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ABSTRACT 
The deceleration of the very local cosmological velocity field that is expected as a result of the mass of the 

Local Group is calculated for assumed Local Group masses of 0, 5 x 1011, 2 x 1012, 5 x 1012, and 2 x 1013 

Mq in a Qq = 0 space. The predicted decelerations are illustrated in the three equivalent representations of (1) 
deviations from linearity of the local velocity-distance relation, (2) corrections to the centroidal velocities to 
account for the deceleration, and (3) the variation of the v/r Hubble ratio with distance. 

The available velocities and distances of 20 nearby galaxies which have modern primary data are compared 
with the predictions using the standard solar motion corrections to the velocity data. A deceleration may have 
been detected, giving a best-fit mass of 4 x 1011 M0 for the Local Group. The upper limit permitted by the 
data is MLG ~ 3 x 1012 M0, giving an upper limit to the mass-to-light ratio of ^25. The best-fit value gives 
M/L = 3, providing no evidence for a supermassive halo, either for our Galaxy or for M31. With MLG = 
4 x 1011 Mq, the distance to an idealized zero-velocity surface for the Local Group is 0.8 Mpc. 

The result is compared with that obtained from the classical Kahn-Woltjer timing calculation using the 
motion of M31 and the Galaxy alone. To do that requires a new solution for the solar motion relative to the 
centroid of the Local Group. If the model of the problem would be precise, the Galaxy must be moving 
directly toward M31. With this constraint, an exploration of the parameter space of the value of the Galactic 
rotation at the solar circle, the solar motion relative to the centroid, and the Galactic motion toward M31 is 
made. The resulting optimum solar motion of 295 km s-1 toward / = 97?2, b = —5% is adopted. A Kahn- 
Woltjer calculation using this new solar motion still gives the traditional mass discrepancy of a factor of 7 
above the optimum mass from the deceleration method for the combined M31 plus galaxy mass. If the dis- 
crepancy is real, the velocity of approach of M31 and the Galaxy must have a random velocity component in 
addition to that from the ideal model. 

The deceleration calculations for the massless Local Group satellite galaxies are repeated for a Q0 = 1 space 
with the result that MLG ~ 8 x 1011 M0, but, because there is no other observational support for a Q0 = 1 
universe, we reject the result as being unrealistic. 

The calculated deceleration due to the Local Group is so small that it cannot explain any supposed varia- 
tion of the Hubble constant with distance beyond ~2 Mpc. If MLG = 5 x 1011 MQ, the Hubble v/r ratio 
reaches 83% of its far-field value at a distance of 2 Mpc and 98% at 4 Mpc for the Q0 = 0 case, neglecting 
other decelerating sources such as the Virgo cluster. 

The data give an upper limit of (t(v) = 60 km s “1 for the mean random motion about the predicted 
velocity-distance relation for the local galaxies. The true random motion is, of course, smaller, considering the 
uncertainties in the adopted distances, a fact which itself requires a low Local Group mass of ~4 x 1011 M0 
if the group is virialized. 
Subject headings: cosmology — galaxies: Local Group — galaxies: redshifts — galaxies: structure 

I. INTRODUCTION 

The velocity-distance relation is linear to high accuracy 
when mapped using the brightest several E galaxies in groups 
and clusters (Sandage and Hardy 1973, Paper VII). Any sys- 
tematic deviation from linearity that may be present is near the 
limit of detection using the residuals of the redshift-magnitude 
relation of the E galaxy sample (Sandage and Tammann 1975; 
Sandage 1975, Paper VIII). 

On the other hand, alternate methods used by other workers 
in the past to determine distances had suggested large system- 
atic deviations from linearity (see de Vaucouleurs 1958, 1964, 
1972). These results have been interpreted either as a large- 
scale phenomenon caused by a globally hierarchical universe 
in which the mean density decreases outward (Wertz 1971; 
Haggerty annd Wertz 1971), or by a very large local deviation 

caused by the Virgo complex (de Vaucouleurs 1958, 1964, 
1972) that must then, perforce, be massive. 

Predictions using the particular hierarchical model of Wertz 
and of Haggerty and Wertz were tested (Sandage, Tammann, 
and Hardy 1972) using available E galaxy observations, but no 
evidence was found from the velocity residuals for a deviation 
from homogeneity of the universe in the large. The Wertz 
“hierarchical decay constant” [defined through <p(r)) ~ r-0] 
is 0 æ 0 to within the observational accuracy. The appeal, then, 
to a hierarchical universe to justify an apparent change of the 
expansion rate with distance becomes ad hoc. 

Another interpretation is that the apparent change of the 
Hubble rate with distance is not real, but rather is caused 
either by selection effects in any particular data set (van Albada 
1962, in one of the first statements of an observational bias for 
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this particular problem) or by more basic deficiencies in the 
particular method used to obtain distances (de Vaucouleurs 
1975, pp. 261-265; Giraud 1986a, b, c, in his critique of the 
Tully-Fisher method as currently applied). 

Over the distance range that is more restricted than that for 
a large-scale systematic global hierarchical effect, a pertur- 
bation of the velocity field is expected at some level due to the 
Virgo complex. This effect has been searched for extensively in 
recent years, following the repeated results of de Vaucouleurs. 
Peebles (1976) tested the idealized Virgocentric perturbation 
model of Silk (1974) using the field galaxy data available at that 
time (Sandage and Tammann 1975) and found support for a 
velocity variation due to Virgo at the position of the Local 
Group of ~250 km s- ^ Following the initial work of de Vau- 
couleurs and Peebles, this infall signal now seems to have been 
definitely detected at a level of vyc æ 220 km s-1. There is 
agreement between all observers of its value to within about a 
factor of 2 (see Tammann and Sandage 1985 for a review of the 
literature to the end of 1984). 

Finally, for the very nearby galaxies the Local Group must 
similarly perturb the velocity field over distances much smaller 
than the effect caused by the overdensity of the Virgo complex. 
The expected distance range within which this effect occurs is 
0 < D < 5 Mpc, based on reasonable values of the mass ratio 
of the Local Group to the Virgo complex (see Einasto and 
Lynden-Bell 1982). 

An observational detection of the velocity perturbation by 
the Local Group is of considerable interest for a number of 
reasons. Comparison of the observations with the theory could 
set limits on (1) the mass of the Local Group determined from 
the observed deceleration of the satellite galaxies that are both 
inside and outside the present position of the zero-velocity 
surface of the Local Group, (2) the mass of the Local Group 
from the position of the zero-velocity surface itself (Lynden- 
Bell 1981), (3) any zero-point offset in the velocity-distance 
relation at very small distances that is predicted by most hier- 
archical density models (Wertz 1971, Fig. 2; Haggerty and 
Wertz 1971, Fig. 1), (4) the expected change of the apparent 
Hubble constant with distance from the Local Group depend- 
ing on the Local Group mass MLG and hence on whether the 
effects said to be observed, viz. that H = H(r) locally (i.e., over 
the first ~ 10 Mpc from us) can be due to Local Group deceler- 
ation, or due only to observational bias in the data set, and 
finally (5) the mean random motion about an ideal Hubble 
flow exhibited by the very local galaxies. 

Concerning point (5), the question of whether a random 
motion indeed exists is fundamental to much of the large body 
of literature now available on the genesis and mass of the Local 
Group (see Lynden-Bell 1982; Lynden-Bell, Cannon, and 
Godwin 1983, and earlier references therein), following the fun- 
damental paper on the timing argument for the turnaround of 
M31 (because it is approaching our Galaxy) first made by 
Kahn and Woltjer (1959). If random motions exist of an 
unknown origin (presumably due to local torques) not con- 
nected with the zero angular momentum model of the ideal 
big-bang dynamics, a scatter in the data will exist, causing 
uncertainties in the true motion “ generated by the gravity field 
of the Local Group heavyweights” (Lynden-Bell 1983, p. 362). 
Calculations based on the ideal big-bang dynamics will then be 
spoiled for any given galaxy to a degree that depends on the 
size of the random motions. In this case, averages of the veloc- 
ity and distance data of nearby galaxies might be expected to 

overcome the random motion problem, retaining the basic 
philosophy of the big-bang dynamical calculation. The present 
paper is written in this spirit—that the deceleration of the 
velocity field due to the Local Group might be measured by 
considering the aggregate of data now available on velocities 
and distances of galaxies closer than ~10 Mpc, rather than 
relying solely on the infall of, say, only M31 toward the 
Galaxy. Lynden-Bell’s (1981) method of using the position of 
the zero velocity surface, generalized to the aggregate deceler- 
ation field itself, can then be applied to the total data rather 
than to individual objects. 

The purpose of the present paper is to use what new data are 
now available on distances less than ~ 10 Mpc, comparing 
them with the dynamical models to discuss the five points 
previously mentioned. The paper is presented as a series of 
successive approximations, starting from the simplest dynami- 
cal case and progressively adding more detail to the kine- 
matical and dynamical model. 

Calculation of the expected decelerations due to the mass of 
the Local Group is made in the next section for a Q0 = 0 space 
into which test particles are injected from the Local Group 
centroid with a continuum of energies. Because the space is 
otherwise empty except for a centralized Local Group mass, 
this deceleration is described by the two-body problem with 
zero angular momentum and a constant central mass. 

The predictions are compared with the available observa- 
tional data on velocities and distances of very nearby galaxies 
in § III using the standard solar motion correction which 
reduces all observed heliocentric velocities to the centroid of 
the Local Group. There, a first estimate of the mass of the 
Local Group is obtained. 

A refinement of the solar motion correction is made in § IV 
where we take the dynamical model seriously be requiring (1) 
M31 and the center of our Galaxy to be moving precisely 
toward each other and (2) the center of mass (the centroid) of 
the Local Group to be on the line joining them. This constrains 
the value of the velocity of the center of our Galaxy for any 
given solar motion relative to the centroid. With this con- 
straint, we explore the parameter space composed of the value 
of the solar motion relative to the Local Group, the motion of 
the Galactic center toward the centroid, and the velocity of 
approach of M31 and the Galaxy. In this way, we arrive at a 
new value of the solar motion. This is applied to the basic 
heliocentric velocity data to obtain a second approximation to 
the corrected observational data for the test galaxies (assumed 
to be massless), excluding M31 and our Galaxy to which 
different dynamics must be applied because these two are not 
massless but constitute the total mass of the Local Group. 

These second-approximation data are compared again in 
§ V with the model predictions, still for the Q0 = 0 space, and 
the optimum values of the Local Group mass and mass-to- 
light ratio are obtained again. The effect on MLG of changing 
the time scale (i.e., by adopting different Hubble constants) is 
also discussed in this section. 

The mass obtained in § V is compared in § VI with the mass 
of M31 plus the Galaxy calculated from a detailed application 
of the original Kahn-Woltjer timing argument. 

In § VII the expected deceleration is recalculated for an 
outside space that has matter uniformly distributed at the criti- 
cal closure density of <p> = 3Hl/SnG, i.e., for Q0 = 1, and the 
resulting models are again compared with the second- 
approximation observational data to obtain MLG once more. 
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Finally, in § VIII the mass-to-light ratio that follows from 
the present results is compared with other data in the recent 
literature. 

II. CALCULATED DECELERATION FOR LOCAL GALAXIES IN 
A Q0 = 0 SPACE 

A linear velocity field at all times, everywhere, is naturally 
generated kinematically if projectiles were to be released from 
an origin with different initial velocities and injected into a 
force-free field. Being force-free, there is no deceleration—the 
initial velocity of each particle is its velocity forever; the dis- 
tance covered at any time after release varies directly with the 
velocity. 

This, of course, is not a picture of the expansion of the 
universe. If it were, we could not explain the homogeneous 
distribution of galaxies in the large (i.e., approximately equal 
numbers of galaxies per unit proper volume) without postu- 
lating an unrealistic initial velocity distribution for the emitted 
particles. 

The big-bang model is not where galaxies expand into a 
space already there, but rather, where space itself expands, 
carrying the galaxies with it, thereby insuring large-scale 
homogeneity as long as the geometry of the spatial manifold 
itself is homogeneous and isotropic. It is the change of the scale 
factor R(t) of this homogeneous manifold that is the solution of 
the Friedmann equation of classical cosmology, where, given 
the force field of the universe itself, the deceleration R can be 
calculated. 

Nevertheless, the formalism of the local dynamics can be 
imitated by a strictly Newtonian calculation. The problem can 
be modeled by considering massless test particles emitted 
simultaneously with different velocities (energies) from an 
origin (in this case, the Local Group). The velocities and dis- 
tances of each particle can then be calculated at any given time 
after the release. The approximation calculated in this section 
is for test particles thrown into free space devoid of any matter 
except that of the Local Group treated as a point mass. Hence 
Q0 = 0 in the large for this model. 

^a) Solution of the Equation of Motion 

We need the equation of the path r(t) of any given test par- 
ticle emitted radially from the centroid of the Local Group at 
time t = 0. 

The equation of motion is 

(1) 

where M is the total mass of the Local Group. 
Integrating once gives the energy equation 

•2 2GM ^ rz — = 2E , (2) 

which is identical to the familiar Friedmann cosmological 
equation for the manifold scale factor R(i) : 

R2 2R SnGp 
R1 + + c2 + Ac2 (3) 

(see Robertson 1933, eq. [3.2]; McCrea 1953, eq. [7.8]; 
Sandage 1961a, eq. [2]; McVittie 1965, eq. [8.210]) when the 
pressure, p, and the cosmological constant, A, are put to zero, 
and if r is identified with R, equation (1) of the motion is used 

to eliminate R from equation (3), and the energy in equation (2) 
is identified as —\kc2. 

It is well known (see Sandage 1961b, eqs. [3]-[6]; Lynden- 
Bell 1981, eq. [2]) that the solution to equations (2) and (3) is 

r = (1 - cos 0), (4) 

t = ■ 
GM 

(-2E)3'2 

for negative energies, and 

(0 — sin 6) , 

GM 
r = — (cosh 0 - 1) , 

(5) 

(6) 

f = (2£p (SÍnh 6 ~9h (7) 

for positive energies. These are the parametric equations for a 
cycloid when the system is bound, and of a hypercycloid when 
r(t) increases without limit.1 

We require the velocity-distance relation for the system of 
particles at any designated time, T, given that the particles 
have different initial velocities determined by the values of E 
that are chosen to produce the family. 

Consider first the system of particles that have not been 
given high enough velocities to escape the pull of the Local 
Group. The energy of such particles is negative. They will 
proceed outward for a time, halt, and eventually fall back 
toward the origin. If we assign a continuum of energies E to 
them, we produce a continuum of r(t) curves that can be calcu- 
lated from equations (4) and (5). For any given energy E, at any 
given time t, the development angle (which represents the 
degree of unfolding of the cycloid) can be calculated from equa- 
tion (5), which, when applied in equation (4), gives the distance 
of the particle at the particular time t, leading directly to the 
velocity-distance relation at that time. 

The velocity of the particle of energy E at this particular time 
follows from equation (4) and (5) as 

dr dr d0 GM sin 6 ^ 
dt d9 dt — 2E r ’ 

which, together with equation (4), can be made to define the 
required set of r, v values as E (and hence 6) is varied. 

An analogous calculation can be made for the positive 
energy case, where the equivalent of equation (8) is 

__GM_sinh_0 

~ V2Ë r 
(9) 

which, together with equation (6) using 0 which is calculated 
from equation (7) assuming a value for the time t and assuming 
different E values, produces a single r, v curve as E is varied (at 
constant time t) for a given value of MLG. A family of such r, v 
curves for given values of E can be produced (at a fixed time t) 
as Mlg is varied. In this way, the deceleration caused by the 
Local Group can be calculated for any assumed mass. 

1 Many of the relations in cosmology that contain only the observables of 
luminosity, redshift, angular diameter, and number per magnitude interval can 
be derived most easily using this development angle formalism. Some of these 
are given elsewhere (Sandage 19616,1962), where the constants a and c in those 
references are a = GM/{ — 2E), c = ( —2£)1/2, and c/a = ( —2£)3/2/GM for the 
present problem. 
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LOG T ( yr ) 
Fig. 1.—Solution of eq. (2) for the motion of particles with zero angular 

momentum in an attractive inverse square force field as the total energy is 
varied. Solid curves are the cases with negative energy (cycloids); two dashed 
curves are cases with positive energy (hypercycloids) with no turnaround. 
These particular solutions are from eqs. (4)-{7) assuming a Local Group mass 
of 5 x 1011 M0. 

The procedure is illustrated in Figure 1 which gives the 
results for a family of r(t) curves calculated for an assumed 
mass of the Local Group of 5 x 1011 M0 for a series of ener- 
gies that vary between —1014 and +3 x 1014 cgs units. Six 
negative energy values are shown. The curves are cycloids, 
each reaching a maximum distance r(max) where the velocity is 
zero ; the test particle then falls back toward the origin. 

Two positive energy hypercycloid paths are shown as 
dashed curves. Here the particles have initial velocities higher 
than the escape velocity, and r increases without bound 
forever. (The curves do not look like cycloids and hyper- 
cycloids because of the compression of the abscissa at large 
times due to the logarithmic time plot.) 

The calculations for Figure 1 were made from equations 
(4)-(7), converted to distances in megaparsecs and times in 
years via 

2.161 x 1013 , 
r = —Ï-2Ë)— ^ ~ C0S ^ MpC ’ ^ 

2.123 x 1030 _ . 
1 = (_2£)3/2 (A — sm 9) yr , (11) 

for the negative energy family, with analogous hyperbolic 
expressions following equations (6) and (7) using the same 
numerical factors for positive energy. 

b) The Velocity-Distance Relation Perturbed by the 
Local Group 

The velocity-distance relation exhibited by the continuum of 
curves, of which only eight are shown in Figure 1, changes with 

time. If we wish to calculate a particular p, r relation at a 
particular time t, we must fix t in equation (11), which then 
fixes the value of the development angle 6 for any energy value. 
This angle, now at given t and E, gives the distance via equa- 
tion (10). The velocity from equation (8) produces one r, v pair. 
The calculation is continued for other E values to produce a 
series of r, v pairs, which is, of course, the required velocity- 
distance relation. A family of such r, v curves can be calculated 
in the same way by varying Mlg. 

An intuitive appreciation of the calculation can be obtained 
by considering a vertical line in Figure 1 at some particular 
time i, such as log i = 10.30 after the beginning. The tightly 
bound particles with the large negative energies of —1014 to 
— 5 x 1013 cgs have turned around and have reached the 
origin again. They will have passed through the origin and will 
have begun a second swing on the other side of the origin when 
0 > 271, not shown in Figure 1. 

In Figure 1, the particle with E = —3 x 1013 cgs has 
reached its maximum extent at 0 = tt, is retreating again 
toward the origin r = 0, and hence has a negative velocity (i.e., 
0 > Ti at log i = 10.3; cf. eq. [8]). This is evident graphically 
from Figure 1 because the sign of the tangent dr/dt to the curve 
at log t = 10.3 is negative. The remaining five curves have 
positive dr/dt slopes at this particular time. 

The time at which we draw the vertical line in Figure 1 is not 
arbitrary if we wish a particular far-field (global) value of the 
Hubble constant. Clearly, as the vertical line in Figure 1 is 
moved toward the right, the distance at a given velocity 
increases, and the apparent Hubble ratio decreases as t 
increases. We have adjusted the calculations to fit the observed 
mean velocity-distance ratio at large r as required by the 
adopted data in § III. For the calculated v, r relation, t is then 
fixed in equations (5) and (7), giving, from these equations, 
9 =f(E) which solves the problem by substituting this corre- 
spondence into equations (4) and (8), or equations (6) and (9), 
for any assumed value of MLG. 

The result is shown in Figure 2 for five values of the Local 
Group mass. The top curve that passes through the origin is 
for zero mass. There is no deceleration. The velocity of any 
particle remains constant at all times. 

The remaining four curves are the predicted velocity- 
distance relations for masses of 5 x 1011, 2 x 1012, 5 x 1012, 
and 2 x I013 M0 for the Local Group, normalized to the 
far-field value of y/r = 55 km s~1 Mpc-L 

The parametric equations from which these curves have 
been calculated in this manner are 

( —2F)3/2 = 2.332 x 1O8Mlg(0 - sin 9) cgs , (12) 

43.23Mlg 

(-2E) (1 cos 9) Mpc , (13) 

4.323 x 10-4 

v = =— Ml 
sin 9 

km s (14) 

for the negative energy case, with identical numerical values for 
the positive energy case, but with the hyperbolic forms of equa- 
tions (6), (7), and (9). 

c) Correction of Observed Velocities for Deceleration 
and the Change of the Hubble Ratio with Distance 

The deceleration of nearby galaxies shown in Figure 2, 
caused by the Local Group, is given in the more direct rep- 
resentation of Figure 3 as the correction to observed velocities 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

6A
pJ

. 
. .

30
7.

 . 
. .

IS
 

Fig. 2.—Predicted velocity-distance relations for Local Group masses of 0, 5 x 1011, 2 x 1012, 5 x 1012, and 2 x 1013 M0, respectively. Intersection of each 
curve with v = 0 locates the distance r0 of the zero velocity surface at the present epoch (H0 = 55 assumed), given analytically by eq. (18). 

D(Mpc) FROM THE LOCAL GROUP 

Fig. 3. Correction to be applied to observed velocities to correct for deceleration of the Local Group for four assumed Local Group masses. The information is 
the same as in Fig. 2, but in a different representation. 
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D(Mpc) 
Fig. 4.—Predicted variation of the apparent Hubble v/r ratio with distance due to the deceleration caused by the Local Group for four assumed masses 

to give values that would be observed in a zero force field. 
These corrections are calculated from equation (14), or its 
equivalent hyperbolic form, subtracted from the linear relation 
vH = H0 r. The sense of the plotted correction is the velocity to 
be added to the observed values so as to eliminate the deceler- 
ation due to the Local Group. 

The correction reaches values greater than 300 km s-1 for 
distances less than 2 Mpc for the largest mass of 2 x 1013 M0 
considered. The corrections are smaller than 100 km s-1 for 
r > 1 Mpc if Mlg = 5 x 1011 or 2 x 1012 Mq. 

The variation of the apparent Hubble ratio v/r is shown in 
Figure 4, calculated from equations (13) and (14) or their equiv- 
alent hyperbolic forms. The increase of v/r with distance is 
appreciable over distances as large as 10 Mpc for the 2 x 1013 

Mq massive case, but is much smaller for the two lowest 
masses, rising to H = 40 km s-1 Mpc-1 at 2.4 Mpc for 
MLg = 2 x 1012 Mq and to H = 50 km s-1 Mpc-1 at a dis- 
tance of 4 Mpc for the same mass, compared with the far-field 
value of H0 = 55 km s-1 Mpc-1. 

d) Position of the Zero-Velocity Surface at the Present Epoch 

Lynden-Bell (1981) has shown that the mass of the Local 
Group could be obtained in the absence of random velocities 
by locating the surface that separates expansion from contrac- 
tion at the present epoch. This is not the surface of zero energy, 
but that of zero velocity now. That surface will move outward 
with time, but since we must specify the particular time of the 
present epoch to obtain the observed value of H0(r^> oo), such 
a surface exists now in the region of negative energy and can be 
calculated from equations (13) and (14) at our particular epoch, 
or more generally from equations (4), (5), and (8) at any arbi- 
trary epoch. 

At the zero velocity surface, 6 = n from equation (8). Let the 
time when this happens be T. The energy of particles just 

reaching 0 = tt at this time is given by equation (5) as 

-2£ = (7rGMT“1)2/3 , (15) 

which, when substituted into equation (4), gives 

r3 = 237r"2GMT2 , (16) 

which is equation (7) of Lynden-Bell (1981). The mass of the 
Local Group is then 

Equation (17) can be made more explicit by requiring that 
the calculations make H(co) consistent with the observations. 
This is done in equations (12)-(14) which, by the same route as 
above that specifies the epoch T, gives 

MLG = 8.47 x lO11^ , (18) 

where r0 is the distance to the zero-velocity surface in mega- 
parsecs, and the mass of the Local Group is in solar units. (The 
distance r0 is where the curves in Fig. 2 cross the t> = 0 line.) 

If the random velocities of local galaxies were strictly zero, 
Lynden-Bell (1981) suggests this to be a method of finding 
Mlg, but if random velocities do exist or if there are large 
errors in the distances, r0 cannot be found from a single galaxy. 
Nevertheless, by fitting the family of v, r curves of Figure 2 to 
the total data, any random component either in velocity or 
distance can be more nearly averaged out, and the method 
survives in principle. 

III. THE OBSERVATIONAL DATA FITTED TO THE CALCULATED 
DECELERATIONS 

a) The Basic Data Corrected with the Standard Solar Motion 
The accuracy to which distances and velocities of nearby 

galaxies are known has increased since the early 1950s with the 
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return to the problem of Hubble’s distance scale when the 200 
inch telescope began operation. A fundamental improvement 
in the accuracy of the velocities began when 21 cm radio data 
were routinely obtained for galaxies, following the pioneering 
work of Roberts (see Roberts 1969, for a review) and Epstein 
(1964). Velocities of the local late-type galaxies are now gener- 
ally known to accuracies of ~ + 5 km s- ^ 

Improvement in knowledge of distances is less satisfactory 
because of recondite uncertainties in the Cepheid and the 
brightest star calibrations, due to uncertain photometry, and 
because of uncertainties in the internal absorption corrections 
in galaxies needed to reduce apparent to true distance moduli. 

The data as we adopt them here are set out in Table 1. 
Column (2) gives the assumed true distance modulus taken 
from the sources in column (3) listed at the bottom of the table. 
Many of these distances are new since ~ 1970, mostly from 
Cepheids, a few from brightest resolved stars, and the last two 
from supernovae of type I, calibrated via brightest stars. The 
distances in column (4), which follow from the moduli in 
column (2), are relative to the Sun at the origin. 

The velocities listed in column (5) are the result of reducing 
the observed 21 cm heliocentric velocities to the local standard 
of rest for the solar neighborhood and then to the centroid of 
the Local Group using the second solution of Yahil, 
Tammann, and Sandage (1977, hereafter YTS). This solar 
motion relative to the centroid is adopted to be At; = 300 cos X 
km s-1, where X is the angle from any particular galaxy to the 
adopted apex at / = 107° ± 5° and b = — 8° ± 4°, similar to 
300 cos A from / = 90°, b = 0° adopted by Humason, Mayall, 
and Sandage (1956) following the calculation of Mayall (1946) 
and of Humanson and Wahlquist (1955). 

The basic data in column (5) are from the large number of 
original velocity sources set out in detail by YTS in the notes to 

7 

their Table 1. The largest error quoted for the measured 21 cm 
data for any entry is ±10 km s-1; most are less than ±5 km 
s-1 for galaxies listed as individuals. However, the velocities 
given for the six groups in Table 1 (IC 342 gr, NGC 300 gr, 
NGC 2403 gr, M81 gr, M101 gr, and the NGC 253 gr) are 
based on mean values of the group members. The velocity 
differences of order ~ 100 km s-1 between the members give 
larger errors for the values listed in column (5) than for the 
individual galaxies. The details are as follows. 

The mean velocities, the velocity dispersions among the gal- 
axies taken to be members, and the number of members in a 
group are respectively <i>> = 242 ± 76 (1 o) from 10 members 
of the IC 342 group (i.e., the Maffei group); <t;> = 123 ± 28 
(1 cr) from four members of the NGC 300 group; <f) = 234 ± 
73 (1 <t) from five members of the NGC 2403 group; 
<i;> = 250 ± 106 (1 a) from six members of the M81 group; 
<i;) = 354 ± 83 (1 cr) from 10 members of the M101 group; 
<i;> = 272 ±36 (1 o) from five members of the NGC 253 
group. The errors of these mean values are ~(r/n112 for any 
given group, and range between ±14 and ±43 km s- ^ 

b) Velocity Correction for the Virgo Perturbation 
The distances in Table 1 are large enough for some galaxies 

that the velocity perturbation due to the pull of the Virgo 
complex overdensity cannot be neglected. The linear approx- 
imation to the full Virgocentric flow model gives a correction 
velocity of 

v
g = Vvc(x) + i;vc(cos 6 — x)[l — (x2 — 2x cos 6 + 1)_1] , 

(19) 

where vvc is the infall velocity of the centroid of the Local 
Group toward the Virgo core, x is the distance ratio of any 
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TABLE 1 
Observed and Corrected Velocities and Distances of Very Local Galaxies 

Name 
(1) 

(m-M)0 
(2) 

Source (Mpc) 
(3) (4) 

VCLG 
(km s_ 1 

(5) 

¿Wir 
(km s 

(6) 

‘'Virgo 
(km s 1 

(7) 

^2/3 
(Mpc) 

(8) 

M33  
NGC 6822 ... 
M31  
IC 1613 ...... 
Peg Dwarf ... 
Leo A   
WLM   
IC 5152   
Sextans A   
Sextans B .... 
IC 342 gr  
NGC 3109 ... 
NGC 300 gr . 
NGC 2403 gr 
M81 gr  
M101 gr  
M51    
NGC 253 gr . 
Virgo   
Fornax ....... 

24.7 
23.95 
24.12 
24.43 
27 
26.0 
24.9 
26 
26.2 
26.2 
29 
26.0 
26.1 
27.8 
28.8 
29.2 
30 
27.5 
31.7 
32.1 

1 
2 
3 
4 
5 
5 
6 
7 
8 
8 
9 

10 
11 
12 
13 
14 

7 
15 
16 
17 

0.87 
0.62 
0.67 
0.77 
2.51 
1.58 
0.95 
1.58 
1.74 
1.74 
6.31 
1.58 
1.66 
2.63 
5.75 
6.92 

10.0 
3.16 

21.9 
26.3 

+ 68 
+ 5 

-14 
-67 
+ 62 
-9 
-6 
+ 5 

+ 117 
+ 133 
+ 242 
+ 130 
+ 123 
+ 234 
+ 250 
+ 354 
+ 546 
+ 272 
+ 967 

+ 1486 

0 
0 

. 0 
0 

-12 
-3 

0 
+ 1 
-3 
-3 

+ 57 
+ 10 
-10 
+ 34 
+ 48 
+ 27 
+ 19 
-24 

+ 220 
-43 

+ 68 
+ 5 

-14 
-67 
+ 50 
-12 
-6 
+ 6 

-114 
+ 130 
+ 299 
+ 140 
+ 113 
+ 268 
+ 298 
+ 381 
+ 565 
+ 248 

+ 1187 
+ 1443 

0.46 
0.76 
0.23 
0.51 
2.39 
1.71 
0.80 
1.71 
2.07 
1.90 
5.76 
1.97 
1.64 
3.25 
5.57 
6.88 

10.02 
2.99 

21.9 
26.3 

Sources.—(1) Sandage and Carlson 1983; Sandage 1983a; Freedman 1985. (2) Kayser 1967. (3) Baade and 
Swope 1963. (4) Sandage 1971. (5) Sandage 1986. (6) Sandage and Carlson 1985b. (7) Estimate from brightest 
stars. (8) Sandage and Carlson 1985a. (9) Arp and Sandage 1985 for NGC 1569. (10) Demers, Kunkel, and Irwin 
1985. (11) Graham 1984. (12) Tammann and Sandage 1968; Sandage 1984b. (13) Sandage 1984a. (14) Sandage 
and Tammann 1974; Sandage 1983b. (15) Using source (11) and an estimated magnitude difference between 
NGC 300 and the NGC 253 group. (16) Sandage and Tammann 1982a, 1985. (17) Sandage and Tammann 
1982b. 
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: galaxy in question to the distance of the Virgo center, and 6 is 
^ the angle on the plane of the sky between that galaxy and M87. 
^ Precise calculations using the full nonlinear equations 
S (Schechter 1980) have been given by Kraan-Korteweg (1985) 
^ for a large sample of galaxies. For our purposes equation (19) is 

convenient, which is equation (2) of Schechter with the uniform 
Hubble expansion subtracted. 

The angle from Virgo for each of the galaxies in our sample 
is taken from the Kraan-Korteweg (1985) catalog; the x values 
relative to Virgo are found from column (4) of Table 1, and the 
infall velocity vyc is assumed to be 220 km s-1 following 
Tammann and Sandage (1985). The calculated corrections are 
listed in column (6) which, when applied to column (5), gives 
the corrected velocity in column (7). This is the velocity that 
would have been observed from the centroid of the Local 
Group if the Virgo complex did not exist. With this correction 
we are left, then, with only the velocity perturbation super- 
posed on the ideal Hubble flow caused by the Local Group— 
the effect we seek. 

c) The Deduced Deceleration from the Observed 
Velocity-Distance Relation 

The 20 velocities and distances in Table 1 are plotted in 
Figure 5. The point for M31 is plotted, although, as explained 
later, the dynamics of the M31+Galaxy system is different 
than for the massless satellite galaxies about the Local Group 
center of mass. The nondecelerated linear relation that passes 
through (0, 0) is shown for a Hubble constant of 55 km s“1 

Mpc-1. 
Note three features of Figure 5. (1) The velocity-distance 

relation holds quite locally, for distances even as small as ~2 
Mpc. This remarkable fact shows immediately that it is not 
spoiled even at a level of ~ 100 km s_1 by nonregular stream- 
ing motions in this very nearby region. (2) The same result, 
expressed differently, is that the mean deviation of the points 

Fig. 5.—Corrected velocities and adopted distances for the 20 test objects 
listed in Table 1. The line is a linear relation passing through the origin with a 
slope of 55 km s“1 Mpc-1. 

T 

Fig. 6.—Data points of Table 1 compared with three of the predicted 
curves of Fig. 2 for Local Group masses of 5 x 1011, 5 x 1012, and 2 x 1013 

about the line drawn in Figure 5 has a standard deviation of 
only a(v) = 61 km s_1—it is remarkably small. The true dis- 
persion in velocity must, of course, be even smaller because 
there are errors in the distances at such a level that all of the 
scatter about any appropriate mean line could be due to that. 
We require errors in the distances of only of order ~ + 20% for 
the scatter to disappear. (3) The most important feature for our 
present problem is that the best fitting relation through the 
points that are closer than D < 4 Mpc does not pass through 
the (0, 0) origin but, in fact, has negative velocities for the 
majority of galaxies with D <2 Mpc. We take this to be the 
suggestion of a deceleration of the expansion by the mass of the 
Local Group. 

The family of curves shown in Figure 2 is superposed on the 
data in Figure 6 to show that the expected effect, using the 
expected mass range of the Local Group, is consistent with the 
data. Three of the four calculated curves are shown for Local 
Group masses of 5 x 1011, 5 x 1012, and2 x 1013 M0. 

d) A Change of Origin 
None of the curves fit the data well. There is a large vertical 

disperson in the observed points in the distance range ~ 1.0-3 
Mpc from the Sun. The velocities have been corrected to the 
centroid of the Local Group using solution (2) of YTS, and we 
test now if the scatter can be reduced by changing the origin of 
the distances to the centroid as well. 

The mass ratio of M31 to our Galaxy is not well known, but 
is often taken to be MM31/Mg æ 2. The center of mass would 
then be on a line between the galaxies at two-thirds of the 
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D (Mpc) RELATIVE TO LG CENTROID 
Fig. 7.—Observational data but with distances measured from a point on a line connecting the Galaxy and M31 at two-thirds the distance toward M31. The 

theoretical nonlinear velocity-distance relation for a Local Group mass of 5 x 1011 M0 is shown. 

distance to M31. We have transferred all distances to this new 
origin, with the result given in column (8) of Table 1. 

e) The Adopted Deceleration and MLGfor the Q0 = 0 Model 
The data in columns (7) and (8) of Table 1 are plotted in 

Figure 7, which does, indeed, show a slight improvement over 
Figure 6 in the agreement between the calculations and the 
data. The single line in Figure 7 is the calculated velocity- 
distance relation for a Local Group mass of 5 x 1011 M0 
which, based on a minimum scatter of the residuals, is the best 
fit of the four calculated curves. (M31, although plotted in Figs. 
5, 6, and 7 for reference, should be disregarded in the fit 
because this galaxy is not massless.) 

A more quantitative comparison is made in Table 2 which 
lists the mean deviation < Ap> of the 17 points (with D2/3 <10 
Mpc calculated from the origin at the assumed centroid) from 
the calculated deceleration curves of Figure 2. The best-fit 
mass is MLG = 4 x 1011 M0. Unacceptable fits begin for 
masses larger than ~2 x 1012 M0 ; a mass as large as 5 x 1012 

Mq is out of the question, as is shown also by Figure 6 directly. 

TABLE 2 
Mean Deviation and Velocity Dispersion of 

Observed Velocity-Distance Data from 
Predicted Curves for Various Assumed 

Local Group Masses for = 0 
and the Standard Correction 

for Solar Motion 

Mlg <Au> a(v} 
(M0) (km s ^ (km s ^ 

0    -16 + 15 60.9 
5 x 1011  +5 + 14 56.4 
2 x 1012  +35 + 14 54.7 
5 x 1012  +75 + 16 64.4 
2 x 1013  +198 + 30 120.0 

The standard deviation of the observed points about the five 
theoretical deceleration curves, read as velocity residuals, are 
in the third column. They are near <j(v) ä 60 km s- \ which is 
the same order as the deviation about the solar motion solu- 
tion for the Local Group members alone (YTS 1977, Figs. 1-3). 

As mentioned in § IIIc, this very small velocity dispersion is 
even more remarkable considering that appreciable errors 
must still exist in the adopted distances. We note in passing 
that estimates of the size of the one-dimensional random 
motion about the ideal Hubble expansion have, in fact, pro- 
gressively decreased as the accuracy with which we claim to 
know distances to the test galaxies has increased. Hubble 
(1936) gave a value of <t(i;) = 200 km s_1 for the random 
motion of local “ field ” galaxies whose redshifts are smaller 
than 1720 km s-1 (data from his Table V). He based this on 
residuals from a velocity-distance diagram for brightest resolv- 
ed “stars” using his calibration of their absolute magnitude 
and an estimate of cr(Mpg) for these stars. Smaller values of o(v) 
for local field galaxies were obtained later by de Vaucouleurs 
(1958, Appendix) where he found <j(v) < 100 km s_1 for local 
“field” galaxies. Sandage and Tammann (1975, 1982¿>) found 
<j(v) < 50 km s-1; Materne and Tammann (1976) gave 
(j{v) ^ 50 km s-1; Rivolo and Yahil (1981) had <j(v) ^ 90 km 
s -1 for the three-dimensional value. Other values are reviewed 
elsewhere (Tammann and Sandage 1985), where it is empha- 
sized that the apparent velocity dispersion of any sample 
increases as the size of the sampled region increases, due, 
undoubtedly, to the existence of systematic streaming motions 
(currents) rather than to virialized velocities. 

Each of these studies depends on a particular method of 
distance determination. The question remains whether the real 
o(v) will approach zero as the distances become more accu- 
rately known, and this, of course, is one of the motivations for 
the present program on Cepheids and brightest stars in these 
very nearby galaxies (see Sandage and Carlson 1985h for a 
status report with earlier references). 
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Two points related to Figure 7 should now be made: 
1. Hubble often emphasized that the “law of redshifts does 

not operate within the Local Group.” Stated only in this form 
with no subsequent explanation, the phenomenon appears 
even more mysterious than it already is because it suggests 
that, whatever its cause, there is a local region free from the 
effect and, suddenly, at some distance (perhaps r0 used here) 
the redshift effect begins. There is, of course, no mystery of a 
“ shielded region ” ; rather the Local Group is a very restricted 
locale dominated by two massive galaxies where, over a range 
out to r0 at the present epoch and to a somewhat greater 
distance in the future, the galaxies in this neighborhood have 
negative velocities caused by the pull of the Local Group and 
are falling back to form an even tighter Local Group. This 
concept of the turnaround was first used by Kahn and Woltjer 
(1959) in their fundamental paper on the origin of the Local 
Group where they explored the consequences of the fact that 
M31 is approaching the Galaxy—it either has turned around 
(leading to their famous timing argument), or part of the veloc- 
ity of approach is due to random velocities of unknown 
origins. 

2. The Kahn-Woltjer argument and all later variations and 
amplifications of it require that we know the correction to be 
applied to the observed M31 velocity relative to the local stan- 
dard of rest of —298 ± 2 km s_1 to reduce it to a relevant 
reference frame, i.e., corrected for the solar motion relative to 
such a relevant frame. What is that frame ? 

Some authors correct only for the motion of the Sun about 
the center of the Galaxy using vrot values between 220 and 
~260 km s- x. This gives a large (i.e., ~ 100 km s- ^ velocity of 
approach of M31 to the Galaxy. This, in turn leads to a large 
mass for the Local Group, generally in the range 3-6 x 1012 

M0 (Kahn and Woltjer 1959; Einasto and Lynden-Bell 1982). 
So far in this discussion, we have adopted here the high solar 

motion of the centroid of the Local Group of 300 km s~1 

required by the dipole solution (which requires no knowledge 
of distances) relative to very local galaxies (YTS 1977, Figs. 
1-3). The amplitude of the dipole signal is so large as to give a 
very small residual velocity of —14 km s-1 for M31 relative to 
the origin which we consider to be devant to the problem, but 
then, of course, with the consequence of a high value of the 
motion of the center of our Galaxy relative to the centroid, a 
point we have not yet considered. To rediscuss the Kahn- 
Woltjer calculation, the question of the solar motion must be 
approached directly because we must use it to determine the 
velocity of approach of M31 and the Galaxy. A new solution 
for the solar motion consistent with the dynamical model we 
are considering is the subject of the next section. 

IV. SECOND APPROXIMATION TO THE VELOCITY CORRECTIONS 
USING A CONSTRAINED NEW SOLUTION FOR THE 

SOLAR MOTION 

a) The Method 
We now take seriously the model of Friedman big-bang 

dynamics with zero angular momentum extending into the 
Local Group. Because M31 and our Galaxy constitute vir- 
tually the total mass, the centroid of the Local Group must lie 
on the line between them. Furthermore, M31 and the Galaxy 
must move exactly toward each other, the center of mass being 
stationary. This means that the motion of the center of the 
Galaxy must point directly toward M31 at l = 121°, b = —22°. 
The solar motion relative to the Local Group centroid is the 

sum of the two vectors of Galactic rotation toward / = 90°, 
b = 0° and the motion of the center of the Galaxy toward 
/= 121°, 6 = -22°. 

Define the three vectors to be A, the Sun’s orbital velocity 
about the Galactic center; C, the motion of the Galaxy toward 
M31; and B, the sum of A and C, which then is the solar 
motion relative to the Local Group centroid. (In the vector 
algebra we shall neglect the spatial offset of the Sun from the 
Galactic center.) 

We are not totally without knowledge of the size and direc- 
tion of these vectors. The quantity 5 is the vector solved for in 
the usual determinations of the solar motion relative to the 
Local Group. The value adopted in the last section was 
|Z?| = 300 km s"1 toward l = 107°, b = —8°. The quantity \A\ 
lies between 200 and 300 km s-1 and is constrained to be 
toward / = 90°, b = 0°. The first thing to note is that, taking 
solution (2) of YTS for B as above, and A = (0, 220, 0), gives 
C=( —87, +64, —42), where the unit vectors are i toward 
/ = 0, b = 0, j toward / = 90°, b = 0, and k toward b = 90°. 
This direction of C is toward / = 144°, b = —21°—only 20° 
distant from the direction to M31 itself. Hence the condition 
that C be directed precisely toward M31 is approximately ful- 
filled even with the nonconstrained solution of YTS for B. 

We now require that C in fact points directly to M31 and 
find the conditions that this constraint puts on | ,41 (the abso- 
lute value of the Galactic rotation) and on B. For any particu- 
lar \A\, 2? pair, the value of | C\ is determined; hence, the size of 
the motion of the galactic center toward M31 is found. 

The details of the vector algebra using C = B — A are 
straightforward. There is a unique value of | C| for given values 
of \A\ and \B\, and, furthermore, with C/|C| known to be 
(-0.478, +0.795, -0.375) from /c = 121°, bc = -22°, the 
direction cosines of B are found, giving the apex of B, denoted 
by lB, bB. 

The parameter space of\Al\B\,lB, bB, and consequently | Cj, 
was explored letting \A \ range between 220 and 320 km s-1. 
The resulting | C| values ranged between 115 km s~1 and 0, and 
the resulting direction of B ranged between 100° > / > 90°, 
— 8° < h < 0, all reasonable values compared to what was 
known before. Hence the model is possible from the known 
data. 

Once B is known, the angle 6 between the direction of B and 
M31 is known. Now, since the observed velocity of M31 rela- 
tive to the Sun is —298 km s-1 (YTS, Table 1), the peculiar 
velocity of M31 relative to the Local Group centroid is 

vM3i(LG) = \B\ cos 0 - 298 . (20) 

The velocity of our Galaxy relative to the same centroid is |C|. 
Hence the velocity of approach of the centers of M31 and the 
Galaxy is 

*+i3i - = ICI + 1^1 cos 0 - 298 , (21) 

which must, of course, equal 298 — \A \ cos </>, where 0 is the 
angle between / = 90°, b = 0° and the direction of M31, which 
is </> = 37?3. Hence, for any given value of |^ ¡ and B, the veloc- 
ity I C\ of the Galaxy and the velocity |/?| cos 6 — 298 for M31, 
both relative to the centroid of the Local Group, are known. 

Now it is not a priori known what the exact value of \B\ 
should be—all we know from the former, aforementioned, sol- 
utions of the solar motion is that it must be ~300 km s-1. We 
proceed then as follows. 

1. Adopt a value of I ^ |. 
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2. Compute a series of lB, bB, and \ C\ values for a series of 
adopted | Æ| values in the range 220 < | Z?| < 320 km s- ^ 

3. From these, compute a series |C| and %31 values, for 
every |5| value. 

4. Repeat the process for other \A\ values in the range 
220 < \A\ < 260km s-1. 

In that way, for any \A \ value, from equation (21), which is 
equal to \A\ cos 0 = 0.795 \A\, we obtain the velocity of 
approach of M31 to the Galactic center and a series of values 
of i;M3i and % separately. 

As \B\ is varied for any given |/i|, the ratio of vM31/vG 
changes. Because the linear momentum of the M31 + Galaxy 
system must remain constant, there is a fixed value of vM31/vG 
for all time, although we do not know it until we know the 
mass ratios. On the two assumptions of MM31 = Mg and 
MM3i = 2Mg, the \B\ and |C| values can be obtained in the 
manner just described. 

b) Results and Application to the Basic Data 
The results of the vector algebra on |^ |, Z?, and C are shown 

in Figure 8, taken from the summary of the calculations in 

Table 3. Plotted as abscissa is the Galactic rotation \A\. The 
bottom panel gives the relative velocity of approach of M31 
and the Galaxy, being 298 — 0.795|^ |. As | is varied between 
220 and 260 km s- \ this velocity decreases from 123 to 91 km 
s-1. The middle panel shows the value of the motion of the 
Galactic center relative to the Local Group centroid |C|, for 
the two assumptions on the mass ratio. The top panel gives the 
value of 12?I, again for two mass ratios. 

It is the solution for 2?, i.e. \B\ and its direction, that is 
needed in Figures 5-7 to change the observed heliocentric 
velocities to those in the relevant Local Group frame. Figure 8 
gives the range of permissible |2?| values; \A \ must certainly lie 
within the plotted range of 220 < | ,41 < 260 km s- ^ 

The previous formal solutions of |2?|, summarized for 
example in YTS (1977, Table 1) with no constraint such as we 
have placed here, give some additional guide as to the value to 
adopt finally using Figure 8. With cognizance that the recent 
values of I ^ I are near 220 km s -1 and 12?| ~ 300 ± 20 km s- \ 
we have adopted the parameter values of |^| = 230 km s-1, 
1*1 = 295 km s ^ which, with vG = 2vM31, requires the direc- 
tion of 2? to be / = 97?2, b = — 5?6. This is only ~ 10° distant 
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< 
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XI 
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A I s GALACTIC ROTATION (km s'1) 

Fig. 8.—Summary of the Table 3 values of the dependences of |Z?|, |C|, and the velocity of approach of M31 and the Galaxy on the Galactic rotation velocity \A\. 
Two values of the mass ratio of the two galaxies are shown. 
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TABLE 3 
Summary of Data Plotted in Figure 8 for the Exploration of the | ^ |, 5, | C| 

Parameter Space for Two Values of the Mass Ratio 

\A\ \B\ \C\ B cos 9 — 298 M31+Galaxy 
(kms-1) (km s-1) lB bB msi (km s-1) (km s_1) (km s-1) 

(1) (2) (3) (4) (5) (6) (7) (8) 
For vG = 2vM3l 

220  289 97?8 -6?0 27.5 82 -42 124 
230  295 97.1 -5.5 28.3 77 -38 115 
240  300 96.6 -5.1 29.0 72 -36 108 
250...  305 95.9 -4.6 29.9 66 -33 99 
260  311 95.4 -4.2 30.4 61 -30 91 

For vG = vM3l 

220  272 96?4 -4?9 29.3 62 -62 124 
230  281 95.6 -4.5 30.2 57 -57 114 
240  285 95.0 -4.0 31.1 54 -54 108 
250  290 94.5 -3.6 31.6 50 -50 100 
260  299 94.2 -3.3 32.0 45 -45 90 

Notes.—The quantity |/41 is the magnitude of galactic rotation toward / = 90°, b = 0; |Z?| is the solar motion 
relative to centroid of the Local Group in a direction lB, bB in cols. (3) and (4); |C| is the velocity of the center of 
our Galaxy toward M31 at / = 121?2, b = —21?6 as seen from the Sun. Col. (7) is the motion of M31 toward the 
center of mass that is on a line between the center of M31 and the center of our Galaxy. The velocity of approach 
between our Galaxy and M31 is in col. (8). The angle between B and the direction of M31 is in col. (5). 

from the solution (2) apex of YTS and is within the ~2o errors 
of the YTS solution with no constraints. 

The solution gives the velocity of the Galactic center relative 
to the Local Group centroid to be —77 km s-1, and %31 = 
— 38 km s-1, again approaching the centroid. The relative 
velocity of M31 toward our Galaxy (and vice versa) is then 115 
km s ~ \ in agreement with the lower panel of Figure 8. 

The vector for the solar motion of 5 = ( — 36.8, +291.3, 
— 28.8) is shown as the middle ridge line of the upper panel of 
Figure 9, where it is tested against the measured heliocentric 
velocities of the standard Local Group galaxies plotted versus 
the cosine of the angle between any given galaxy and the new 
apex at / = 97?2, b = — 5?6. The data are listed in Table 4 
which uses the same basic data as in Table 1, but now with the 
solar motion correction based on our new value of B. The 
direction of B gives the cos 6 values for each galaxy listed in 
column (5). The basic observed heliocentric velocity reduced to 
the local standard of rest is in column (6). The correction for 
solar motion is in column (7), and the correction for the Virgo 
pull in column (8), as previously calculated. Applying columns 
(7) and (8) to column (6) gives column (9) which, then, is the 
final corrected velocity relative to the centroid of the Local 
Group. 

Previously recognized members of the Local Group have an 
asterisk to the left of column (1), and these are the 17 plotted 
points in the top panel of Figure 9. The ridge line at 295 cos 0 is 
a satisfactory fit to the data, showing that our constrained 
solution for B does not violate these data. More distant gal- 
axies from Table 4 are added in the bottom panel of Figure 9, 
showing, by the positive velocity residuals, the general cosmo- 
logical expansion possessed by galaxies just beyond the Local 
Group. 

Finally, the velocity-distance relation using these new cor- 
rected data for B from Table 1 is shown in Figure 10, which is 
the same as Figure 5 but uses Table 4 data rather than Table 1 
data and with the new data for M31 and the Galaxy added as 
crosses. (The points for M31 and the Galaxy should be dis- 

counted in the model fit because the dynamics of two particles 
[with mass] moving on a rectilinear trajectory [their center of 
mass remaining stationary] is different from that of massless 
[satellite] particles moving relative to a stationary point at 
which the total mass remains stationary. The two crosses in 
Fig. 10 are then merely for reference. I am indebted to J. 
Ostriker for this fundamental point.) The 19 plotted points 
closer than Virgo are the first 19 entries in Table 4. The 
remaining entries are not plotted since they either have no 
fundamental distances (IC 10, DDO 187, DDO 210, GR 8), or 
they are clearly immediate satellites of the Galaxy. The reason 
they are listed in Table 4 is for their use in Figure 9, plotted as 
crosses. 

V. COMPARISON OF THE Q0 = 0 DECELERATION WITH THE 
DATA CORRECTED WITH THE NEW SOLAR MOTION 

a) For H0 = 55 
The fit of the 19 galaxies in Table 4 with listed D2/3 distances 

to the grid of calculated decelerations is shown in Figure 11. 
The model lines from Figure 2 are shown again for the five 
mass values of 0, 5 x 1011, 2 x 1012, 5 x 1012, and 2 x 1013 

Mq for Mlg and with a time of 18.1 x 109 yr, which is H0 = 
55 km s"1 for Q0 = 0. The conclusion is the same as discussed 
in § III, viz. the best fit is MLG = 5 x 1011 M0, but 2 x 1012 

M0 cannot be excluded at the ~2 a level in the mean value of 
the residuals. The data for the mean deviations in Figure 11 are 
listed in Table 5, to be compared with Table 2. 

b) For Different Values of H0 

The far-field data in Figure 11 for D2/3 > 4 Mpc (these are 
the M81 group, IC 342 group, M101, and M51) are consistent 
with H0 = 55, but suppose we were to discount these four most 
distant points and ask what the family of predicted deceler- 
ations would be by changing the available time. This is equiva- 
lent to changing the value of H0, again keeping Q0 = 0. 
Keeping the Local Group mass the same, the decelerations will 
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Fig. 9.—Upper: Galaxies in Table 4 with asterisks before col. (1). These are the adopted members of the Local Group. Closed circles are those galaxies that may 
move independently of the Galaxy. Crosses are satellites of the Galaxy which, nevertheless, follow the adopted constrained solar motion solution of 295 km s ~1 

toward / = 97?2, b = — 5?6 shown as the center ridge line. Envelope lines are ± 60 km s~1 from the center line. 
Lower: Same as above, but with the remaining galaxies in Table 4 plotted showing the expansion as the velocity residual from the center line read at a given cos 6 

value. 

be different because the time over which we integrate the decel- 
erations are now different. The formalism in § II can be applied 
again with different values of T to produce the predicted family 
of deceleration curves for //0 = 90, Q0 = 0 (or T = 1.11 x 1010 

yr) in Figure 12, and H0 = 40, Q0 = 0 (or T = 2.5 x 1010 yr) in 
Figure 13. As mentioned, neither of these family of curves fit 
the far-field data, but never mind for this test, since we are 
interested in the effect on the nearby data closer than D2/3 ^ 3 
Mpc. 

As expected, for the short time scale of H0 = 90 in Figure 12 
the acceptable Local Group mass is now larger than in Figure 
11. This is because over a shorter time available for the deceler- 
ation to occur, we must have a larger mass to produce the same 
effect as that caused by a smaller mass acting over a longer 
time. Figure 12 shows that a mass of MLG ^ 5 x 1012 is the 
best fit to the 13 inner points. 

The opposite conclusion for the same reason follows if 
H0 = 40. Figure 13 shows the predicted family for this case. 
The fit to the data for the six most distant galaxies is poor. The 
remaining 13 points are best fit by MLG ~ 3 x 1011 M0. 

We emphasize that interesting as these results are, neither 
alternate value of H0 is acceptable if we adopt the distance to 
M81 as m — M = 28.8 and m — M to M101 as 29.2 as required 
by the Cepheid data, making Figure 11 with MLG ~ 5 x 1011 

M0 the only viable solution. 

VI. THE KAHN-WOLTJER TIMING ARGUMENT FOR M31 
AND THE GALAXY 

The first convincing evidence for appreciable dark matter in 
galaxies was Babcock’s (1939) discovery of the large increase in 
M/L in the outer regions of M31 required by the flat rotation 
curve he measured. The argument was extended to the total 
gravitational field of M31 plus the Galaxy by Kahn and 
Woltjer (1959), who introduced the basic argument used so far 
in this paper. We repeat their argument using the present for- 
malism and the new data for the velocity of approach from 
§IV. 

The basic equations are the same as in § II for the negative 
energy case. The known quantities are now r (distance between 
M31 and the Galaxy), T (time since the beginning), and v (the 
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TABLE 4 
Basic Data Corrected for the Second Approximation Solution for the Solar Motion 

Name 

(1) 

i 

(2) 

b 

(3) 

(m-M)o 

(A) 

eA 

6) 

LSR 

(6) 

295 cos 6 

(7) 

AV vir 

(8) 

CLG 

(9) 

”2/3 

GO) 

*M31 
Galaxy 

*M33 
* IC 1613 
* NGC 6822 
*WLM 

NGC 300 
Leo A 

*IC 5152 
Sextans B 
NGC 3109 
Sextans A 
Pegasus 
NGC 253 
NGC 2403gr 
M8 Igr 
IC 3A2gr 
M101 
M51 

*SMC 
*LMC 
*IC 10 

DDO 187 
*DDO 210 

GR8 
*Draco+ 

*UMi+ 
*Sculptor+ 

*Fornax 
*Carina+ 

*Leo 1+ 
*Leo 11+ 

NGC A04 
NGC 6946 
IC 342 
Maffei 1 
Maffei 2 

121.2 

133.6 
129.9 
25.4 
75.7 

299.2 
196.9 
343.9 
233.2 
262.1 
246.2 
94.8 
97.6 

150.6 
142.1 
138.2 
102.1 
104.9 

302.8 
279.3 
119.0 
25.6 
34.1 

310.7 
86.4 

105.0 
287.8 
237.3 
260.1 
226.0 
220.1 

127.0 
95.7 

138.2 
136.1 
136.9 

-21.6 

-31.3 
-60.6 
-18.4 
-73.6 
-79.4 
+52.4 
-50.2 
+43.8 
+23.1 
+39.9 
-43.5 
-88.0 
+29.2 
+40.9 
+10.6 
+59.8 
+68.6 

-44.3 
-33.4 
-3.3 

+70.5 
-31.3 
+77.0 
+34.7 
+44.8 
-83.2 
-65.7 
-22.2 
+49.1 
+67.2 

-27.0 
+11.7 
+10.6 
-0.2 
0.0 

24.12 

24.7 
24.43 
23.95 
24.9 
26.1 
26 
26 
26 
26 
26 
27 
27 
27 
28 
29 
29 
30 

+0.881 

+0.735 
+0.574 
+0.326 
+0.354 
-0.073 
-0.180 
-0.177 
-0.584 
-0.922 
-0.717 
+0.789 
+0.133 
+0.470 
+0.469 
+0.80 
+0.414 
+0.269 

-0.574 
-0.776 
+0.928 
+0.012 
+0.436 
-0.282 
0.748 
0.630 

-0.018 
-0.225 
-0.843 
-0.482 
-0.300 

0.814 
0.954 
0.720 
0.774 
0.766 

-298 

-182 
-239 
-48 

-119 
+135 

+24 
+76 

+289 
+394 
+317 
-178 
+232 
+67 
+94 

+6 
+241 
+464 

+154 
+257 
-337 
+164 
-123 
+223 
-291 ± 6 
-261 ± 6 
+20 ± 22 
+36 ± 10 

+240 ± 10 
+ 168 ± 40 

+90 ± 40 

-22 
+54 
+34 
-8 

-15 

+260 

+217 
+169 

+96 
+ 104 

-22 
-53 
-52 

-172 
-272 
-212 
+233 
+39 

+139 
+138 
+237 
+122 

+79 

-169 
-229 
+274 

+3 
+129 

-83 
+221 
+186 

-5 
-66 

-249 
-142 
-88 

240 
281 
202 
228 
226 

0 
0 
0 
0 
0 
0 

-10 
-3 
+ 1 
-3 

0 
-3 

-12 
-24 
+34 
+48 
+57 
+27 
+19 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

+57 

-38 
-77 
+35 
-70 
+48 
-14 

+ 103 
-32 
+25 

+114 
+ 122 
+ 102 

+43 
+24 7 
+240 
+280 
+294 
+390 
+562 

-15 
+28 
-63 

+167 
+6 

+140 
-70 
-75 
+15 
-30 
-9 

+26 
+2 

294 
±26 

0.23 
0.44 
0.46 
0.51 
0.76 
0.80 
1.64 
1.71 
1.71 
1.90 
1.97 
2.07 
2.39 
2.99 
3.25 
5.57 
5.76 
6.88 

10.02 

A The angle 0 is from the adopted solar motion apex at / = 97?2, b — — 5?6. 
1 Velocities relative to Sun from the listing by Lynden-Bell, Cannon, and Godwin 1983. 
* Adopted members of the Local Group. 

velocity of approach). The equations for these quantities are 
(4), (5), and (8) which contain the three unknowns of — 2£, GM, 
and 9, where M is now the sum of the masses of M31 and the 
Galaxy. In the calculation it is convenient to eliminate —2E 
from the equations to retain two parametric equations con- 
taining 6 and M. 

Combining equations (4) and (5) to eliminate — 2E gives 

3 GMT2(1 - cos 0)3 

r ~ (6 — sin 6)2 (22) 

Combining equations (5) and (8) also to eliminate — 2E gives 

TABLE 5 
Mean Deviation and Velocity Dispersion of 

Observed Velocity-Distance Data from 
Predicted Curves for Various Local 

Group Masses for Q0 = 0 Using the 
New Constrained Solution 

for the Solar Motion 

Mlg <AF> a(V) 
(M0) (km s ^ (km s l) 

0  -42 + 15 51 
5 x 1011  +4± 16 56 
2 x 1012  +53 ±21 73 
5 x 1012    +127 ±29 102 
2 x 1013  +289 ±46 152 

v3r3 (6 — sin 9) 
{GMf ~(s\n9)3~ 

Rather than eliminating 9 from equations (22) and (23) to 
retain M as the only unknown, it is easier to solve for 9 and 
then for M parametrically. Combining equations (22) and (23) 
gives 

r (1 — cos 9)2 

vT sin 9(9 — sin 9) * 
(24) 

Because r, v, and T are known, 9 can be found from equation 
(24), from which with either equation (22) or (23) M can be 
found. 
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Fig. 10.—Data of observation corrected for the new solar motion, from 
Table 4. The line is for H0 = 55 with no deceleration, passing through 0,0. 

From the new value of B in § IV we adopt the data for the 
M31, Galaxy pair to be 

v = —115 km s 1 approach , 

T = 18.1 x 109 yr . 

r = 0.67 Mpc 

These values in equation (24) give 

e = 4.4294 rad , 

which in equation (22) or (23) gives 

^m3i+g — 2-9 x 1012 Mq (25) 

for the combined mass. 
Figure 8 or Table 3 shows that the smallest velocity of 

approach that is reasonable is —91 km s-1 for \A \ = 260 km 
s-1 and |Z?| = 311 km s_1 (the rotational velocity at the solar 
circle can hardly be larger than 260 km s_ 1). With this smallest 
approach speed the same calculation gives 0 = 4.3131 rad, and 

= 2.1 x 1012 Mçs (26) 

If the time is made shorter, the mass increases, because, as 
before, to reach the same dynamical state in a shorter time 
requires a bigger effect. For example, if H0 — 50 but Q0 = 1, 
then T = I/IHq1 = 13.1 x 109 yr, and equations (22) and (24) 
combine to give MM31+G = 3.6 x 1012Mo. 

Our most likely Kahn-Woltjer value, using p = —115 km 
s“1, of Mtot = 2.9 x 1012 Mg is larger by a factor of 7 than 
4 x 1011 Mq given by the deceleration data for the entire 
sample, suggesting that the M31 approach is not caused 
entirely by the mutual attraction or indeed that M31 and the 
Galaxy may not be bound (Burbidge 1975), and therefore that 
these galaxies are merely passing in the night with at least a 
component of a random velocity due to an unknown initial 
condition. In this case, the method of §§ II-III would give the 
correct answer rather than the Kahn-Woltjer method for the 
total mass of the Local Group if the total random motions 
cancel in Figures 5-7 and 11-13. 

That there may indeed be a random initial condition veloc- 
ity to the M31-Galaxy system in addition to the dynamical 
infall velocity calculated by the method is suggested by con- 

Fig. 11.—Data of Fig. 10 (Table 4) compared with the model predictions of Fig. 2 for H0 = 55, Q0 = 0. The five curves are for Local Group masses of 0, 5 x 101 \ 
2 x 1012, 5 x 1012, and2 x 1013Mo. 
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Fig. 12.—Same data as Fig. 11, for H0 = 90 

sidering the size of the random velocity of Local Group 
members, shown in Figure 10 as <r(LG) = 60 km s - L If this is a 
virial velocity dispersion, the Local Group mass is 

Mlg ~ °2r/G , 

which, if r = 0.5 Mpc, gives 4 x 101 again smaller than 
the Kahn-Woltjer value, showing that —115 km s-1 

(approach) is too high. 

VII. DECELERATION OF THE LOCAL GALAXIES 
IN A SPACE WITHQ0 = 1 

It now only remains to consider the problem of particles 
injected into a space where matter is uniformly distributed 
between the galaxies in such amounts that the mean density is 
any arbitrary value <p>. It can be shown that as long as <p> is 
not a function of r the velocity-distance relation is strictly 
linear no matter how high <p> may be, provided there is no 

Fig. 13.—Same data as Fig. 11, for H0 = 40 
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additional central mass MLG to the Local Group. The relation 
becomes nonlinear in the manner of Figure 2 only if a central 
mass Mlg is introduced in addition to <p>, and we wish to 
calculate its effect. 

We assume that the uniformly distributed matter moves 
with the same Hubble expansion as the galaxies. Hence, the 
mass interior to any radius r from the center of the LG is 
constant for all time regardless of the form of r(t). This total 
mass interior to r is 

MT(r) = Mlg + . (27) 

From the standard result of Newtonian cosmology 

</»=^°> (28) 

where, if A = 0, then Q0 = 2q0 and 

<P> = SÛG Q° ’ (29) 

where we make the usual distinction that q0 is a measure of the 
intrinsic spacetime geometry of the manifold and Q0 is a 

measure of the density. 
The value of H0 is specified by the observations, and for any 

given value of Q0, the time T since the beginning is found from 
the time scale equations that give T = /(g0)#o 1 (see Sandage 
1961a, Table 8). If Q0 = 1, then T = IßH^1 for the flat space- 
time case. Although there is no observational evidence now to 
support such a high value of Q0, we adopt this extreme case 
here to explore the consequences of a high density outside 
space. 

The calculation of the deceleration is now the same as 
before, except that for every r we must use the Mr(r) value for 
the mass inside r given by equation (27). Because we must 
specify r at the onset of the calculation so as to use the correct 

Mr, equations (22) and (24) are naturally suited to obtain the 
required velocity distance relation. 

For this example we assume H0 = 55, Q0 = 1, hence T = 
2/3Ho 1 = 11.9 x 109 yr, and <p> = 8.39 x 1010 solar masses 
per Mpc3. The calculation begins by assuming various r values 
from which MT(r) follows from equation (27) for any assumed 
Mlg value. The known values of r, T, and Mr in equation (22) 
gives 0, which when put into 

r sin 9{0 — sin 6) 
T (1 — cos 9)2 (30) 

which is equation (24), gives the required velocity v. In this way 
the v, r relation is built up for any desired value of r. The 
process is repeated for different MLG values to produce a family 
of deceleration curves.2 

The result is shown in Figure 14 with the data points from 
Table 4 superposed. The five curves are again for Local Group 
masses of 0, 5 x 1011, 2 x 1012, 5 x 1012, and 2 x 1013 solar 
masses. The curves are similar to the Q0 = 0, H0 = 55 case of 
Figures 2 and 11 ; this is not surprising because, although the 
time scale is shorter for the Q0 = 1 case than for empty space 
(two-thirds as long), the mass interior to r is larger by the 
second term in equation (27). By the argument given before, 
viz. that to obtain the same deceleration one needs a larger 
mass if it operates over a shorter time, one understands why 
Figures 2 and 14 are so similar because of the combination of a 
larger mass and a shorter time in the Q0 = 1 case- ^ut the 
Q0 = 0 and Q0 = 1 models are not identical. The summary in 

2 Using this procedure it is instructive to calculate the v, r relation for 
^lg = 0 to show from eqs. (22) and (24) that 0 = 0 for all r, that then sin 6 
{9 — sin 0)/(l — cos 0)2 = § for all r, and hence from equation (30) that 

v = \rT~l = H0r , 

as must hold for this special il0 
= 1 case- 

Fig. 14.—Same data as Fig. 11, for the theoretical decelerations for H0 = 55 in a space with Q0 = 1 
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TABLE 6 
Mean Deviation and Velocity Dispersion of 

Observed Velocity-Distance Data from 
Predicted Curves for Various Local Group 

Masses for Q0 = 1 Using the New Constrained 
Solution for the Solar Motion 

MLg AF (i{v) 
(M0) (kms“1) (kms-1) 

0  -42 ±15 51 
5 x 1011...  — 12 ± 16 55 
2 x 1012  +36 ± 23 78 
5 x 1012  +101 ± 33 113 
2 x 1013  +246 ±48 159 

Table 6 of the residuals of the observations from the calculated 
curves shows a difference from Table 5. From Table 6 we 
deduce that the best-fit value of the Local Group mass is 

MLG(n0 = 1) = 8 x 1011 MG , (31) 

which is higher than the Table 5 value of 

Mlg(Qo = 0) = 4x 1011 M0 . (32) 

From the size of the errors on the residuals of <AF> in both 
Tables 5 and 6, the 1 a errors on these mass values is a factor of 
~2. But because the Q0 = 1 case has no observational justifi- 
cation from all known cosmological tests (see Sandage and 
Tammann 1983, 1986), we adopt the equation (32) value of 
4 x 1011 Mq as the best mass determination via the local 
galaxy data. Comparison with other values is made in the next 
section. 

VIII. MASS-TO-LIGHT RATIO AND COMPARISONS WITH OTHER 
MASS DETERMINATIONS 

With the introduction of a “slightly” massive halo to our 
Galaxy that was thought to be necessary to stabilize the cold 
galactic disk (Ostriker and Peebles 1973), the notion of very 
massive halos attached to disk galaxies has grown. Whereas 
the ratio of halo-to-disk mass needed for disk stability is only 
~2.5 in the Ostriker-Peebles A-body simulations, much 
heavier halos were introduced (Einasto, Kaasik, and Saar 
1974; Ostriker, Peebles, and Yahil 1974) for a variety of other 
dynamical reasons, leading to mass-to-light ratios of the order 
of ~ 100. This would give a total mass per giant spiral galaxy 
such asM31of~7 x 1012Mo which is a factor of ~20 larger 
than the value in equation (32). 

Many attempts have been made either to build models of the 
mass distribution of our Galaxy with such a massive halo (see 
Ostriker and Caldwell 1983 for a review of the literature to 
1982), or to determine the total mass of the Galaxy at large 
distances using measured radial velocities of satellite objects in 
the high halo (see Hartwick and Sargent 1978; Bahcall and 
Tremaine 1981; Hawkins 1983). These studies gave some 
support to the conjecture of a massive halo, albeit each with 
the caveat of considerable uncertainty due to the large errors in 
the observed velocities. 

A very early critic of the first discussions was Burbidge 
(1975), who concluded from a number of arguments that the 
mass of the Galaxy out to 70 kpc was not more than 2 x 1011 

Mq. Similar conclusions have more recently been reached by 
Miyamoto, Satoh, and Ohashi (1980) and by Wakamatsu 
(1981). A contrary conclusion was reached by Innanen, Harris, 
and Webbink (1983). 

As the observational data on velocities improved, the early 
direct evidence for a very massive halo to our Galaxy has 
slipped (see Lynden-Bell and Lin 1977; Lin and Lynden-Bell 
1977). The most recent discussions by Lynden-Bell, Cannon, 
and Godwin (1983) yield a mass of the Galaxy out to 100 kpc 
of only (2.6 ± 0.8) x 1011 M0. A further discussion by Sunt- 
zeff, Olszewski, and Stetson (1985) suggests an even smaller 
value of 1.8 x 1011 M0 out to the distance of the remote 
globular cluster AM-1 (Lauberts 1976; Madore and Arp 1979) 
at a distance of 120 Mpc (Aaronson, Schommer, and Olszewski 
1984). These numbers are similar to the mass of 2 x 1011 M© 
out to —60 kpc for the giant galaxy NGC 3992 (of absolute 
magnitude MgT = —21.8) obtained by Gottesman and Hunter 
(1982), belying any massive halo of the order of 1012 M© for 
that galaxy. 

There are then, two limiting cases for the expected mass of 
the Local Group. The most conservative assumption is that 
M31 and the Galaxy have the same mass, each of 2 x 1011 M© 
for a total of MLG = 4 x 1011 M© — equal to our “ best ” value 
from the present deceleration method. If, on the other hand, we 
adopt an M/L ratio of 100 advocated by Einasto, Kaasik, and 
Saar (1974) and Ostriker, Peebles, and Yahil (1974), and put 
the luminosity of M31 equal to the Galaxy, each with LB = 1 
x 1010 L© [i.e., the absolute magnitude of M31 is M°Bt = 
— 21.6 and MB(Q) = +5.5], the total luminosity of M31 plus 
the Galaxy is 1.4 x 1011 L©, and the total mass would then be 
1.4 x 1013 M©, an impossible value according to Figures 5, 6, 
7, 11, and 14, and Tables 2, 5, and 6, because the expected 
deceleration for distances smaller than — 4 Mpc is too large by 
many a. What then are the limits on M/L imposed by the 
smallness of the observed deceleration? 

The total luminosity of the Local Group is closely the sum of 
M31, M33, and our Galaxy. Suppose, as in § III, that M31 has 
twice the mass (and hence twice the luminosity). In that case, 
MBt(M31) = —21.61, Mßr(Galaxy) = —20.86. The luminosity 
of M33 is taken to be MBt = —19.1. The sum is Llg = 1.11 
x 1011 L©. The resulting M/L values are listed in the second 
column of Table 7. If, on the other hand, L(Galaxy) = L(M31), 
then Llg = 1.5 x I011, and the resulting M/L values are in 
column (3). 

The conclusion from §§ III and V is that, although MLG = 
4 x 1011 Mq is the best value from the deceleration data, a 
mass as high as 2 x 1012 M© cannot be ruled out. On the 
other hand, values as high as 5 x 1012 are not possible with the 
present data. The conclusion is that our best value of M/L is 3 ; 
values as high as — 30 contradict the data. The principal con- 
clusion is that we have no evidence from the deceleration 
method for a supermassive halo for either our Galaxy or for 
M31, no evidence from galaxies themselves that Q0 can even 
remotely approach the closure value of unity for the universe 

TABLE? 
M/L Values of the Local Group for Five Assumed Total Masses 

and Two Assumed Total Luminosities 

M/L 
Mlg           
(Mq) Llg = 1.1 x 1011 Lq Llg = 1.5 x 1011 Lq 

4 x 1011   3.6 2.7 
5 x 1011  4.5 3.3 
2 x 1012  18 13 
5 x 1012   45 33 
2 x 1013   182 133 
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itself, and hence that Q0 ~ 0.1 obtained from a variety of argu- 
ments (see Sandage and Tammann 1983, 1986) is the best fit to 
all the known data. 

IX. SUMMARY 

The principal results of this investigation are the following: 
1. A deceleration of the very local cosmological expansion 

field may be present in the available data for galaxies and 
groups of galaxies with distances less than 10 Mpc. 

2. The effect is small, near the limit of detection, meaning 
that the velocity field is very nearly linear, even locally (i.e., 
within ~ 2 Mpc). 

3. The mass of the Local Group is less than 5 x 1012 M0 

from the available data and the deceleration method. The best 
fit to the data gives MLG = 4 x 1011 M0, giving a mass-to- 
light ratio of ~ 3. The ratio could be as large as ~ 25 if MLG = 
3 x 1012 Me as an upper limit from the available data. 
Massive halos with M/L > 100 for either the Galaxy or for 
M31 are excluded by the data. 

4. The mean random motion about the calculated deceler- 
ated velocity-distance relation is <j(v) æ 60 km s-1. The true 
random velocities must be less than this due to uncertainties in 
the adopted distances. The Local Group mass using this dis- 
persion as a virial velocity is also low and of the order 
~4 x 1011 M0. 

5. The variation of the Hubble v/r ratio with distance is very 
small beyond 2 Mpc (Fig. 4) for any reasonable mass of the 
Local Group. This means that the decelerating effect of the 
Local Group cannot be invoked to explain any supposed large 
variation of H with distance locally. 

I am grateful for a discussion with Jeremiah Ostriker on the 
difference in the dynamics of massless satellite particles moving 
relative to a stationary center of mass and of two massive 
particles that define the center of mass. 

It is also a pleasure to thank Maria Anderson for the difficult 
preparation of the many drafts of this paper for publication. 
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