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ABSTRACT 
Detailed calculations of the contribution of the trapped line photons to the overall pressure in line-emitting 

regions around active galactic nuclei are presented. They lead to the conclusion that radiation pressure is a 
significant factor in determining the stability of these clouds. 
Subject heading: galaxies: nuclei 

I. INTRODUCTION 

The generally accepted picture for the broad-line emission 
regions in active galactic nuclei is that of clouds embedded in a 
hot, rarefied gas with the two phases coexisting in pressure 
equilibrium (e.g., Blumenthal and Mathews 1975; McCray 
1979; Krolik, McKee, and Tarter 1981). The calculation of the 
pressure inside the line-emitting clouds is therefore an essential 
ingredient in determining their allowed, stable configurations. 
In addition to the thermal pressure, due to the kinetic motions 
of the gas particles, the line photons trapped inside the cloud 
also contribute to the overall pressure. The potential impor- 
tance of this component was first pointed out in this context by 
Williams (1972). Subsequent studies of this effect were made by 
McKee and Tarter (1975), Mathews (1976), Weymann (1976), 
and Krolik (1979). In these investigations the column densities 
assumed were relatively small (less than a few 1021 cm-2), the 
clouds were fully ionized, and the line optical depths were 
mostly below ~ 105. However, the work of Kwan and Krolik 
(1981) and Weisheit, Shields, and Tarter (1981) showed that 
more realistic values for the columns of the emission regions 
are above 1022 cm-2, and an / front therefore develops in the 
cloud. As a result of the neutral region that is formed, optical 
depths of allowed transitions can easily exceed 106. Scattering 
in the line wings thus becomes important. Although this causes 
a fundamental difference in the calculation of radiation press- 
ure, as we show below, this effect did not draw much attention 
in the more recent calculations of photoionization models. 

Recently, however, we pointed out that radiation pressure 
may attain relatively large values in cloud interiors, and that it 
may be a significant factor in determining the stability of the 
emission regions (Ferland and Elitzur 1984; hereinafter paper 
I). The basic reason is that the total pressure at the edge of the 
cloud is simply gas pressure, while the radiation pressure deep 
inside the cloud is determined independently and can easily 
exceed the gas pressure. Thus, no stable solution with constant 
pressure is possible. 

The aims of the present paper, a follow-up of Paper I, are 
twofold. The first one is to expand on the method and tech- 
niques used in calculating the radiation pressure inside the 
clouds. This is a somewhat delicate problem because of the 
complex nature of line radiative transfer at very large optical 
depths where scattering in the line wings is important. Section 
II of the paper is therefore devoted to a rather elaborate and 

extensive discussion of the formalism we use. Two different 
derivation methods for the final expression for the line radi- 
ation pressure at large optical depths are presented. 

The other objective of the paper is to repeat the previous 
calculations incorporating the numerous developments that 
occurred since our first study. In addition to the constant, 
ongoing improvement in the atomic data base used in the 
model calculations, a number of other significant develop- 
ments took place, in particular the two discussed by Wills, 
Netzer, and Wills (1985). The first of those is the realization 
that the continuous spectrum used in Paper I, following Kwan 
and Krolik, is somewhat harder than observations indicate. 
The second one is the improved treatment of the contribution 
of the Fe n ion to the cooling in neutral regions of the cloud. 
The net result of both of these effects is to lower the tem- 
perature of the neutral zone significantly; radiation pressure in 
this region thus becomes insignificant. However, the results for 
radiation pressure in the ionized zone are essentially 
unchanged from those of Paper I. We therefore corroborate 
our previous conclusion that radiation pressure may be a sig- 
nificant factor in determining what are the stable configu- 
rations of the emission-line clouds. 

The model calculations are outlined in § III. The results are 
presented in § IV and discussed in § V. 

II. RADIATION PRESSURE 

a) Basic Considerations 

For radiation intensity 7V, the standard expression for the 
radiation pressure per unit frequency, Pv, is (e.g., Schwarzchild 
1965) 

pv = ^ (i) 

where g = cos 6 and 0 is the direction of propagation of the 
radiation. When the radiation field is isotropic, its pressure and 
energy density, 

Uv 
1 
c 

IvdQ , (2) 

are related through the familiar expression 

35 
p, = w. (3) 
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This relation holds for a rather wide range of circumstances. 
If the angular distribution of Iv is expanded in a power series in 
fi, then only powers higher than the second will lead to vio- 
lations of equation (3). However, the successive coefficients of 
this expansion are decreasing approximately like the optical 
depth (e.g., Schwarzchild 1965, p. 40), so deviations from equa- 
tion (3) will only be proportional to 1/t2. Hence, when the 
medium is optically thick at the frequency v equation (3) is an 
excellent approximation for the radiation pressure. 

The only radiative quantity we therefore need to know in 
order to calculate the radiation pressure is the angle-averaged 
flux, Jv, since 

(4) 

Combining equations (3) and (4) we find that P(v), the overall 
contribution of the line to the radiation pressure integrated 
over frequency, is 

4n f 
P^=3c \ J',dv ' ^ 

Let us now introduce the line width, Av, through the defini- 
tion 

where 

(6) 

J = Jv®(v)dv 

is the integrated mean intensity in the line and O(v) is the 
normalized line profile [j <F(v)dv =1]. The quantity J is readily 
available in the escape probability approximation because it is 
related directly to the source function S via 

J=S(l-ße), (7) 

where ße is the photon escape probability (e.g., Castor 1970; 
see also Elitzur 1982; Rybicki and Hummer 1983; Rybicki 
1984; Elitzur 1984). Equations (5)-(7) therefore enable us to 
calculate the contribution of any line to the pressure of the 
trapped radiation once the level populations are known, 
because the line source function is simply ÆV(TX)—the Planck 
function of the line excitation temperature (e.g., Mihalas 1978). 
Our final expression for P(v) is therefore 

P(v) = - BV(TX)Av(l - ße) . (8) 

Since the only lines that can make a significant contribution to 
the radiation pressure are the ones that are optically thick, the 
corresponding escape probabilities are much smaller than 1 (of 
order 1/t) and will be omitted from the expressions for the 
radiation pressure in the following discussion (but not from the 
actual calculations). 

Equation (8) can be rearranged so that the radiation press- 
ure is expressed as the thermal pressure of an equivalent gas of 
particles with kinetic temperature Tx and density np, namely 

P(v) = npkTx. (9) 

The equivalent density, np, is given by 
np = n0f(y), (10) 

where 

rin = 
Stt Av 
3Ä2 V f(y) = [exp (y) - 1] ’ 

hv 
kTr ’ 

(10) 

and /I is the wavelength. 
The expressions just derived show that when the tem- 

perature becomes large (kTx > hv; y < 1), the equivalent parti- 
cle density np approaches the limiting value n0 and the pressure 
due to line radiation behaves just like ordinary particle press- 
ure, increasing linearly with the excitation temperature. Notice 
the strong dependence of the equivalent particle density on the 
line wavelength, reflecting the larger photon phase space at 
higher frequencies (see, e.g., Elitzur 1982). 

In contrast with the high-temperature limit, when the tem- 
perature is decreasing (so that kTx < hv; y > 1) the equivalent 
particle density, and the radiation pressure, drops exponen- 
tially, reflecting the functional dependence of the Wein tail. 
Figure 1 plots the equivalent particle density np as a function of 
the excitation temperature Tx for various wavelengths in the 
optical and UV regimes and the same fractional line width of 
Av/v = 10-4. The figure shows, for example, that a 3000 Â 
optically thick line with an excitation temperature of 10,000 K 
and a fractional line width of 10“ 4 will contribute to the press- 
ure as much as an additional gas component with a particle 
density of 109 cm “3 and temperature Tx. 

b) The Line Width 

It is evident from equation (8) that the line width is a crucial 
parameter in the calculations since the line radiation pressure 
is directly proportional to it. For lines with a moderate optical 
depth i (less than ~ 104) the damping wings are optically thin, 
and the line emission profile is essentially identical to its 
absorption profile (Thomas 1957; see also Mihalas 1978, p. 
419). In this case ®(v) is simply described by the Doppler 
profile 7i1/2 exp ( —x2), where x = (v — v0)/AvD is the dimen- 
sionless frequency shift from line center and AvD = 
(2kT/m)il2v0/c is the Doppler width. It is then easy to show 
that the line width is simply 

Av = Avd x 
|2(ln t)1/2 

^ ^ 1 
T 1 (ii) 

The situation when the line optical depth exceeds ~ 104 is 
much more complicated because scattering in the damping 
wings becomes significant, and the frequency dependence of 
the emission profile is not known before the entire radiative 
transfer problem is solved. Fortunately, the problem of line 
radiative transfer at large optical depths has been treated in a 
number of independent studies and the solutions are available 
in the literature. These include works by Adams (1972), who 
solved the problem using the Feautrier method; by Harrington 
(1973), who solved the problem analytically in the large optical 
depth limit; and Monte Carlo calculations by Bonilha et al 
(1979) and by Slater, Salpeter, and Wasserman (1982). All of 
these studies are in agreement with each other regarding the 
frequency distribution of the radiation field. They all provide 
expressions for various frequency half-widths, which in the 
limit of at > 1 are given by (in dimensionless units) 

X =/(^)1/3 » (12) 

where a is the damping parameter (4.7 x 10 4 for Lya at 
10,000 K), T is the line center optical depth to the slab center 
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TX(K) 

Fig. 1.—Equivalent particle density np that provides kinetic pressure equal to radiation pressure, as a function of the excitation temperature for various 
wavelengths, as marked (in Â). Fractional line width is 10“ 4 in all cases. 

(the overall optical depth is 2t), and / is a number of order 
unity. 

Adams estimated the frequency where the average photon 
escapes and obtained / = 0.83. Harrington obtained /= 1.07 
for the position of the maximum of the emergent flux (notice 
that Harrington reported his results using mean, rather than 
line center, optical depths). Using his figures, this appears to be 
very similar to the frequency width of the J distribution at slab 
center. Bonilha et al. report a value of / = 1.24 for the mean 
frequency shift of an escaping photon, essentially identical to 
what is obtained in the second Monte Carlo study of Slater et 
al. (notice that eq. [11] of Bonilha et al. contains a typographi- 
cal error, corrected by Slater et al. following their eq. [23]). 

The frequency width required here is the value that will 
provide a rectangular profile with the same area as the proper 
integral of the source function. An analysis of the profiles 
plotted in Figure 4 of Adams shows that an excellent approx- 
imation for this half-width is provided by equation (12) with 
/= 1.16. We therefore adopt this value, and our expression for 
the full line width in the case of large optical depths (ax P 1) is 

Av = AvD2.3(aT)1/3 . (13) 

An important point, evident from the plots provided by 
Adams for the source function as a function of frequency (his 
Fig. 3), is that the width of the frequency distribution varies 
very little with position in the slab. This is also evident from 
the mean intensity plots of Harrington, as mentioned above, 

and is a result of the strong coupling between distant regions 
caused by scattering in the line wings. We therefore use the 
expression provided in equation (13) for all locations in the 
slab, with i being half the total slab thickness. 

We note that in all of the studies mentioned above the line 
transfer problem was solved using photon injection in the 
central plane of a plane-parallel slab. However, Harrington 
presents also the solution for a uniform source distribution in 
the slab, and his results for both cases are essentially the same. 
Also, Bonilha et al. comment that the source can be either a 
point source or distributed over the midplane. It therefore 
appears safe to assume that the spatial distribution of the radi- 
ative source makes little difference to the resulting frequency 
distribution of the radiation field. 

We note also that in spite of the large optical depths 
involved, the transfer problem was solved in these papers in the 
limit of slabs that are “effectively thin,” namely—neglecting 
photon destruction and assuming that the only interaction of 
the radiation with matter is through photon scattering in the 
line. This assumption can potentially break down in the 
present situation because of two physical processes. The first of 
those is continuous absorption, since photons absorbed by an 
overlapping continuum leave the pool of line photons. 
However, the only continuous absorption that can interfere 
with line scattering in the objects of interest here is absorption 
by the Balmer continuum (we assume that there is no dust). 
But the optical depth at the Balmer edge is only ~ 1, many 
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orders of magnitudes smaller than the large line optical depths 
where this discussion is relevant. Balmer continuum absorp- 
tion will therefore compete with line scattering only at the 
extreme wings, at frequency shifts exceeding about (¿n;)1/2, 
which are much larger than those contained in the range 
enclosed by expression (13). The effect of the overlapping con- 
tinuum on the line width can therefore be neglected. However, 
it can be significant in determing the level populations, or, 
equivalently, the excitation temperatures because of the change 
in the number of scatterings before escape. This effect is prop- 
erly taken into account in our calculations, as described below. 

Collisional de-excitation can also break the assumption of 
pure scattering because a photon will be lost to the thermal 
pool before the radiative process can take place. This will 
happen when the density is high enough that the probability 
for collisional de-excitation, C, exceeds the probability for radi- 
ative escape ße A, where A is the Einstein coefficient for the 
transition. Because at large optical depths ße is essentially 
equal to 1/t, the “effectively thin” assumption breaks down 
when 

t-A/C. (14) 

Another way to derive the same relation is to note that the 
ratio of probabilities per unit time for collision and radiative 
decay for each atom is C/A. A collision will therefore occur 
after N scatterings if NC/A » 1, and because the mean number 
of scatterings that a photon actually undergoes in the slab is 
approximately t, equation (14) follows again. 

We see that once the line optical depth exceeds ~A/C, a 
“ thermalization limit ” is encountered, and the assumption of a 
purely scattering nebula does not apply anymore. Therefore, in 
evaluating the optical depth for the line width expression (eq. 
[13]) we use the minimum of the actual optical depth of the 
line and the one prescribed by equation (14). We feel that this 
prescription provides a reasonable and conservative estimate 
for the effect of collisions on photon scattering. Admittedly, 
though, this is probably the most poorly understood part of 
the calculation. 

The transfer calculations upon which we rely apply only to 
the case of resonance scattering because they use Hummer’s 
(1962) type II redistribution function. The redistribution func- 
tion appropriate for subordinate lines, Hummer’s case IV, is 
considerably more complex, and we are not aware of any 
detailed calculations that have utilized it. One expects, 
however, that the subordinate line widths will be at least as 
large as in the case of resonance scattering because both the 
upper and lower levels are broadened by radiation damping. 
At any rate, this is a minor point because the only subordinate 
lines that are included in our calculations are the hydrogen 
Balmer lines, and they never provide the major contribution to 
the overall radiation pressure. 

volume and unit time, Vesc, can be obtained from N(v) by 
dividing it by the mean time that a photon spends in the source 
before escaping. If L is the mean total path length traveled 
before escape, then this time scale is simply L/c, so ATesc = 
N(v)c/L. But Nesc is also equal to ßeN2A, where N2 is the 
population of the upper level. Equating the two expressions we 
find 

N(v) = 
g2An2L 

cNsc 
(16) 

where we replaced N2 with the population per sublevel, n2, 
times g2, the level statistical weight. We have also replaced the 
escape probability, ße, with the inverse of ATSC, the mean 
number of scatterings that a photon undergoes in the source 
before escape. The reason for doing this is that Bonilha et al. 
provide convenient analytic expressions for the quantities L 
and Nsc (their L0 and N0). In the limit of large optical depths 
(ax > 1) these become 

L0 = t(6.5<2t)1/3 , N0 = 1.6t , (17) 

where L0 is in units of line center mean free path. Therefore, in 
order to convert L0 to L, which is the actual length, it has to be 
divided by the absorption coefficient at line center 

k0 = 
hv c2 

47tAvd 2hv3 g2A(n1 - n2). (18) 

Combining equations (16)-(18) leads to 

1 Arr 
N(v) = - — Bv{Tx)2AAvD(cn)113 . (19) 

hv c 

When this expression for the photon density is inserted in 
equation (15) for the radiation pressure, the relations derived in 
the previous section are recovered. 

This analysis shows that a consistent expression for the line 
width is 

Av = AvDSi/n L0/N0 , (20) 

where L0 and N0 are the expressions listed by Bonilha et al. 
For optical depths larger than five we use their equations (6) 
and (7), and for the smaller values we use their equations (8) 
and (9). 

Notice that £(v), the line emissivity per unit volume, is 
simply Neschv. The relation between line radiation pressure 
and line emissivity is therefore that of stored photons, N(v), to 
escaping photons, Nesc, and 

^(v) = E(v) — (21) 3c T 

where / is the thickness of the source. 

c) An Alternative Derivation 
Because of the central role that the expression for the radi- 

ation pressure plays in our calculations, we provide now an 
alternative derivation for it. The approach utilized for this deri- 
vation is similar to the one used by Mathews (1976). 

The line contribution to the radiation pressure can be 
written as 

P(v) = iN(v)hv , (15) 

where A(v) is the number density of line photons inside the 
cloud. The number of photons escaping the source per unit 

III. IONIZATION CALCULATIONS 

The radiation pressure can be calculated easily using the 
formalism described above, once the level populations and 
optical depths are known. The calculation of these quantities, 
assuming steady-state photoionization equilibrium, is outlined 
in this section. The ionization and thermal structures are calcu- 
lated along traditional lines (see Williams 1967; Davidson 
1972; MacAlpine 1972; Davidson and Netzer 1979; Kwan 
and Krolik 1981). Radiation impinges upon one side of a 
plane-parallel slab of gas, held at constant pressure 
(gas + radiation) by a postulated intercloud medium (see 
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McCray 1979; Krolik, McKee, and Tarter 1981; Shull et al. 
1985). The slab is divided into a set of thin zones, and the 
equations of statistical and thermal equilibrium are solved for 
each zone, given the optical depth-modified ionizing contin- 
uum and the constraint that the total gas and radiation press- 
ure be kept constant. Line and continuum emission from each 
zone are calculated and added to the net spectrum. 

The ionizing continuum we use is normalized to reproduce 
the typical observed X-ray to ultraviolet slope of aox % 1.2, as 
defined and measured by Zamorani et al (1981). As such, this 
continuum is significantly softer than that used in our first 
paper (that work employed the continuum used by Kwan and 
Krolik 1981, which Wills, Netzer, and Wills 1985 note has 
roughly a factor of 6 too strong an X-ray component). The 
continuum used here extends to 100 keV, where only electron 
scattering is important and the Klein-Nishina cross section has 
started to roll over. 

The present calculation includes all the physical processes 
coupling radiation and matter now known to be important (see 
Kallman and McCray 1982; Halpern and Grindlay 1980). 
Some details are discussed in the recent note by Netzer and 
Ferland (1984). A recent improvement (besides the constant 
advances in the atomic data base) is the use of the secondary 
ionization rates for suprathermal electrons calculated by Shull 
and van Sternberg (1985). Another improvement is our use of 
the simplified model of the Fe n ion suggested by Wills, Netzer, 
and Wills (1985). As noted by them, this simple three-level ion 
provides much more cooling than was obtained by ions which 
neglected line overlap. The net effect of this treatment of the Fe 
ii ion, and the softer X-ray continuum mentioned above, is to 
produce neutral regions that are considerably cooler (by ~ 103 

K) than we previously found. 
Line transfer is treated in the escape probability formalism 

(see Netzer 1976; Davidson and Netzer 1979; Kwan and 
Krolik 1981). As suggested by Hubbard and Puetter (1985), we 
use escape probabilities with different functional forms for res- 
onance versus subordinate lines. For resonance lines, such as 
Lya or C iv 21549, we use the incomplete redistribution escape 
probability chosen to reproduce the detailed transfer calcu- 
lations (see § II) 

ß{x) = 
1 

1 + 1.6t 
(22) 

For subordinate lines, and Lyman lines higher than Lya (i.e., 
Lyß) we use an escape probability given by the above for 
optical depths where only the core is active (t < 104), and the 
following complete redistribution escape probability for larger 
optical depths (see Avery and House 1968; Hubbard and 
Puetter 1985) 

(23) 

Note that in both these expressions t is the line center optical 
depth to the slab center, for a total slab thickness of 2t. 

All of the calculations presented here are the result of at least 
two iterations, a necessity if diffuse fields and line transfer 
are to be treated properly (see Osterbrock 1974). On the 
second (and higher) iteration we use an escape probability 
given by the average between the probability of escape to the 
two faces of the cloud. That is, if the total optical depth in a line 
through the entire cloud is T, and we are considering a point at 
a depth t from the inner face, the escape probability used will 

be /? = lß(t) + ß(T — i)]/2. On the second and latter iterations 
the diffuse fields of hydrogen and helium are treated by A- 
iteration rather than by modified on-the-spot methods. The 
processes of line fluorescence and continuum overlap are 
treated as in Elitzur and Netzer (1985) and Netzer, Elitzur, and 
Ferland (1985). These include the effects of He i and He n Lya 
on the ionization rates, and the destruction of Mg n 22798 and 
Fe ii photons by the Balmer continuum. In a separate study 
(Netzer, Elitzur, and Ferland 1985), these techniques were uti- 
lized to calculate the Bowen mechanism. The results produced 
were in excellent agreement with the previous calculations of 
Weymann and Williams (1969) and Kallman and McCray 
(1980). 

Most atoms and ions are treated as two-level systems (i.e., a 
ground and ionized state), and most lines are treated in a two- 
level approximation. Important exceptions are hydrogen 
(treated as a seven-level atom, plus continuum, with 2s and 2p 
considered independently) and He i (five triplet levels and con- 
tinuum, basically as in Feldman and McAlpine 1978). 

The solar composition used here is that of Lambert (1978) 
and Lambert and Luck (1978), with additions from references 
cited in Pagel and Edmunds (1981). The actual mixture, by 
number, is He : C : N : O : Ne : Mg : Si : S : Ar : Fe : H = 1000:4.7 : 
0.98: 8.3: 1.0: 0.42: 0.43: 0.17: 0.037: 0.33: 104. The ionizing 
continuum used here, which we label the “standard contin- 
uum,” is a two-component continuum similar to those used by 
Mushotzky and Ferland (1984) and Wills, Netzer, and Wills 
(1985): 

dN f — E\ 
= aE~al exp I ) + bE~a2 photons cm-2 s“1 eV-1 , 

dE \E0J 
(24) 

where we have chosen al = 1.5 (Oke, Shields, and Korycansky 
1984) and a2 = 1.7 (Mushotzky 1982). The ratio of the normal- 
ization constants a and b was chosen to produce aox æ 1.2. The 
cutoff value of E0 was chosen to be 20 Ryd, so as not to exceed 
the observed soft X-ray flux. The motivation for this contin- 
uum is summarized by Wills, Netzer, and Wills (1985). The 
overall normalization is chosen to provide a prescribed ioniza- 
tion parameter (7 which is the ratio of <p/c, where cp (cm-2 s-1) 
is the surface density of ionizing photons, to the free electron 
density, all evaluated at the inner edge of the cloud. 

The optical depth enters into the calculation of the radiation 
pressure in two different ways—both in the expression for the 
line width and in the factor 1 — ße which relates J and S (eq. 
[7]). We have included a very large number of lines in the total 
radiation pressure. Many of these may not ever be optically 
thick, and all lines are optically thin near the edges of the 
cloud. Physically, the radiation pressure tends to zero near the 
edge of an ion’s creation zone (where line photons are able to 
escape freely in one direction), but the two-sided escape prob- 
ability tends to only half at the boundary (rather than one) if 
the medium is optically thick. This causes the radiation press- 
ure to be overestimated. Accordingly, we choose the smaller of 
the inner and outer escape probabilities in the evaluation of 
1 — /?<>, as a conservative estimate of the total radiation press- 
ure. As mentioned above, we use the smaller of the total optical 
depth or the thermalization length in the calculation of the line 
width. 

IV. RESULTS 

The model calculations described in the previous sections 
were performed for a wide range of parameters, similar to those 
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believed typical of the conditions in the broad line emission 
clouds around active galactic nuclei. 

A major difference from the results of Paper I is the lack of 
significant buildup of radiation pressure in the neutral zone. 
This is due to the lower temperature in the neutral region, a 
result of the somewhat softer continuous spectrum we use here 
as well as the enhanced Fe n cooling. On the other hand, the 
results for the radiation pressure in the ionized region are 
similar to those of Paper I. 

An inspection of the detailed results shows that although the 
C iv A1549 line makes a significant contribution to the radi- 
ation pressure, the main contribution comes from the trapped 
Lya photons. This makes it easy to derive simply analytic 
expressions for the radiation pressure in the slab. Equation (8) 
can be written as 

N2 Prad = const — Av , (25) 

where Nx and N2 are the populations of the first two hydrogen 
levels. Although there are quite a few physical processes affect- 
ing the populations of these levels, is determined in first 
order by the balance between photoionization and recombi- 
nation, whereas the n = 2 population is controlled mainly by 
balancing recombination against radiative decays to n = \. 
The result is that 

A/2/ÍV1 æ const Nh Utz , (26) 

where Ta is the Lya optical depth (the inverse of ße) and NH is 
the total hydrogen density, essentially equal to the electron 
density in the ionized zone. The line width, as shown above, is 

Av = 2.3AvD(aiJ1/3 , (27) 

where 

tw = min (Ttot, 5 x 1016/jVH) (28) 

and Ttot is the Lya optical depth of the entire slab. Because the 
damping parameter a is inversely proportional to ÀvD, which 

varies as T1/2, we find that 

Av x (Tt J1/3 . 

The final expression for the radiation pressure is therefore 

Prad = const Nh UtJTtJ113 , (29) 
and the result for ß = Prad/Pgas is 

ßocUTaTU3T-2/3 . (30) 

Let us now check the variation of ß with position in the 
cloud for a given model. Our models are specified by the values 
of U and NH at the illuminated face of the slab and by the 
overall column density. The value of tw is therefore fixed 
throughout the cloud, and ß varies inside the slab in direct 
proportion to xa, which in itself is linearly proportional to the 
column density of the neutral material NnR (R is the distance 
into the slab from the illuminated face). The ionization balance 
equation shows that in the ionized zone 

A^/Ah x a/L , (31) 

where a is the effective recombination coefficient, varying with 
temperature approximately as T-0,8. The final expression for 
ß in the ionized zone is therefore 

ß x NliRT~1 4 , (32) 

and because the temperature is fairly constant in this region, 
the radiation pressure should increase linearly with R. This 
result was first derived by Mathews (1976). 

Figure 2 displays the variation of ß with R for a model with 
an ionization parameter U = 10-1,75 and two different den- 
sities, as marked on the curves. The linear dependence of ß on 
NhR in the ionized zone is evident; a good approximation for 
these models is /? = 3.8 x 10~22NHR. Once the / front is 
reached, all the ionizing photons are absorbed and the n = 2 
level population is sustained mostly by collisions from the 
ground state. The N2/N1 ratio therefore declines considerably, 
leading to a sharp drop in the radiation pressure. Unlike the 

Fig. 2.—Ratio of radiation pressure to gas pressure as a function of depth into the cloud for an ionization parameter 10 175 and two particle densities, as 
marked. 
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results of Paper I, no other ion makes a sizable contribution in 
the neutral zone, because of its lower temperature. 

Let us now consider the maximum radiation pressure, ßmax, 
that can be obtained in a given cloud. Consider first the case 
that the overall column density is not too large, so an I front 
does not develop and the material is fully ionized throughout 
the slab. The maximum radiation pressure will be obtained 
deep in the slab, so that in that location ta æ = Ttot. From 
equation (30) we therefore obtain 

. (33) 

As before, Ttot is proportional to the total neutral hydrogen 
column density, which in turn is proportional to ot/U times the 
overall column density, Ncol. This leads to the following final 
expression 

ßmax (34) 

which holds as long as 

Ttot <5 x 1016 cm~3/NH . (35) 

In Figure 3 we present the variation of /?max with the total 
column density Ncol. Figure 3a displays the results for a given 
ionization parameter and various particle densities. Because 
the temperature is a unique, slowly varying function of the 
ionization parameter, equation (34) predicts that ßmax should 
be the same for these models, as long as equation (35) is 
obeyed. This is indeed the case. Figure 3b displays the results 
for a set of models with the same particle density and different 

ionization parameters. For the same ATcol, models with smaller 
U have larger ßmax, in agreement with equation (34). 

When the column density is further increased, all the ion- 
izing photons are absorbed and an / front develops. Increasing 
the column density further does not increase the maximum 
radiation pressure any more because, as shown above, the radi- 
ation pressure drops across the / front. The maximum effective 
column, therefore, is that of the / front, and it corresponds to 
the same optical depth (t912 ~ 1 and ia æ few x 104), irrespec- 
tive of the values of U and NH. Also, once a front is established, 
the total optical depth Ttot immediately increases so that equa- 
tion (35) does not hold anymore and tw is given by the therma- 
lization limit (oc l/iVH). From equation (30) we therefore obtain 
for this case 

ßmaX ^ UNñ1/3T~2/3 . (36) 

This expression should apply to all slabs with total column 
density in excess of ~ 1022 cm-2, which is the case for the 
broad line emitting clouds around active galactic nuclei. 

Figure 4 displays the quantity ßmax for models that devel- 
oped an I front. Figure 4a presents the variation of ßmax with U 
for various fixed values of Nn that are marked on the curves. It 
is evident that the variation of ßmax with U is very nearly linear, 
as predicted by equation (36). Likewise, in Figure 4b ßmax is 
plotted as a function of NH for fixed U, and again, the agree- 
ment with the predicted iVfi1/3 behavior is reasonable. The 
slightly different power obtained can be attributed to the effect 
of collisions that modify the N2/N1 ratio. 

log NC0| (cm 2) 
Fig. 3a Fig. 3 b 

Fig. 3.—Maximum ratio of radiation pressure to gas pressure as a function of overall column density {a) for fixed U and various densities and {b) for fixed NH and 
various ionization parameters. 
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log U log Nh (cm 3) 
Fig. 4a Fig. 4b 

Fig. 4.—Maximum ratio of radiation pressure to gas pressure after the thermalization limit has been reached (a) as a function of U for fixed NH and (b) as a 
function of NH for fixed U. 

V. DISCUSSION 

The results presented in the last section show that for certain 
combinations of the parameters, the radiation pressure in the 
cloud may exceed the gas pressure. Because the gas pressure is 
approximately constant throughout the ionized zone, and 
equal to the external, confining pressure, this means that a 
stable solution is not possible anymore because the pressure of 
the trapped line photons will disrupt the cloud. Notice that this 
is a direct consequence of the assumption of constant pressure 

Prad + Pgas = COnSt , 

and it does not apply to other circumstances such as, for 
example, a stellar interior. In that case, the gradient of the total 
pressure is balanced by the gravitational force which is itself 
coupled to the overall structure of the object. In the present 
case, on the other hand, the gas pressure is uniquely deter- 
mined by the conditions at the slab’s boundary, where the 
pressure of the internally generated trapped radiation is negli- 
gible (since all the photons escape). However, in the inner zones 
the radiation pressure is determined by processes that are 
essentially independent of the requirements for hydrostatic 
equilibrium and may attain any value. 

Combinations of U and NH that lead to ßmax > 1 
(approximately U/N^3 >2.6 x 10-5, where NH is in cm-3) 
are therefore fobidden. In Figure 5 we plot the boundary of the 
allowed region of parameter space. Models that fall below the 
curve correspond to Prad > Pgas and are therefore unstable. We 
also present a boundary curve labeled “ KK ” obtained for the 
continuum used by Kwan and Krolik (1981). For the same 
combination of U and NH the models with the standard con- 
tinuum produce more radiation pressure than the KK contin- 

Fig. 5.—Density-ionization parameter diagram. Models in the lower right 
corner are unstable to disruption by internally generated radiation pressure. 
The curve labeled with “ S ” corresponds to the boundary obtained with the 
standard continuum we use and the “KK” curve to the Kwan and Krolik 
(1981) continuum. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

6A
pJ

. 
. .

30
5 

. .
 .

35
E 

No. 1, 1986 

uum. This is a consequence of the somewhat different 
ionization structure and temperature profile for the same 
model and the two continua. It is interesting to note that the 
Kwan and Krolik “standard” model (U = 10"15, NH = 109,5 

cm "3) is allowed by the KK continuum, but forbidden by the 
standard continuum. We also note that other than a couple of 
Kinks, the KK boundary is rather similar to that of Paper I 
(Fig. 2) where the KK continuum was used. 

The pressure of the trapped line photons therefore leads to a 
powerful constraint on the allowed stable configurations for 
the broad line emitting clouds around active galactic nuclei. 
Although the precise location of the boundary depends on 
somewhat uncertain details, such as the exact shape of the 
continuum spectrum, the fact that the curve passes near the 
values that are most commonly used for the emission regions 
strongly suggests that radiation pressure plays a significant 
role in determining the cloud parameters. 

An additional constraint is provided by the requirement that 
the heating by a single photoionizing central source leads to 
hot and cold gas phases coexisting in pressure equilibrium (e.g., 
Krolik, McKee, and Tarter 1981; Guilbert, Fabian, and 
McCray 1983). This restricts the allowed range for the ioniza- 
tion parameter to a finite region. For example—for the KK 
continuum this approximate range is 10 > Í7 > 10“1*3 (e.g., 
Paper I). Therefore, the intriguing possibility exists that steady 
state stability arguments alone may provide an explanation for 
the similarity in the values of U and NH among various 
sources. This, of course, has long been a puzzle in understand- 
ing the line-emitting regions around active galactic nuclei (e.g., 
Davidson and Netzer 1979). 

As was mentioned above, the most uncertain part of our 
calculation is the effect of collisions on the line width. We have 
made the restrictive assumption that once collisions compete 
with scattering, the lines do not broaden anymore. This leads 
to a conservative, minimal estimate for the radiation pressure, 
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and we feel that our results present a lower limit estimate for 
the significance of radiation pressure. However, it can be 
argued that collisions may actually broaden the line further. 
The possible consequences of larger line widths are discussed 
in the Appendix. 

Our final comments are with regard to the possible role of 
the pressure of trapped radiation in other environments. Equa- 
tion (10) shows that line radiation pressure varies with wave- 
length as 2-3. Optical and UV lines are therefore more likely 
to play a significant dynamic role in various astronomical 
sources. One obvious environment is early-type stars. Indeed, 
calculations show that radiation pressure provides an ade- 
quate explanation for the winds in these stars (see, e.g., Abbott 
1982, where an exhaustive list of references of earlier works can 
be found). However, the wind is driven in this case by the force 
of the direct stellar radiation rather than the pressure of the 
trapped photons. As shown by Castor (1974), the ratio of the 
former to latter is of order of the ratio of expansion and 
thermal velocities, which in early-type stars is ~ 103. We have 
performed numerical calculations and reached similar conclu- 
sions. Note, however, that in the late-type stars the initial 
expansion velocity, before dust grains form, is of order of the 
thermal velocity, so the pressure of the trapped line photons 
may be of importance there. 

We have also checked the effect of radiation pressure in 
“typical” static models of an H n region and a planetary 
nebula. In both cases the radiation pressure becomes a signifi- 
cant fraction (>10%) of the gas pressure. Although the expan- 
sion of such regions will tend to decrease the radiation 
pressure, it should be noticed that this may be an important 
force in these sources. 

We would like to thank R. C. Puetter for his perceptive 
comments on the manuscript. This work was supported in part 
by NSF grants AST-8305094 and AST-8304895. 
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APPENDIX 

THE COMPLETE REDISTRIBUTION LIMIT 

The referee has pointed out that the line width may be actually larger than the value we used, To understand this possible further 
broadening, notice that in the calculations that provided the justification for the (at)1/3 behavior of the width, the photons migrated 
to the line wings only through scattering, which was coherent in the atom frame at those frequencies. However, in the presence of 
some other processes that can introduce photons incoherently at the wings, it is possible that the lines will be broadened by 
additional amounts. 

An example of such a process is line interlocking by interactions of atoms in the n = 2 state with the Ha radiation field, thereby 
reprocessing the Lya photons through the third energy level. Because of the inherent spread in energies of the n = 2 and 3 levels, the 
photons that will find their way back to the Lya pool will be injected incoherently over the full Lorentzian profile. It is easy to show 
that the rate for interaction with the n = 2-3 radiation field is ~ 10-4 of the spontaneous n = 2—> 1 decay rate. Since the number of 
scatterings that a Lya photon undergoes while migrating from the line core to its wings is ~ 104, reprocessing through Ha is a 
competing process that offers an effective mechanism for incoherent broadening of the Lya line wings. This effect has not been 
calculated quantitatively, to the best of our knowledge, but here we wish to show the consequences of this type of effect upon BLR 
clouds. 

If the lines broaden to their full LTE limit, i.e., the frequency where the optical depth becomes unity, then the line width is given by 

Av = AvD27r“1/4(aT)1/2 . 

The thermalization limit in this case, the equivalent of equation (35), is now given by 

Ttot < (3 x 1014 cm-3/V)2 . 

As long as the density is lower than 1012 cm-3, which is always the case here, this optical depth is larger than the value given by 
equation (35), and thermalization is not important under these circumstances. 
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The escape probability is also different. In the case of complete redistribution, the escape probability goes over to the square root 
limit when the optical depth exceeds 104 (namely, one should use eq. [23] instead of eq. [22]). However, since the maximum 
radiation pressure occurs at an optical depth of this order, the results for the two cases do not differ by much on this account. 

Of greater interest is the line width because it is now proportional to (aT)1/2. This width is typically 10 times larger than before, 
resulting in a factor of 10 more radiation pressure. Under these circumstances almost all clouds with “near-standard” parameters 
become unstable to disruption by radiation pressure. 

The real significance of this point is not that the line width could be actually larger. Rather, it is that the width would grow 
without any bound associated with the column density, since the thermalization limit is not encountered under these circumstances. 
Since the value of xw is not subject to the thermalization limit anymore, then after an / front is established, the value of ßmax becomes 
proportional to UNll)fT~3/4. Hence, any model will eventually disrupt if its column density is large enough. 

The implications of this possible situation are far-reaching. If the thermalization limit is applicable, then the column density can 
be increased without affecting /?max beyond a certain point. However, if this constraint is removed, then the radiation pressure 
increases indefinitely with column density. This then leads to a limit on the possible column density for any given value of U. It is 
perhaps significant that the relevant column densities (~ 1022-1023 cm-2) are similar to those derived for the emitting clouds. One 
could then speculate that additional constraints on the possible size scale of the emission clouds could be provided by dynamical 
considerations related to the issue of cloud formation. Together with the possible limit on the column density, this could lead to 
rather tight restrictions on the allowed cloud parameters. 

It is likely that the actual situation regarding the line width lies somewhere between the two limits that we considered (coherent 
scattering vs. the full LTE limit), but this point has not yet been studied quantitatively. We hope that its importance will stimulate 
further studies. 
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