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ABSTRACT 
Results are reported from a numerical investigation of the structure of rapidly rotating relativistic models, 

based on equations of state proposed for neutron star matter. Sequences of rotating stars with baryon mass 
approximately equal to 1.4 M0 were constructed using 10 equations of state (EOSs) drawn from the Arnett- 
Bowers collection, together with the more recent Friedman-Pandharipande EOS; along each sequence the 
angular velocity increases from zero to the Keplerian frequency that marks the termination point. A number 
of additional sequences at other masses were constructed for a smaller set of EOSs spanning the full range of 
compressibilities. Because all sequences ended before the ratio T/\W\ of rotational energy to gravitational 
energy reached 0.14, instability to a bar mode appears unlikely. For the four stiffest EOSs, the upper limit on 
rotation set by gravitational instability to modes with angular dependence exp for m = 3 and 4 (or by 
sequence termination) is consistent with the observed frequency of the fast pulsar. Upper limits on mass, 
baryon mass, moment of inertia, red- and blueshifts, equatorial velocity, and on the parameter cJ/GM2 are 
found for representative EOSs. Lower limits on mass and central density are found for models rotating at the 
fast pulsar’s frequency. Quantities characterizing models along each sequence are presented in tables, and a 
series of graphs illustrates metric components, density profiles, and surface embeddings for selected models. 
Subject headings: dense matter — equation of state — stars: neutron — stars: rotation 

I. INTRODUCTION 

In 1978, Papaloizou and Pringle predicted the possible exis- 
tence of a class of rapidly rotating neutron stars, arising when 
old neutron stars (with weak magnetic fields) are spun up by 
accretion. If the magnetic field is less than about IO10 G, rota- 
tion appears to be limited by a nonaxisymmetric instability 
driven by gravitational radiation (Friedman and Schutz 1978; 
Friedman 1978). Papaloizou and Pringle therefore suggested 
that accreting neutron stars might hover at an angular velocity 
for which the angular momentum gained in accretion balanced 
that lost to gravitational waves; Wagoner (1984) has analyzed 
the gravitational radiation produced by such systems, empha- 
sizing that they might provide detectable sources of monochro- 
matic waves. A number of authors have noted that the fast 
pulsar PSR 1937 + 214 may itself rotate at the limiting fre- 
quency (Fabian et al 1983; Arons 1983; Cowsik, Ghosh, and 
Melvin 1983; Harding 1983; Ray and Chitre 1983; Friedman 
1983; Wagoner 1984), and its discovery has renewed interest in 
the structure of rotating neutron stars. 

Relativistic models of slowly rotating neutron stars were 
constructed by Hartle and Thorne (1968), using a formalism 
developed by Hartle (1967). Recently, similar calculations, 
using the same formalism, were performed by Datta and Ray 
(1983), to construct models based on a variety of proposed 
equations of state. An extensive study of the properties of these 
models has been made by Datta, Ray, and Kapoor (Datta 
1984; Ray and Datta 1984; Kapoor and Datta 1984; Datta 
and Kapoor 1985; Datta, Kapoor, and Ray 1984). Previous 
models of rapidly rotating relativistic stars have been based on 
incompressible fluids and polytropic equations of state (Wilson 

1972; Bonazzola and Schneider 1974; Butterworth and Ipser 
1976; Butterworth 1976), and on dust (Bardeen and Wagoner 
1971). 

We report here results of the first numerical construction of 
rapidly rotating relativistic models based on equations of state 
(EOSs) proposed for neutron star matter. Over 400 models 
have been constructed to portray the structure of rapidly rotat- 
ing neutron stars corresponding to a range of possible masses, 
frequencies of rotation, and compressibilities. Particular 
emphasis was given to establishing upper limits on rotation, 
mass, baryon mass, moments of inertia, redshifts, and blue- 
shifts. We used 10 EOSs from the Arnett-Bowers (1977) study 
(hereafter A-B) of nonrotating models (see also Arnett and 
Bowers 1974), together with the more recent Friedman- 
Pandharipande (1981) EOS. A large part of the work was 
devoted to models based on four of these EOSs, chosen to span 
the range of compressibility: In the Arnett-Bowers notation, 
these were EOSs C (Bethe-Johnson I 1974), G (Canuto-Chitre 
1974), L (Pandharipande-Smith 1975, mean field), and the 
Friedman-Pandharipande EOS (FP). Preliminary results of 
our study were announced in an earlier paper (Friedman, 
Ipser, and Parker 1984). Our numerical code is based on the 
programs developed by Butter worth and Ipser (1976) and used 
by Ipser to construct rotating polytropes. Two adaptations of 
these codes were independently developed (by Friedman and 
Parker, and by Ipser). Corresponding models from the two 
codes are in good agreement. 

The plan of the paper is as follows. In § II we review briefly 
the relativistic description of rotating stars, establishing con- 
ventions and notation. A similarly brief discussion is presented 

115 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

6A
pJ

. 
. .

30
4.

 .
11

5F
 

116 FRIEDMAN, IPSER, AND PARKER Vol. 304 

of the numerical methods we used and their expected accuracy. 
Section III is devoted to upper limits on neutron star rotation : 
a hard upper limit is set by sequence termination, where the 
star’s angular velocity Q is equal to the angular velocity QK of a 
particle in circular orbit at the equator; a second, more strin- 
gent, limit is set by the gravitational instability referred to 
earlier. Recent work on the stability points (zero-frequency 
modes) of Newtonian polytropes (Imamura, Durisen, and 
Friedman 1985; Managan 1985) establishes critical values of 
the parameter t, the ratio T/W of rotational kinetic energy to 
gravitational binding energy, at which instability sets in. These 
values, together with a numerical determination of the relation 
between t and the angular velocity D for our models, is used to 
estimate the stability limits of Q for each EOS. In § IV we 
examine models at termination for five representative EOSs: C, 
F, FP, G, and L, to find upper limits on mass, baryon mass, 
moment of inertia, and red- and blueshifts for each EOS. For 
these EOSs and a version of EOS N (see § II), several sequences 
of models with angular velocity ranging from zero to Q = 
were constructed; tables and graphs describing these models 
are presented here. Finally, in § V we discuss astrophysical 
implications of our results. 

We use lower case italic letters for spacetime indices and 
adopt the metric signature —b + + . Values of physical con- 
stants used in our numerical work conform to those of A-B: 
c = 2.9979 x 1010 cm s“1, G = 6.6732 x 10~8 g“1 cm3 s“2, 
M0 = 1.987 x 1033 g. 

II. ROTATING RELATIVISTIC STELLAR MODELS 

Our neutron star models are uniformly rotating, axisym- 
metric perfect fluid configurations. Because the proposed equà- 
tions of state describe zero-temperature matter, they have the 
form € = e(p), where € and p are, respectively, the energy 
density and pressure of the fluid, measured by a comoving 
observer. The spacetime is stationary and axisymmetric with 
Killing vectors ta and (j)a corresponding to time translation and 
rotation. The fluid’s 4-velocity can be written as a linear com- 
bination 

ua = ta + Q.(j)a , (1) 

where Q is the angular velocity (measured by an observer at 
infinity at rest relative to the star).1 

There are unique scalars t and </> for which Vat and lie in 
the plane of f and 4>a, and which satisfy 

t“Va t = (t>aVa 0 = 1; taS7a 0 = (¡>^a t = 0 . (2) 

In terms of these and coordinates r and 0 on a surface of 
constant t and 0, the spacetime metric gab can be written in the 
form 

ds2 = —e2vdt2 + — œdt)2 + e2tl(dr2 + r2d62) , (3) 

with metric coefficients independent of t and 0. We will use the 
unbarred letter r to denote the (Schwarzschild-like) radial 
coordinate in the equatorial plane for which 2nr is the proper 
circumference of a circle concentric to the equator \r — é1. (In 
the Butterworth-Ipser papers, é* and e* are written, following 
Bardeen and Wagoner 1971, in terms of functions B and 
e* = rB sin ee~\eß = é~\) 

1 To simplify the equations, we have set c = 1 in § II. In the remainder of 
the text, c has not been suppressed. 

The stellar model satisfies the field equation 

Gab = SnGTah, (4) 

where 

Tah = €uaub + p(gab + uaub) (5) 

is the energy-momentum tensor of the fluid. Equation (4) and 
the Bianchi identity imply the equation of hydrostatic equi- 
librium 

(gab + uaub)VcT
bc = 0 , 

which, for a uniformly rotating, isentropic fluid, has the first 
integral 

h(p) = ln (ßl'2/u') . (6) 

The quantity h(p) is the comoving enthalpy density 

h(p) = J dp/(e + p), (7) 

and 

ß = e2v 

pole 
is the injection energy of a unit mass particle lowered from 
infinity to the star. The injection energy is related to the polar 
redshift zp by 

zp = r1,2-i- 
Note that the possibility of an extensive solid crust or core in 

neutron stars has negligible effect on their, structure in the sense 
of their pressure and density distributions and gravitational 
potentials. The reason is that the ratio of anisotropic stresses to 
the isotropic pressure is comparable to the ratio of the largest 
deviation of the surface from the shape of an equilibrium 
field—that is, to the fractional change in radius during the 
largest glitches, about 10-6. The normal mode frequencies and 
their instability points are similarly unaffected by the very 
small departures from a perfect fluid equilibrium that the 
anisotropic stresses permit. 

a) Numerical Method 

A detailed discussion of the numerical method we follow is 
given in Butterworth and Ipser (1976). They generalize 
Stoeckly’s (1965) work on rotating Newtonian polytropes to 
the substantially more complex relativistic stellar structure 
equations. Briefly, one uses the Newton-Raphson method to 
successively approximate the solution (gab, p) to equation (4) 
with e = e(p) and with ua given by equation (1). As a zeroth 
approximation, one takes a previously constructed model 
Cdab’ °P) with values of angular velocity and injection energy 
close to (typically smaller than) those of the model to be com- 
puted. One then recomputes the pressure, using the integrated 
equation of hydrostatic equilibrium with the desired values of 
angular velocity and injection energy and solves components 
of the perturbation equations 

<SGöfe - SnGÔTab = Gab(°g) - SnGTab(°g, 'p) (8) 

for the perturbed potentials dgab, where 6G denotes the change 
in G due to a change ôg in the metric. In this way one obtains a 
first-order approximation CóU, V) t0 the solution. The 
(n + l)th approximation is then obtained from the nth by first 
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solving the equation of hydrostatic equilibrium (6) to find n + 1p 
in terms of ngab and then solving equation (8) to find n + 1gab = 
ndab + ögab in terms of " + 1p and ngab. The actual program is 
slightly different: to avoid inverting the large matrix of coeffi- 
cients that corresponds to the linear operator on the left-hand 
side of equation (8), one solves individual equations of equa- 
tion (8) one by one for individual perturbed potentials (ôy, ôœ, 
ÔB, ÔÇ) and recomputes p from the hydrostatic equilibrium 
equation after finding each potential. 

b) Equations of State 
All but two of the EOSs used in our models were taken from 

the collection used by A-B; several of these appear also in the 
Baym-Pethick (1979) review article, and subsequent authors 
(e.g., Shapiro and Teukolsky 1984; Ray and Datta 1984) have 
adopted the Baym-Pethick notation. Each EOS will be 
referred to by the letter (A-G, L-O) used by Arnett and 
Bowers, and when applicable by the Baym-Pethick abbrevia- 
tion (in parentheses). We denote by N*(RMF) the modification 
due to Serot (1979a, b) of Walecka’s (1974) EOS based on a 
relativistic mean field approximation (this latter is EOS N of 
A-B); nonrotating neutron star models based on N*(RMF) are 
given by Detweiler and Lindblom (1977). The EOSs we use are 
then 

A(R) Reid soft core, Pandharipande (1971a) 
B Reid core with hyperons, Pandharipande 

(1971h) 
C(BJ I) Betheand Johnson (1974), model I 
D(BJ V) Bethe and Johnson (1974), model V 
E Mozkowski(1974) 
F Arponen (1972) 
G Canuto and Chitre (1974) 
L(MF) Mean field, Pandharipande and Smith (1975) 
M(TI) Tensor interaction, Pandharipande and Smith 

(1975) 
N*(RMF) Relativistic mean field, Serot (1979) 
O Bowers, Gleeson, and Pedigo (1975) 
FP Three-nucleon interactions, Friedman and 

Pandharipande (1981) 
As described by Friedman and Pandharipande (1981), the 

FP EOS agrees with that of Negele and Vautherin (1973) for 
baryon number density rc < 0.1 fin-3 and with the Baym- 
Pethick-Sutherland (1972) EOS for n < 0.001 fin“3. EOS 
N*(RMF) agrees with Baym-Pethick-Sutherland at n < 0.1 
fm~3. We did not construct models based on an EOS 
exhibiting pion condensation ; but the “ n ” models considered 
in Baym and Pethick (1979) are intermediate in stiffness 
between EOSs G and A(R), and similar to EOS B. It is in 
general helpful in interpreting our results to have available an 
ordering of the EOSs used in terms of their stiffness. Because 
dp/dp varies with density, there is no unambiguous order, but 
two measures of average stiffness have particular relevance. 
The first is the maximum mass of spherical models based on a 
given EOS: from softest (smallest mass) to stiffest (largest 
mass), the order is G, B, F, D, A, E, C, M, FP, O, N, L. 
A second measure, more appropriate for comparison of 1.4 
M© models, is the radius at fixed baryon mass, M0 = 1.4 M© : 
here the order from softest (smallest radius) to stiffest (largest 
radius) is G, B, A, E, F, D, FP, C, O, N, L, M. 

Four-point Lagrange interpolation was used to interpolate 
values of log p, log e, log h, and log p, where p = npB is the 
baryon mass density measured by a comoving observer, n is 
the baryon number density, and pB is the mass per baryon, 

taken as 1.659 x 10 24 g, to agree with A-B conventions. The 
enthalpy density was found by numerical integration of eq. (7). 

c) Mass, Angular Momentum, Red- and Blueshifts, 
Surface Embedding 

Let na be a unit vector orthogonal to a hypersurface of con- 
stant t, and let dF be the proper volume element of the surface. 
Integral quantities characterizing a rotating neutron star 
include its gravitational mass, 

M = (Tab-igabT)t°nbdV , 

its angular momentum, 

J= I Tab(f)anbdV , 

and its baryon mass, 

Mn = puarfdV . 

(9) 

(10) 

(11) 

Its moment of inertia is defined by 

I = J/Q. 

Shifts in the frequency of light emitted from the equator and 
the poles are tabulated for the calculated models. To find the 
shifts for a photon with 4-momentum pa, note that the energy 
pa t

a and angular momentum pa </>ö are constant along a photon 
trajectory. For light emitted forward (backward) at the 
equator, 

pa = const x [ia + (co ± ev-'l/)(j)a'] , (12) 

and the emitted frequency is coE = pa u
a, where ua is the fluid 

4-velocity at the equator : 

u = : (t° + Q4>a) , (13) 

with 

v = (Q — œ)é 

(v is the fluid velocity measured by a zero angular momentum 
observer). Because a distant observer at rest relative to the star 
moves along the timelike Killing vector, the frequency 
observed at infinity is = pa t

a. Then 

(D 

PaU Vl+ty 
(14) 

The polar redshift is easier to obtain : an observer at the pole 
has 4-velocity ua = ta/ \ thtb\

112 = ¿710« l1/2- The fact that 
ta oc ua implies that the polar redshift is independent of the 
photon’s direction: 

^oo _ Pa t0 _ /¡ f 
a — \/\ 9tt \ • coE Pau
a (15) 

We denote by zp, zB, and zF the red- (or blue)shifts of light 
emitted at the pole and in the backward and forward directions 
at the equator : 

z _ 
œE _ i (16) 
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In § IV, we present several embedding diagrams, graphs that 
depict the intrinsic geometry of the stellar surfaces. Given a 
surface r = r(6\ in a i = constant slice of spacetime, one con- 
structs an embedding as follows. The metric of the stellar 
surface induced by the spacetime metric (3) is 

da2 = e^dcj)2 + e 2/* d62 , (17) 

and we want to find a surface in a flat three-dimensional space 
whose geometry is given by the 2-metric (17). Let m, z and 4> be 
cylindrical coordinates for the flat space and zu = m(z) the 
embedded surface. From the flat metric, 

dm2 + dz2 + m2d(j)2 , 

the surface inherits a 2-metric 

da2 = 
dm 
dz 

+ 1 dz2 + m2d(j)2 , 

which agrees with the star’s surface geometry if 

m = ev 

and 

z = J (da2 — dm2)112 . 

More explicitly, with m(6) = ^[r(^)? #], 
rdr\2 

(18a) 

z(0) = dQU2fi 

del 
dxu^2 

~dê 

The equatorial and polar radii of the embedded surface are 
given by 

feq = ^ = 0 » rp = z(0 = 0). (18b) 

We define the eccentricity e by 

* = (1 - 'i/'l), (19) 

in agreement with the usual definition when the surface has the 
geometry of an ellipsoid. For slow rotation, the surface is an 
ellipsoid to 0(Q2) and e is then its true eccentricity. 

d) Numerical Accuracy 
A variety of internal checks and a few external comparisons 

provide a good picture of the code’s accuracy. Changing the 
number of spokes from 6 to 15 altered no quantity by more 
than 0.1% in the several models we compared: metric coeff- 
cients, energy density, integral properties, radii, and redshifts 
were compared in models with the same angular velocity and 
injection energy. Changing the number of radial grid points 
from 60 to 40 similarly altered the potentials and the integral 
quantities of the models by less than 0.1% ; but radii and quan- 
tities that depend on the radii (redshifts and equatorial 
velocities) changed by up to 5%. Similar changes in the radii 
and related quantities resulted from changing the number of 
grid points used to extrapolate to zero pressure along a radial 
direction. When the interpolation method used to obtain e(p), 
n(p\ and h(p) from the tabulated equation of state was changed 
from four-point Lagrange interpolation to a cubic spline fit, 
changes in all quantities were at the 0.1 % level. 

The present code was compared with the earlier Ipser- 

Butterworth program for rotating polytropes, by constructing 
n = 3/2 relativistic polytropes with the same injection energy 
and angular velocity, and agreement was obtained to six 
places, the expected accuracy of the computer and of the iter- 
ation. (For the accuracy tests, convergence of the iterations to 
one part in 105 or 106 was demanded; for most models, con- 
vergence to one part in 103 or 104 was standard). Finally, for 
the rotating n — 3/2 polytropes, agreement to within 1% was 
obtained in a comparison of slowly rotating models with 
Hartle’s models constructed from his slow-rotation formalism. 

To summarize, we regard the metric coefficients, density and 
pressure distributions, and masses of our models as accurate to 
~1%, while the determination of the stellar surface and of 
quantities that directly depend on it is not much more accurate 
than the radial grid spacing; that is, the radii, redshifts, and 
equatorial velocities tabulated below have expected errors of 
~5%. 

III. UPPER LIMITS ON NEUTRON STAR ROTATION 

When the magnetic field of a neutron star is sufficiently 
weak, its rotation is apparently limited by a gravitational insta- 
bility to nonaxisymmetric perturbations. Gravitational radi- 
ation makes all rotating, perfect fluid equilibria unstable to 
modes with angular dependence exp (im0) for sufficiently large 
m, allowing the star to convert its rotational energy to gravita- 
tional waves (Friedman and Schutz 1978; Friedman 1978). The 
instability sets in when a backward-traveling mode is dragged 
forward relative to an inertial frame by the star’s rotation. 
Relative to a comoving observer, the mode continues to move 
in a sense opposite to the star’s rotation, and the perturbed star 
thus has smaller angular momentum than the unperturbed 
configuration. In other words, the perturbation still has nega- 
tive angular momentum. However, because gravitational radi- 
ation now carries off positive angular momentum while the 
perturbation’s angular momentum remains negative, the radi- 
ation drives the perturbation instead of damping it. The Dede- 
kind bar instability found by Chandrasekhar (1970) is the 
m = 2 case of this mechanism, but higher modes are unstable 
first, and we will see that neutron stars appear always to reach 
Keplerian velocity before the m = 2 mode is unstable. 

In realistic models, the instability for large m is damped out 
by viscosity when the dissipation due to viscosity is equal to 
the loss of energy to gravitational waves (Lindblom and 
Detweiler 1977; Detweiler and Lindblom 1977; Comins 1979; 
Lindblom and Hiscock 1983). In the case of neutron stars, the 
instability can be expected to play a role only for old stars spun 
up by accretion or for newly formed stars. In either case, 
because the star is hot, viscosity will be relatively small (see 
§ Va); viscous dissipation should stabilize modes with m > 5; 
and the m = 3 and m = 4 (or possibly m = 5) modes can be 
expected to set the limit on neutron star rotation (Friedman 
1983; Wagoner 1984). Imamura, Durisen, and Friedman (1985) 
and Managan (1985) have recently determined the 
gravitational-radiation instability points for Newtonian poly- 
tropes in terms of the parameter t = T/\W\. The adiabatic 
index governing the perturbations was assumed identical to 
the equilibrium value of d log p/d log € = 1 + 1/n, where n is 
the poly tropic index. As exhibited in Table 1, the critical values 
t3 ánd i4 of t at which the m = 3 and m = 4 modes become 
unstable were found to increase with increasing stiffness, taking 
their maximum values for the incompressible (n = 0) Maclau- 
rin models. The Maclaurin values can be interpolated from 
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TABLE 1 
Instability Points of Uniformly 

Rotating Polytropes 

n t3 t4 

0   0.099 0.077 
0.5  0.096 0.074 
1    0.080 0.058 
1.5   0.059 0.043 

Comins’ (1979) tables; precise values are given by Baumgart 
and Friedman (1985). 

The compressibility of neutron star matter (in the proposed 
equations of state) corresponds to a polytropic index between 
0.5 and 1.5. A relativistic analog of t can be defined by setting 

T = yn (20) 

and 

W = Mpc
2 + T - Me2 , (21) 

where we have split the mass (energy) M of a star into rotation- 
al kinetic energy T, binding energy W, and proper mass 

Mp = ^euanadV . (22) 

Because the growth time for the gravitational instability 
increases very rapidly when the mode’s frequency is near zero 
(near the instability point) (Comins 1979), viscosity can be 
expected to stabilize the m = 4 mode when t — tAr< 0.03. 
Assuming that the Newtonian values of i3 and i4 approximate 
their relativistic values, instability would then set in at i « 0.08. 
We find that the value of the angular velocity at the instability 
point is insensitive to t and for a given EOS can be accurately 
determined despite the uncertainty in the value of t. In particular, 
even if viscosity damps the instability altogether, so that the 
limit on rotation is set by the Kepler frequency, the value of the 
limiting frequency is not greatly altered. 

Figures 1-4 show the relation between t and Q for sequences 
of neutron stars parameterized by increasing Q. The endpoint 
of each sequence, marked by a dot, represents a star rotating at 
the Kepler frequency QK: the frequency of a particle in circular 
orbit at the equator. F or the metric (3), 

Qk = ^-^ + co5 (23a) 

where 

•A-v + (23b) 

is the orbital velocity measured by an observer with zero 
angular momentum in the (^-direction, and all potentials are 
evaluated at the equator. (Primes denote derivatives with 
respect to a radial coordinate, r or w). Because no uniformly 
rotating star can have Q > QK, the Kepler frequency sets a 
hard upper limit on rotation. Sequences of M0 = 1.4 M0 
models were constructed for EOSs D(BJ V) and E as well, but 
the results are not included in Figure 1. The t versus Q curves 
for EOSs D, E, and FP all lie between the curves for EOSs 
C(BJ I) and F. The curve for EOS E lies slightly above that of 
FP, terminating at i = 0.099. The curve for EOS D nearly 
coincides with the FP curve but terminates at i = 0.095. 

A striking feature of the M0 æ 1.4 M0 models (Fig. 1) is that 
t(Q. — Qk) <0.13 for all EOSs. It is therefore unlikely that 
neutron stars can rotate fast enough to be unstable to an m = 2 
mode. Models with smaller masses (lower densities) are much 
softer, and the termination points occur dramatically earlier 
(see Tables 8-11), as one would expect from studies of rotating 
Newtonian polytropes (James 1964; see also Tassoul 1978, and 
references therein). The largest value of t occurs for EOS FP, 
which is unphysically stiff when e > 1015 g cm-3 (for 
e>2x 1015 g cm-3, the speed of sound exceeds the speed of 
light). Although a number of authors (Cowsik, Ghosh, and 
Melvin 1983; Harding 1983; Ray and Chitre 1983) have sug- 
gested that the fast pulsar may be at an m = 2 instability point, 

Fig. 1.—Angular velocity Q vs. stability parameter i = T/\W\ for sequences of models with baryon mass M0 ä 1.4 M0. The curves are labeled by letters 
denoting equations of state, following the (Arnett-Bowers) notation introduced in § II. The injection energy ß is constant along each sequence. 
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Fig. 2.—Q vs. t for sequences of models based on EOS C(BJ I). Along each sequence, the injection energy ß is held constant, and the corresponding curve is 
labeled by its value of ß. 

sequences of Newtonian stars of comparable stiffness 
(n > 0.81) similarly terminate before the bar mode is unstable. 

The Keplerian frequency DK at which a sequence terminates 
is substantially smaller than its value for the spherical model. 
As the rotation and hence the radius of a star increases, QK 

decreases; at Q = QK, the Kepler frequency ranges from 55% 
of its spherical value for models based on the softest EOS to 
75% of the spherical value for models with the stiffest EOS, 
L(MF). 

Along each curve in Figures 1-4, the value of the injection 
energy (strictly, the value of ß found from the first grid points 
outside the star) is held fixed. For the models of Figure 1, 
this is roughly equivalent to holding the baryon mass fixed at 

M0 = 1.4 M0. If, as discussed above, we assume that neutron 
stars are unstable when t > 0.08, then the curves allow one to 
find the corresponding limiting frequencies of rotation. The 
curves are parabolas for small Q, with 

because to order Q2 the moment of inertia and gravitational 
binding energy retain the values I0 and W0 of the spherical 
model. However, as Q approaches QK, I/\W\ increases rapidly 
with Q until t æ Q3 3 for Q æ QK. As a result, the limiting value 
of Q is insensitive to the precise value of t at which instability 
sets in. 

Fig. 3.—Q vs. t for sequences of models based on EOS FP. As in Fig. 2, curves are labeled by the (constant) injection energy ß. 
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Fig. 4.—Q vs. t for sequences of models based on EOS G and L(MF). Curves are again labeled by the (constant) injection energy ß. 

On the other hand, it is clear from Figure 1 that the limiting 
frequency depends strongly on the equation of state used. At 
M0 = 1.4 M0, D(i = 0.08) < Qlim < Qk implies 

Ülim = (9.9 ± 0.2) x 103 s-1 , for EOS G (softest) , 
Qlim = (5.8 ± 0.6) x 103 s“1 , for EOS C(BJ I) (intermediate), 

Qlim = (3.8 + 0.3) x 103 s“1 , for EOS L(MF) (stiff) . 

The dependence of Qlim on mass can be seen from the curves 
in Figures 2-4. For a given EOS, models with smaller ß have 
larger mass and central density (see Tables 3-7 below). We find 
(d log Q)/(d log M) ^ 1 at fixed t. For EOS C(BJ I), for 
example, QK varies from 4.1 x 103 to 11 x 103 s_1 as M 
changes from 0.78 to 2.16 M0. 

For the stiffer equations of state, the limiting frequency for 
stars with M0 = 1.4 M0 is close to the frequency Qfp = 0.4033 
x 104 s"1 of the fast pulsar. It is worth noting that the y-ray 
burst data also favor stiff equations of state, if one interprets 
the observed emission lines as redshifted photons from e+e~ 
annihilation occurring at the surface of neutron stars 
(Lindblom 1984). That is, the range of surface redshifts from 
neutron stars with M = 1.2-1.4 M0 is consistent with the 
observed redshift range only for the four stiffest EOSs: Models 
with a softer EOS have smaller radii (at fixed mass), and their 
surface redshifts are greater than those observed. 

In § V, the t versus Q curves are used to estimate growth 
times for the nonaxisymmetric instability. 

IV. UPPER LIMITS ON MASS, BARYON NUMBER, MOMENT OF 
INERTIA, REDSHIFTS, AND BLUESHIFTS 

a) Upper Limit on Mass and Baryon Number 
By stiffening their response to compression, rotation stabil- 

izes neutron stars, allowing more baryons to be added before 
the star collapses. The upper limit on baryon number and mass 
of rotating neutron stars is thus somewhat higher than for the 
corresponding spherical stars. For each equation of state, the 
equilibrium model with largest mass is a model rotating at the 

Keplerian frequency, Q = QK. Somewhat stronger mass limits 
are implied by the requirement that the model be stable against 
the m = 3 and m = 4 modes, and these are discussed briefly 
below. 

The change in the limiting mass is sharply constrained by 
the fact that neutron stars presumably cannot maintain differ- 
ential rotation. In white dwarf models, the analogous effect of 
rotation on the upper mass limit has been studied in some 
detail. Although stable, differentially rotating dwarfs can have 
masses 2.5 times the Chandrasekhar limit for spherical stars 
(Durisen 1975), if one allows only uniform rotation, the upper 
mass limit is raised by at most 15% (James 1964). Because 
neutron stars are stiffer than dwarfs, their maximum rotation 
measured by dimensionless quantities (t or Q/[7rgec]

1/2 is sub- 
stantially larger. The change in the maximum mass, however, 
turns out to be only slightly higher than that for uniformly 
rotating dwarfs. 

The mass limit of slowly rotating neutron stars was first 
considered by Hartle and Thorne (1968) and, more recently, 
Datta, Kapoor, and Ray (Datta and Ray 1983; Kapoor and 
Datta 1984; Datta and Kapoor 1985; Datta, Kapoor, and Ray 
1984; Ray and Datta 1984) have used Hartle’s slow rotation 
formalism to study the mass limit for rotating models based on 
a number of EOSs, including several we consider here. The 
latter authors assumed as an upper limit on rotation Qs = 
0.52Qo? where Q0 = (Gc~2M/R3)1/2 is the frequency of a parti- 
cle in circular orbit at the surface of the spherical model. 
Although this was an estimate of the (probably nonexistent) 
m = 2 instability point, the actual limiting frequencies we find 
vary (as noted in § III) from 0.55Qo to 0.75Qo. However, the 
corresponding estimate of the change in maximum mass given 
by the slow rotation formalism turns out to be unexpectedly 
low. Our results do agree with a previous estimate of Shapiro 
and Lightman (1976), who analyzed post-Newtonian poly- 
tropes and found an expected fractional change in mass ÔM/ 
M ä 0.2. 

Upper mass limits for models with Q = QK are listed in 
Table 2. We have chosen a representative sample of EOSs 
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TABLE 2 
Maximum-Mass Models3 

Equation €c / 
of State ß Q (1015gcm-3) M/Me Increase M0/Mo R œJQ, T/W VtJc (1045 gcm2) cJ/GM2 e Zp ZB ZF 

L  0.34 0.76 1.11 3.18 20% 3.72 17.3 0.77 0.122 0.53 7.87 0.68 0.69 0.71 2.08 -0.29 
FP   0.28 1.23 2.5 2.30 17 2.71 12. 0.83 0.133 0.49 2.41 0.50 0.67 1.89 2.63 -0.32 
C  0.35 1.11 2.7 2.16 17 2.47 13. 0.79 0.110 0.47 2.42 0.49 0.68 0.69 1.96 -0.32 
F  0.39 1.24 4.1 1.66 13 1.87 11. 0.77 0.094 0.44 1.16 0.47 0.67 0.60 1.68 -0.29 
G  0.34 1.52 5.5 1.55 14 1.73 8.6 0.81 0.101 0.43 0.86 0.62 0.62 0.71 2.01 -0.29 

3 Properties of uniformly rotating models with maximum possible mass, for various equations of state. 

ranging from the stiffest (L) to the softest (G) models in the A-B 
collection, together with models based on the more recent FP 
EOS. The fractional change in mass generally increases with 
increasing stiffness of the EOS, from 0.13 to 0.20. In contrast, 
the slow rotation results of Hartle and Thorne (1968) yield 
3M = 0.17(Q/Do)2 < 0.10 (for each of their EOSs) when the 
limiting frequency is taken to be its largest value consistent 
with our results: Q < QK < 0.75Qo. Similarly, Datta and Ray 
find ÔM/M < 0.06(D/QS)

2, implying ÔM/M <0.11 for Q < QK 
when the value of appropriate to each of their EOSs is 
used as the maximum value of £1 

The key to the headings of Tables 2-13 is as follows: 
ß Injection energy or, equivalently, value of the 

metric quantity e2v at the pole 
Q Angular velocity relative to infinity (104 s - ^ 
ee Central mass-energy density 
M/Mq Total mass 
Increase Percent increase of maximum mass over that for 

no rotation 
M0/Mq Baryon (or rest) mass 
R Equatorial circumference radius ([proper equato- 

rial circumference]/27ü) 

œJQ. Percentage of central dragging, as measured by 
central ratio of metric potential co to Q 

T/W Ratio of rotational energy to gravitational 
energy, as defined in § III 

P^q/c Velocity of comoving observer at equator relative 
to locally nonrotating observer 

/ Moment of inertia 
cJ/GM2 Dimensionless ratio of angular momentum J to 

M2 

e Eccentricity, as defined by embedding technique 
discussed in § lie 

Zp Polar redshift 
ZB Equatorial redshift in backward direction 
ZF Equatorial redshift in forward direction 
In Figures 5-8 curves of mass versus radius are shown for 

EOSs C(BJ I), F, G, and L(MF). For each EOS, a sequence of 
spherical stars and one of stars with Q = QK are portrayed. 
Along the Q = QK sequences, the maximum mass model has 
somewhat lower density than the corresponding spherical 
model with maximum mass (see also Table 2). Rotation also 
flattens the curves because it preferentially increases the radius 
of low-density stars. 

R(km) 
Fig. 5.—Gravitational mass vs. equatorial radius for two sequences of models based on EOS C(BJ I). One curve, with smaller values of the radii, describes 

spherical models, while the other describes models rotating with maximum (Keplerian) angular velocity (Q = QK). Along each curve, tick marks are labeled with the 
value of the models’ central density in units of 1015 g cm ” 3. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

6A
pJ

. 
. .

30
4.

 .
11

5F
 

No. 1, 1986 RAPIDLY ROTATING NEUTRON STAR MODELS 

M. 

M0 

1.8 

1.4 

1.0 

0.6 

0.2 

8.0 10.0 12.0 14.0 16.0 18.0 

"1 ^^ T 
EQUATION OF STATE F 

123 

R(km) 
Fig. 6.—Gravitational mass vs. equatorial radius as in Fig. 5, for models based on EOS F 

For spherical neutron stars, an instability to radial 
oscillation—to collapse—bounds the region of stable equi- 
libria and sets an upper limit on their central density 
(Chandrasekhar 1964; Misner and Zapolsky 1964). In the 
approximation that the star’s pulsation is governed by the 
same EOS p = p(e) as is the equilibrium configuration, insta- 
bility sets in at the upper mass limit (see Thorne 1967, and 
references therein). Adjoining any star beyond the maximum 
mass model (ec > €c|M = Mmax) are nearby configurations with 
the same baryon number and with lower energy. If the same 
effective equation of state p = p(e) governed both pulsations 

and the equilibrium star, then the lower energy configurations 
would be dynamically accessible. As it is, one expects stars just 
beyond the mass peak to be unstable but with a longer than 
dynamical time scale. 

A similar “turning point” argument can be used to show 
that sequences of rotating stars with fixed angular momentum 
are unstable beyond the point where the mass (or, equivalently, 
baryon number) is a maximum (Friedman, Ipser, and Sorkin 
1986). Again, the sequences can be parameterized by a star’s 
central density, and as in the spherical case, what is actually 
shown is the existence of neighboring configurations with the 

R(km) 
Fig. 7.—Gravitational mass vs. equatorial radius as in Figs. 5 and 6, for models based on EOS G 
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Fig. 8.—Gravitational mass vs. equatorial radius as in Figs. 5-7, for models based on EOS L(MF) 

same baryon number and total angular momentum, but with 
lower energy. Because these lower energy configurations need 
not be accessible to perturbations that conserve the angular 
momentum of each fluid element, the instability may be 
secular : that is, it may proceed on the time scale corresponding 
to viscous redistribution of the star’s angular momentum. This 
growth time is in any event short enough that observed 
neutron stars will be secularly stable against collapse. 

An interesting consequence follows from the fact that insta- 
bility to collapse sets in at or before the upper mass limit: For a 
given EOS, the model with maximum mass and baryon 
number also has the largest red- and blueshifts, the largest 
value of the frame-dragging frequency, and the greatest fre- 
quency of rotation (and equatorial velocity) among all uni- 
formly rotating configurations that are stable against collapse. 
Because the stififness of a given EOS increases with increasing 
density, the parameter t also appears to be greatest for the 
maximum mass configuration. 

b) Maximum Red- and Blueshifts 
In nearly Newtonian stars at termination point, shifts in 

spectral line frequency are dominated by the Doppler shift, 
because the gravitational redshift is higher order in v/c. If 
zB (zF) denotes the frequency shift of backward (forward) 
photons emitted at the equator, we have 

Zßl = ± - . ZF) C 
In neutron stars, however, the gravitational redshift plays a 
much larger role. In terms of the metric (1), the frequency shifts 
have the form 

Y1 + 
Vl + V/c) 

-1, 

and for the maximum-mass models of Table 2, we have 
I zb!zF\ ~ 6. 

The large magnitude of the shifts reflects large increases in 
radius for stars with Q near QK. There is little difference in the 
maximum red- and blueshifts as the compressibility changes. 
One might have expected that the stiffer stars, with larger radii, 
would have correspondingly larger values of veq and thus 
larger frequency shifts. However, the limiting frequency QK is 
smaller in the stiff models, and the net result is that maximum 
values of t>eq/c and of the frequency shifts are insensitive to 
compressibility. 

c) Maximum Moments of Inertia 
As is the case for spherical neutron stars, the model with 

maximum moment of inertia for a given EOS has a substan- 
tially lower central density than does the maximum mass 
model. The reason is, of course, that models with lower den- 
sities have much larger radii. The large increase in radius pro- 
duced by rotation implies that the moment of inertia increases 
much more than does the maximum mass. The effect of rota- 
tion on the moment of inertia I is shown in Figure 9, for 
models based on EOS, C, F, G, and L. As usual, the effect of 
rotation is greatest on the stiffest models, with I changing by 
over 70%, but even for the centrally condensed models of EOS 
G, we find a 60% increase over the maximum value along the 
spherical sequence. 

As we discuss in § V, however, a sparse envelope of the star 
accounts for the large change in radius. The structure of the 
star, as reflected by the distribution of its mass and by the 
gravitational potentials (the metric) changes less. As a result, 
the moment of inertia does not mirror the change in the quan- 
tity MR2 caused by rotation: I/MR2 decreases with increasing 
rotation, for fixed mass or fixed polar redshift. In spherical 
relativistic models I/MR2 is substantially larger than in 
Newtonian configurations with comparable stiffness 
(Chandrasekhar and Miller 1974): in fact, for all EOSs, we find 
that I/MR2 exceeds the maximum Newtonian value (f) when 
ß < 0.5 (R < 4GM/c2). Even for rapid rotation (Q æ QK), 
I/MR2 > f for EOS L. But for more compressible models with 
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Fig. 9.—Moment of inertia vs. equatorial radius for sequences of models based on EOSs C(BJ I), F, G, and L(MF). For each EOS a sequence of spherical models 
is represented by a dashed line, while a solid line represents models rotating at maximum (Keplerian) angular velocity, Í2 = QK. Along each curve with Q = QK 
tickmarks are labeled with the value of the model’s central density in units of 1015 g cm ~ 3. 

Q æ Qk, and with / near /max, the effect is muted: the rotating 
models are less relativistic and I/MR2 is smaller (by up to 
25%) than for the corresponding spherical model. 

d) Sequences of Stellar Models 
In addition to the M0 % 1.4 M0 sequences discussed in § III, 

families of stars with several values of the injection energy ß 
were constructed for each of the equations of state C(BJ I), FP, 
G, L(MF), and N*(RMF). Along each sequence ß is fixed, while 
the angular velocity runs from zero to the Kepler frequency 
Qk, and each sequence includes a model with frequency equal 

to that of the millisecond (fast) pulsar 1937 + 214 (Qfp = 0.4033 
x 104 s_1). Quantities characterizing the models are listed in 
Tables 3-7. 

In Figures 10-15 potentials are plotted along a radial direc- 
tion in the equatorial plane for representative models from 
EOS G (softest), C(BJ I) (intermediate), and L(MF) (stiffest). 

For low-density models, rotation has little effect on #the 
potentials, reflecting the fact that the sequences terminate at 
small values of rotation, measured by the dimensionless 
parameter i, or by £l2/nG€c. As the central density increases, 
the value of t at termination increases (as mentioned earlier, 

TABLE 3 
Sequences of Models for Equation of State 

Q (1015 g cm-3) M/Mq M0¡Mq œJÇï T/W V ¡c (1045 g cm2) cJ¡GM2 

0.446. 

0.676. 

0.811. 

0 
0.300 
0.403 
0.720 
0.869 
0 
0.150 
0.300 
0.403 
0.570 
0 
0.150 
0.300 
0.360 
0.410 

3.06 
2.93 
2.77 
2.12 
1.58 
1.00 
0.98 
0.95 
0.91 
0.77 
0.60 
0.59 
0.56 
0.54 
0.51 

1.85 
1.86 
1.88 
1.94 
2.03 
1.32 
1.32 
1.31 
1.30 
1.29 
0.81 
0.81 
0.80 
0.79 
0.78 

2.14 
2.15 
2.16 
2.22 
2.29 
1.44 
1.43 
1.42 
1.41 
1.39 
0.85 
0.84 
0.83 
0.82 
0.81 

9.8 
9.9 

10.3 
11.6 
15.0 
12.1 
12.3 
12.5 
13.3 
16.9 
13.1 
12.9 
14.0 
14.8 
18.1 

0.74 
0.74 
0.74 
0.69 
0.66 
0.43 
0.43 
0.42 
0.42 
0.40 
0.26 
0.26 
0.26 
0.25 
0.25 

0 
0.007 
0.012 
0.052 
0.110 
0 
0.004 
0.017 
0.034 
0.093 
0 
0.007 
0.030 
0.048 
0.071 

0 
0.10 
0.14 
0.27 
0.43 
0 
0.06 
0.13 
0.18 
0.32 
0 
0.07 
0.14 
0.18 
0.25 

1.56 
1.63 
2.01 
2.68 

1.28 
1.32 
1.38 
1.69 

0.72 
0.77 
0.81 
0.87 

0 
0.12 
0.16 
0.33 
0.50 
0 
0.11 
0.22 
0.32 
0.57 
0 
0.17 
0.38 
0.49 
0.62 

0 
0.15 
0.26 
0.50 
0.72 
0 
0.13 
0.27 
0.47 
0.74 
0 
0.25 
0.47 
0.60 
0.71 

0.50 
0.50 
0.50 
0.50 
0.50 
0.22 
0.21 
0.22 
0.22 
0.22 
0.11 
0.11 
0.11 
0.11 
0.11 

0.50 
0.74 
0.81 
1.13 
1.41 
0.22 
0.31 
0.40 
0.48 
0.67 
0.11 
0.19 
0.28 
0.33 
0.38 

+ 0.50 
+ 0.29 
+ 0.20 
-0.06 
-0.30 
+ 0.22 
+ 0.13 
+ 0.04 
-0.03 
-0.22 
+ 0.11 
+ 0.03 
-0.06 
-0.10 
-0.16 
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TABLE 4 
Sequences of Models for Equation of State FP 

Q (1015 g cm-3) M/Mq M0/Mq 
I 

cûJÇI T/W VJc (1045 g cm2) cJ/GM2 
ZB 

0.376. 

0.629. 

0.777. 

0 
0.150 
0.403 
0.600 
0.960 
1.038 
0 
0.150 
0.403 
0.600 
0.696 
0.705 
0 
0.150 
0.300 
0.403 
0.480 
0.540 
0.542 

3.03 
3.01 
2.80 
2.57 
1.96 
1.73 
1.28 
1.26 
1.21 
1.08 
0.93 
0.92 
0.77 
0.77 
0.73 
0.69 
0.66 
0.63 
0.63 

1.94 
1.95 
1.96 
1.98 
2.04 
2.10 
1.32 
1.32 
1.31 
1.30 
1.30 
1.30 
0.81 
0.80 
0.79 
0.78 
0.77 
0.77 
0.77 

2.33 
2.34 
2.36 
2.37 
2.40 
2.44 
1.46 
1.47 
1.44 
1.42 
1.41 
1.41 
0.85 
0.85 
0.84 
0.83 
0.81 
0.80 
0.80 

9.2 
9.2 
9.5 
9.7 

11.3 
13.1 
10.3 
10.6 
11.1 
12.0 
13.7 
14.9 
10.7 
10.8 
11.2 
11.7 
12.5 
14.7 
15.1 

0.80 
0.80 
0.79 
0.78 
0.73 
0.71 
0.47 
0.47 
0.46 
0.45 
0.44 
0.43 
0.29 
0.29 
0.28 
0.28 
0.27 
0.27 
0.27 

0 
0.001 
0.011 
0.025 
0.090 
0.131 
0 
0.003 
0.024 
0.066 
0.113 
0.120 
0 
0.005 
0.022 
0.043 
0.068 
0.101 
0.102 

0 
0.05 
0.13 
0.19 
0.36 
0.39 
0 
0.05 
0.15 
0.24 
0.32 
0.35 
0 
0.05 
0.11 
0.16 
0.20 
0.26 
0.27 

1.61 
1.68 
1.77 
2.19 
2.58 

1.09 
1.14 
1.29 
1.53 
1.56 

0.58 
0.61 
0.64 
0.68 
0.75 
0.75 

0 
0.05 
0.14 
0.21 
0.42 
0.51 
0 
0.09 
0.25 
0.43 
0.60 
0.63 
0 
0.14 
0.29 
0.43 
0.56 
0.71 
0.72 

0 

0.17 
0.32 
0.49 
0.60 
0 
0.22 
0.30 
0.54 
0.73 
0.77 
0 
0.12 
0.34 
0.51 
0.62 
0.72 
0.72 

0.63 
0.63 
0.63 
0.63 
0.63 
0.63 
0.26 
0.26 
0.26 
0.26 
0.26 
0.26 
0.13 
0.13 
0.13 
0.14 
0.14 
0.14 
0.14 

0.64 
0.76 
0.99 
1.19 
1.64 
1.80 
0.26 
0.35 
0.50 
0.64 
0.76 
0.80 
0.13 
0.20 
0.28 
0.34 
0.39 
0.47 
0.48 

+ 0.64 
+ 0.52 
+ 0.32 
+ 0.17 
-0.15 
-0.30 
+ 0.26 
+ 0.18 
+ 0.03 
-0.10 
-0.21 
-0.24 
+ 0.13 
+ 0.06 
-0.01 
-0.10 
-0.11 
-0.19 
-0.19 

TABLE 5 
Sequences of Models for Equation of State G 

Q 
€c 

(1015gcm 3) M/Me m0/mg 

/ 
(dc/Q T/W VJc (1045 g cm2) cJ/GM2 

0.531. 

0.844. 

0.30 
0.54 
0.72 
0.87 
0.96 
0.99 
1.01 
0 
0.15 
0.36 
0.45 
0.47 

3.46 
3.28 
3.10 
2.84 
2.65 
2.55 
2.51 
0.97 
0.95 
0.88 
0.80 
0.79 

1.26 
1.26 
1.27 
1.27 
1.28 
1.29 
1.29 
0.53 
0.53 
0.52 
0.51 
0.51 

1.40 
1.40 
1.41 
1.41 
1.42 
1.42 
1.43 
0.55 
0.55 
0.53 
0.53 
0.52 

7.7 
7.9 
8.2 
8.9 
9.4 
9.7 

10.4 
8.4 
9.0 

10.3 
11.9 
13.3 

0.63 
0.62 
0.61 
0.60 
0.59 
0.59 
0.58 
0.23 
0.23 
0.22 
0.22 
0.22 

0.005 
0.016 
0.032 
0.053 
0.072 
0.081 
0.086 
0 
0.004 
0.026 
0.045 
0.051 

0.09 
0.16 
0.22 
0.30 
0.35 
0.37 
0.40 
0 
0.05 
0.13 
0.20 
0.23 

0.622 
0.649 
0.688 
0.748 
0.813 
0.849 
0.872 
0.259 
0.262 
0.278 
0.294 
0.299 

0.13 
0.25 
0.35 
0.45 
0.53 
0.57 
0.59 
0 
0.16 
0.42 
0.56 
0.61 

0.16 
0.33 
0.46 
0.57 
0.61 
0.64 
0.67 
0 
0.14 
0.51 
0.65 
0.73 

0.37 
0.37 
0.37 
0.37 
0.37 
0.37 
0.37 
0.09 
0.09 
0.09 
0.09 
0.09 

0.56 
0.69 
0.80 
0.89 
0.97 
1.00 
1.02 
0.09 
0.15 
0.24 
0.30 
0.34 

+ 0.26 
+ 0.13 
+ 0.04 
-0.06 
-0.13 
-0.16 
-0.20 
+ 0.09 
+ 0.04 
-0.05 
-0.12 
-0.15 

TABLE 6 
Sequences of Models for Equation of State L(MF) 

Q (1015 gem-3) M/Mq M0/Mq 
I 

œJQ T/W VJc (1045 g cm2) cJ/GM2 

0.467. 

0.620. 

0.756. 

0 
0.300 
0.450 
0.540 
0.585 
0.600 
0 
0.300 
0.360 
0.420 
0.450 
0.488 
0 
0.300 
0.360 
0.375 
0.383 

1.10 
0.99 
0.85 
0.71 
0.64 
0.61 
0.55 
0.51 
0.50 
0.48 
0.46 
0.44 
0.40 
0.35 
0.33 
0.32 
0.31 

2.60 
2.64 
2.66 
2.70 
2.78 
2.81 
2.00 
1.97 
1.96 
1.95 
1.95 
1.94 
1.30 
1.26 
1.24 
1.24 
1.23 

3.07 
3.11 
3.13 
3.15 
3.21 
3.23 
2.26 
2.22 
2.19 
2.16 
2.15 
2.13 
1.41 
1.36 
1.33 
1.32 
1.32 

14.2 
14.7 
15.7 
16.8 
18.0 
19.8 
15.2 
15.9 
16.1 
16.7 
17.4 
19.8 
14.7 
15.9 
18.2 
18.5 
19.1 

0.69 
0.68 
0.66 
0.64 
0.62 
0.61 
0.48 
0.47 
0.46 
0.46 
0.45 
0.45 
0.32 
0.31 
0.30 
0.30 
0.30 

0 
0.017 
0.043 
0.073 
0.100 
0.114 
0 
0.027 
0.041 
0.062 
0.075 
0.100 
0 
0.038 
0.063 
0.072 
0.076 

0 
0.17 
0.27 
0.38 
0.40 
0.45 
0 
0.17 
0.21 
0.26 
0.30 
0.32 
0 
0.18 
0.24 
0.26 
0.27 

4.79 
5.18 
5.75 
6.52 
7.41 
7.88 
3.71 
3.90 
4.04 
4.23 
4.42 
4.78 
2.07 
2.28 
2.44 
2.50 
2.53 

0 
0.25 
0.41 
0.55 
0.64 
0.68 
0 
0.34 
0.43 
0.53 
0.60 
0.71 
0 
0.49 
0.65 
0.70 
0.73 

0 
0.31 
0.48 
0.60 
0.68 
0.72 
0 
0.41 
0.50 
0.60 
0.65 
0.74 
0 
0.54 
0.67 
0.71 
0.74 

0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.27 
0.27 
0.27 
0.27 
0.27 
0.27 
0.15 
0.15 
0.15 
0.15 
0.15 

0.46 
0.80 
1.00 
1.16 
1.26 
1.31 
0.27 
0.54 
0.60 
0.67 
0.71 
0.79 
0.15 
0.38 
0.45 
0.47 
0.49 

+ 0.46 
+ 0.16 

0.00 
-0.12 
-0.20 
-0.25 
+ 0.27 
+ 0.02 
-0.04 
-0.09 
-0.14 
-0.22 
+ 0.15 
-0.07 
-0.14 
-0.16 
-0.18 
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TABLE 7 
Sequences of Models for Equation of State N*(RMF) 

Q (1015gcm m/mg m0/mg 

/ 
coc/Q T/W VJc (1045 gem2) cJ/GM1 

0.960. 

0.715. 

0.374. 

0 
0.060 
0.090 
0.120 
0.135 
0.147 
0 
0.150 
0.300 
0.403 
0.480 
0.482 
0 
0.150 
0.300 
0.403 
0.600 
0.729 
0.755 

0.253 
0.252 
0.252 
0.250 
0.250 
0.249 
0.50 
0.50 
0.48 
0.46 
0.43 
0.43 
2.09 
1.98 
1.82 
1.61 
1.20 
0.93 
0.83 

0.215 
0.214 
0.214 
0.213 
0.212 
0.212 
1.33 
1.32 
1.30 
1.27 
1.25 
1.25 
2.60 
2.63 
2.66 
2.69 
2.78 
2.87 
2.91 

0.216 
0.215 
0.215 
0.214 
0.213 
0.213 
1.44 
1.43 
1.40 
1.36 
1.33 
1.33 
3.12 
3.16 
3.19 
3.23 
3.31 
3.37 
3.38 

15.9 
16.4 
17.0 
18.2 
19.5 
22.7 
13.8 
14.0 
14.5 
15.4 
18.0 
18.4 
12.2 
12.5 
12.6 
13.0 
14.4 
16.2 
18.5 

0.083 
0.083 
0.082 
0.082 
0.082 

0.35 
0.35 
0.34 
0.34 
0.34 

0.81 
0.80 
0.78 
0.75 
0.71 
0.70 

0 
0.002 
0.005 
0.010 
0.012 
0.015 
0 
0.006 
0.030 
0.060 
0.098 
0.099 
0 
0.002 
0.011 
0.021 
0.059 
0.110 
0.014 

0 
0.032 
0.049 
0.068 
0.082 
0.112 
0 
0.070 
0.145 
0.207 
0.289 
0.295 
0 
0.062 
0.126 
0.175 
0.288 
0.389 
0.467 

0.120 
0.120 
0.121 
0.122 
0.123 
0.124 
1.74 
1.74 
1.79 
1.88 
2.03 
2.04 

3.98 
4.15 
4.43 
5.23 
6.35 
7.13 

0 
0.18 
0.27 
0.36 
0.41 
0.45 
0 
0.14 
0.31 
0.46 
0.62 
0.63 
0 
0.067 
0.14 
0.19 
0.33 
0.46 
0.53 

0 
0.21 
0.31 
0.48 
0.57 
0.71 
0 
0.15 
0.40 
0.60 
0.73 
0.74 
0 
0.04 
0.11 
0.26 
0.45 
0.63 
0.72 

0.020 
0.020 
0.020 
0.020 
0.020 
0.021 
0.18 
0.18 
0.18 
0.18 
0.18 
0.19 
0.64 
0.64 
0.64 
0.64 
0.64 
0.64 
0.64 

0.021 
0.055 
0.074 
0.096 
0.111 
0.136 
0.18 
0.28 
0.39 
0.47 
0.57 
0.58 
0.65 
0.80 
1.01 
1.16 
1.46 
1.72 
1.83 

+ 0.021 
-0.014 
-0.033 
-0.055 
-0.070 
-0.095 
+ 0.18 
+ 0.08 
-0.015 
-0.095 
-0.19.5 
-0.203 
+ 0.65 
+ 0.47 
+ 0.33 
+ 0.22 
-0.02 
-0.19 
-0.31 

this is due to the fact that all EOSs considered are stiffer at 
higher densities). Rotation thus has a somewhat greater effect. 
For the highest density models (with smallest values of the 
injection energy ß\ there is no corresponding spherical model 
with the same rest mass. 

The shapes of stellar surfaces are illustrated by embedding 
diagrams in Figures 16a-20a for sequences again based on 
EOSs G, C(BJ I) and L(MF). In the adjacent figures (Figs. 
16b-20h), density profiles are plotted for the corresponding 

stellar models. An additional set of density profiles in Figure 21 
illustrate sharp differences in the structure of stars at Q æ ÜK, 
as the EOS is varied at fixed baryon mass. 

Tables 8-11 describe sequences of stars with Q ä QK for 
EOSs C(BJ I), F, G, and L(MF). 

The numerical code converged for models up to D = DK. In 
fact, because the effect of our finite grid is similar to enclosing 
the star in a finite spherical box, models with Q > QK often 
converged as well. In these Q > QK models, the density in the 

Fig. 10.—For five models based on EOS C(BJ I), the metric component —g00 = —tata vs. the radial coordinate r for which 2nr is the circumference of a circle of 
radius r in the equatorial plane. The top pair of curves describe models with the same injection energy, /? = 0.811 (and with M0 » 0.8 M0) ; the lower curve of the pair 
represents a nearly spherical star, the upper curve a model rotating at Q æ QK (Q = 0.41 x 104 s_ 1). The middle pair of curves correspond to models with = 0.676 
(M0 « 1.4 M0), with the lower curve (at r = 0) representing a nearly spherical model, and the upper (at r = 0) a model rotating atQ ä QK (Q = 0.57 x 104 s"1). The 
single (lowest) curve represents a model with ß = 0.352, M0 = 2.47 M0, and Q « QK; there is no corresponding spherical model because the mass (and rest mass) 
exceed the limits for spherical models based on EOS C. Properties of these models are listed in Tables 2 and 8. 
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r (km) 
Fig. 11.—For the five models of Fig. 10 (EOS C), the ratio co/Q of the frame dragging parameter to the model’s angular velocity vs. the radial coordinate r. 

(o = — (¡)atJ<t)b<{)b is the angular velocity of a zero angular momentum observer.) The order of the curves is the reverse of that in Fig. 10: From top to bottom at r = 0, 
the curves correspond to models with ß = 0.352, Q &QK;ß = 0.676, Q « 0 and Q æ QK; /? = 0.811, Q æ 0 and Q ^ QK. 

r (km) 
Fig. 12.—For five models based on EOS G, the metric component g00 vs. the radial coordinate r, as in Fig. 10. The top pair of curves describe models 

with ß = 0.844 (M0 « 0.53 M0); the upper curve of the pair represents a nearly spherical model, the lower curve a model with Q ^ (Q = 0.47 x 1015 g cm'3). 
For the middle pair, ß = 0.531 (M0 « 1.4 M0); and Q æ 0 for the lower curve at r = 0, Q « QK (Q = 1.01 x 104 s'1) for the upper. For the single lowest curve, 
ß = 0.32 (M0 = 1.71 M0) and Q » (Q = 1.61 x 1015 g cm'3); again there is no corresponding spherical model with mass (or rest mass) as large as this. 
Properties of these models are listed in Tables 5 and 10. 
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r (km) 

Fig. 13.—For the five models of Fig. 12 (EOS G), the ratio w/Q of the frame dragging parameter to the model’s angular velocity vs. the radial coordinate r. The 
order of the curves is the reverse of that in Fig. 12: From top to bottom at r = 0, the curves correspond to models with ß = 0.32, Q « Q*; ß = 0.531, Q æ 0 and 
Q æ Qk; ß = 0.844, Q æ 0 and Q « QK. 

Fig. 14.—For six models based on EOS L(MF), the metric component g00 is plotted against the radial coordinate r, as in Figs. 10 and 11. The top pair of curves 
describe models with ß = 0.756 (M0 « 1.4 M0); for the middle pair, ß = 0.62 (M0 ^ 2.2 M0); and for the lowest pair ß = 0.467(M0 ^ 3.1 M0). The upper curve (at 
r = 0) of each pair represents a nearly spherical model, the lower curve a model with Q « QK (Q = 0.38 x 104 s-1, Q = 0.49 x 104 s_1, Q = 0.60 x 104 s_1, 
respectively for the ß — 0.756,0.62, and 0.467 models). Properties of these models are listed in Table 6. 
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Fig. 15.—For the six models of Fig. 14 [EOS L(MF)], the ratio œ/Çï of the frame dragging parameter to the model’s angular velocity vs. the radial coordinate r. 
The order of the curves is the reverse of that in Fig. 14: From top to bottom at r = 0, the curves correspond to models with ß = 0.467, Q = 0 andQ &QK ; ß = 0.62, 
Q » 0 and Q ä Qk; ß = 0.756, Í) « 0 and H « QK. 

Z (km) 

ti (km) 

Fig. 16.—The surfaces of four models based on EOS C(BJ I) are depicted here by four embedding diagrams. Surfaces of revolution obtained by sweeping the 
curves about the z-axis have the intrinsic geometry of the stellar surfaces. The four models have injection energy ß = 0.811, rest mass M0 = 0.8 M0, and angular 
velocities Q = 0,0.15 x 104 s~ \ 0.30 x 104 s'1, and 0.41 x 104 s~1 « QK. The increase in equatorial radius (the value of gj at z = 0) with increasing angular velocity 
may be used to identify the curves. 
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Fig. \la 

Fig. 17.—{a) The surfaces of four models based on EOS G depicted by embedding diagrams as in Fig. 16. For these models ß = 0.844 (M0 « 0.53 M0); and 
Q = 0,0.30 x 104 s- \ 0.45 x 104 s~ \ and 0.47 x 104 s"1 « QK. (È) For the four models of (a), the energy density in the equatorial plane vs. the radial coordinate r. 
Curves may be identified by the decrease in central density (or by the increase in radius) with increasing angular velocity. The location of each stellar surface is 
indicated by a dot along the r-axis, marking the end of the e(r) curve for that model. 
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132 FRIEDMAN, IPSER, AND PARKER 

Fig. m 
Fig. 18.—(a) The surfaces of three additional models based on EOS G depicted by embedding diagrams as in Fig. 16. For these models /? = 0.531 (M0 « 1.4 

M0); and Q = 0.15 x 104 s-1, 0.54 x 104 s-1, and 0.99 x 104 s-1 » QK. (b) For the three models of (a), the energy density in the equatorial plane vs. the radial 
coordinate r, as in Fig. 176. 

equatorial plane reaches a minimum value at a radius slightly 
larger than that of the QK model and then rises again until the 
edge of the grid is reached. The Keplerian frequency can also 
be found numerically using equations (23a)-(23b). With QK 
carefully determined as the smallest value of Q for which the 
density first reaches the edge of the grid, the result agrees with 
that obtained from equation (23) to 2%-4%. The error pre- 
sumably reflects our inaccuracy in locating the stellar surface 
between radial grid points. 

V. ASTROPHYSICAL IMPLICATIONS 

a) Growth Times for Nonaxisymmetric Instability 
As noted previously, because sequences of uniformly rotat- 

ing neutron stars appear to end prior to an m = 2 (bar mode) 
instability, modes with angular dependence exp (imcj)) for 
m = 3 and m = 4 are expected to set the upper limit on rota- 
tion for accreting neutron stars with weak magnetic fields. We 
can use our models to estimate the growth rates of these 
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Fig. \9b 

Fig. 19.—{a) The surfaces of four models based on EOS L(MF) depicted by embedding diagrams as in Fig. 16. For these models ß = 0.756 (M0 « 1.4 M0); and 
Q = 0,0.30 x 104 s~ \ 0.36 x 104 s- \ and 0.383 x 104 s"1 % QK. {b) For the four models of (a) the energy density in the equatorial plane vs. the radial coordinate r, 
as in Fig. 17b. 
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Fig. 20a 

Fig. 20b 
Fig. 20.—(a) The surfaces of four additional models based on EOS L(MF) depicted by embedding diagrams as in Fig. 16. For these models ß = 0.467 (M0 » 2.7 

M0); and Q = 0, 0.45 x 104 s-1, 0.585 x 104 s-1, and 0.60 x 104 s_1 % QK. (b) For the four models of (a) the energy density in the equatorial plane vs. the radial 
coordinate r, as in Fig. 176. 
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O 4.0 8.0 12.0 1Ó.0 20.0 

r(km) 
Fig. 21.—Energy density in the equatorial plane vs. the radial coordinate r for four models rotating with maximum angular velocity, Q » QK, and having rest 

mass M0 » 1.4 M0. In order of increasing radius (or decreasing central density), the curves correspond to the following models, labeled by EOS, injection energy ß, 
and angular velocity Q: EOS G, ß = 0.54, Q = 1.005 x 104 s"1; EOS C(BJ I), ß = 0.676, Q = 0.574 x 104 s“1; EOS N*, ß = 0.715, Q = 0.482 x 104 s“1; 
EOS L(MF),ß = 0.756,fi = 0.383 x 104 s"1. 

TABLE 8 
Models at Termination Points for Equation of State C(BJ I) 

I 
Q (1015 gem-3) M/Mq Mq/Mq R œJÇï T/W Veq/c (1045 gem2) cJ/GM2 

0.811. 
0.738. 
0.676. 
0.521. 
0.446. 
0.383. 
0.372. 
0.360. 
0.352. 
0.349. 
0.330. 

0.413 
0.502 
0.573 
0.758 
0.869 
0.990 
1.017 
1.047 
1.071 
1.080 
1.144 

0.506 
0.644 
0.773 
1.20 
1.58 
2.14 
2.30 
2.49 
2.64 
2.71 
2.14 

0.783 
1.06 
1.29 
1.82 
2.03 
2.14 
2.15 
2.16 
2.16 
2.16 
2.14 

0.814 
1.12 
1.39 
2.03 
2.29 
2.45 
2.46 
2.47 
2.47 
2.47 
2.44 

18.3 
17.7 
16.9 
15.8 
15.1 
14.0 
13.6 
13.4 
13.2 
13.1 
12.1 

0.249 
0.315 
0.402 
0.575 
0.650 
0.740 
0.755 
0.771 
0.783 
0.788 
0.819 

0.071 
0.084 
0.093 
0.106 
0.110 
0.111 
0.110 
0.110 
0.110 
0.110 
0.107 

0.25 
0.30 
0.32 
0.40 
0.44 
0.46 
0.46 
0.47 
0.48 
0.47 
0.46 

0.87 
1.31 
1.69 
2.49 
2.68 
2.61 
2.56 
2.49 
2.44 
2.42 
2.22 

0.62 
0.59 
0.57 
0.52 
0.50 
0.49 
0.49 
0.49 
0.49 
0.49 
0.48 

0.77 
0.76 
0.74 
0.73 
0.72 
0.69 
0.69 
0.68 
0.68 
0.68 
0.66 

0.11 
0.16 
0.22 
0.38 
0.50 
0.62 
0.64 
0.67 
0.68 
0.69 
0.75 

0.41 
0.55 
0.67 
1.11 
1.41 
1.74 
1.80 
1.89 
1.94 
1.96 
2.10 

-0.19 
-0.21 
-0.22 
-0.27 
-0.30 
-0.31 
-0.31 
-0.33 
-0.32 
-0.31 
-0.30 

TABLE 9 
Models at Termination Points for Equation of State F 

n (101 . €c 5 g cm 
/ 

3) M/Mq MJMq (Uc/n T/W VeJc (1045 g cm2) cJ/GM2 

0.798. 
0.721. 
0.640. 
0.541. 
0.476. 
0.460. 
0.445. 
0.435. 
0.405. 
0.390. 
0.370. 
0.350. 
0.340. 

0.483 
0.585 
0.689 
0.841 
0.992 
1.035 
1.077 
1.104 
1.215 
1.245 
1.317 
1.397 
1.441 

0.66 
0.85 
1.12 
1.81 
2.71 
2.99 
3.14 
3.55 
3.81 
4.12 
4.63 
5.28 
5.70 

0.74 
1.01 
1.27 
1.53 
1.62 
1.62 
1.63 
1.64 
1.66 
1.66 
1.66 
1.65 
1.64 

0.77 
1.07 
1.37 
1.69 
1.80 
1.80 
1.82 
1.84 
1.86 
1.87 
1.86 
1.85 
1.84 

16.0 
15.5 
14.8 
14.0 
12.8 
11.7 
12.0 
11.8 
11.2 
10.7 
10.5 
10.1 
9.8 

0.27 
0.35 
0.44 
0.56 
0.66 
0.65 
0.70 
0.71 
0.75 
0.77 
0.80 
0.83 
0.84 

0.072 
0.086 
0.096 
0.100 
0.097 
0.096 
0.096 
0.095 
0.094 
0.094 
0.093 
0.093 
0.093 

0.26 
0.30 
0.34 
0.39 
0.42 
0.40 
0.43 
0.42 
0.42 
0.44 
0.46 
0.47 
0.47 

0.66 
1.00 
1.34 
1.54 
1.41 
1.34 
1.30 
1.28 
1.20 
1.16 
1.09 
1.02 
0.98 

0.61 
0.59 
0.56 
0.52 
0.49 
0.49 
0.48 
0.48 
0.47 
0.47 
0.47 
0.47 
0.48 

0.75 
0.75 
0.75 
0.74 
0.71 
0.69 
0.70 
0.69 
0.69 
0.69 
0.68 
0.67 
0.67 

0.12 
0.18 
0.25 
0.36 
0.45 
0.47 
0.50 
0.52 
0.57 
0.60 
0.64 
0.69 
0.71 

0.43 
0.58 
0.76 
1.04 
1.27 
1.31 
1.40 
1.44 
1.60 
1.68 
1.80 
1.93 
2.00 

-0.19 
-0.21 
-0.24 
-0.27 
-0.29 
-0.26 
-0.29 
-0.29 
-0.30 
-0.29 
-0.31 
-0.32 
-0.32 
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TABLE 10 
Models at Termination Points for Equation of State G 

Q (1015 gem-3) M/Mq M0/Mq 
I 

cjoJQ T/W VJc (1045 gem2) cJ/GM2 

0.84. 
0.79. 
0.74. 
0.64. 
0.60. 
0.57. 
0.54. 
0.49. 
0.41. 
0.37. 
0.34. 
0.32. 

0.473 
0.570 
0.645 
0.810 
0.870 
0.930 
1.005 
1.095 
1.296 
1.416 
1.524 
1.611 

0.79 
1.08 
1.31 
1.75 
1.99 
2.17 
2.39 
2.85 
3.74 
4.55 
5.48 
6.37 

0.51 
0.66 
0.80 
1.04 
1.16 
1.22 
1.28 
1.37 
1.49 
1.53 
1.55 
1.53 

0.53 
0.69 
0.84 
1.13 
1.27 
1.34 
1.41 
1.53 
1.68 
1.71 
1.73 
1.71 

13.3 
12.6 
11.4 
10.8 
10.7 
10.5 
10.3 
10.2 
9.6 
9.1 
8.6 
8.3 

0.22 
0.28 
0.34 
0.46 
0.50 
0.53 
0.57 
0.63 
0.72 
0.77 
0.81 
0.83 

0.051 
0.064 
0.067 
0.076 
0.079 
0.084 
0.087 
0.092 
0.099 
0.101 
0.101 
0.099 

0.23 
0.27 
0.28 
0.29 
0.31 
0.33 
0.34 
0.37 
0.41 
0.43 
0.43 
0.50 

2.99 
4.26 
5.19 
6.96 
7.90 
8.30 
8.70 
9.16 
9.43 
9.08 
8.66 
7.80 

0.61 
0.62 
0.59 
0.59 
0.57 
0.59 
0.59 
0.60 
0.61 
0.61 
0.62 
0.62 

0.73 
0.74 
0.70 
0.69 
0.68 
0.68 
0.69 
0.68 
0.68 
0.67 
0.65 
0.65 

0.09 
0.12 
0.16 
0.25 
0.29 
0.32 
0.36 
0.43 
0.56 
0.64 
0.71 
0.77 

0.34 
0.44 
0.51 
0.71 
0.81 
0.90 
1.00 
1.18 
1.56 
1.79 
2.01 
2.16 

-0.16 
-0.18 
-0.17 
-0.19 
-0.19 
-0.21 
-0.22 
-0.24 
-0.28 
-0.29 
-0.29 
-0.29 

modes. Two estimates are made, using results of Lindblom 
(1985) and of Managan (1985), and the predicted growth times 
are similar. 

Lindblom has computed the damping time t and real fre- 
quency <j of normal modes with / = m for spherical stars of rest 
mass M0 = 1.4 M0, and based on the EOSs we consider here. 
For slow rotation, he observes that a is related to the frequency 
(j0 of the spherical star by 

<7 = <70 — amQ , (24) 

where a is a constant smaller than 1. For Q > cr0/m, the fre- 
quency is negative and the mode is unstable, with a growth 
time on the order of 

? = T0koA7l2m+1 • 

Extrapolating equation (24) to a neighborhood of the insta- 
bility point Q = Qm, where a vanishes, we have 

a « moc(Q — Qm) , 

and Q < Qk implies 

<7 < m(QK - Q J . 

Then the growth time is given approximately by 

With Q4 > Q(t = 0.04) (from the Newtonian results quoted 
above), we have t4 > 107 s; the more probable value, Q4 ä 
Q(i = 0.06), implies t4 > 109 s. Similarly, Q3 > Q,(t — 0.06) 
implies t3 > 106 s, and the more probable value, Q3 æ Q(i = 
0.08), implies t3 > 108 s. 

A second estimate is based on Managan’s (1985) quasi- 
Newtonian analysis. In the absence of viscosity, he finds the 
frequency of oscillation crm and the growth time scale Tm for the 
unstable m-mode are given by 

<rm = s-1 (26) 
and 

/ rr* \ — {2m + 1) 
Tm = (isoöj ^*MVm+2)s- (27) 

Here M is the mass in units of 1.4 M0 and 5>p is the polar 
gravitational potential in units of 0.15c2. The quantity er* is 
related to the amount At by which the actual value of t exceeds 
the critical value for no viscosity. For 0.5 <; n # 1, the data in 
Managan’s Table 2 imply that 

and 

9.5 x 104' 
1.5 x 105 At (28) 

Tm > T, 
«t(í2K - Í4 

(25) 
(4 + 6n2) x 106 

[1 +(3/2)n2] x 10n_ ' 
(29) 

TABLE 11 
Models at Termination Points for Equation of State L(MF) 

Q (1015 gem-3) M/Mq M0/Mg coc/Q T/W VJc (1045 g cm2) cJ/GM2 

0.756. 
0.74 .. 
0.70.. 
0.66.. 
0.62.. 
0.58.. 
0.54 .. 
0.50.. 
0.46 .. 
0.42 .. 
0.38.. 
0.36 .. 
0.34 .. 
0.33 .. 
0.32.. 

0.383 
0.398 
0.428 
0.458 
0.488 
0.518 
0.548 
0.578 
0.608 
0.645 
0.694 
0.725 
0.764 
0.786 
0.807 

0.311 
0.324 
0.369 
0.414 
0.444 
0.472 
0.504 
0.533 
0.610 
0.707 
0.879 
0.983 
1.11 
1.27 
1.33 

1.23 
1.32 
1.53 
1.73 
1.94 
2.15 
2.37 
2.58 
2.78 
2.98 
3.10 
3.14 
3.18 
3.16 
3.14 

1.32 
1.41 
1.66 
1.89 
2.13 
2.39 
2.66 
2.93 
3.21 
3.47 
3.63 
3.68 
3.72 
3.70 
3.70 

19.1 
19.9 
20.3 
20.0 
20.0 
20.0 
20.1 
20.0 
19.6 
18.8 
18.0 
17.6 
17.3 
16.7 
16.3 

0.298 
0.315 
0.360 
0.405 
0.449 
0.522 
0.533 
0.575 
0.629 
0.668 
0.718 
0.743 
0.767 
0.785 
0.793 

0.076 
0.081 
0.089 
0.094 
0.100 
0.106 
0.111 
0.113 
0.115 
0.118 
0.119 
0.119 
0.122 
0.116 
0.114 

0.270 
0.293 
0.323 
0.343 
0.325 
0.382 
0.415 
0.433 
0.471 
0.480 
0.496 
0.509 
0.526 
0.500 
0.490 

2.53 
2.83 
3.55 
4.14 
4.78 
5.54 
6.39 
7.06 
7.86 
8.43 
8.33 
8.10 
7.87 
7.30 
7.03 

0.73 
0.73 
0.73 
0.72 
0.71 
0.71 
0.71 
0.70 
0.70 
0.70 
0.68 
0.68 
0.68 
0.65 
0.65 

0.76 
0.76 
0.76 
0.74 
0.74 
0.74 
0.74 
0.73 
0.72 
0.71 
0.69 
0.69 
0.69 
0.68 
0.68 

0.15 
0.16 
0.20 
0.23 
0.27 
0.31 
0.36 
0.41 
0.47 
0.54 
0.62 
0.67 
0.71 
0.74 
0.77 

0.49 
0.53 
0.61 
0.70 
0.79 
0.91 
1.04 
1.18 
1.34 
1.54 
1.76 
1.90 
2.07 
2.17 
2.31 

-0.18 
-0.19 
-0.21 
-0.21 
-0.22 
-0.23 
-0.25 
-0.25 
-0.26 
-0.27 
-0.28 
-0.28 
-0.30 
-0.28 
-0.27 
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In these and in the following equations the upper entry refers 
to m = 3 and the lower to m = 4. We now have 

'2 x 103' 
3 x 103 s-1 

0.02/ p 

and 

(30) 

2 x 106' 
4 x 108 

At 
ÖÖ2 

— (2m +1) 
Md);(m+2). (31) 

Using ¿3^0.08 and i4 ä 0.06 again yields growth times 
ranging from months to years. 

In the presence of viscosity, these modes will be unstable 
only when xm above is less than the viscous damping time (cf. 
Comins 1979), 

- lO^sVfoo s . (32) 
Here R15 is the equatorial radius in units of 15 km, and v100 is 
the viscosity in units of 100 cm2 s-1. This value of viscosity 
conforms to the calculations of Flowers and Itoh (1976, 1979) 
when T — 109 K. For smaller T, the viscosity is larger, with 
expected dependence v oc T _ 2 in a superfluid interior. There is, 
however, substantial uncertainty in estimating viscosity and 
consequently in deciding when the gravitational radiation 
instability will be important. In particular, a large effective 
bulk viscosity might arise from hyperon production in the core 
(Langer and Cameron 1969). 

Newly formed neutron stars maintain temperatures T > 109 

K for years, cooling to 108 K after ~ 103 yr. If rapidly rotating 
pulsars with weak magnetic fields can arise from collapse of 
white dwarfs, their rotation is therefore likely to be limited by 
the gravitational wave instability. For old accreting neutron 
stars, however, an expected temperature of 107 K appears to 
imply a viscous damping time in the range 105 < t < 109 s 
(Wagoner 1984). When Q æ QK, both the m = 3 and m = 4 
modes may be unstable, but because of the uncertainty in v, the 
question remains open.2 

If the spread in the masses of actual neutron stars is not too 
large, one would expect the rotation frequencies of fast pulsars 
to stack up at the limiting value of Q (cf. Friedman 1983). If 
M0 ä 1.4 M0, then, as discussed in § III, the limiting fre- 
quency ranges from ~0.8xl04s-1 for EOS G to 
-0.55 x 104 s“1 for C(BJ I) to 0.4 x 104 s“1 for L(MF). The 
values increase with M0 and with T/\W\. 

b) Axisymmetric Instability 
A second instability involves overall axisymmetric collapse. 

As noted earlier, for a given equation of state and for uniform 
rotation, this instability sets in (on a viscous time scale in 
general) along a sequence of fixed-angular-momentum con- 
figurations at the point where the mass peaks. In a plot of mass 
M versus radius R (cf. Figs. 5-8), the locus of such points is a 
line running from the peak of the M(R) curve at zero angular 
momentum to the maximum-mass model for uniform rotation. 
If a configuration with baryon mass M0 greater than the 
maximum value for nonrotating configurations spins down, for 
example by emission of magnetic dipole radiation, it will col- 

2 It has also been suggested (Blandford, Applegate, and Hernquist 1983) 
that magnetic fields on the order of 1012 G might arise spontaneously over a 
period of 105 yr as a young neutron star cools. If this were generally the case, 
the spin of neutron stars with white dwarf progenitors would be limited by the 
magnetic field, not by gravitational instability or the Keplerian velocity. 

TABLE 12 
Stability Termination Limits for the Fast Pulsar3 

Equation ec 
of State (1015 g cm-3) M/M0 R I Zp 

G  0.8 0.5 20 0.25 0.05 
C  0.4 0.8 20 0.9 0.1 
L  0.3 1.3 21 2.7 0.15 

a All values are lower limits except that for R, which is an upper 
limit. 

lapse when it reaches the line of instability in the M(R) plot. 
We have not performed the calculations needed for determin- 
ing precisely where the instability lies; but it is fairly evident 
from Figures 5-8 that a typical configuration near the onset of 
this instability has values of M and R ranging from — 1.5 M0 
and 9 km for EOS G to — 2 M0 and 12 km for C to —3 M0 
and 16 km for L. 

c) Implications for the Fast Pulsar 
For a given equation of state and for uniform rotation, the 

observed stable angular velocity Qfp = 0.403 x 104 s”1 of the 
fast pulsar places limits on the values of various physical 
parameters describing its structure. (This has been noted 
already by Ray and Datta 1984.) Certainly Qfp < DK, the value 
at sequence termination. We might also demand that the fast- 
pulsar value of t < 0.8, corresponding to the statement that the 
nonaxisymmetric modes are stable. In either case our results 
imply the same rough limits on structure parameters for the 
fast pulsar. These limits are obtained by extrapolation of the 
data in Tables 3-6 and are exhibited in Table 12, where all 
values are lower limits except that for R, which is an upper 
limit. 

On the other hand, suppose we demand that the fast pulsar 
have baryon mass M0 >1.4 M0. Then our results imply the 
approximate limits exhibited in Table 13. The values for ec, M, 
/, and Zp are lower limits, while those for T/W and R are 
upper limits. Table 13 underscores the fact that the fast pulsar 
might be hovering at the nonaxisymmetric stability limit if its 
baryon mass M0 ^ 1.4 M0 and if the correct EOS 
resembles L. Note from Figure 1 that for uniform rotation and 
for M0 ä 1.4 M© the fast pulsar rules out all EOSs (e.g., M) 
that are significantly stiffer than L. 

Of course, any of the proposed EOSs can be accommo- 
dated by increasing the fast pulsar’s mass. For Q = Qfp, there is 
a maximum possible mass for each EOS independent of stabil- 
ity considerations. Rough upper limits on the mass of the fast 
pulsar range from — 1.5 M© for EOS G to — 2 M© for C to — 3 
M© for L. 

TABLE 13 
Mass Constraint Limits for the Fast Pulsar3 

Equation ec 
of State (1015 g cm-3) M/M0 R T/W I Zp 

G  3 1.25 9 0.01 0.6 0.35 
C  0.9 1.3 13 0.03 1.4 0.20 
L  0.3 1.3 20 0.08 2.5 0.15 

* The values for ec, M, /, and Zp are lower limits. Those for T/W and R 
are upper limits. 
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d) Neutron Stars Spun Up via Accretion 
If its magnetic field is weak, a neutron star in a binary system 

might be spun up to a state of rapid rotation via accreting 
matter supplied by its companion star (Ghosh, Lamb, and 
Pethick 1977; Alpar et al 1982; Backus, Taylor, and Dama- 
shek 1982). Wagoner (1984) has discussed the possible influ- 
ence of the gravitational radiation driven instability on the 
evolution of such a neutron star. Here we shall briefly 
comment on the implications of our results for this phenome- 
non. If a neutron star is born with rest mass M0 ä 1.4 M0, 
then for the stiffer EOSs (C, O, N, L, and M) R > 6GM/ 
c2 æ 12 km. In these cases we expect circular orbits in the 
accretion disk to be stable down to the stellar surface, because 
in the exterior Schwarzschild geometry, stable circular orbits 
extend down to r = 6GM/c2. For models based on the remain- 
ing EOSs, circular orbits near the surface are unstable, and 
accreting matter will fall on the star with angular velocity 
smaller than that of a Keplerian orbit at the equator. Thus one 
might wonder whether accretion could succeed in spinning a 
neutron star up to its limiting frequency, if the EOS is soft. 

We have examined the stability of circular orbits for the 
models based on EOSs G, FP, C, N, and L listed in this paper. 
For a stationary axisymmetric geometry in which the fre- 
quency of circular orbits is nonzero, a circular orbit is stable if 
and only if the angular momentum of an orbiting particle 
increases with increasing orbital radius (Bardeen 1971). We 
find that even for the softest EOS (G), as these models are spun 
up, the circular orbits stabilize: When M < 1.4 M0, stable cir- 
cular orbits extend down to the stellar surface when Q = QK 
for every EOS. For more massive models, however, stars with 
maximum frequency QK can have unstable circular orbits. A 
rule consistent with all the models we tested is that at Q = QK 
all circular orbits are stable when ß > 0.46, while for ß < 0.40 
circular orbits near the surface are unstable. At Q = QK, only 
models based on the softest equations of state have unstable 
circular orbits when M < 2M0. It is therefore unlikely that 
unstable circular orbits will play a role in the final state of an 
accreting neutron star, unless its initial mass substantially 
exceeds 1.4 M0. 

The neutron star may be spun up via accretion to the critical 
value t3 or i4 at onset of secular gravitational radiation insta- 
bility in the presence of viscosity. If t momentarily exceeds the 
critical value, emission of gravitational radiation via the 
unstable mode will reduce t to the critical value on a growth 
time scale on the order of that given by equation (31). At this 
point the angular velocity of rotation Q could lie anywhere 
between ~0.4 x 104 and 1.5 x 104 s_1, depending on the 
equation of state and the mass of the accreting neutron star. 
According to equation (30), the frequency om of the non- 
axisymmetric mode and of the associated gravitational waves 
could range up to ~3 x 103 s-1. This value is somewhat 
larger than that quoted by Wagoner (1984), who has estimated 
the strength of the waves. 

Roughly the same values of Q and om are appropriate if the 
nonaxisymmetric secular instability is completely wiped out by 
viscosity damping and if the limit on rotation is now imposed 

by sequence termination at Q = QK. In this case the neutron 
star might deposit matter in a surrounding ring. Perhaps the 
ring is subject to nonaxisymmetric instabilities that enable the 
system to radiate away angular momentum efficiently. 

Another interesting possibility is that accretion eventually 
increases the mass past the limit for stability against collapse. 
At this point the neutron star would collapse to a black hole. 
Typical values of cJ/GM2, while less than unity, the maximum 
possible value for a Kerr black hole, are nonnegligible. Prelimi- 
nary results of collapse calculations show the collapse might 
leave behind a significant ringlike distribution of matter (Stack 
1984). 

e) Oblateness Effects in Pulsar Spindown 
Cowsik, Ghosh, and Melvin (1983) have studied how 

changes in oblateness affect the rate of spindown of a pulsar as 
it emits magnetic dipole radiation. Modeling neutron stars as 
Newtonian, Maclaurin spheroids, Cowsik et al found that P, 
the rate of change of pulsar period, does not increase mono- 
tonically with decreasing period P when changes in oblateness 
are allowed for. Rather, P reaches a maximum at a certain 
value of P of the order of a millisecond and then decreases by 
an order of magnitude as P is decreased further. In the same 
approximation, Cowsik et al found essentially that, in our 
notation, the ratio (M//QQ) increases precipitously above 
unity at very small periods. 

One can learn from extrapolation of the results in Tables 2-5 
whether these effects carry over to realistic neutron stars. It 
turns out that the effects survive to some degree only if the 
equation of state is relatively soft. More specifically, consider 
models with M0 æ 1.4 M0. Compare configurations having 
nearly the maximum value of t along a sequence with configu- 
rations having values of t smaller by ~20%, and use subscripts 
1 and 2 to denote quantities associated with the former and 
latter configurations respectively. Since the rate of energy loss 
due to magnetic dipole radiation is proportional to Q4, note 
that 

P 
2n AQ . AQ 
Q2 AM AM fi

2, 

where AQ and AM are changes along a fixed-M0 sequence. 
Hence we find that (Pi/P2) ranges from ~0.4 for EOS G to 
~0.8 for FP to -1.3 for N; and that (M/mÙ)l/(M/IQÙ)2 
ranges from ~ 2.7 for G to ~ 1.3 for FP or for N. 

In summary, for the softest proposed equations of state it is 
true that P should be smaller (by ~50%) for the smallest 
possible periods than for somewhat larger periods, and that 
(M//QQ) should be larger (by ~200%). But the effect dimin- 
ishes fairly rapidly with increasing stiffness and essentially dis- 
appears for the stiffer equations of state. 
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