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ABSTRACT 
In this paper we seek to explain the large internal abundance variations that are seen in the globular cluster 

œ Cen in terms of supernova-induced chemical enrichment that occurred when the cluster was still largely in a 
gaseous phase and star formation was continuing. Using a simple power-law density model of this protoglo- 
bular gas cloud, we have established analytically the conditions under which this can occur. Clouds less 
massive than ~ 105 M0 are completely disrupted by supernova explosions in their adiabatic phase. In clouds 
of greater mass, supernova explosions occurring near the tidal radius tend to lose their hot gas and metals to 
the intercloud medium. For explosions occurring closer to the mass center the ejecta must be slowed below 
the escape velocity, and this can only occur in clouds more massive than ~3 x 106 M0. If this condition is 
met, then the slow isothermal momentum-conserving shocks generated by the supernova explosions may even- 
tually induce secondary star formation. For such shocks converging on the mass center we find that a cloud 
mass of at least 107 M0 is required for this process to be efficient. From the observed properties of co Cen we 
estimate a primordial mass of order 108 M©, which emphasizes the unusual character of this object. 
Subject headings: clusters: globular — interstellar: abundances — stars: formation — stars: supernovae 

I. INTRODUCTION 

The globular cluster co Cen is perhaps the lowest mass object which displays both abundance variations among individual stars 
and also an abundance gradient—features generally associated with galactic systems. Such variations in heavy-element abundances 
are manifested by a wide giant branch in the color-magnitude diagram (Cannon and Stobie 1973; Norris and Bessell 1975) or 
star-to-star variations in the Searle and Zinn (1978) violet line-blanketing parameter S (Rogers et al. 1979). Several studies have also 
been made investigating the abundance variations of individual elements. Freeman and Rogers (1975) and Butler, Dickens, and 
Epps (1978) have convincingly demonstrated the existence of calcium abundance variations and the possibility of an abundance 
gradient in the RR Lyrae population of co Cen. This possibility received further support from the work of Freeman (1980), although 
the statistical significance of this result has been questioned (Smith 1981). Differences in the abundances of elements such as Ca, Fe, 
and Ba have been found among the red giants (Norris 1980; Cohen 1981 ; Mallia and Pagel 1981 ; Pilachowski et al. 1982; Gratton 
1982). Nor are abundance variations confined only to the heavy elements. Differences in CN, CH, and CO molecular band strengths 
also exist among cluster giants which can only be the result of abundance variations in C, N, and O (Dickens and Bell 1976; Bessell 
and Norris 1976; Norris and Bessell 1977; Norris 1980; Persson et al. 1980). Norris, Freeman, and Seitzer 1986 (cited in Norris and 
Smith 1981) have found a radial CN gradient among the co Cen giants. 

It is difficult to ascribe all these variations to convective mixing within individual stars since such a process should affect only the 
C, N, and possibly O abundances. We therefore assume that heavy-element abundance variations and gradients result from the 
dispersal of the nucleosynthetic products of massive stars by supernova explosions occurring during the era of star formation in co 
Cen when the cluster was still largely in a gaseous state. 

In order for star formation to have taken place from supernova-enriched gas, it is necessary for the ejecta to have cooled and to 
have been trapped in a layer of gas which is both gravitationally bound to the cloud and also capable of becoming self- 
gravitationally unstable. These conditions place stringent limits on the mass of the protocloud—only the most massive clouds being 
capable of self-enrichment. The fact that co Cen is the most massive globular cluster in the Galaxy tends to support this idea. In this 
paper we aim to establish, using simplified analytic techniques and an idealized density distribution, the mass limits above which 
self-enrichment can occur. This work complements our earlier investigations on the interaction of a stellar wind with a massive 
collapsing gas cloud (Dopita 1981) and the role of H n regions in modifying the cloud environment during the collapse phase of 
protoglobular cluster clouds (Smith 1982). 

The evolution of a supernova remnant (SNR) in a uniform medium divides naturally into three phases (e.g., Spitzer 1978): 
1. A free expansion phase terminated when the mass of interstellar medium swept up becomes comparable with the mass of 

ejecta. The reverse shock then thermalizes the ejecta, and the remnant enters its next phase. 
2. The adiabatic phase during which the explosion energy is conserved and the blast wave is driven by the stored thermal energy. 

As the swept-up mass becomes greater, the blast wave slows until eventually radiative losses become important and first the 
swept-up gas and later the ejecta themselves cool. 
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3. The remnant then enters and the “ snowplow ” phase, during which the shock front is effectively isothermal and the expansion 
is driven by the momentum of the outward-moving material. 

The evolution of an off-center SNR in a density gradient will vary in different directions, but along any streamline this sequence of 
phases will be preserved. Our problem is therefore to identify whether any part of the remnant in a protoglobular cluster gas cloud 
can evolve to the third phase and, if so, can the isothermally shocked layer become self-gravitationally unstable and consequently 
produce a chemically enriched generation of stars? 

II. THE INITIAL PHASE OF STAR FORMATION 
We assume that the initial phase of massive star formation takes place within a gravitationally bound massive H i cloud of mass 

M. Because of the tidal forces of the Galaxy, such a cloud is assumed to be confined within its tidal radius. 
There may well be some clouds for which this assumption is invalid, such as those which start to form stars in an initially 

relatively collapsed state. This would have the effect of increasing the mean density of the cloud, allowing any supernova explosions 
which occur within them to be stifled more easily. However, the results of Silk (1977) suggest that fragmentation is more likely to 
precede collapse. If so, our assumption that the cloud radius is the tidal radius may be reasonable. The tidal radius R is given by 

R = RplM/3Mg(Rp)yi3 , (2.1) 

where Rp is the perigalactic distance and Mg(Rp) is the mass of the Galaxy within Rp. Evaluated at the solar distance of Rp = 8.5 kpc 
and taking M9(8.5) = 1.1 x 1011 M0 (Innanen, Harris, and Webbink 1983), this expression becomes 

R100 = 1.23M^3 , (2.2) 

where R100 is the radius in units of 100 pc and M6 the mass in units of 106 M0. Since the rotation curve of the Galaxy is almost flat, 
m9(Rp) oc Rp, approximately. Thus, in general, 

R10o * 1.37M¿/3Rj,(10)2/3 , (2.3) 

where Rp(1o) is the perigalactic distance in units of 10 kpc. 
Within the gas cloud itself an approximately power-law density distribution will be set up, depending on whether the cloud is 

pressure supported or in a state of gravitational collapse. In an isothermal collapse, the density distribution can be represented by a 
law of the form p(r) = Ar~2, with zero or else constant inflow velocity (Pension 1969; Larson 1969). At later times, when an 
appreciable fraction of the total mass has passed through the accretion shock about the core, the density distribution in the 
remainder of the cloud approaches a p(r) = Br~312 density distribution. In a cloud of core mass M and accretion rate M, and 
neglecting the self-gravity or gas pressure in the outer accretion flow, the equation of continuity gives 

p(r) = M(32n2GMy1/2r~3/2, 

V(r) = (2GM/r)1/2 . (2.4) 

This flow represents the endpoint of the accretion process. 
There is no reason to suppose that star formation first occurs in phases of collapse as late as the stage represented by equation 

(2.4) or that it necessarily occurs close to the cloud center. Indeed, Silk (1977) has shown that the initial, subsonic stages of an 
isothermal collapse are unstable to fragmentation. This would allow the first generation of star formation to take place when the 
p(r) = Ar~2 law is a good approximation to the density structure of the cloud. In such a cloud, the free-fall time scale, which 
represents a lower bound to the collapse time scale, is given by 

iff = 1.65 x 107(R3
oo/M6)1/2 yr . (2.5) 

It is trivial to show that a subcondensation has a free-fall time scale shorter than that of the cloud as a whole, provided that its 
density exceeds the mean density at its distance from the mass center by a factor of 3. This condition will ensure fragmentation and 
off-center star formation. Inclusion of the pressure balance and radiative transfer problem would tend to relax this condition. 

Assuming stars can form within a cloud, do the conditions in the protogalaxy permit the cloud to be treated as an isolated system 
during the relevant time scale? From equation (2.3): 

(K3oo/M6)1/2 » L6Kp(10), 

so that 

iff æ 2.6 x 107Rp(10) yr . (2.6) 

Thus clouds lying further than ~2 kpc from the galactic center at perigalacticon are capable of not only forming stars but also of 
evolving massive stars with a lifetime of ~ 5 x 106 yr to their endpoint of evolution in a supernova explosion—all within a free-fall 
time scale. In §§ III and IV we therefore investigate the effect of a single supernova explosion occurring away from the mass center in 
a p(r) = Ar~ 2 density distribution. However, these results are applicable to explosions at the cloud center, in the limit. 

Clearly, the results presented in this paper will be affected by the disruption in the density distribution of the cloud caused by the 
processes such as photoionization and stellar winds of massive stars. These may be considerable, since the lifetime of these stars is 
comparable with free-fall time scales and since the sound speed in the ionized gas is comparable with the flow velocities in free fall. 
These processes and their effects have been considered in two of our previous papers (Dopita 1981 ; Smith 1982). In the context of a 
protoglobular cluster environment, it is possible or even probable that stellar wind effects are unimportant. There is increasing 
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evidence that these winds are driven by radiation pressure and hence depend critically on the abundance of heavy elements in the 
stellar atmosphere. We therefore expect the energy and momentum input to be much lower in the low-metallicity environment of 
the protoglobular cluster. 

III. THE ADIABATIC EVOLUTION OF THE SNR 

a) Kompaneets Approximation 
The method used in this paper to calculate the shape and evolution of an adiabatic SNR in a 1/r2 density distribution follows that 

first employed by Kompaneets (1960). The blast wave is a strong shock, and the method relies on the fact that, in such circum- 
stances, most of the mass (ejecta plus swept-up material) is concentrated in a thin layer close to the shock front and the remaining 
postshock flow region is essentially at constant pressure. For a perfect gas of adiabatic index y, the post shock density ps is related to 
the preshock density p by the equation 

Ps = (7 + l)p/(7 - 1) • (3.1) 

Assume that the pressure Ps just following the shock is proportional to the average pressure within the interior of the remnant 
which, in turn, is proportional to the average energy density of the enclosed gas. Then, 

Ps = (y-\)iE/r (3.2) 

where E is the explosion energy, the enclosed volume of the SNR, and ¿ a constant. 
Since the preshock gas has negligible pressure, and since it also has negligible motion(>5 km s-1) by comparison with the blast 

wave ( > 300 km s_ x), the equations of mass and momentum conservation across the shock front yield the relation 

Vs = [Ps/p
2(l/p-l/Ps)l1/2, (3.3) 

where Vs is the shock velocity. Combining equations (3.1)-(3.3), we then have 

^ = [(72-l)££/2^p]1/2. (3.4) 

Kompaneets assumed £ to be dependent only on the adiabatic index y. Here we take it to have the same value that applies to blast 
waves in a uniform medium. Spitzer (1978) writes £ as the product of two terms, £ = where ^ is the ratio of the thermal energy 
of the remnant to the explosion energy and £2 is the ratio of the postshock pressure to the mean internal pressure of the remnant. 
From self-similar models, Spitzer quotes values of ^ = 0.72 and = 2.13 for a gas with adiabatic index 5/3, giving £ = 1.6, which 
we adopt henceforth. 

Since equation (3.4) gives the local blast-wave velocity in terms of the local density and the global parameters of the remnant, E, 
V, and £, and, since Vs is always directed along the local normal to the blast wave, we have the means of following the evolution in 
the shape of the remnant from the time at which the ejecta are thermalized and the remnant is still spherical. This is the essence of 
the Kompaneets solution. 

In the case of a blast wave expanding in an exponential atmosphere (the problem to which Kompaneets originally applied this 
technique and which has been studied since by many authors using different approaches), it is possible to evaluate the reliability of 
the method. Laumbach and Probstein (1969) and Sachdev (1972) show that the Kompaneets method gives too large a dimension in 
the low-density direction once the blast wave has expanded several scale heights. Andriankin et al (1962) have modified the 
Kompaneets method to allow £ to be both time and position dependent, which goes some way to removing this problem. Since the 
work described in this paper is aimed more at the parameterization of the problem than an accurate solution of the hydrodynamical 
flow, we regard this refinement of the technique as unnecessary, since any remnant which expands in its adiabatic phase up through 
several scale heights of the 1/r2 density distribution will, in general, have already effectively blown out of the cloud. 

b) The Shape of a SNR in a 1/r2 Density Distribution 
As long as the Kompaneets solution remains valid, any streamline in a supernova remnant evolving in a 1/r2 density distribution 

will follow an equiangular spiral about the density center. This interesting result is readily established from equation (3.4). Consider 
the geometry shown in Figure 1. In the notation of that figure, 

d£ dVs dVs dr ^ ^ dVs 

dt ds dr ds dr 

where ds is the interval along the streamline 

# K . . — sm if/ . 
dt r 

(3.6) 

But from equation (3.4), 

where c is a constant, so with p(r) = Tr-2, 

Vs = cY'it) 1/2p(r) 1/2 

d^_dV1dr^ 
dt dr ds 

— A1,2i/'(t) 1/2r 2 sin 0 , 

(3.7) 

(3.8) 
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Fig. 1.—Geometry applicable to the adiabatic blast-wave expansion calculations 

and from equation (3.6), 

But 

so from equations (3.7) and (3.8), 

= /l1/2ci^(0 1/2r 2 sin </> . 

de/) dij/ d£ 
dt dt dt ’ 

dt 
0 . 

(3.9) 

(3.10) 

Hence the streamline is an equiangular spiral. 
The sequence of shapes taken up by the expanding remnant can therefore be found simply by the geometrical construction of 

joining up the local normals to any streamline, but the time evolution depends on the rather complex integration of the enclosed 
volume and is therefore best done numerically. However, this analytical result enables us to establish several general conclusions 
immediately: 

1. The streamlines directed at, and directly away from, the mass center remain straight. 
2. The streamlines directed at right angles to the mass center evolve in a circular trajectory around the mass center and meet at 

the anticenter of the supernova explosion. 
3. Streamlines directed at 0 < n/2 follow paths which eventually become convergent about the mass center, whereas streamlines 

with (f) > 7i/2 continue to diverge away from the mass center. The outward-moving shock front therefore remains convex with 
respect to the explosion center, whereas the inward-moving shock tends to assume a concave form and wrap about the mass center. 

A numerical integration confirms these results. The adopted time interval (nonlinear in real time) is the time taken for the 
outward-moving shock to expand by 1/40 of its radius in the </> = tt direction. 

Figures 2 and 3 show the shape evolution as the presence of the density center slows and distorts the blast wave from spherical 
form, whereas Figure 4 shows how the blast wave wraps around the density center, eventually dividing the unshocked gas into two 
regions as the blast waves meet at the anticenter of the explosion. 

c) Analytical Results for the Adiabatic Phase 

In this section we generate analytic results on the elongation of the supernova remnant along the axis connecting the density 
center with the site of the supernova explosion in a p(r) = A/rn density distribution (the x-axis of Fig. 1). 

If U is defined as the radius of the remnant in the direction away from the mass center (outer radius) and V is the radius in the 
direction toward the mass center (inner radius; see Fig. 1), then the density distributions encountered by the blast wave in these two 
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Fig. 2.—The blast-wave envelope is shown after 100, 150, and 200 evolutionary time steps. Origin of the blast wave is situated at (x, y) = (10, 0), where the (x, y) 
coordinate axes are defined in Fig. 1. 

directions are given by 

p{U) = 

p{V) = 

Po*o 
{To + W 

Porn
0 

(r0 - vy 

where p0 is the ambient density at the site of the explosion. 

0 < U < co , 

0 < L < r0 , 

From equation (3.4) it follows that 

so from equations (3.11), (3.12), and (3.13), with n = 2, 

dV = 

i) n = 2 

'p(U) 

_p(V). 

1/2 
dU ; 

rv< dv 

Jo ro — J 

du 

o (ro + 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Fig. 3.—Blast-wave envelope is shown after 250, 300, and 311 time steps. Step 311 is just prior to the bubble converging with itself on the side of the origin 
opposite the explosion site. 
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Fig. 4.—Segments of the blast-wave envelope near 0 = t are shown at an enlarged scale for time steps of 250, 300, and 311 

where Ut, Vt are, respectively, the outer and inner radii at some arbitrary time t. Hence, 

In (r0 - K) = 2 In To - In (r0 + U,), 

or 

('o - y,)iro +U,) = rl . (3.15) 
In the case where Vt and Ut are small compared to r0, equation (3.15) implies that Ut æ Vt, and the remnant is therefore approx- 
imately spherical. 

In the case where Vt-+r0; equation (3.15) further implies that Ut-+ oo, so the blast wave penetrates to the center of the 
distribution only after an infinite time. The model calculations shown in Figures 2-4 show that the bubble converges on itself at the 
explosion anticenter for finite values of Ut. This radius can be found by an integration analogous to equation (3.14) along the 4> = n 
and 4> = tt/2 streamlines. Denoting distance traveled by the blast wave along the 4> = n/2 streamline by W, we have 

r-° dw 

Jo r0 

^ dU 

*o (ro + ^0 

where Uc is the outer radius at the time of shock convergence on the </> = njl streamline. Thus, 

Uc = (en — l)r0 = 22.14r0 . (3.16) 

Similarly, the inner radius Vc is given by 

= (1 — e~n)r0 = 0.9568ro . (3.17) 

ii) « # 2 
From equations (3.11), (3.12), and (3.13), preserving our notation, 

r- dv r- du 

.0 (r0- V)nl2 - Jo (r0 + Uf2 ’ 

whence 

(r0-Vt)
1-"12 = 2r1

0-'"
2-(ro + U,)1-"'2 . (3.18) 

For n < 2, finite values of Ut exist for which Vt = r0; namely, 

Ut = r0[22(2~n) — 1] . (3.19) 

That is to say, in an environment with a relatively “ soft ” power-law density distribution, the blast wave can reach the center of the 
cloud in a finite time and when the outer radius is also finite. For example, for n = 3/2, Ut= 15r0; for rc = \,Ut = 3r0; and finally for 

= 0,1/, = r0, as is expected. 
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For “ hard ” power-law density distributions with n> 2, the blast wave can never reach the center. Kor L, > x. 1'is given by 

^ = r0[l-22/(2“")] . (3.20) 

iii) Comparison with Blast-Wave Evolution in an Exponential Atmosphere 
The case of blast-wave evolution in a plane-parallel Gaussian or exponential atmosphere has been the subject of many studies 

(Kompaneets 1960; Grover and Hardy 1966; Laumback and Probstein 1969; Sachdov 1972; Treve and Manley 1972; Falle, 
Gorlick, and Pidsley 1984; as well as references quoted in these papers). In some senses, the presence of strong density gradients 
modifies the evolution in this case in ways which have their analogs in the spherical r~2 density distribution we have considered 
above, so it is of interest to compare these two cases. 

In the exponential atmosphere with the density law of the form exp ( —Z/Z0), let Ut and Vt be the size of the remnant at time t in 
the ascending (upper) and descending directions. By analogy with equations (3.11) and (3.12) the density distribution in these 
directions can be written as 

so that equation (3.13) becomes 

which, on integration gives 

and, hence, 

P(^0 = Po exp (—U/Z0), U > 0 , 

P(V) = p0 exp (+ L//Z0), F > 0 , 

dV = {exp [ —(1/ — V)/Z0]}1/2dU , 

ut 
exp {—U/2Z0)dU = exp (V/2Z0)dV , 

vt 

UJZq = 2 In [2 — exp (k¡/2Z0)] . (3.21) 

This result is equivalent to equation (10) in the Kompaneets (1960) paper. Note that both the case of the exponential and the r~2 

density law have natural scale lengths, Z0 and r0, respectively. In Figure 5 we compare the development of the asymmetric 
expansion in terms of dimensionless outer and inner radii, UJH and VJH, respectively. The dimension VJH occurs in both cases, 
although at VJH = 1.0 in the r-2 power-law atmosphere and at 1.39 in the exponential atmosphere. 

Fig. 5.—The blast-wave radii in the 0 = 0 and t directions, normalized to the density scale length H, are plotted against each other (solid lines) for the plane 
exponential density distribution, in which case H = z0, and the spherically symmetric r~2 distribution, for which H = r0. The asymptotic limits for SJH are marked 
on the right-hand side of the figure, these being 1.39 and 1.0 for the exponential and inverse square-law distributions, respectively. Also shown is SJ1.39H for the 
exponential distribution, which is asymptotic to unity. 
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IV. POSTADIABATIC EVOLUTION 

a) Cooling of the Ejecta 
The results of the previous section show that an evolving supernova remnant significantly departs from a spherical shape when its 

size, (Ut + Vt\ becomes comparable with the scale length of the density distribution. However, Figure 2 shows that the shape at 
intermediate times can be approximated by a sphere displaced from the explosion center. (Effectively, the remnant can be thought of 
as rising buoyantly in the density distribution.) Its mean radius <r> = 1/2(17, + Vt) can be calculated in terms of Ut from equation 
(3.15); viz., 

<r> 
Ut(2

ro + Ut) 
2(r0 + Ut) * 

(4.1) 

If the supernova remnant breaks out beyond the tidal radius, RT9 during the adiabatic phase, the supernova cavity will be drained 
of its hot, metal-rich contents, which escape into the intercloud medium. Thus, if the remnant is to be effective in chemically 
enriching its host cloud, the condition 

r0 + Ut< Rt (4.2) 

must be met at the end of the adiabatic phase. 
The shock velocity, Fs, is given by equation (3.4) and can also be expressed in terms of the postshock temperature, Ts, (e.g., Spitzer 

1978)as 

Fs
2 = l6kTs/3fimH (4.3) 

where/i is the molecular weight of the preshock gas. If we assume a fully ionized plasma with n(He)/n(H) = 0.11,y = 5/3,and^ = 1.6 
(see § Ilia, above), then equations (3.4) and (4.3) may be used to relate Ts to the supernova parameters : 

Ts = 1.94 x 10-9(jE/iFp) . (4.4) 

The end of the adiabatic phase is reached when the cooling time scale of the post shock gas, tcoo1, becomes shorter than the 
evolution time scale, Tevol. The cooling time scale, tcoo1 = g/Q, is given by 

^cooi = 3kTs(ne + n)/2AneMH 

= 3.5kTJ\ne, (4.5) 

where ne, nH, and n are the electron, hydrogen, and ionic densities, respectively, and A is a cooling function (ergs cm3 s~1). Two cases 
can be distinguished. In case A, heavy elements have negligible abundance. Then A is given by the free-free losses only (e.g., Shull 
and Silk 1979): 

A = Aff = 2.49 X 10-27Ts
1/2 ergs cm3 s-1 . (4.6a) 

In case B, the heavy elements are the major coolants, and A is given by a Raymond, Cox, and Smith (1976) function : 

A = Az = 1.3 x 10_19TS
_1/2(Z/Zo) ergs cm3 s-1 , (4.6b) 

where (Z/Z0) is the metal abundance with respect to the solar values. Combining equations (4.4), (4.5), and (4.6a), or (4.4), (4.5), and 
(4.6b), we have, respectively, 

Tcool = 2.17 x lO-17^1/2^-1/2^-3/2 , (4.7a) 

or 

tcoo1 = 8.06 x 10“ 34£3/2lF“ 3/2p ~ 5I2(Z/Zq)-1 . 

The evolutionary time scale is given to an adequate approximation by 

?evoi = Ut/Vs = 0.83817,1/2 - 

(4.7b) 

(4.8) 

For remnants which have passed their adiabatic phase, the condition tcoo1 < Tevol can be given as a condition on 17, in terms of E 
from equations (4.7) and (4.8), provided that and p = pr, the density at the tidal radius, can be determined. 

The volume is given to high approximation by 

r = 47r<r>3 = 7 
6 

/2r0 + Ut\ 
\ro + uJ 

3 
uf (4.9) 

from equation (4.1). The term in parentheses varies only slowly with Ut, and in the range 0.2 > U,/r0 >1.0 the approximation 

r = 2.5U? (4.10) 
is adequate. 

The density at the tidal radius can be determined from the density law and equation (2.3). This density turns out to be constant 

pT = 2.29 x 10 - 24Rp(10)~2 g cm"3 . (4.11) 
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Combining equations (4.7), (4.8), (4.10), and (4.11) in the condition tcoo1 < Tevol we have 

Ut > 3.75 x 107Rp(10)£1/4 cm (4.12a) 

and 

Ut > 2.00 x 105Rp(10)6/7(Z/Zo)~1/7E2/7 cm . (4.12b) 

For an explosion energy of 1051 ergs, equations (4.12a) and (4.12b) imply that the radiative phase is reached for Ut = 70.3 and 24.8 
pc, respectively. For a given r0/RTi equations (4.12) and (2.3) combined with condition (4.2) imply a minimum cloud mass that is- 
required to trap the supernova remnant to the start of its radiative phase. In Figure 6 we show this minimum mass as a function of 
r0/RT for the low-metallicity and metal-rich cases [assuming Rp(10) = 1.0]. At the low-metallicity limit, which is more nearly 
appropriate to protoglobular clusters, a cloud of ~ 105 M0 will be completely disrupted by the supernova event, whereas for 
enrichment of the remainder of the cloud to occur, M > 106 M0. This figure also shows how supernova explosions near the 
periphery of the cloud are ineffective in producing enrichment. Note that these mass limits given above are relatively insensitive to 
the explosion energy because of the weak dependence of Uton E. 

b) Retention of the Ejecta 
Even though equation (4.12) is satisfied and the outward-moving, metal-rich gas has cooled, this is no guarantee that this gas is 

retained by the cluster, since the cooled gas is moving much faster than the escape velocity of the cloud. For gravitational binding of 
the enriched material to occur we require, at least, that the velocity of the swept-up material, plus ejecta, as it passes the tidal radius 
is less than the escape velocity of the cluster. This condition is satisfied in the momentum-conserving phase of evolution of the 
remnant if 

VsS1<VescS2, (4.13) 

where Vs is the velocity of the outward-moving shock at the onset of the radiative phase, Fesc is the escape velocity, ^ is the mass per 
unit solid angle (measured from the explosion center) of the postshock material at the onset of the radiative phase, and S2 is the 
corresponding density at the time the isothermal shock passes the tidal radius. From equations (3.4) and (4.10), 

Vs = 0.754£1/2 Ut~ 3/2p(r0 + Uty
1/2 . (4.14) 

Now consider a solid angle dœ centered on the explosion site (r = r0) and oriented along the (j) = n direction, which is the direction 

Fig. 6.—The relationship between the minimum mass of cloud required to retain the supernova ejecta at the end of the adiabatic phase and the dimensionless 
radial coordinate of the explosion site for an output energy of 1051 ergs. The two curves relate to a pure H and He composition and to a solar composition in the 
shocked gas. 
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along which the SNR first encounters the tidal radius. The mass enclosed within dœ for a remnant of radius r(0 = n) = u is 

r2dr 
S = p(r)r2drda> 

_ M day Cu 

R lo (r + 40); 

M dœ 
~R4n 

w - 2r0 ln 1 -h — - 
r2 r0 

r0 + u 
■ + 2r0 In 2^ 

A reasonable approximation to the masses Si and S2 for the case of small r0/u is therefore : 

The escape velocity is given by 

Si 

^2 

dœ 
4n ’ 

dœ 
4n 

Ksc = (2GM/RtŸ/2 . 

Substituting equations (4.14}-(4.17) in equation (4.13), using equations (2.3) and (4.11), and assuming R^IO) = 1.0, 

(« + ß)2 

ß(l - a)2 < 3.75 x 10-2R5
1ooE;í

í , 

(4.15) 

(4.17) 

(4.18) 

where a = r0/RT, ß = UtJRT, R100 is the tidal radius in units of 100 pc, and ES1 is the initial explosion energy in units of 1051 ergs. 
The most favorable circumstance for capture of the outward-moving ejecta occurs for a central explosion, a = 0 (in which case 

eqs. [4.15] and [4.16] are exact), because the mass of the o verlying material is maximized. In this case, equation (4.18) simplifies to 

Rl00>L93E^5ß+1/5; (4.19) 

ß is clearly less than unity but is unlikely to be much smaller than 0.1, so R100 must be greater or approximately equal to 1.2. From 
equation (2.3) this implies that log (M/M0) ^ 5.8, a condition that is considerably more severe than those derived in § Wa above. 

The case for the inward-moving ejecta is very little different. If we consider the isothermal shock as convergent toward the center 
and the supernova occurring near the cloud periphery (the most favorable case for capture of the metals), then the condition (4.19) 
applies at the cloud center, where ß is now J^/Rr. If we regard the shock as continuing through to mass center and out beyond to the 
tidal radius, the shock speed is halved, so the mass for capture is reduced to something of order log M/M0 > 5.3. 

A still greater mass is required to stall the shock (reduce the shock velocity to the speed of sound). This would be a way of 
producing chemical enrichment concentrated in the core of the protoglobular cluster from a single supernova event (multiple 
supernova events can do this by producing shocks moving in opposite directions and so killing the momentum of the swept-up 
material and ejecta). Solution of the momentum-conservation condition to give shock stalling before the shock reaches the center of 
mass requires 

Ri00 > 9.7(a - ß)5,3cc~5/3ß~1,3El/2Ci2/3 , (4.20) 

where a = r0/RT, ß = K/^r> and is the speed of sound in the cloud gas measured in units of km s~1. The mass required now rises 
to of order 106 5 M© if the gas is fully ionized or 108,5 M© if the gas is neutral. However, we do not regard the second estimate as a 
very realistic condition because multiple supernova events would certainly occur in such a large protoglobular gas cloud, and with 
primordial abundances the medium is almost certainly ionized as a result of compressional heating and very low cooling efficiency. 

c) Induced Secondary Star Formation 
Provided the conditions given in §§ IVa, b above are satisfied, then a metal-enriched residue of the cloud will remain to offer the 

possibility of giving rise to a new generation of stars. However, such a new generation may be induced by the passage of the shock 
itself. 

For a plane-parallel geometry, Elmegreen and Lada (1977) and Elmegreen and Elmegreen (1978) have shown that a shocked layer 
of gas becomes subject to gravitational instability, provided that the surface density 0 exceeds a critical value given by 

/ p\l/2 
o->0.9l(—j gem 2, (4.21) 

where P is the pressure in the shocked layer. If this condition can be applied to the convergent, isothermal, momentum-conserving 
shock generated by the inward-moving ejecta, then we can, in principle, solve for the radial distance from the mass center, R, within 
which shock-induced star formation can occur. 

For the convergent shock, a, is given by 

M (r0 - r) 
RT 4nr2 — Pt Rt (r0 - r) 

*.2 (4.22) 
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The pressure P is given by the ram pressure 

P = p(r)Vs(r) , 

where p(r) = pT R\/r2 and Vs(r\ the shock velocity at the radial coordinate r, is given to a good approximation by 

- K)5/2 

^ py2RTVÏ2rli\r0-r)' 

This equation is derived by solving the equations of conservation of momentum for the inward-moving shock. 
Substituting equations (4.22)-(4.24) in equation (4.21), we have for a perigalactic distance of 10 kpc: 

<5(1 — à)~2 < 0.075a1/2y1/2(l - y)-5l2E^l2R\l¿0 , 

where a = r0/RT, y = Vt/r0, and ö = r/r0. Clearly, the additional conditions 

y + <5 < 1 , a < 1 , and <5 < 1 

(4.23) 

(4.24) 

(4.25) 

must be set for the solution to be physically real. 
Note that the form of equation (4.25) ensures that the inequality is always satisfied, provided <5 is small enough. However, 

interestingly large values of ö are allowed only for clouds of large tidal radius (or mass), and the 5/2 power-law dependence on the 
tidál radius makes this the most sensitive parameter. As a numerical example, take a = 0.8, y = 0.3, and <5 = 0.3; we then require 
R100 > 2.16, orlogM/M0 > 6.6. 

It therefore appears that shock-induced secondary star formation is a viable way of producing an œ Cen-like abundance 
variation, provided that the mass of the parent gas cloud was larger than ~107 M0. Because such a mass more than satisfies 
equation (4.19) above, we can be assured that these secondary stars are born with space motions appreciably less than the escape or 
free-fall velocity, allowing them to take up a more centrally condensed configuration than the first generation, in accordance with 
what is observed in œ Cen (Freeman 1980; Norris, Freeman, and Seitzer 1986, as quoted in Norris and Smith 1981). 

V. CONCLUSIONS 
A protoglobular cluster is, in principle, the smallest system that can chemically enrich itself and generate internal abundance 

gradients. Indeed, the most massive known globular cluster in our own Galaxy, œ Cen, appears to have undergone such a 
self-enrichment process. However, for this process to occur, all of the following conditions must be met. 

1. There must be a phase of primary star formation. 
2. The supernova ejecta from massive first-generation stars must be retained within the protoglobular gas cloud until they have 

cooled. 
3. The cooled ejecta must be slowed by interaction with undisturbed gas to below the escape velocity. 
4. There must be a phase of secondary star formation. 
In this paper we have produced an approximate analytic description of these four stages, assuming an idealized p(r) = Ar~2 

density distribution in the parent cloud. 
Using the Kompaneets approximation, we find that the strong density gradient encourages supernova remnants to blow out 

beyond the tidal radius in the low-density direction while the inward-moving blast wave makes little progress toward the mass 
center. Thus, for low-mass clouds, the hot ejecta tend to drain into the intercloud medium. For low-metal abundance, clouds of mass 
M < 105 Mq are entirely disrupted by a single supernova explosion while the remnant is still in its adiabatic phase. 

The escape of such hot ejecta into the intercloud environment will profoundly modify the physical structure of this medium, since 
this will first tend to be swept clean of matter by the shocks in their momentum-conserving phase and later heated to coronal 
temperatures by the passage of subsequent adiabatic shocks. Thus, a sufficiently high star-formation rate in the early phases of 
collapse of our Galaxy would have generated a two-phase medium in which the coronal phase is enhanced in its heavy-element 
abundance and by which the cool phase, carrying most of the mass, is confined. Such a system would collapse in a radically different 
fashion from the conventional picture. 

Even when the ejecta cool within the protoglobular cluster, they and the swept-up gas carry a sufficiently large momentum to 
disrupt clouds of mass of order of 106 M0, as was shown in § YVb. Although it is the momentum release not the energy release that 
has the disruptive effect, this result is not greatly different from that obtained by equating the energy release to the gravitational 
binding energy of the cluster, which for £ = 1051 ergs gives M=1.2xl06Mo. 

Finally, we have found that the conditions behind the inward-propagating shock are favorable to induce secondary star 
formation, provided the protoglobular cluster gas cloud had a mass greater than ~107 M0. As the mass becomes greater, the 
velocity dispersion of secondary stars formed in this way becomes smaller with respect to the escape velocity. This allows these stars 
to take a more centrally concentrated spatial distribution than the first generation stars, even after dynamical relaxation. Such a 
scenario could explain the type of abundance gradient seen in œ Cen, provided that the initial gas cloud had a mass greater than 
~107Mo. 

In fact, multiple supernova explosions are required to explain the œ Cen abundance variations. This point can be illustrated by 
estimating the number of massive stars needed to account for the size of the Mg variations among the co Cen giants. Cohen (1981) 
measured abundances of [Mg/H] = —1.67 and —1.37 for the metal-poor and metal-rich giants. Assuming that two-fifths of the 
stars in co Cen are metal rich, it follows that an excess of 12.7 M0 in Mg exists among this population, the present total mass of co 
Cen being 2.8 x 106 M© (Seitzer 1983). The production of Mg within massive stars has been studied by Arnett (1978), who finds that 
a massive star (13-30 M0) ejects ~0.3 M0 of this element. Therefore, we estimate that ~40 SN explosions occurred in proto-co Cen 
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in order to produce the Mg variations alone. In such an environment the interaction of SNR shells is likely to play a strong role in 
determining both the amount of mass loss from the cluster and the abundance pattern established among the remaining stars. 

In order to estimate the primordial mass of co Cen, assume that the other positions of the co Cen cloud must withstand the 
momentum input of these supernova shells. For each explosion E5i = 1.0 at an average radial coordinate 0.5, then equation (4.12a) 
gives I/f = 35 pc at the start of the radiative phase, since the local density is four times the density at the tidal radius. Substituting in 
equation (4.18) for all the SNR, i.e., E5i = 40, and with a = 0.5, demands R100 > 7.75 or M > 1.8 x 108 M0. This mass estimate 
implies a star formation efficiency of order l%-2%, which is not unreasonable. 

The authors wish to thank Alex Rodgers for many stimulating discussions. It was his idea to start with ! 
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