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ABSTRACT 
The interaction between the stream of material originating from the inner Lagrangian point and the 

accretion disk is studied in the framework of an idealized picture of hypersonic flow. When strong simplifying 
assumptions are made, fully analytic solutions are found for the physical quantities of the shocked matter 
flowing above and below the disk surface. We then solve the three-dimensional problem numerically, using a 
pseudoparticle method. The results are found to depend critically on the strength of the viscous interaction 
which determines the rate of stream stripping. Various degrees of stream penetration and the formation of 
dense bulges can be obtained. The results are discussed in relation to observations of compact X-ray sources 
and cataclysmic variables. 
Subject headings: hydrodynamics — stars: accretion — stars: dwarf novae — X-rays: binaries 

I. INTRODUCTION 
The interaction between the stream of transferred material and the accretion disk around an accreting compact object is 

important in cataclysmic binaries and compact X-ray sources. 
This interaction, which is responsible for the generation of a “hot spot” (among other things), has been described and studied by 

several workers (e.g., Lubow and Shu 1975; Bath et al 1983; Bath et al. 1974). Bath et al. (1983) were the first to consider numerically 
the effects of stream penetration, using a parametrization of the momentum transfer process (“ alpha-beta ” disks). The analytic 
properties of their models have been investigated by Dgani and Livio (1984) in a previous work. 

It has been suggested by Lubow and Shu (1975, 1976) that when the circumstances are such that the disk material is denser than 
the stream material, a situation similar to a supersonic flow past a blunt object may develop. 

In the present, preliminary work we study the stream-disk interaction in the framework of an idealized problem of a hypersonic 
flow past a streaming layer of gas. We first present some analytic considerations of a highly simplified picture. We then solve 
numerically the three-dimensional problem, using the particle-in-cell (PIC) method. 

The simplified, analytic formulation is presented in § II, the physical assumptions and numerical procedure are given in § III, and 
the results are presented in § IV and discussed in § V. 

II. SOME ANALYTICAL CONSIDERATIONS: ASSUMPTIONS AND GOVERNING EQUATIONS 
In the “ canonical ” picture of semidetached systems, the stream material originating from the inner Lagrangian point impinges 

on the disk edge at a certain angle (e.g., Lubow and Shu 1975; hereafter LS). At the same time, the matter in the disk itself is orbiting 
around the compact object. The interaction between these two streams of matter is very complicated (in addition, the disk is actually 
not entirely flat; see Shakura and Sunyaev 1973). 

In the present section, consisting of a highly idealized picture, we shall completely neglect stream penetration and treat the 
problem as a hypersonic flow past a disk (assumed flat) of a given half-thickness z0. 

If we take as scaling parameters for the binary system the same values as did LS and Pringle (1977)—i.e. for binary separation 
a = 1.16 x 1011 cm, for a period ^ = 1.7 x 104 s, for masses MWD = 1 M0, Msec = 0.6 M0, and a mass transfer rate of M = 1018 

g s "1—we get (see Shakura and Sunyaev 1973) 

2.5 x 108a_1/loi 
m y/2YMy3/8 

io18gs-v fe 1.23 x lO10 cm 

\ 3/8 
io cm ’ (1) 

where we have taken the disk radius from LS and a is the viscosity parameter. 
The effective stream radius obtained for the same parameters is Reff ä 1.15 x 109 cm. The density of the stream at the disk edge is 

6.0 x 10~ 
M 

1.7 x 104 s/VlO18 g S-7VI.I6 x 1011 cm 0.025 g cm (2) 

1 On leave from Department of Physics, Technion, Haifa, Israel. 
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where e = VJÇïa is a small parameter and Vs is the isothermal sound speed. The density in the disk is given by (Shakura and Sunyaev 
1973) 

Pdisk 
M y/8 

mJ 
M 

1018 g s -1 

11/20 

1.23 x lO10 cm 

-15/8 
g cm (3) 

We thus see that for the adopted binary system parameters, the assumption of a hypersonic flow past a blunt object is quite 
reasonable (the flow is of a very large Mach number). We assume an adiabatic (perfect gas) equation of state. 

We shall now describe briefly the adopted formalism for treating the flow equations analytically. The procedure is quite standard 
(see, e.g., Sedov 1959). 

The flow past a slender body with a sharp leading edge can be described by the following equations (x is the flow direction; z is 
perpendicular to the disk) : 

Equation of motion : 
rr du du 

uô^ + vTz = 

dv dv 
U b v — = 

dx dz 

IdJP 
p dx ’ 

\dP_ 
p dz 

Continuity : 

Energy equation : 

U 

dx dz 

- - =0. 
dx \p dz 

(4) 

(5) 

(6) 

(7) 

Where U is the impact flow velocity. Substituting x/U = t, we obtain (the “equivalence principle”) from equations (5)-(7), 

dv dv 1 dP 
dt + V dz p dz ’ 

dp d(p*;) 
dt dz 

(8) 

d_ 
dt 

— ) + v — 
dz \p 

= 0. 

Clearly, the assumption of a sharp, slender body breaks down near the blunt edge. However, the existence of the edge at x = 0 
(t = 0) is effectively equivalent to an explosion (at i = 0) in the (x-j;)-plane (see Sedov 1959). The explosion energy per unit area, £0, 
is equal to the work performed by the drag force D (exerted by the leading edge) on a unit depth. 

In treating the “explosion” we neglect the pressures ahead of the shock (strong explosion assumption). Using the dimensional 
variables of the problem under these conditions, the stream density ps and the explosion energy E0 (per unit area), we can write for 
the shock coordinate (e.g., Landau and Lifshitz 1963) 

W = (£)1/3î2/3A*, (9) 

where 2* is some simensionless constant and E is proportional to E0, E0 = £(y)£. We can choose 2* = 1 and determine ¿(y) later 
from the solution of the equations of motion. We now substitute the dimensionless variables P, R, V, À defined by 

in equation (8) and obtain 

v = - v, p = psR, p = psz
2t 2P , X ■■ 

+ ■ 
P' 

+ F-- 

R 

2\ R' 

2 V 
F 
P 

3/ R 

F 
~R 

= — V(V — 1) — 2 

= -F, 

= —2(F — 1) . 

(E/pi 

R ’ 

a/3f2/3 

(10) 

The strong-shock, Rankine-Hugoniot relations give for the postshock values of F, P: 

F7 = 
4 1 
3 y + 1 R? = 

y + 1 
y - 1 (11) 
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Introducing, in addition, the dimensionless new variable K = y(P/R) transforms equation (10) into the system: 

dK K{2(V - 1) + l/3(y - mV - 2/3) - [2(F - 1) + (2/3)(y - l)/(y + 1)]K} 

V-- 

dV 

d In 2 
dV 

2\ d\n R 

(V - 2/3)[F(F - 1)(F - 2/3) - (F - 2/3y)K] 

K — (V — 2/3)2 

F(F - 1)(F - 2/3) - (F - 2/3y)K ’ 

= -F ■ 
JF 

3/ din 2 ' din 2’ 

which allows for a fully analytic solution (taking now y = 5/3): 

= (2F) -2/3 
ip 

3I1-ÍF 
-39/61 

r Z 
— = 2F — , 
^2 ^2 

P_ 
Pi 

P_ 
Pi 

4( - F - ! 
3/7 

41 1 - - F 

= (2 F)2/2 

3I1-ÍF 

13/3 

39/7 

These solutions are presented in Figures 1-3. 
Asymptotically for small z, we obtain 

4H--F 3 1--K 

/ E\~112 z3'2 

p = \.lpl-) U — , 
\PsJ X 

p = 0.l2ps(^Jl3U2l3x-2i3 , 

where we have substituted back the x and z coordinates. 

(10a) 

(12) 

(13) 

Fig. 1.—Velocity, perpendicular to the disk (in units of the postshock velocity), as a function of the vertical distance (in units of the shock coordinate) 
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Fig. 2.—Density (in units of the postshock density) as a function of the vertical distance (in units of the shock coordinate) 

We now have to calculate the “explosion ” energy E0. For flows of a large Mach number like the one we are considering, we can 
obtain E0 by calculating the pressure exerted by the front edge of the disk on the flow (see also Sedov 1959) : 

E0 x 0.88ps U
2z0 for y = I, (14) 

where z0 is again the edge half-thickness of the disk. The proportionality constant £(y)[£0 = {(y)^] can now be calculated directly 
from the solutions of equations (10), giving 

«!) = 
1RV2P(U. + 3 \PÀ2dÀ 

Jo Jo 
0.7 . (15) 

Substituting now from equations (14), (15), and (2) into equation (13) and scaling by the values of our problem, we obtain for the 

Fig. 3.—Pressure (in units of the postshock pressure) as a function of the vertical distance (in units of the shock coordinate) 
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velocity, density, and temperature of the matter flowing above (and below) the disk surface : 

v ä 3.1 x IO7'" 

p æ 9.2 x 10"9| 

T x 2.9 x 107 

1.7 x 104 s 

M 

'' V—V—V' cm s~ ,1.16 x 1011 cmJ\z0J\z0J 

1018 g s-Wo^s 

,1.7 x 104 s 

The shock coordinate is given by 

a 
1.7 x 104 s A 1.16 x 1011 cm 

2/ , \7/6^ 

Vzo, 

2.5 x 108 cm 

-1/2/Z\3/2/^ 

VZ0. 
— g cm 3 , (16) 

1.16 x 1011 cm/ \2.5 x 108 cm/ \ u 
K 

zo 
^ = 1.081 

2.5 x 108 cm 
(17) 

It should be remembered that equation (6) assumes adiabatic conditions; in the real flow, energy losses will reduce the temperature. 
The isothermal (dT/dz = 0) can also be treated in a similar manner to the one described for equation (8). In this case, if we write 

P = PsdW 
^ 4 z2 

“ 9 2 @2 > 

where ^ is the gas constant, then the following equation is obtained : 

df 1 (^ -/)/ 
di ye2-{x-f)2 

(18) 

(19) 

This equation does not have an analytic solution, but it can be shown that the solution passes through a critical nodal point 
[(02)1/2, 0] in the (2, /)-plane; thus, the velocity vanishes there (as compared to Fig. 1 in the adiabatic case). 

In the solution of equation (8), we have neglected the z-component of the gravitational force. While gz is negligible near the edge of 
the disk, it becomes dominant for x > 20zo ; thus, the flowing matter will eventually sink into the disk. 

In the next section we attempt to solve a more realistic problem numerically. 

III. A THREE-DIMENSIONAL NUMERICAL STUDY OF THE STREAM-DISK INTERACTION 

As a second step in attempting to attack the problem, we have used a three-dimensional, pseudoparticle method to describe the 
hydrodynamics. The method of calculation is fully described in Livio et al. (1985); here we shall only describe those parts which are 
essential for the present calculation (see also Lucy 1977; Gingold and Monaghan 1978; Lin and Pringle 1976; Hensler 1982a, b). 

a) The Grid and Particles 
We used a three-dimensional, rectangular block-shaped grid of (18, 30, 10) cells (Z = 0 being a symmetry plane). The size of each 

cubic cell was 0.675z0 (where z0 is the disk half-thickness). In general, we have taken an average of six particles per cell in the matter 
representing the disk and an average of (different mass) 15 particles per cell in the injected stream material (which later decreases). A 
Cartesian coordinate system was used, in which the disk material (or rather a slice from the disk) was assumed to flow in the 
y-direction and the z-direction was taken perpendicular to the plane of the disk. 

b) The Disk 
Matter in the slice of the disk was assumed to flow at a constant velocity Fdisk = (0, 2.04, 0), where the unit of velocity has been 

taken as the injected stream velocity U (corresponding roughly to the same parameters described in § II). A density profile in the z 
(vertical) direction was assumed in the disk, of the type (corresponding to an isothermal profile ; e.g., Shakura and Sunyaev 1973) 

p(z) = p0e-{zlzo)2 . (20) 

The disk material was cut off at z = 2.25z0. It extended in the x-direction from x = 0 to x = 5.738z0 (except in one particular run, 
where it extended to x = 10.125zo). The density p0 was taken to be 100 times larger than the density in the stream material (see eqs. 
[2], [3]). 

c) The Stream 
The stream velocity was taken as F = (cos /, sin /, 0), where / = 17?8 (see LS for the assumed parameters). A Mach number 

M = 20 has been assumed. The radius of the (circular) stream cross section was taken as (§ II) R = 4.5z0. We have neglected gravity 
in the motion of the stream ; the equation of motion for the particles is thus 

d2r 
dt2 — - VP + a, , 

P 
(21) 

where a,- describes the effects of interparticle interaction. The particles in each shell (including disk particles) were assumed to 
interact in the following way. In the first stage, the center of mass and velocity of the cell is calculated (summations over all particles 
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in the cell) : 

r0 = 

In the second stage, an angular velocity is defined by 

Z Wj Vj _ Z miri 
Z Wi ’ Fc Z mi 

Lk = ~IklQ 1 

(22) 

(23) 

where L is the cell’s angular momentum and Ikl are the components of the moment of inertia. The new velocity of the particle is then 
found by (see Lin and Pringle 1976; Hensler 1982a) 

^new,,-= ^-(l - a) + , (24) 

where 

Ui=Vc + Rixil\ (25) 

and a determines the strength of the interaction (0 < a < 1). In many respects, a plays a very similar role to the parametrization of 
the strength of the momentum transfer process ß, in the “alpha-beta” disk models of Bath et al (1983). The intercell interaction is 
treated by the two-grid method described by Livio et a/. (1985). The pressure gradients in equation (21) were calculated as follows. 
For three adjacent grid cells j — 1JJ + 1 (e.g., in the x-direction) and a particle k located in they'th cell : 

1 dp 1 ["(pj+ ! - Pj)(xk - Xj) + (pj - pj+ 1)(xj+ i - xk) 
p dx pj |_ ÀR2 

where ÀR is the size of the cell and Xj, xj+i denote the boundaries of the respective cells. 
The stream particles were injected with a specific internal energy e of (in units of U = 1) 

(26) 

1 
n — M2y(y — 1) 

(27) 

where M is the Mach number and y is the ratio of specific heats. The energy equation was then solved in two steps. In the first step, 
the interaction among particles was performed, and the enthalpy of cell g was calculated according to 

(28) EgCW = Efd + i X ml(Vfd)2 - (Frw)2] 

with 

where pg = Y^iegmv In the second (acceleration) step, 

’new 
'9 

gnew = gold 
y [_2 

_ {vr)2 

(29) 

(30) 

where “ old ” and “ new ” denote values before and after the calculation of the acceleration. The pressure (in cell g) is given by 

P9 = (y - 1) Z m¡e¡ • (31) is g 
While the dissipation has been calculated for all particles, we have made the simplifying assumption that the disk remains 

unchanged and only the stream particles are affected by the dissipation. This would correspond to a situation in which the disk is 
able to adjust itself by radiation. The value of y has been arbitrarily set in the present, still exploratory calculation, to y = 1.2, a value 
between the isothermal and adiabatic limits. In future calculations, the effect of different values of y will be explored. 

d) Numerical Procedure 
The injection of stream particles has been made at a constant rate. The calculation has been first carried out until the number of 

particles in the grid remained constant (to better than 0.5%). Following this stage, the calculation has been continued for ~ 10Trep, 
where Trep represents the time required to replace all particles present in the grid by newly injected particles. Then average values of 
the physical quantities were taken over this ~ 10Trep period. 

IV. RESULTS 

The parameter that has the most significant effect on the results is a. It determines the degree of stream penetration into the disk, 
in a very similar way to that in which ß in the “alpha-beta” disk models (Bath et al. 1983) determines it. We have, therefore, 
performed calculations using different values of a. Typical results for the case a = 0.01 are presented in Figures 4a-4/ Figures 4a and 
4b show the projected (in the plane) velocity field and density profile, respectively, in the z = 0.33zo plane. In all the figures, we 
present only the stream material, the disk matter (which is not shown) streams as indicated by Vdisk. The direction of the incident 
stream’s velocity is indicated by U. The figures demonstrate that substantial penetration is obtained in this case, although the 
stream matter tends to be swept by the disk material upon penetration. A region of enhanced density and pressure forms near the 
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Fig. 4.—(e) Velocity field in the y = 7.76z0 plane. Disk represented by box. (/) Density profile in the same case as {e). 

edge of the disk. In Figures Ac-Ad the flow in the z = 3z0 plane (above the disk) is shown, demonstrating the flow of matter above 
(and below) the disk. The “climbing” of the stream above the disk plane is also apparent from the side view (a cut in the y = 7.76z0 
plane) shown in Figures Ae-Af. 

In the a = 0.05 case penetration is minimal, and the stream is stripped already in the outer parts of the disk. The “ hot spot ” is 
much more pronounced and concentrated. Two new features appear: 

1) The bulge of densed material forms also in the z = 3z0 plane, whereas in the a = 0.01 case, matter there streams more freely ; 
2) Stream material is reflected from the disk edge, forming a sort of secondary stream. 

In the a = 0.002 case we find deep penetration into the disk and essentially free streaming above it, and no dense bulge forms. In the 
extreme a = 1 case, there is essentially no penetration (see Figs. 5a-5f); a part of the stram is stripped immediately by the disk and a 
part is reflected, forming a secondary high-velocity stream. Some reflection occurs even in the z = 3z0 plane. The increase in 
“ temperature,” p/p, has been calculated for all runs (namely, the ratio p/p in the highest pressure region to that in the incident 
stream). The increase in temperature in the a = 1 case was found to be ~4 times larger than that in the a = 0.002 case. The increase 
in the “ temperature ” is demonstrated for the a = 1 case in Figures 6a and 6b, which correspond to the z = ^z0 and z = 3z0 planes, 
respectively. 
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Fig. 5/ 
Fig. 5.—(e) Same as Fig. 4e, for a = 1.0. (/) Same as Fig. 4/, for a = 1.0. 

V. DISCUSSION 

The possibility that the matter behind the bow shock (produced by the stream-disk impact) will flow above and below the disk, 
producing turbulence, has been first suggested by LS. Using first our analytic approximation (which were based on a simplified, 
idealized picture), we can attempt to estimate to which distance from the disk edge one can expect shear-induced turbulence to 
occur. The condition for shear stability can be expressed in terms of the Richardson number R¡ (see Chimonas 1970; Sung 1974) 

dz dp IfduV >l 
Pdisk dzj \dz) ~ 4 ' 

(32) 

Using our assumed parameters and the fact that the vertical component of the gravitational acceleration is given by gz & GMzr~3 

and replacing the derivatives in equation (32) by differences, we obtain that the shear-induced turbulence can occur from the disk 
edge inward to a distance ~ 1.0 x 1010 cm, namely, over a large fraction of the entire disk. This could, in principle at least, explain 
the appearance at all orbital phases of the flickering observed in some systems (e.g., Robinson 1973a, b, c; Warner 1976). 

Turning now to our numerical results, we have seen that the most important parameter (in our presentation) determining the 
consequences of the stream-disk impact is a, which defines the rate of stream stripping by viscous interaction. Very different values 
of a can give results which differ even qualitatively. 

We will not attempt here to make any detailed comparison with observations, but it is important to mention several interesting 
observational results which can be related to the results of our calculations. 
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Observations of 4U 1822 — 37, 4U 2129 + 47 and Cyg X-3 (White and Holt 1982) seem to indicate the existence of a bulge at the 
edge of the accretion disk. In the case of 4U 1822 — 37 observations suggest that there are in fact two bulges, one at the stream-disk 
impact point and a smaller one on the opposite side of the disk. This picture is consistent with the energy dependence of the light 
curve from X-rays to infrared (Mason and Cordova 1982). The thickness of the bulge (as inferred from the observations) can be 
several times the thickness of the disk. Such a bulge, indeed, forms in our calculations in the high a cases (see Figs. 5a-5f). 
Furthermore, the reflected secondary stream can hit the outer edge of the disk a second time, this giving rise to the observed second, 
smaller bulge. Thus, observations of these X-ray sources can, in principle, be used to determine the value of a. The formation of a 
bulge (or thickened region) on the outer disk edge has been suggested also for 2S 0921—630 (Branduardi-Raymont et al. 1983; 
Chevalier and Ilovaisky 1982), together with the possibility that matter thrown out of the orbital plane by the stream-disk impact 
was causing short dips. 

Another class of objects where the disk-stream interaction can be tested is provided by cataclysmic variables. It is not surprising, 
therefore, that obscuration by a structure on the edge of the accretion disk has been invoked to explain the asymmetric line profile of 
He ii 24686 in DQ Her (Alpar 1979; Chester 1979) and reprocessing of X-ray flux in a bulge where the stream strikes the disk has 
been suggested for H2252 —035 (Hassall a/. 1981). 

The generation of a turbulent region and stream penetration has been suggested as the cause for the rapid photometric variations 
observed in the symbiotic star CI Cyg (Chochol a/. 1984). 

Bath et a/. (1983) have already attempted to use the information on the spectral evolution of VW Hyi (Hassall et al. 1983) to 
determine ß (which is closely related to our a) in their “ alpha-beta ” disk model. They found that they could reproduce the results if 
0.1<ß<1.0. 

To summarize, we have performed a preliminary three-dimensional calculation of the stream-disk interaction. The present work 
has explored only the effects of the strength of the viscous interaction on the results. It was found that a high viscosity is required in 
order to explain the formation of bulges on the disk edge, as seems to be indicated by the observations of a number of X-ray sources 
and cataclysmic variables. 

In future calculations we shall explore two major areas: (1) the effects of different ratios of stream density to disk density. This can 
have important consequences in relation to models proposed for dwarf nova outbursts; in particular, it can test some of the possible 
effects of the mass transfer instability. (2) The effects of different values of y. This will reflect the ability of the material to soak up 
energy into internal degrees of freedom without contributing to pressure. In conjunction with the observations, all of these 
calculations can provide valuable information on the stream-disk impact region. 

M. L. thanks Jim Truran and the Department of Astronomy at the University of Illinois for their generous hospitality. 
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