pulse-shape fluc- 
tuations. We show in Paper II that even though the power 
density of the fluctuations in pulse shape declines with harmo- 
nic number (i.e., is red), the observed spectrum of fluctuations in 
pulse phase induced by the pulse-shape noise is white, at least 
on time scales longer than the template-folding interval (1- 
12 hr). Thus, the induced fluctuations in pulse phase are 

6 We believe that the empirically determined power spectrum of the pulse- 
shape noise adequately approximates the true spectrum for the purpose of 
improving pulse timing through pulse filtering. There is, however, the possi- 
bility that the spectrum may be distorted in the process of aligning and scaling 
the sample pulses. For instance, if a single harmonic dominates the pulse, 
almost all information about noise in that harmonic is lost in the process of 
aligning and scaling the pulse. When several harmonics contribute to the pulse 
shape, as in Vela X-l, there will still be a loss in noise power, but now the 
reduction will be divided among the largest harmonics. For the spectrum 
shown in Figure 2, we estimate that the distortion from alignment and scaling 
is at most 30% for the sixth and seventh harmonics, and is smaller elsewhere. 
This is a relatively small effect, given the 2.5 decade range in noise power 
density. Even so, this distortion could be avoided by using other methods, 
which align and scale the pulses collectively rather than individually. 
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inferred to be uncorrelated from one submaster to the next. We 
therefore chose as a measure of the uncertainty of the individ- 
ual phase estimates the rms deviation of short segments of the 
pulse-phase time series from a local straight-line fit. By using 
segments short enough, we ensured that the scatter was domi- 
nated by the fluctuations in pulse phase induced by pulse- 
shape noise, rather than by the fluctuations produced by the 
red noise in the neutron star’s rotation rate. 

In order to calculate the rms deviations from local straight- 
line fits, we had to choose appropriate weights for the individ- 
ual phase estimates. If photon statistics were the only source of 
pulse-shape fluctuations, it would be proper to weight the 
phase estimates by inverse Poisson variances (see discussion of 
eq. [6]). However, the presence of pulse-shape noise substan- 
tially in excess of that due to photon statistics made the use of 
Poisson weights questionable. As an alternative, we considered 
assigning each phase estimate equal weight, which would be 
appropriate for stationary processes that produce fractional 
fluctuations in harmonic amplitudes which are independent of 
the number of detected photons. On comparing the results 
using uniform weighting with those based on Poisson weight- 
ing, we found that neither scheme was clearly favored. 

In the end, we adopted uniform weighting in analyzing all 
data sets because of its simplicity. The resulting phase uncer- 
tainties are shown in Table 3. The first of them (crp) shows the 
average expected error due to the finite number of photons in 
the template for the various energy channels of each experi- 
ment. The next columns compare the empirical uncertainties 
derived from the observed scatter of phase estimates from 
local, straight-line fits for unfiltered (cr0), once-filtered (cji), and 
twice-filtered ((72) submaster templates. These results show that 
filtering the templates substantially improves the precision of 
the phase estimates derived from the HEAO 1 data, where the 
variance was reduced by as much as a factor of 4 for the highest 

quality data. In contrast, filtering did not significantly improve 
the precision of the phase estimates derived from the lower 
quality OSO 8 and SAS 3 data. This outcome is to be expected, 
since pulse-shape noise due to the finite number of photons 
is more important in the OSO 8 and SAS 3 data, than not in 
the HEAO 1 data. 

d) Final Phase Estimates and Uncertainties 
Only a single set of phase estimates could be derived from the 

1978 May OSO 8 data, since the data from this satellite were 
not energy-resolved. On the other hand, from three to six inde- 
pendent sets of phase estimates were derived from the 1978 
November-1979 January HEAO 1 and SAS 3 data, since the 
data that we obtained with these satellites were partitioned 
both by detector and by energy channel. In the latter case, final 
phase estimates for each experiment as a whole were formed by 
averaging the phase estimates derived from the individual 
energy channels of the experiment, using weights proportional 
to the reciprocal of the point variance assigned to each energy 
channel from the local straight-line fits described above. The 
weights chosen are listed for reference in Table 3. One second 
was subtracted from the SAS 3 phases to compensate for the 
leap second introduced in UTC at 1979 January 1.0, in addi- 
tion to the correction for the time offset between the HEAO 1 
and SAS 3 master pulses (see § TV a). 

The uncertainty of the final phase estimates could not be 
estimated correctly by simply adding in quadrature the uncer- 
tainties of the individual phase estimates that were averaged to 
form them, because fluctuations in the pulse shape in one 
energy channel in excess of those due to photon statistics are 
likely to be correlated with excess fluctuations in the pulse 
shape in other energy channels. We therefore estimated the 
uncertainty of the pulse phases derived from each experiment 
as a whole in the same way that we estimated the uncertainty 

TABLE 3 
Evaluation of the Effect of Filtering on Phase Uncertainties 

Satellite 

Energy rms Residuals3 (s) 
Range   Relative <7ave

b 

(keV) (Tp o' 0 <7! a 2 Weight (s) 

OSO 8  

HEAO l/A-V 

HEAO J/A-2 

SAS 3e 

2-30 0.59 1.34 
f2.1-8.3 0.14 1.11 

< 8.3-15.4 0.19 1.02 
(.15.4-18.9 0.28 1.20 
(2-20 0.15 1.01 
<2-7.5 0.15 0.94 
(.7.5-60 0.21 1.08 
2.5-5 0.49 1.28 
5-10 0.45 1.16 
8-18 0.36 0.84 
18-27 0.59 1.22 

1.28 1.33 1.00 
0.86 0.93 0.53) 
0.67 0.67 1.00 > 
0.90 0.89 0.59 J 
0.66 0.63 0.61) 
0.53 0.49 1.00 > 
0.86 0.83 0.35 J 
1.32 1.29 0.44") 
1.33 1.37 0.53 ( 
0.67 0.81 1.00 ( 
1.31 1.46 0.30J 

1.34 

0.56d 

0.50 

0.78 

a ap is the average uncertainty in the phase of each submaster pulse due to counting statistics 
(finite number of photons). <70, al, and a2 are the empirically determined mean uncertainties 
(derived from observed scatter of phase estimates for local straight-line fits) for unfiltered sub- 
masters and once- and twice-filtered submasters, using filters constructed to whiten the pulse shape 
noise. 

b Empirically determined mean uncertainty in the final phase estimates, which are obtained by 
averaging the phase estimates for the energy channels of each experiment, using the weights in the 
previous column. 

c Because of low count rates, the lowest two energy channels of the A-l experiment were not 
used for pulse timing. 

d Excluding 1978 Nov. 1 data. 
e Because of low count rates, the lowest energy (1.0-2.5 keV) channel of the HTC and the highest 

energy (27-35 keV) channel of the XTC were not used for pulse timing. 
f This weight should be 0.51, but by a transcription error was reduced to 0.30. The effect of this 

incorrect weighting on the final phase estimates is not very important, and reaveraging was not 
performed. 
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of the pulse phases derived from a single energy channel; 
namely, by computing the rms deviation of the final phase 
estimates from local straight-line fits (again, using uniform 
weights). The phase estimates derived from the 1978 
November 1 data showed an unexplained large scatter and so 
were excluded from this computation. The results for all 
experiments are shown in the last column of Table 3. Because 
the uncertainties of the phase estimates derived from the A-l 
and A-2 data are so similar, we combined these two sets of 
phase estimates and assigned a common point variance of 
0.51 s based on the rms scatter of the phases from local 
straight-line fits. 

The phase estimates derived from the three final groupings 
of the data are shown in Figure 3. The sinusoidal phase varia- 
tion with a period of ~ 9 days apparent in this figure is due to 
the inaccuracy of the provisional orbit. This variation disap- 
pears when the more accurate mean orbit derived in § VI is 
used. 

V. DETERMINATION OF THE NEUTRON STAR ORBIT 

Our goal is to determine orbital parameters with the highest 
possible precision given the data available and to make a rea- 
listic estimate of their uncertainty. In Vela X-l, the pulse phase 
wanders significantly as a result of the noise in the rotation of 
the neutron star. This noise is red in the sense that the power 
density of the phase residuals is much greater at low fre- 
quencies than at high frequencies and is consistent with a 
random walk in pulse frequency (Paper II). The noise in pulse 

phase can therefore be described as the first integral of a 
random walk or, equivalently, the second integral of a white 
noise process. We therefore call this type of noise second-order 
red noise (Deeter and Boynton 1982). This noise in the rotation 
rate dominates all other contributions to the uncertainties in 
the orbital parameters for our Vela X-l data; consequently, a 
realistic assessment of its contribution to the uncertainty of the 
orbital parameters is essential. 

For the reasons given in §§ III and VII, we determined 
separate orbital solutions for the 1978 May data and for the 
data beginning in 1978 November. The presence of the red 
noise in rotation motivated us to shorten the second data set 
for the purpose of calculating the orbit. The initial pointing in 
this set (1978 November 1) is separated from the next by 23 
days, which allows a sizable uncertainty in the pulse phase to 
accumulate between these two observations and thus effec- 
tively decouples the initial pointing from the local emphemeris. 
The same is true of the 1979 January SAS 3 data, which are 
separated by 14 days from the final HEAO 1 observation on 
1978 December 31. Inclusion of either point at the ends of the 
entire 70 day data span would not significantly improve the 
local orbital solution. Therefore, we chose to include only the 
observations from the 12 pointings during the 37 day interval 
from 1978 November 24 to December 31 in our determination 
of the local orbit based on the second data set. 

In carrying out the least-squares analysis described below, 
we assigned the phase estimates within each data set the same 
weight, equal to the inverse of the point variance obtained 
from the local scatter in pulse phase in the manner discussed in 

JD-2440000 
Fig. 3.—(a) Residual phases in seconds, with respect to the provisional orbit and the provisional local pulse frequency, for the 1978 May {OSO 8) data. The 

vertical bars correspond to the estimated uncertainty of 1.34 s. (b) Residual phases, with respect to the provisional orbit and the provisional pulse frequency, for the 
1978 November-December data from HEAO 1 {filled circles) and the 1979 January data from SAS 3 {crosses). Each point is an average of the residuals derived from 
12 hr of data. The vertical bars on the SAS 3 data indicate the uncertainty of the averaged point, based on individual phase uncertainties of 0.78 s. The phase 
uncertainties of the averaged HEAO 1 data points, based on individual phase uncertainties of 0.51 s, are too small to be seen in this panel, (c) Residual phases, with 
respect to the best-fit local orbit given in Table 5 and a fifth-degree polynomial, for the 1978 May data. Note that the vertical scale is a factor of 2.5 larger than that of 
(a), {d) Residual phases, with respect to the best-fit local orbit given in Table 5 and a sixth-degree polynomial, for the 1978 November-1979 January data. The 
segments at either end of the data set (1978 November 1 and 1979 January) were not included in the local fit for the orbit. Consequently the residuals for these two 
segments were very large and are not shown. Note that the vertical scale is a factor of 2.5 larger than that of {b). 
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the previous section. The equivalent standard deviations are 
1.34 s for the 47 phases in the 1978 May data set and 0.51 s for 
the 110 phases in the 1978 November-December set. 

a) Choice of Orbital Parameters 
Factors affecting the choice of orbital parameters in pulse- 

timing studies have been discussed previously by DBP. The 
main point made in their Appendix A is that only a term of 
order e distinguishes an orbit with small eccentricity from a 
circular one. That is, an orbit with small eccentricity is approx- 
imated by a sum of first and second harmonic terms with an 
amplitude ratio of e/2. While the amplitudes of these two terms 
are determined with comparable precision even in the presence 
of the red noise being confronted in this study, the precision to 
which the phase (or epoch) of each term is determined depends 
on thQ fractional uncertainty in the respective amplitudes. For 
this reason, the uncertainty in epoch of the first harmonic 
(epoch of mean longitude) is smaller by a factor of e/2 than the 
uncertainty in the epoch of the second harmonic (time of 
periapsis). The time of periapsis 7^ is therefore poorly deter- 
mined, and a better choice for orbital fiducial is an epoch in 
mean longitude. As advocated by DBP, we adopt for our 
orbital epoch the time when the mean longitude is ti/2 and, 
following van der Klis and Bonnet-Bidaud (1984), denote it by 
Tn/2- For a circular orbit, Tn,2 corresponds to the time of geo- 
metric conjunction, which differs from the time of apparent 
conjunction (mideclipse) by the light travel time correction 
given by DBP. For an orbit with finite eccentricity, an accurate 
description of rft/2 is given by the awkward phrase “time of 
conjunction in mean longitude.” Lacking a better term, we 
shall refer to Tn/2 as simply “ the orbital epoch.” 

We note also that for small eccentricity the determination of 
(o, the longitude of periapsis, suffers from the same adverse 
propagation of error as does the determination of Tœ. Further- 
more, estimates of these two quantities from the same data are 
highly correlated because both depend on the phase of the 
second harmonic. By definition, Tn/2 is given by their differ- 
ence : 

Consequently, the much more accurate r^n/2 can be recovered 
from conjointly determined Ta and co. In the following section 
we make this conversion for orbital solutions taken from the 
literature. 

Aside from the orbital epoch, the other orbital parameters 
that can be determined locally are the projected semimajor axis 
(a/c) sin i, eccentricity e, and longitude of periapsis co. We did 
not attempt to determine the orbital period or its rate of 
change locally, preferring to determine these parameters from 
an analysis of all available orbital epochs. 

b) Effect of Red Noise on the Orbital Parameters 
In assigning uncertainties to the orbital parameters, we used 

a method based on the sampling function formalism developed 
by Deeter (1984) to define the propagation of error. We also 
used this error analysis scheme to select the degree of the noise- 
absorbing polynomial included in each orbital solution. Here 
we briefly review this method. Further details are provided in 
the Appendix. 

When parameters are determined in the usual way, by fitting 
a function to data using the method of least-squared residuals, 

it is tacitly assumed that the noise in the observations is accu- 
rately described by a data covariance matrix. The inverse of 
this matrix provides a suitable weight matrix for the data 
points, and the uncertainties in the parameters are then 
obtained by inverting the normal equations. As discussed in 
the Appendix, this method is not directly applicable to data 
containing red noise, since the data covariance matrix is not 
positive definite and therefore does not yield an acceptable 
data weight matrix. For this reason, we have adopted an ad 
hoc approach. 

According to the methodology outlined in § III, we absorb 
noise on long time scales by fitting a suitable polynomial, 
weighting the individual pulse phases according to their esti- 
mated residual variances. We can then use the procedure dis- 
cussed in the Appendix to estimate the uncertainties in the 
orbital parameters arising from the particular kind of red noise 
in pulse phase observed in Vela X-l. By also including the 
uncertainties caused by the white noise in pulse phase induced 
by the fluctuations in pulse shape, we can choose the degree of 
the auxiliary polynomial to minimize the combined uncer- 
tainties. This criterion differs from the commonly accepted one 
of fixing the polynomial degree at the point where the phase 
residue stops decreasing. Although the polynomial degrees 
specified by these two criteria are quite similiar for the present 
data, our method relies directly on the parameter uncertainties 
themselves, which are estimated by a formally correct error 
propagation formula. 

A possible difficulty in obtaining the correct parameter 
covariance matrix is that the least-squares problem for the 
orbit plus polynomials is nonlinear and must be solved by 
iteration. In the case at hand, however, the nonlinear terms are 
small compared to the parameter errors. Therefore, we accept 
the covariance matrix for the final parameter adjustments as 
the covariance matrix for the parameters themselves, as is done 
in the case of nonlinear least-squares applied to data contain- 
ing white noise. Since the problem is strictly linear in the poly- 
nomial coefficients, they are not explicitly considered in the 
following discussion of the linearized orbital solution. 

To linearize this least-squares problem, we used an approx- 
imate expression for the change in the orbital time delay Aiorb, 
in terms of small changes in the orbital parameters (cf. DBP), 
namely, 

Aiorb = A^q cos / + Ab1 sin l + Aa2 cos 21 + Ab2 sin 21 . 
(10) 

Here / is the provisional mean longitude, measured from the 
ascending node. This approximation retains only first-order 
terms in the eccentricity and involves only the first and second 
harmonics of the mean orbital motion. To first order in the 
eccentricity, the corrections to the orbital parameters are 
related to the coefficients in equation (10) by the expressions 

2nx 
Aa1 = — —— Alio , Abi = Ax , 

Port, ' (11) 

Aa2 = —\xAg , Ab2 = %xAh , 

where x = (a/c) sin i is the projected semimajor axis, ATn/2 is 
the local correction to the orbital epoch, Porb is the provisional 
orbital period, and g = e sin œ and h = e cos co are the Carte- 
sian equivalents of the eccentricity e and longitude of 
periapsis co. The harmonic coefficients Aa^ AbAa2, and Ab2 

are all expressed in the same units; consequently, their uncer- 
tainties are identical for uniform sampling and white noise in 
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pulse phase. These uncertainties continue to be the same order 
of magnitude even for nonuniform sampling and nonwhite 
noise, making it particularly easy to compare the changes in 
the uncertainties of the harmonic coefficients as the polynomial 
degree is varied. This is not true for the parameter corrections 
themselves, which are expressed in a variety of units. 

With this error propagation scheme, it is possible to deter- 
mine the contribution to orbital parameter uncertainties from 
the noise in rotation. However, the properties of this noise 
cannot be determined completely unless the orbit is known 
accurately. In order to break this apparent circularity, we first 
made a provisional determination of the type and strength of 
the noise at frequencies lower than the orbital frequency. We 
found that at these frequencies the noise was adequately 
modeled by second-order red noise in pulse phase, with a 
random-walk strength of 8 x 10“19 rad2 s-3 (see Paper II). 

To select the optimum polynomial degree, we solved the 
linearized least-squares problem nine times for each data set, 
including in turn first through ninth degree polynomials. In 
each case we computed the expected variance in each of the 
orbital parameters due to the white noise in pulse phase con- 
tributed by pulse shape fluctuations as well as that due to 
second-order red noise in pulse phase with the strength given 
above. Since these two kinds of noise are independent, we can 
add their variances to obtain a total variance for each param- 
eter. 

Table 4 shows the behavior of the total uncertainty in the 
orbital parameters at as polynomials of increasing degree are 
included. For both data sets, the <7t’s of all the parameters 
generally decline as the degree of the polynomial is increased. 
After a certain point, however, the subsequent decline is com- 
paratively modest. On this basis we chose to include a fifth- 

degree polynomial in analyzing the 1978 May data set and a 
sixth-degree polynomial in analyzing the 1978 November- 
December data set. 

The success of this method of absorbing noise by a poly- 
nomial is confirmed by the smallness of the postfit rms phase 
residuals (1.26 s for the 1978 May set, 0.60 s for the 1978 
December set) compared to the estimated uncertainties in the 
observed pulse phase (1.34 s and 0.51 s respectively). If the 
residuals were independent, we could use the postfit rms error 
to determine the parameter uncertainties and obtain values 
close to those given as a0 in Table 4. There is no guarantee, 
however, that the residuals are truly independent. They may 
still hide a term that varies on time scales close to the orbital 
period with an amplitude comparable to the rms of the 
residuals. In fact, we expect such a term due to the presence of 
red noise. Although small, this irreducible noise term nonethe- 
less increases the parameter uncertainties by up to an order of 
magnitude (see the cols, labeled (7t in Table 4). This effect is 
particularly noticeable where the quality of the data is high, as 
in the 1978 November-December data set. 

c) Best-Fit Orbital Parameters 
For each of the two data sets, we determined four orbital 

parameters in the manner discussed above : the local orbital 
epoch Tn/2, the projected semimajor axis (a/c) sin /, the 
eccentricity e, and the longitude of periapsis co. The best-fit 
values of these parameters were computed by iteration and 
were found to stabilize to within 0.01 a after five iterations. 
The results are presented in Table 5. Two uncertainties are 
quoted for each parameter : a smaller one, which is that due to 
pulse-shape noise, and a larger one, which includes the uncer- 
tainty caused by fluctuations in rotation rate. These solutions 

TABLE 4 
Evaluation of the Optimal Degree for the Polynomial 

Introduced to Absorb the Red Noise in Rotation3 

A«! Abl Aay Ab2 

G r Or 

1978 May 

0.25 
0.25 
0.26 
0.26 
0.27 
0.29 
0.29 
0.30 
0.36 

1.14 
1.10 
0.64 
0.66 
0.58 
0.60 
0.63 
0.60 
0.58 

1.16 
1.13 
0.69 
0.71 
0.64 
0.66 
0.70 
0.67 
0.69 

0.44 
0.44 
0.45 
0.45 
0.45 
0.48 
0.48 
0.49 
0.57 

2.55 
1.41 
0.67 
0.70 
0.68 
0.60 
0.69 
0.65 
0.58 

2.58 
1.48 
0.81 
0.84 
0.82 
0.77 
0.84 
0.82 
0.81 

0.37 
0.37 
0.37 
0.37 
0.38 
0.38 
0.38 
0.38 
0.40 

1.14 
0.49 
0.40 
0.35 
0.26 
0.23 
0.21 
0.20 
0.15 

1.19 
0.61 
0.54 
0.51 
0.46 
0.44 
0.43 
0.43 
0.42 

0.28 
0.28 
0.28 
0.28 
0.28 
0.29 
0.29 
0.29 
0.29 

1.45 
0.36 
0.23 
0.16 
0.16 
0.17 
0.15 
0.15 
0.15 

1.48 
0.46 
0.37 
0.33 
0.33 
0.33 
0.32 
0.33 
0.33 

1978 December 

0.069 
0.071 
0.073 
0.075 
0.075 
0.083 
0.117 
0.143 
0.416 

2.93 
1.41 
0.86 
0.95 
0.94 
0.83 
0.84 
0.73 
0.68 

2.93 
1.41 
0.86 
0.95 
0.95 
0.83 
0.85 
0.74 
0.80 

0.136 
0.137 
0.141 
0.142 
0.159 
0.162 
0.172 
0.191 
0.193 

3.55 
3.41 
1.81 
1.58 
1.06 
0.81 
0.89 
0.82 
0.82 

3.55 
3.41 
1.82 
1.59 
1.07 
0.83 
0.90 
0.85 
0.84 

0.145 
0.148 
0.149 
0.152 
0.152 
0.152 
0.153 
0.153 
0.157 

5.11 
1.38 
1.19 
0.31 
0.29 
0.28 
0.28 
0.28 
0.28 

5.11 
1.39 
1.20 
0.35 
0.32 
0.32 
0.32 
0.32 
0.32 

0.074 
0.074 
0.075 
0.075 
0.081 
0.083 
0.084 
0.086 
0.096 

0.82 
0.80 
0.67 
0.70 
0.38 
0.27 
0.27 
0.26 
0.26 

0.82 
0.81 
0.67 
0.71 
0.39 
0.28 
0.28 
0.27 
0.27 

a Aöl5 A6X, Aa2, and Ab2 are the orbital harmonic coefficients discussed in the text. cr0, or, and at are the expected 
uncertainties (s) in each parameter due, respectively, to the short time scale fluctuations in pulse phase determined empiri- 
cally from the local scatter (see Table 3), to the red noise in pulsar rotation with the strength given in the text, and to both 
sources of phase variation combined. 

b Degree of the polynomial included in the fit. 
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TABLE 5 
New Orbital Solutions for Vela X-la 

Data Set 
Span 
(days) Nh (JD 2,440,000 + ) 

(a/c) sin i 
(s) Satellite 

1978 May   

1978 Nov-Dec . 

34 

37 

246 

269 

3651.536 
(0.004) 
(0.008) 

3857.722 
(0.001) 
(0.011) 

112.6 
(0.5) 
(0.8) 

112.6 
(0.2) 
(0.8) 

0.090 151° 
(0.006) (4) 
(0.006) (4) 
0.083 148 

(0.002) (2) 
(0.006) (4) 

OSO 8 

HEAO 1 

a 1 í7 single-parameter uncertainties are given in parentheses below the parameter values. The upper uncertainty 
includes only the uncertainty due to pulse-shape noise, while the lower uncertainty also includes that due to the red 
noise in rotation. 

b Orbital cycle, counted from the time of mid-eclipse (JD 2,441,446.54) reported by Forman et al. 1973. 
c Orbital epoch, defined as the time when the mean longitude equals 7i/2. 
d Degree of local polynomial fit. m = 5 and m = 6 indicate that fifth- and sixth-degree polynomials, respectively, have 

been included in the fit in addition to the orbital parameters. 

are stable against changes in the initial parameter values, and 
the parameter correlation coefficients are generally less than 
0.5. 

These results show that the uncertainty in the orbital param- 
eters arising from the noise in the rotation of the neutron star is 
substantial. For the orbit derived from the HEAO 1 data, for 
example, this noise increases the uncertainty in the semimajor 
axis and the local orbital epoch by factors of 4 and 10 respec- 
tively over the uncertainty due to the pulse-shape noise alone. 
Nevertheless, these are the most precise local solutions yet 
determined because of the size and quality of the data sets on 
which they are based. In the next section we combine them 
with other local solutions drawn from the literature to deter- 
mine the most precise orbital elements that can be readily 
obtained from currently available data. 

VI. MEAN ORBIT FOR VELA X-l 

There are now some 20 published orbital solutions for Vela 
X-l based on pulse-timing observations (see Table 6). It is 
therefore a useful undertaking to evaluate and combine these 
solutions to obtain an orbit having the smallest possible 
parameter uncertainties. As an explicit working definition, we 
suggest that a combined orbit should be based on at least two, 
and preferably more, independent local solutions of approx- 
imately equal weight, in order to provide adequate compari- 
son. The solutions should also be well separated in time, in 
order to obtain meaningful information about secular changes 
in Porb and co. Each solution should have by itself adequate 
coverage in orbital phase to ensure that correlations between 
the parameter estimates are relatively small (less than 0.5 in 
magnitude). These criteria conform closely to the guidelines of 
Batten, Fletcher, and Mann (1978) for a definitive orbit based 
on spectroscopic radial velocities. 

There is one essential difference between orbits based on 
pulse-timing observations and those based on spectroscopic 
data. In the case of a spectroscopic orbit, all radial velocity 
data can normally be combined into a single, global orbital 
solution. The analogous procedure is not generally applicable 
to pulse-timing observations because of the inherent noisiness 
of pulsar rotation. We discuss this point in more detail in 
§ Vllh, where we further justify the procedure of combining 
local solutions to produce a mean orbit. In the remainder of 
this section we describe specific criteria for incorporating indi- 
vidual solutions in the determination of our mean orbit for 
Vela X-l and present the resulting orbital elements. 

The 21 available orbital solutions are listed in Table 6. 
These include the two calculated in the present work and 19 
previously published solutions. As mentioned in § Va, the 
highly uncertain time of periapsis reported by most previous 
authors has been converted to the more precise epoch in mean 
longitude by using the concurrently determined longitude of 
periapsis. The uncertainty in the epoch was estimated from the 
reported uncertainty in the projected semimajor axis, noting 
that these two parameters can be expressed as the coefficients 
of conjugate sinusoids in the solution and assuming that the 
observations provide uniform coverage of the orbit. Since the 
actual coverage is often quite nonuniform, this estimate of the 
uncertainty in the epoch could be in error by as much as a 
factor of 2. 

In order to be included in the determination of our mean 
orbit, we required that a solution (1) be based solely on pulse- 
timing data, (2) include a full set of orbital elements, (3) be 
based on a block of data short enough to be covered by a single 
pulse ephemeris, and (4) have an eccentricity significant at the 
3 a level or better. 

Ultimately, only five of the 21 solutions listed in Table 6 
were selected for inclusion in the mean orbit. These chosen 
solutions are based on data obtained during 1975 June-July 
(Rappaport, Joss, and McClintock 1976); 1978 November 
(Rappaport, Joss, and Stothers 1980); 1978 May and 1978 
December (this work); and 1980 March (Hayakawa 1981). 
Orbits published by van der Klis and Bonnet-Bidaud (1984) 
and by Nagase etal (1984fr) meet the above criteria but did not 
become available until after the completion of our analysis. 

As discussed above, the presence of the random walk in 
pulse frequency (second-order red noise in pulse phase) intrin- 
sic to the neutron star contributes to the uncertainty of the 
derived orbital parameters. In order to determine the appro- 
priate weights to give the three previously published solutions 
in forming the combined solution, it was necessary to estimate 
the total uncertainty in the orbital parameters, including that 
due to noise in the rotation rate. However, this source of noise 
was not considered in any of the previously published solu- 
tions. Therefore, in addition to reconstructing the orbital 
epoch and its uncertainty, we have estimated the effect of the 
red noise on all the orbital parameters for these three solutions. 
The method used was the same as that for our two solutions (as 
discussed in § V), except that we did not have the liberty of 
altering the degree of the noise-absorbing polynomial included 
in the fit. The resulting parameter uncertainties are included in 
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TABLE 6 
Orbital Solutions for Vela X-la 

Data Set Span 
(d) 

T,/2bb 

(244..,) 
0-Cc 

(d) 
m0 Wt. Ref. 

(s) (deg) 
1975 Feb. 

1975 Jim, 
Jul . 

1975 Nov. 

1975 Nov. 

1975 Dec, 
1976 May. 

1976 Aug. 

1976 Aug . 

1978 May . 

1978 May, 
Dec . 

1975 Jul, 
1978 Nov. 

1978 Nov . 

1978 Nov- 
Dec . 

1979 Mar. 

1979 Mar . 

1979 Oct- 
Nov . 

1980 Mar . 

1980 Mar . 

1979 Mar- 
1981 Mar. 

1979 Mar- 
1982 Mar. 

1979 Mar- 
1982 Dec. 

1983 Mar . 

18 

19 

10 
14 

29 

29 

34 

3 
26 

37 

14 

14 

35 

19 

19 

76 

114 

148 

15 

112 

130 

143 

143 

172 

173 

246 

265 

265 

265 

269 

278 

304 

319 

319 

319 

399 

433 

442 

2450.4 e 

(0.16) 

2611.716 
(0.015) 
(0.087) 

(2728.43) i 
(0.02) 

2728.250 
(0.007) 

(2750.0) 11 

(2900.0) 

(2988.37) i 

(0.02) 

2997.128 
(0.008) 

3651.536 
(0.004) 
(0.008) 

3821.81 e 

(0.02) 

3821.806 e 

(0.010) 

3821.837 e 

(0.010) 
(0.021) 

3857.722 
(0.001) 
(0.011) 

3936.11 e’r 

(0.05) 

(3948.0) t 

4171.437 
(0.005) 

4305.937 e 

(0.018) 

4305.948 e 

(0.012) 
(0.014) 

4305.944 e 

(0.008) 

5023.062 e 

(0.007) 

5327.874 e 

(0.007) 

5408.556 e 

(0.002) 

-f0.097 

+0.048 

(+0.230) 

+0.050 

(+0.202) 

-0.005 

0.000 

-0.050 

-0.054 

-0.023 

+0.004 

(-2.288) 

-0.036 

-0.003 

+0.008 

+0.004 

-0.032 

112 
(13) 

111.4 
(1.7) 
(3.7) 

113.0 
(2.4) 

kk 

-0.011 

-0.008 

113.0 

112.5 
(4.2) 

113.4 
(0.6) 

112.6 
(0.5) 
(0.8) 

114 
(1) 

113.0 
(0.8) 

112.3 
(0.8) 
(1.2) 

112.6 
(0.2) 
(0.8) 

113.4 
(3.8) 

113.6 
(2.6) 

113.2 
(0.5) 

114.4 
(1.3) 

113.8 
(0.9) 
(1.2) 

113.9 
(0.6) 

113.7 
(0.5) 

114.1 
(0.5) 

111.9 
(0.2) 

0.20 
(0.19) 

0.126 
(0.021) 
(0.040) 

0.079 J 
(0.009) 

0.116 
(0.008) 

0.10 
(0.03) 

0.073 J 
(0.010) 

0.085 
(0.008) 

0.090 
(0.006) 
(0.006) 

0.10 
(0.01) 

0.092 
(0.005) 

0.094 
(0.005) 
(0.009) 

0.083 
(0.002) 
(0.006) 

0.04 
(0.07) 

0.102 
(0.008) 

0.091 
(0.019) 

0.089 
(0.013) 
(0.013) 

0.079 
(0.007) 

0.076 
(0.007) 

0.080 
(0.006) 

0.091 
(0.002) 

125 
(52) 

146 
(12) 
(26) 

162 
(15) 

166 
(3) 

166 
(18) 

164 
(23) 

121 
(6) 

151 
(4) 
(4) 

150 
(9) 

154 
(5) 

158 
(5) 
(6) 

148 
(2) 
(4) 

182 
(26) 

177 
(5) 

160 
(7) 

168 
(5) 
(8) 

155.3 
(2.5) 

159 
(2.3) 

157.3 
(2.1) 

152 
(0.6) 

1 1 

36 

12 

36 

12 

This 
Paper 

This 
Paper 
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Table 6. As in Table 5, two uncertainties are quoted. The first 
is the uncertainty induced by pulse-shape noise alone, whereas 
the second includes our estimate of the uncertainty caused by 
the noise in rotation. 

The uncertainty introduced by the noise in neutron star 
rotation is much less important for the three previously report- 
ed solutions than for the two solutions obtained in the present 
work, for two reasons. First, the count rates in the previous 
observations were much smaller than in the new observations 
reported here, with the result that the uncertainties due to 
photon statistics are much larger. Second, the data sets used in 
the previous solutions span smaller intervals, with the result 
that the expected excursion in pulse phase due to the noise in 
rotation is smaller. 

We next determined the relative weights to be assigned to 
the locally determined parameters for the purpose of calcu- 
lating the mean orbit. Minimum variance estimates for average 
parameters require that the weight assigned to each local 
parameter be proportional to its inverse variance. To follow 
this assignment rigorously would give each local solution a 
different weight for each parameter. For simplicity, each of the 
five local solutions was instead assigned a single weight, equal 
to the averaged formal weight of the four orbital parameters in 

each solution. The resulting relative weights are given in 
Table 6. 

Using these weights, the semimajor axis and eccentricity of 
the mean orbit were calculated as averages of the correspond- 
ing local values reported for the five selected solutions. A 
central epoch and the orbital period were estimated by fitting a 
straight line to the five individual orbital epochs. The longitude 
of periapsis and its rate of change were similarly determined by 
fitting a straight line to the five individual longitudes. 

Our mean orbit for Vela X-l is recorded in Table 7. The 
quoted uncertainties are derived from the corresponding 
uncertainties in the parameter estimates of each of the five 
orbits, as described above, but they are also consistent with the 
scatter in these estimates among the five solutions used. 

We also checked for a change in the orbital period by fitting 
a second-degree polynomial to the orbital epochs and found 
that the result was Forb/Porb = +2.7 ± 2.6 x 10“5 yr“1. Since 
this value is consistent with zero Porb, the quadratic fit to the 
orbital epochs is not given in Table 7. We adopt the value of 
Porh derived from a linear fit to the orbital epochs as giving the 
best value of Porb at the present time. The issue of apsidal 
advance in Vela X-l is discussed elsewhere (Deeter et al. 
19864 

Notes to Table 6 a For ease in comparison, all errors have been converted to 1 a single-parameter uncertainties. These uncertainties are listed in parentheses below the parameter 
estimates. For the five sets used in determining our mean orbit (Table 7), a second uncertainty is listed which takes into account the contribution from the red noise 
in pulsar rotation. 

b Orbital cycle, counted from the time of mid-eclipse (JD 2,441,446.54) reported by Forman et ai 1973. 
bb Orbital epoch, defined as the time when the mean longitude equals +2. 
c Residuals of the orbital epochs from the epoch ephemeris given by our mean orbit in Table 7. 
d Degree of local polynomial fit. m = 1, linear fit for local period; m = 2, quadratic fit for local period and its derivative; m = 5 or 6, fifth- or sixth-degree 

polynomial included to absorb the red noise in rotation. Where two separate sets were fitted jointly, the degree used for each set is indicated. Where more than two 
separate sets were fitted jointly (i.e., for some of the Hakucho solutions), the indicated polynomial degree applies to all sets. 

e Epoch inferred from 7^ and co; error inferred from that given for (a/c) sin i (see text). 
f Copernicus (Charles et al. 1978). 
g Epoch inferred from T'ni2 (time when the true longitude equals n/2), e, and eu; error in the epoch is one-fourth that in T'n/2 (see DBF, Appendix A). 
h SAS 3 (Rappaport et al. 1976). Uncertainties were stated as 95% confidence limits and hence have been multiplied here by 0.5 to obtain 1 a uncertainties. 
1 Estimated time of mideclipse (Tmid) from eclipse observations. The orbital solution was constrained so that Vn/2 (time when the true longitude equals n/2) agrees 

with this value. 
j The uncertainty on this parameter is small by a factor of ~ 3 relative to the uncertainties on the other orbital parameters. Since this problem affects two data sets 

analyzed using the same program but reported separately, it is likely there is a minor bug in the program. 
k COS B (Ôgelman et al. 1977). Uncertainties were stated as 90% confidence limits and hence have been multiplied here by 0.6 to obtain 1 a uncertainties. 
kk (a/c) sin i was set equal to the value obtained in the earlier solution by Ôgelman et al. 1977. 
I COS B (van der Klis and Bonnet-Bidaud 1984). The 1975 Nov and 1976 Aug are second-pass solutions to those reported earlier by Ôgelman et al. 1977 and 

Molteni et al. 1982. Uncertainties were stated as 1 d multiparameter errors and hence have been multiplied by 0.35 to convert them to 1 cr single-parameter errors. 
II Values for the orbital epoch and (a/c) sin i were not reported for either of these data sets. The listed times may be taken as approximate epochs for these sets, and 

an average of them as an epoch for e and co. 
m OSO 8 (Becker et al. 1978). Uncertainties were stated as 90% confidence limits and hence have been multiplied here by 0.6 to obtain 1 <t uncertainties. 
n COS B (Molteni et al. 1982). The confidence level for the uncertainties was not clearly stated, but since the program used to obtain the parameters was the same 

used by Ôgelman et al. 1977 for the 1975 Nov set, it is likely that they are also 90% confidence limits. Therefore, the uncertainties have been multiplied here by 0.6 to 
convert them to 1 a limits. 

° HE AO 1 A-4 (Bautz ci al. 1983). 
p SAS 3 (Rappaport et al. 1980). This is a joint solution combining the 1975 Jul and 1978 Nov sets. Two additional parameters were determined in this solution: 

F orb = 8.9649 + 0.0002 days, and cb = +0?4 + 1?7 yr-1. The epoch for œ is not clearly stated. In the absence of any other indication, we have assumed that the 
epoch is identical to the given time of periapsis (JD 2,443,823.40). 

q SAS 3 (Rappaport et al. 1980). 
r Either the given (JD 2,443,938.4) or œ is incorrect. The inferred T,n should agree much more closely with the orbital ephemeris. If the given epoch is really 

then O — C = + 0.002 days, which is much more satisfactory. 
s Hakucho (Nagase et al. 1981). 
1 No orbital epoch was given for this solution. The indicated time is approximately the midtime of the data interval and may be taken as the epoch for (a/c) sin i. 
u Hakucho (Hayakawa 1981). These are apparently “ second-pass” solutions, using essentially the data reported by Nagase et al. 1981. The 1979 Mar solution was 

for a circular orbit, so e and œ were not reported. 
v All sets included in the joint fit were fitted by a quadratic (second-degree) polynomial. 
w Hakucho (Nagase 1981). Joint fit to seven separate sets of data. The orbital period was not determined in this solution, but was fixed at 8.9641 days as 

determined from the eclipses. 
x Hakucho (Nagase et al. 1982). Joint fit to 11 separate sets of data. The orbital period was determined to be Porb = 8.9641 + 0.0002 days. 
y Hakucho (Nagase et al. 1984a). Joint fit to 14 separate sets of data, including those used in the preceding listing. The orbital period and the rate of apsidal 

advance were determined to be Porh = 8.9641 + 0.0006 days and œ = +0?3 ± 1?1 yr-1. 
z Tenma(Nagasecía/. 1984b). 
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TABLE 7 
Mean Orbital Parameters for Vela X-l 

Parameter3 Valueb 

T*I2-  
^orb  
(ale) sin i. 
e  
(ß   
cb ..... 
/(M)d . 

2,443,821.8604 ± 0.0056 HJD 
8.96443 ± 0.00022 days 

112.70 ± 0.47 s 
0.0881 ± 0.0036 
152?8 ± 2?2C 

+ 6?9 ± 3?4 yr"1 

19.12 ± 0.24 
a^2 is the orbital epoch, defined as the time when the 

mean longitude equals 7r/2. All other symbols have their 
usual meanings. For a discussion of this choice of orbital 
parameters, see DBP. 

b Indicated errors are 1 a single-parameter uncer- 
tainties. 

c At the epoch Tnl2 listed. 
d Derived parameter. 

VII. DISCUSSION 
With the experience gained in the present study, we are able 

to place in a general context the problem of determining the 
orbit of a binary pulsar in the face of red noise and to advocate 
a particular approach in determining and presenting orbital 
solutions. In the present section we discuss the conditions 
under which red noise in pulse phase has an important effect 
on the estimation of orbital parameters, evaluate three 
approaches to obtaining orbital solutions, and discuss the 
implications of our results for the design of pulse timing experi- 
ments. 

a) Effects of Noise 
The uncertainties in the parameters of an orbital solution 

are due to noise in the measured pulse phase. In the present 
context, there are two major sources of noise: (1) fluctuations 
in the rotation rate of the star and (2) fluctuations in the 
observed pulse shape. In Vela X-l there is a component in the 
observed power spectrum of the noise in pulse phase that 
varies with analysis frequency roughly as/-4 (Paper II). This 
spectrum is consistent with random-walk fluctuations in the 
rotation rate of the neutron star. As for the fluctuations in the 
observed pulse shape, there are two contributions. One arises 
from the discrete nature of the photon emission process and 
leads to white noise in the measured pulse phase. The strength 
of this noise depends on the number of photons detected and 
therefore on the properties of the measuring apparatus as well 
as on those of the source. The second contribution is any fluc- 
tuation in pulse shape in excess of that due to photon statistics. 
Such excess shape fluctuations have been measured in Her X-l 
(Boynton and Deeter 1979) as well as in Vela X-l (§ IV above). 
In both sources, the excess shape fluctuations are observed to 
produce white noise in the measured pulse phase, at least on 
time scales longer than a few pulse periods (Paper II). Thus, 
the total noise in phase produced by both contributions to 
shape fluctuations is also white and therefore induces a com- 
ponent in the power spectrum of noise in pulse phase that is 
independent of analysis frequency (/° power law).7 

7 Our division of the noise in pulse phase into two classes, arising from 
noise in pulse shape and noise in rotation rate, is based on the presence of two 
distinct components in the power spectrum of the noise in pulse phase. Fur- 
thermore, for the present data on Vela X-l, the measured shape fluctuations 
completely account for the observed strength of the white noise component in 
the power spectrum (Paper II). Thus, any white noise in pulse phase contrib- 
uted by fluctuations in the rotation rate of the star is small. 

From this description it is apparent that the power density 
of the red noise in pulse phase must equal the power density of 
the white noise at some crossover frequency fc (Lamb 1979; 
Boynton and Deeter 1979). Adopting consistent units for the 
strength of the random walk in the rotation Srot (rad2 s-3) and 
the strength of the combined white noise processes, 5^hite 
(rad2 s), this crossover frequency is given by 

fc 
_ i / sro, y/4 

2ti \S'white/ 
(12) 

Below /c, the red noise dominates the total power density; 
above it, the white noise dominates. Here and in the following, 
we use primes to distinguish strengths that depend on experi- 
mental parameters from those that depend only on source 
properties. For the purpose of estimating orbital parameters or 
investigating the character of fluctuations in neutron star rota- 
tion, the largest possible crossover frequency is generally desir- 
able. It is therefore useful to see how 5^hite can be minimized 
through the design of the timing experiment. 

According to the previous discussion, the total white noise 
strength can be written as the sum of two components, 
Swhite = Sphot + S;xcess. We can easily adapt equation (6) to 
specify Sphot as a noise power per unit bandwidth (Deeter 1984), 
noting that for Poisson statistics the mean count rate is 
given by a = A<S> and its variance by er2 = oc/ßT, so that 
(72/a2 = l/AQ>ßT, and 

Spho. T-1 ßA(pp-> jp [</(</.>)]2# ßA Spho1 ■ (13) 

Here ß is the ratio of the detector “ live ” time to the total time 
span T of the data set, A is the effective area of the detector, 
and O is the incident X-ray photon flux. To demonstrate the 
scaling of Sphot with the design parameters ß and A, we have 
written Sphot as the product of 1/ßA and a remaining factor sphot 
that depends only on source properties. 

For pulse timing with unfiltered pulses, an expression for 
Excess also follows from equation (6) but with the condition 
that the fractional variance <72/a2 is independent of the mean 
counting rate and therefore independent of detector area. 
However, this variance does depend inversely on the number of 
independent pulses observed. Consequently, we define the 
parameter y as the ratio of the number of pulses incorporated 
in all the folded masters to the total number of pulses emitted 
in the time span of the recorded data,8 and repeat the argu- 
ment leading to equation (13) to obtain S;xcess = (l/y)Sexcess. 
-^excess is the noise strength for the ideal situation of complete 
sampling of the pulses and does not depend on experimental 
parameters such as the detector area. Combining this result 
with equation (13), we may write 

C' _ ^white — ßA 
15 phot 4- - Se (14) 

This equation indicates that higher sampling density (larger ß 
and y) necessarily reduces S'white and increases /c, whereas 
increased detector area cannot increase fc after S'phot is reduced 
much below S'excess. 

The relative contributions of Sphot and S'excess depend on the 
ratio ßA/y. This ratio is considerably smaller for the OSO 8 

8 There is a subtle distinction between ß and y in that 1 — ß incorporates all 
sources of detector “ dead ” time, while 1 — y accounts only for dead time that 
reduces the number of independent pulses. For example, ß is sensitive to data 
gaps on time scales shorter than the pulse period, while y is not. 
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experiment than for the HE AO 1 experiment. Thus, even 
though the pulse shape fluctuations due to photon-counting 
noise were comparable to those due to excess shape noise in 
the OSO 8 data, they were negligible in the HEAO 1 data. The 
strength of the white noise in phase was further reduced in the 
HEAO 1 data by filtering the pulse waveforms. As a result, the 
crossover frequency for the HEAO 1 experiment is ~2.5 times 
higher than that for the OSO 8 experiment. 

The red noise in pulse phase affects the parameters of an 
orbital solution if the span T of data analyzed is longer than 
A"1. Typically, the least-squares fitting problem is well posed 
only if the data span is at least one orbit. Thus, loosely speak- 
ing, the effect of the red noise must be taken into account if it 
dominates for data spans equal to the orbital period, or equiv- 
alently, if the crossover frequency is comparable to or greater 
than the orbital frequency. As we have shown, longer spans 
may be analyzed by controlling the low-frequency leakage of 
red noise power into the parameter estimates with a noise- 
absorbing polynomial. However, the polynomial degree m 
must be no more than twice the number of orbits in the data 
span, i.e., one must have m < 2/orb T ; otherwise the polynomial 
will interfere with the orbital function, increasing the param- 
eter variances and covariances. 

For the OSO 8 experiment, the observed crossover fre- 
quency is ~(8 days)-1, while for the HEAO 1 experiment it is 
only (3 days)-1. Because the data from both experiments span 
roughly 35 days, one would not expect to be able to neglect the 
effect of the red noise in analyzing either one. For the HEAO 1 
experiment, in particular, the red noise increased the uncer- 
tainties in the orbital parameters by roughly an order of mag- 
nitude over the uncertainties due to pulse shape fluctuations 
alone (see Table 4). 

b) Approaches to Determining the Orbit 
Historically, there have been three different approaches to 

determining orbital elements by pulse-timing techniques. In 
the global approach, a single function consisting of orbital 
terms plus a polynomial is fitted to the entire span of data. In 
the local approach, the data are partitioned into suitable 
blocks and a function consisting of orbital terms plus a poly- 
nomial is fitted to each block; the orbital parameters derived 
from the different blocks are then averaged to produce the final 
estimates. Some authors have adopted a hybrid approach, in 
which the data are partitioned into separate blocks but all 
blocks are fitted simultaneously; this is done by including a 
separate polynomial for each block together with a single 
orbital function for the entire span of data. Here we argue that 
if red noise is present, a suitably constructed local approach 
has greatest utility without sacrificing precision. 

The global approach is certainly appropriate in the absence 
of red noise, since the rotation history can then be globally 
modeled by a low-degree polynomial (to account for secular 
variation). Such is the case for the binary pulsar 1913 —16, for 
which a 6.5 yr data span is well fitted by an orbit plus cubic 
polynomial (Taylor and Weisberg 1982). However, in the pre- 
sence of substantial red noise a high-degree polynomial might 
be required. For comparison, if HEAO 1 observations uni- 
formly sampling Vela X-l were available over a 6.5 yr span, a 
polynomial of degree 500 would be necessary to absorb ade- 
quately the red noise. Even so, the global approach is generally 
not possible for accretion-powered pulsars, since the observing 
intervals are separated by gaps of sufficient length and the red 

noise is of sufficient strength that a correct pulse count cannot 
be maintained across the gaps. 

The presence of gaps in the data is one of the primary moti- 
vations for employing either the local or hybrid approach. The 
hybrid method provides some reduction in the number of free 
parameters relative to the global approach, but at the cost of 
introducing substantial complexity into the problem of propa- 
gating the red noise into the parameter estimates. 

Even without gaps in the data, the local approach is natural 
for sources that exhibit red noise, because the ever-increasing 
nondeterministic phase shift that accumulates between a given 
pulse and later pulses tends to “ decouple ” the phases of widely 
separated pulses. This suggests that no more information is 
contained in a long stretch of data than can be extracted by a 
series of local fits. The blocks into which the complete data set 
is divided do not necessarily have to be small enough that the 
red noise can be neglected but only small enough that it can be 
adequately absorbed by including a polynomial of relatively 
low degree in the fit. On the other hand, the blocks should span 
substantially more than a single orbital cycle with fairly 
uniform coverage in orbital phase in order to avoid large cor- 
relations between the orbital parameters. The uncertainties in 
the parameters and the correlations between them can then be 
estimated correctly, using the method outlined in the Appen- 
dix. 

In the present work we chose to treat the new data as two 
four-orbit blocks. The polynomials required to absorb the red 
noise over four orbits were of fifth and sixth degree, the regres- 
sion problem was well posed, and the correlations between 
orbital elements were well controlled (correlation coefficients 
less than 0.5). 

In addition to yielding a regression problem with a small 
number of parameters and consequently a relatively simple 
error propagation procedure, the local approach has two other 
advantages over the global and hybrid methods. First, con- 
struction of an overall solution by averaging a set of local 
solutions makes possible a check on the reliability of the com- 
ponent solutions by comparing them with one another. 
Second, the information provided by future observations of a 
given source can be easily combined with the information 
extracted from earlier observations to yield a refined solution 
without reanalyzing any of the earlier data. 

As an example of the second advantage of the local 
approach, we note that the orbital period, as well as slowly 
varying parameters such as the rate of change of the orbital 
period and the rate of apsidal advance, need not be included in 
the local solutions. Instead, the orbital period and its rate of 
change can be determined by a subsequent fit to a set of locally 
determined epochs in mean longitude, while the apsidal 
advance rate can be determined from a set of longitudes of 
periapsis (see Deeter ei a/. 1986a). 

Because of its many advantages, we advocate adoption of 
the local approach in analyzing future observations of Vela 
X-l and other accretion-powered pulsars that exhibit red noise 
in pulse phase. 

c) Implications 
We now consider the implications of these results for the 

design of pulse-timing experiments, including both the proper- 
ties of the apparatus and the data sampling structure. The 
crossover frequency fc defined by equation (12) is a rough 
measure of the quality of data for study of the properties of the 
red noise component. Reducing the strength of the white noise 
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component improves pulse-timing precision and increases the 
crossover frequency, making possible study of the properties of 
the red noise component at higher frequencies. This can be 
done by increasing the fractional “ live ” time of the detector (in 
the sense of increasing ß and y in eq. [14]). The part of the 
white noise component that is due to photon noise can also be 
reduced by increasing the effective detector area. However, 
once the detector area is large enough that excess shape noise 
dominates, a further increase does not improve the quality of 
the data for the study of the red noise, since the contribution 
from excess shape noise is independent of the detector area. 
Increasing the detector area may still be crucial for study of the 
pulse-shape fluctuations themselves. 

Taken at face value, this excess noise in pulse shape appears 
to limit the improvement in pulse-timing precision that could 
be achieved by increasing the detector area. For Vela X-l, this 
limitation is already apparent in the HE AO 1 experiment dis- 
cussed here—the noise in pulse phase induced by excess shape 
noise dominates the noise induced by photon statistics by a 
factor of roughly 30. However, we have shown that the white 
noise component arising from excess shape noise can be 
reduced by appropriate treatment of the data before the pulse- 
phase time series is constructed. For example, the simple filter- 
ing procedure used here reduced the contribution made by 
excess shape noise by a factor of almost 4 for the HE AO 1 data. 
Stated differently, the effective area of this experiment was 
increased by nearly a factor of 4 by using this technique. A 
more general filtering method has now been developed that 
may reduce the deleterious effects of excess shape noise still 
further (Boynton and Deeter 1985). A better understanding of 
the excess pulse shape fluctuations may well make possible the 
development of still more powerful techniques to reduce their 
contribution to the uncertainty in pulse phase. 

Our results indicate that a quantitative survey of the charac- 
ter of excess shape noise in accretion-powered pulsars is essen- 
tial for planning future observations. One reason is that 
optimal use of large-area detectors for pulse-timing studies 
requires knowledge of both the pulse shape and the spectrum 
of excess shape noise in candidate sources. Second, this same 
information is needed to evaluate the promise of a given pulsar 
as a probe of neutron star structure and accretion physics. 
Third, optimal allocation of limited observing resources 
between candidates also depends on the character of the excess 
pulse-shape noise. Finally, such a survey augmented with pro- 
visional knowledge of the noise in rotation is necessary in 
order to select the appropriate time scales for a detailed study 
of the noise in the rotation rate of a given pulsar. 

VIII. CONCLUSION 

In the present paper we have redetermined the orbit of Vela 
X-l from new data. By combining our solutions with other, 
published solutions, we have constructed a mean orbit of 
improved precision. During the course of this study we have 
developed a procedure to estimate the uncertainty in the 
orbital elements induced by the red noise in pulse phase that is 
present in this source. This procedure may be used to estimate 
the uncertainties in the orbits of other pulsars that exhibit red 
noise. We emphasize that although our method provides a 
rigorous treatment of the uncertainty due to the simultaneous 
presence of both red and white noise in pulse phase, it does not 
necessarily lead to the minimum possible uncertainty in the 

orbital parameters. Thus, it may be possible to further reduce 
this uncertainty if a more refined method is developed. 

This is the first work to consider the uncertainty in the 
orbital elements induced by the red noise in pulse phase, which 
dominates all other sources of uncertainty by about an order of 
magnitude for the highest quality data that we analyzed. 
Nevertheless, the orbital elements reported here are the most 
precise reported to date, because the solution is based on a 
large quantity of high-count-rate data. 

We have argued strongly for adoption of a local approach to 
determining the orbits of accretion-powered pulsars. This 
approach has many advantages over other methods that have 
been used in the past, including numerical tractability, a simple 
error propagation procedure, an internal check on the reliabil- 
ity of the solution, and ease of successive refinement of the 
orbital solution as more data are accumulated. 

Although we have encountered a significant limitation to 
pulse-timing precision imposed by fluctuations in pulse shape 
in excess of those due to photon count statistics, we have devel- 
oped a simple method of filtering the pulse waveform that 
substantially improves precision in measuring pulse phase, 
reducing this limitation. The same method can also be applied 
to other pulsars that exhibit excess fluctuations in pulse shape. 
Without some filtering technique, no increase in detector area 
will significantly improve the precision of pulse timing when 
excess shape noise is dominant. The development of still more 
powerful analysis techniques is crucial to achieve precision in 
pulse timing that may otherwise be beyond reach. The study of 
pulse-shape variability is also clearly important for increasing 
our understanding of pulsar physics, as well as for improving 
pulse-timing capabilities. 

In the second paper of this series (Deeter et al. 1986h) we 
describe the construction of a pulse-frequency record for 
Vela X-l, the computation of a low-resolution power density 
spectrum of the fluctuations in the star’s angular acceleration, 
and the key elements of the experimental design. The question 
of apsidal advance in Vela X-l and the implications of the Vela 
X-l frequency record and power density spectrum for neutron 
star structure and accretion physics will be addressed in 
separate publications (Deeter et al. 1986h; Lamb et al. 1986). 
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APPENDIX 

ERROR ANALYSIS FOR PARAMETER ESTIMATES USING SAMPLING FUNCTIONS 

In the body of this paper we confront the problem of determining orbital parameters from a time series containing red noise. Our 
approach is to use the ordinary least-squares technique, assuming uncorrelated errors in the data and including a polynomial of 
moderate degree to approximately model or “ absorb ” the red noise. As part of this scheme, we choose the polynomial degree to 
make the parameter uncertainties as small as possible. In order to carry out the scheme, we must be able to compute parameter 
uncertainties which take into account the presence of residual red noise not absorbed by the polynomial. 

Unfortunately, the parameter uncertainties provided by the least-squares solution describe only the uncorrelated errors in the 
data and therefore do not include the errors contributed by the red noise. Nevertheless, the contribution to parameter uncertainties 
made by correlated noise (including red noise of any order) can be calculated through an error propagation analysis. In this 
approach, each parameter is written in terms of a sampling function applied to the data, where the sampling function is specified by 
the solution to the least-squares problem. Using this sampling function formalism (Deeter 1984), we can compute the expected 
uncertainty in each parameter due to the presence of red noise in the data. This Appendix deals with the algebraic manipulations 
required to reach this goal. 

In a linear problem the observations are connected to the parameters yj through the equations of condition : 
xi = Z yjdji ■ (A1) 

j 
For this to be a well-posed problem, the parameters must be overconstrained; that is, there must be more observations than 
parameters. In some cases, the parameters can be regarded as coefficients on specified functions gf/i), which are sampled at discrete 
points ti in time. The equations of condition can then be written 

x(t¡) = • (A2) 
J 

The ordinary least-squares solution using identical point weights is obtained by inverting the normal equations, written in matrix 
form as Ay = b, wherein 

Ajk = Z 3jidki, bj = '£gjlxi, (A3) 
i i 

and y is the vector of parameters. This solution minimizes the sum of squares of observational residuals, and when the observations 
have equal and uncorrelated errors this solution gives unbiased, minimum-error parameter estimates. For errors of this type, the 
parameter covariance matrix is given by the inverse of the matrix A, that is, 

COV (yp yk) = (A~%<j2 , (A4) 

where a2 is the common observational variance. 
For other types of errors in the observations, this solution is not necessarily optimal (i.e., the parameter estimates may not have 

minimum errors). However, the optimal solution can sometimes be obtained by modifying the normal equations. For example, in 
the case of unequal but uncorrelated errors, use of point weights proportional to the inverse variances instead of equal weights gives 
the optimal solution. In the more general case of correlated errors, a weight matrix obtained as the inverse of the data covariance 
matrix has to be used. The optimal solution for this case can still be expressed in terms of normal equations, but the algebra is more 
complicated. 

The case of data containing red noise presents an even more difficult situation, since the uncertainties in the observations no 
longer exhibit a true covariance matrix, although a quasi-covariance matrix may be defined for red noise, as discussed below. 
Unfortunately, this quasi-covariance matrix is not positive definite, and therefore cannot be used in the same way as a true 
covariance matrix for generating a data weight matrix. An alternative approach (until a mathematically more rigorous approach is 
found) is to absorb the red noise into polynomial terms, introducing enough terms to reduce the residuals to approximately the size 
expected from uncorrelated observational errors. The utility of this method stems from the fact that it can be used to propagate the 
red noise into parameter errors, even though white noise was assumed in generating the weight matrix. 

In order to simplify our exposition, we assume that the observational noise consists of equal, uncorrelated errors. We assume that 
red noise with known properties is also present. By inverting the normal equations, the parameters yj can be expressed in terms of 
the observations : 

yj = 'L(A~l)jk'Ldkix¡ = 'Z9jix¡ ■ (A5) 
k i i 

In the last expression on the right, the substitution (A~1)jkgki has been made. In the interpretation of the least-squares 
problem as determining coefficients on functions, we may write §7(it) = g^. The functions c)j may then be regarded as sampling 
functions applied to the observed data, having the additional property that they produce parameter estimates. The two sets of 
functions g^t) and g^t) are dual in the sense that they satisfy a cross-orthonormality condition, namely, 

Z 9jidki = àjk • (A6) i 

This result will be used shortly. 
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The interpretation of the solution to the least-squares problem as a set of sampling functions applied to the data allows any 
observational noise possessing a true covariance matrix to be propagated into parameter uncertainties. The parameter covariance 
matrix is given by the expression 

cov (yj, yt) = £ £ gjigkl cov (x,-, xt) . (A7) 
il 

For the assumed observational noise, which has equal and uncorrelated errors, the parameter covariance matrix reduces to the 
inverse of the normal equations 

COV (y¡, yk) = X gji gki a
2 = (A ~ l)jk a2 . (A8) 

i 

For the case of rth-order red noise, the parameter covariance matrix is given by another simple formula, namely, 

covr (yj, yk) = -y 1--- S, £ X gr, gk,\ (,• - ti|
2r"1 , (A9) 

¿{¿r — L)i i t 

where Sr is the strength of the noise (see Deeter 1984, Appendix). It should be noted that equation (A9) is valid only for those 
“ functions ” ^ that satisfy the moment conditions 

£ g+ttf = 0, 0<k<r. (A10) 
i 

If polynomials up to degree r — 1 are included among the functions gj (whose coefficients are being estimated), the dual function 
corresponding to any other of the functions included in the fit will satisfy the moment conditions by the cross-orthonormality 
relationships (eq. [A6]). The resulting parameter covariance matrix is then valid for the remaining coefficients. 

It should now be clear what is meant by a “ quasi-covariance ” matrix for the red noise process. A comparision of the parameter 
covariance matrix for red noise (eq. [A9]) with the general expression for observational noise possessing a true covariance matrix 
(eq. [A7]) suggests the definition 

Cü = covr (x;, x,) = 11; - tt \2r-'S,. (All) 

We emphasize again that C is not a true covariance matrix, since the diagonal terms are zero whereas the off-diagonal terms grow 
with the time difference. This behavior is in marked contrast to the behavior of a “ normal ” covariance matrix, which has positive 
diagonal terms and off-diagonal terms that generally decrease with the time difference. Indeed, this matrix is not positive definite, 
unlike a normal covariance matrix. However, these properties in no way reduce the utility of equation (A9) for computing the 
correct parameter variances and covariances for red noise. 

The approach of this Appendix provides a rigorous treatment of error propagation (that is, the problem of determining the effect 
of a given noise process on the uncertainty of a parameter) in the presence of power-law red noise. It does not provide a rigorous 
approach to the problem of minimizing the parameter errors in the face of such noise. Solving this latter problem requires that the 
properties of the noise in the data be correctly taken into account when setting up the least-squares equations, rather than the ad 
hoc approach of “ absorbing ” red noise by polynomial terms. As is the case with any least-squares solution, the parameter errors 
would then be available as a natural part of the solution (i.e., the inverse of the matrix of normal equations). In this more general 
approach, one can still use the error propagation through sampling functions to compute the parameter errors, but the errors 
derived this way serve only as a check on the errors supplied by the least-squares solution. The possibility of a rigorous approach to 
the problem of minimizing the parameter errors became apparent only after we had completed the analysis presented in this paper, 
and we intend to investigate this topic further. 
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