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ABSTRACT 
Cosmological density fluctuations are often assumed to be Gaussian random fields. The local maxima of 

such fields are obvious sites for the formation of nonlinear structures. The statistical properties of the peaks 
can be used to predict the abundances and clustering properties of objects of various types. In this paper, we 
derive (1) the number density of peaks of various heights vcr0 above the rms <70; (2) the factor by which the 
peak density is enhanced in large-scale overdense regions; (3) the n-point peak-peak correlation function in the 
limit that the peaks are well separated, with special emphasis on the two- and three-point correlations; and (4) 
the density profiles centered on peaks. To illustrate the predictive power of this semianalytic approach, we 
apply our formulae to structure formation in the adiabatic and isocurvature Q = 1 cold dark matter (CDM) 
models. We assume bright galaxies form only at those peaks in the density field (smoothed on a galactic scale) 
that are above some global threshold height v, æ 3 fixed by normalizing to the galaxy number density. We 
find, for example, that the shapes of the peak-peak two- and three-point correlation functions for the adiabatic 
CDM model agree well with observations before any dynamical evolution, just due to the propensity of the 
peaks to be clustered in the initial conditions. Only moderate dynamical evolution is required to bring the 
amplitude of the correlations up to the observed level. The corresponding redshift of galaxy formation zg in 
the isocurvature model is too recent (zg æ 0) for this model to be viable. Even for the adiabatic models zg ä 
3-4 is predicted. We show that the mass-per-peak ratio in clusters, and thus presumably the cluster mass-to- 
light ratio, is substantially lower than in the ambient medium, alleviating the Q problem. We also confirm that 
the smoothed density profiles of collapsing structures of height ~ vt are inherently triaxial. 
Subject headings: early universe — galaxies: clustering — galaxies: formation 

I. INTRODUCTION 

Recent theories of the formation of cosmological structures focus attention on the linear and early nonlinear epochs appropriate 
to the collapse of regions of different length scales. The structure and clustering pattern of the objects forming reflect the initial 
conditions. These are embodied in a probability ensemble for linear density perturbation configurations F(r, t) = [p(r, t) — <p>]/ 
<p>. The fluctuation density F(r, t) thus defines a three-dimensional random field. In this paper we derive some statistical properties 
of the local maxima of such fields, assuming they are Gaussian distributed. Our results can form the core of an analytical framework 
within which to address the problem of structure formation from small-amplitude initial density fluctuations. 

The methods we use here complement the rc-body and hydrodynamical techniques which are commonly applied to this problem. 
In principle, n-body methods allow one to follow the nonlinear evolution of any random density field by evolving enough 
realizations from the probability ensemble so that a combination of averaging over spatial volumes and over ensemble members 
converges. In practice, limitations arise from discreteness and from present computing capabilities: calculations can cover only 
limited spatial and temporal dynamic ranges; and the number of realizations from the ensemble that can be evolved is relatively 
small (see Efstathiou ei a/. 1984 for a recent discussion). For example, the development of rare condensations such as rich clusters 
are rather difficult to examine by n-body techniques (Barnes et al 1984). The analytic methods described here are already ensemble 
averaged and allow one to investigate easily the gross features of a broad class of initial conditions; they are particularly suited for 
the study of rare events (see Kaiser 1984 for an application to rich clusters). At present, cosmological hydrodynamical studies 
require localized precollapse structures for their initial conditions. Probabilities of various initial shapes can best be obtained by the 
statistical methods of the sort we develop here. 

In our approach to the problem of nonlinear evolution of structure, we focus on the local maxima of the initial density 
perturbations. We assume that condensations of matter form around sufficiently high local density peaks. In order that the density 
field possess a well-defined set of local maxima it must be smooth and differentiable; its harmonic content must be limited at high 
wavenumbers. It is often assumed that at very early times the spectrum of fluctuations had a power-law form over a wide range of 
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length scales. Deviations from any power law would have arisen naturally on some small scale when the fluctuations were generated, 
leading to differentiability. However, this length may be tiny, far below scales associated with cosmic structure. If fluctuation power 
is significant for arbitrarily short wavelengths, then noisy structure will exist on all scales. Universes dominated by cold dark matter 
have such fluctuation spectra (Peebles 1982a; Bond and Szalay 1983). Every cloud would consist of ever smaller subclouds down to 
the small cutoff scale. During linear evolution, low-pass filtering on cosmologically interesting scales may occur as the result of a 
variety of physical processes. For example, adiabatic density fluctuations in baryon-dominated universes suffer Silk damping, and, 
in neutrino-dominated universes, they suffer collisionless damping as well. The first structures to form are of the physical filtering 
scale, with smaller scale structure generated by the “ pancaking ” process (Zeldovich 1970). 

If no physical filtering process exists, as in the cold dark matter picture, we can still treat the formation of objects of some 
characteristic size by applying an artificial low-pass filter of this scale to the density fluctuation spectrum. This has the effect of 
smoothing out all the high-frequency spikes in the density field. Since the filter is not physical, care must be taken to avoid the 
overinterpretation of smoothed density field statistics. This applies especially to the problem of shapes near peaks (§ VII). 

Our model constitutes a nonlocal and nonlinear operation which, when applied to an initial continuous density field F{r\ yields a 
“ population of objects ” described by the density field of a point process, a sum of ^-functions : 

«pkW = Z -»•;>) , (L1) 
P 

where the rp are the positions of the maxima satisfying certain physically motivated conditions, such as t^at their height be above 
some threshold. The nonlocality is embodied in the linear filtering, or smoothing, operation (if required), and the nonlinearity is 
introduced by the subsequent application of a threshold criterion. The model has two adjustable parameters : the filtering length and 
the threshold parameter. We feel that this composite operation encompasses the essential features of the clustering action of gravity. 
It can also provide a model for a threshold mechanism which may operate, for instance, if galaxy formation were suppressed except 
at the high peaks of the density field. 

We shall restrict ourselves to isotropic homogeneous Gaussian random fields with zero mean as descriptions of the initial 
cosmological density fluctuations. Such a field is completely specified, in a statistical sense, by a single function : the power spectrum 
P(k\ or, equivalently, its Fourier transform, the autocorrelation function, ^(r). The Gaussian nature is retained throughout the linear 
regime of evolution. In principle, then, a complete statistical description of the local maxima can be extracted from the power 
spectrum. 

That a Gaussian random field may provide a good description of the properties of density fluctuations could arise in a number of 
ways. The central limit theorem implies that a Gaussian distribution arises whenever one has a variable (or, more generally, a 
vector) which is a linear superposition of a large number of independent random variables (or vectors) which are all drawn from the 
same distribution. In particular, if the field F(r) is written as a spatial Fourier decomposition, and its Fourier coefficients Fk are 
statistically independent, each having the same form of distribution, then the joint probability of the density evaluated at a finite 
number of points will be Gaussian under very weak conditions. Special cases of this include the random phase approximation, in 
which it is assumed that the phases of Fk are uniformly distributed from 0 to 2%. The specific form of the distribution of the moduli 
I Fk I does not matter. We note that small-amplitude curvature perturbations generated by quantum fluctuations in an inflationary 
phase of the very early universe would yield a Gaussian random density field. Other examples of density fluctuations which are 
approximately Gaussian are provided by shot noise distributions. A “ shot noise ” density field consists of “ shots ” (specific local 
density profiles such as Gaussians) centered on sites chosen from some random point process (e.g., Poisson statistics). On scales 
much larger than that of the shot, such distributions tend toward Gaussians as a consequence of the central limit theorem (Rice 
1944). For example, gas density perturbations generated “spontaneously” by inhomogeneous sources of radiation burning at 
redshifts of a few hundred (Hogan 1983) should be nearly Gaussian, although deviations at the high-mass end are possible (Hogan 
and Kaiser 1983). High-density loops of cosmic strings (Vilenkin 1985), the “ shots,” would constitute a highly non-Gaussian density 
field locally. However, these loops would also have generated adiabatic perturbations in the matter as they entered the horizon, and 
this component may be approximately Gaussian. 

The statistical analysis of one-dimensional Gaussian random fields was pioneered by Rice (1944, 1945) to analyze electrical noise 
in communication devices. He obtained expressions for the frequency of upward zero crossings, of maxima, and of extrema. The 
clustering properties were largely ignored. Longuet-Higgins (1957) extended Rice’s analysis to two dimensions; his prototype 
random surface was an ocean surface rippled by gentle winds. He obtained the average number of maxima per unit area and the 
distribution of their heights, but was unable to obtain an expression for their spatial distribution except for a nearly monochromatic 
field. Less progress has been made for the case of higher dimensional fields due largely to the mathematical complexities. Adler 
(1981) has written a rigorous mathematical text on those few theorems that have been proved. 

Doroshkevich (1970) was the first to apply these methods extensively to the study of the formation of cosmic structure. The many 
results given in this classic paper have mostly been applied to the pancake model, primarily by the Russian school. Adler and 
Doroshkevich give the number of peaks per unit volume in the limit where the amplitude of the peaks is extremely high (§ IV). They 
also obtain a closed analytic result for the average Euler characteristic expected per unit volume for contour surfaces of a given 
density ; this useful result is twice the density of maxima in the high-peak limit (§ IV). Doroshkevich also evaluated the average 
shapes of contours around maxima (§ VII). Unfortunately, Doroshkevich only presents his results for a rather specific choice of 
power spectrum (an approximation to that which arises from initially adiabatic fluctuations in a baryon-dominated universe) and 
focuses primarily on high threshold limits, which, as we shall show, are inaccurate in the regime of cosmological interest. He also 
does not address the important issue of the spatial distribution of maxima; in particular, determination of their correlation 
functions. Doroshkevich and Shandarin (1978a, b) have calculated some of the statistical properties of the maxima of the largest 
eigenvalue of the shear tensor. These maxima define the “ domain walls ” where pancakes form rather than the isolated points which 
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form the maxima of the density field. These authors also restrict their analysis to bary on-dominated “pancake” models. Recently, a 
number of workers have attenpted to determine the properties of bound objects which form in universes dominated by dark matter 
in which the perturbations obey Gaussian statistics (Peebles 1984; Hoffman and Shaham 1984; Schaeffer and Silk 1984); when the 
calculations involve the constraint that a point is an extremum of the density, our results differ from theirs. In § III, we discuss the 
procedure for constructing conditional probabilities subjected to the extremum constraint. These are required for the correct 
calculation of the spatial distribution of extrema and of the density profiles around them. 

Kaiser (1984) discussed the way in which the clustering of maxima reflects the correlations of the underlying density field. He 
obtained the two-point correlation function of those regions with density fluctuations above some threshold v (in units of the rms 
fluctuation level, do); the autocorrelation of a Heaviside function of the density field: Y(r) = 0[F(r) - v(70]. On large scales, 
<7(r)7(0)> is proportional to <F(r)F(0)> with an amplitude which increases with increasing threshold. This mechanism might 
account for the anomalously large correlation strength of rich clusters. Politzer and Wise (1984) extended this result and also gave 
an expression for the n-point correlation function of the highly non-Gaussian field Y(r) valid in the limit of very high threshold. The 
large-scale clustering properties of 7(r) can also be obtained from an effective density field which is simply the exponential of the 
underlying density field F(r) with its short-wavelength components filtered out; again this result is strictly valid only in the limit of 
high threshold. From this form (exp [vF(r)/cr0]) for the effective density field it is easy to see that on large scales one has a simple 
linear enhancement of the correlation strength, while on smaller scales one has the possibility of a nonlinear enhancement of the 
number density of high peaks in initially overdense regions. It was recognized (Bardeen 1985; Kaiser 1985) that, if, for some reason, 
galaxy formation had been suppressed except at the high-density peaks, this process would give rise to strong segregation of light 
from mass and provide a natural way to reconcile low cluster mass-to-light ratios obtained from virial analysis with an Q = 1 
universe. This statistical mechanism had also been invoked, although in a slightly different context, by Rees (1984) as a possible way 
to obtain mass-to-light segregation on large scales. 

The outline of the paper is as follows. In § II, we define some general properties of random fields. In § III, we discuss the point 
process equation (1.1) and give the general formula for the average number density of peaks. We also discuss the problem of the 
proper conditional probability constraints appropriate to maxima using a one-dimensional illustration. In § IV, we calculate the 
average density of maxima of a general three-dimensional Gaussian field as a function of the heights of the maxima and present a 
useful analytic approximation to our formula. Our results are valid for arbitrary heights. We also obtain the high-peak limit of our 
result and discuss the utility of it and of the average Euler characteristic density. We then compute the average density of 
“ upcrossing ” points on density contour surfaces and show that it gives a good approximation to the peak density. In § V, we 
determine the number density of peaks subject to the constraint that the large-scale density field be fixed. We use this to discuss the 
segregation of high peaks from the underlying mass distribution. In § VI, we present the machinery to calculate n-point peak-peak 
correlation functions. We explicitly calculate the two- and the three-point function. In § VII, we determine the shapes of the profiles 
about maxima. Finally, in § VIII, we summarize our main results and outline how these statistical results can be applied to 
cosmological problems. We have relegated the details of many of the derivations to seven appendices. 

In discussing cosmological applications of our formal results, we assume a universe dominated by cold dark matter (CDM) with 
density parameter Q = 1 and zero cosmological constant. Unless specifically stated otherwise, all spatial separations and length 
scales are described in comoving coordinates in the cosmological background, scaled so they correspond to physical distances at the 
present cosmological epoch. To reflect the observational determination of cosmological distance from redshift, all distances are 
given in units of /i_ 1 Mpc, where h is related to the Hubble constant H0 by 

h = Ho/(100 km s-1 Mpc) . (1.2) 

II. GAUSSIAN RANDOM FIELDS 

An n-dimensional random field F(r) is a set of random variables, one for each point r in n-dimensional real space, defined by the set 
of finite-dimensional joint probability distribution functions, 

PlFir^ F(r2), ..., F(rm)-]dF(ri)dF(r2) • • • dF(rm) , (2.1) 

that the function F have values in the range F(rj) to F(r¿) + dF(rj) for each of the j = 1, ..., m, with m an arbitrary integer and 
r1? r2, ..., rm arbitrary points. By taking appropriate limits, the joint distribution for values of F and its derivatives, VF, VVF, ..., 
follow. Differentiation and integration of random fields may not always be possible; they are usually defined as appropriate limits in 
the mean square. For example, without high-frequency filtering, the density perturbation field for cold dark matter starting from an 
initial Zeldovich spectrum is arbitrarily spiky on small spatial scales, and this random field is not differentiable. 

A Gaussian random field is one for which the various m-point probability distributions (eq. [2.1]) are multivariate Gaussians. A 
joint Gaussian probability distribution for random variables is 

P{yu ..., yn)dyi dyn = 
[(27r)n det (M)]1/2 

Q^AyiM-XAyfil. 

dyi • • • dyn , 
(2.2) 

Only the means of the random variables <)/,•> and their covariance matrix 

Mij = , Ay¿ = - <y¿) , (2.3) 

are required to specify the distribution. If F(r) is Gaussian, joint distributions involving arbitrarily many values of the field and its 
derivatives, integrals, and generally any linear functions of F are Gaussian. For a scalar Gaussian random field with zero mean, 
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knowledge of only the two-point correlation function of F, ¿(rl5 r2) = <E(r1)F(r2)) and its derivatives and integrals is sufficient to 
calculate any statistical property. 

A random field is strictly homogeneous if all finite dimensional distributions are invariant under simultaneous translations of the 
points Tj by the same vector. For Gaussian fields, this implies <F(r)> is spatially independent and £ is a function of the difference 
ri ~ ri only; its Fourier transform is the power spectrum, P(k), given by the variance 

P(k) = i\Fk\
2> ■ (2.4) 

The spatial Fourier modes, Fk = \Fk\ eWk, are defined by the expansion 

F(r) = 2 Y. \Fk\cos(k-r + ek), (2.5) 
k e uhs 

where uhs denotes the upper half of /c-space, the limitation arising from the reality of F, so = — 0fe. 
A strictly homogeneous Gaussian random field is isotropic if £ is rotation invariant. The power spectrum is then only a function 

of\k\. 
Rigorously, in order for a field to be strictly homogeneous and Gaussian, its various spatial Fourier modes, Fk, must be mutually 

independent, have random phases, and have moduli which are Rayleigh-distributed : 

P(\Fk\i 6k)d I Fk I d9k = exp 
\Fk\

2\\Fk\d\Fk\dOk 

2P(k)J P(k) 2n ’ 
(2.6) 

The real and imaginary parts of Fk are then mutually independent and Gaussian distributed. However, as a consequence of the 
central limit theorem, a large variety of distributions will tend to a Gaussian. For example, random phases are essentially all that is 
required of equation (2.6) for the joint distribution of the density evaluated at a number of points to be a multivariate Gaussian. The 
quantum generation of metric fluctuations predicted to occur in inflationary models would give rise to a distribution of the form of 
equation (2.6). 

An important property of Gaussian random processes is that they are ergodic. Our universe is unique, at least in the large. Thus, 
averages taken in our universe must be spatial ones, over a large volume. These averages will be equal to expectations over an 
ensemble of universes to which ours belongs if an ergodic theorem holds. It can be proved that a Gaussian random density 
fluctuation field is ergodic if and only if P(k) is continuous (Adler 1981). 

III. THE EXTREMUM CONSTRAINT 

a) The Number Density of Extrema 
The point process equation (1.1) describes the number density of points p selected to be maxima of the random field F(r). We 

could further restrict the class of points we select if we consider, for example, only those maxima above a certain threshold height. 
Or we might be interested in the less restrictive class of extremal points. 

We can express the point process entirely in terms of the field and its derivatives. In the neighborhood of a maximum point rp we 
can expand the field F(r) and its gradient iy(r) = VF(r) in a Taylor series : 

F(r) x F(rp) + i £ C./r - r^r - rp)j , 
U 

rh(r) « I CiM - rp)j. 
(3.1) 

We have used the extremum constraint f/f(rp) = 0. For the extremum to be a maximum, the second derivative tensor of the field, 
= V/ Vy F(r), must be negative definite at rp. (We are following Rice’s 1944 notation of rj for the first derivative and £ for the second 

derivative.) Provided the (-matrix is nonsingular at rp, we have 

hence 

<S<3)(f — »*,,) = I det £(f-p) I c>(3)[i/(»')] . 

This is true for each maximum, but the ^-function picks out all of the (extremal) points which are zeros of tj(r). The expression for the 
number density of extrema in terms of field derivatives is then 

nexl(»-) = |detC(/-)|(5<3>[l/(i-)] ; (3.2) 

the expression for npk(r) is identical except for the added restriction of negativity on the three eigenvalues of Further, if we select 
only those maxima whose heights are in the range F0 to F0 + dF, a S(F — F0)dF multiplies equation (3.2). 

In principle, we could calculate an infinite hierarchy of correlation functions of equation (3.2). This is necessary for a complete 
description of the point process. In practice, only the ensemble average of equation (3.2) is easily obtainable : 

<"extM> = < I det C(r) I (5<3)[»/(»-)] > 

\dctC\p(F,r, = 0,0dFd6i: (3.3) 
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The homogeneity of the field guarantees that this will be independent of r. To evaluate equation (3.3), we require the joint 
probability distribution p(F, rj, QdF^rjd6^ for the field at r = 0 being in the range F to F + dF, the field gradient rji being in the 
range rji to rji + drjh and the second derivative matrix elements being in the range (ij to Cij + d(0-. This distribution is evaluated as 
the usual multivariate Gaussian (eq. [2.2]). Since Cij is symmetric, there are only six independent components. The computation of 
this integral is given in Appendix A, and the results are discussed in § IV. 

The derivation of equation (3.3) does not require the introduction of the point process but can be obtained directly from the 
probability distribution. We now sketch this development. In order to have a zero of i; somewhere in the infinitesimal volume d3r 
about r = 0, we must have rji ä r7-; hence d3r¡ can be replaced by | det ÇI d3r. The probability that there is a zero in d3r is then 

dFd3r d6C\ det í I p(F, n = 0, Q = (next(F)}dFd3r , 

so the extremum number density is given by equation (3.3). The integral is over all values of ( for an extremum. 
Equations (3.2) and (3.3) can be generalized to the determination of the number density of points for which any (different) random 

fields, y^r), y2(r), ^(r), take on specific values, y10, y2o, Jao- Since y^r) æ yi0 + ^ — r0j), the mean number density is, for 
example, 

("Oho, y20i y3o)> = P(yi = yio, y2 = y20, y3 = yso, {^,4) Idet (3^)1 0 • (3.4) 

In the application to extrema that we are most interested in, yt = rji and yi0 = 0. It is straightforward to obtain the density of points 
with a specific nonzero value of the gradient from this. A related problem would be to determine the density of points for which the 
velocity has a specific value. However, the yt do not have to be the components of a vector for this density formula to be applicable 
(see § IVe). 

b) The Extremum Constraint in Conditional Probabilities 
The problem of density of maxima is especially easy in one-dimension and was solved by Rice (1944, 1945). We review the 

reasoning behind this calculation here because it illustrates an important issue: that care must be taken when constructing 
probabilities of various events subject to the constraint that an extremum exists at some given point (r = 0, say). The conditional 
probability that event A occurs given that event E is true is given by the Bayes formula P(A \ E) = P(A, E)/P(E). For example, we 
might take the event A to be that the height of the density field at the extremum be in some prescribed range, or that the height of the 
field a distance r away from the extremum be in some prescribed range. In this subsection, we discuss the extremum rather than the 
maximum constraint; almost all sufficiently high extrema will be maxima. 

At first sight, one might expect that the event that there is an extremum at zero, F, should be taken to be ^ = dF/dr = 0. However, 
probabilities for point events worded in this way are always zero. What we really mean by the constraint is that there is an 
extremum in an interval of length e about r = 0; we must form conditional probabilities for events Ee of this form, and only then can 
we let the length of the interval go to zero. If re denotes the extremal point, then, since a Taylor expansion of rj(re) implies 
re ~ — *?(0)/C(0), the condition that | re | < e/2 reduces to the condition | rj/C \ < e/2. If we let p(r¡, Ç)drjdÇ and p(A, rj, Qdpd^ denote the 
obvious joint probabilities, then 

P(E, di 
Xe/2 

drjp(rj, Ç)-* € 
J-^12 

i,,,. 

I CI dCp(rj = 0, C), 

P(A, £J->e KldÇp(A, rj = 0, Q as e^ 0 . (3.5) 

The conditional probability is the ratio of these two integrals. The presence of | Cl in both integrands is an important feature. The 
integration is over both positive and negative C for extrema. The constraint that r = 0 be a maximum leads to identical equations 
except that the integration is only over negative C- 

Another possible set of constraint events F' which gives an extremum at r = 0 in the limit e—>0 is given by the condition 
\r¡\ < e/2. This class of events was implicitly assumed by Peebles (1984) and Hoffman and Shaham (1984) in their determination of 
various conditional probabilities of cosmological interest. The obvious advantage that the distribution of second derivatives is not 
required is offset by the fact the probabilities so obtained are biased in favor of extrema with extremely broad profiles. These are just 
the extrema which are of least interest cosmologically. The events F' define intervals of length Ar = e/C within which the extrema 
occur. For fixed e, it is clear that C being as small as possible probes the largest regions for zeros of dF/dr. The events Ee exactly 
compensate for this, so the lengths are all of equal size. 

The average density of extrema as determined from equation (3.3), 

<>ext> = i™ P(Ee)/t > 
£~*0 

(3.6) 

is the probability of finding one per unit length only if the constraint events E£ are chosen. If the extremal points re are chosen to be 
only those for which the event A is true, then the associated mean density is 

<next(A)> = lim F(A, FJ/e . 
e^O 

The conditional probability of event A occurring given that r = 0 is an extremum is thus the ratio of the numbers of special extremal 
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points for which A is true to all extremal points : 

P(A|E) = <next(A)>/<next>. (3.7) 

We are often interested in further constraint conditions, for example that the height of the extremum is some prescribed value. 
Denoting this condition by the event B, we have 

P(A I B, E) = <next(A, B))Knext(B)} . (3.8) 

This result, when extended to three dimensions, is used extensively in the rest of the paper. The extension is straightforward as in 
§IIIa. 

Various erroneous statements have appeared in the cosmological literature because of the choice of E'e as the constraint events. 
Peebles (1984) has claimed that the distribution of heights of an extremum is the same as that for arbitrary points, namely a 
Gaussian. Peebles (1984) and Hoffman and Shaham (1984) have claimed that the expectation of the shape of the profile around an 
extremum, or maximum, is approximately equal to the correlation function of F. As we now show, the distribution of the heights of 
maxima is generally broader than that of field points (§ IV), and the correct average profile is narrower than the correlation function 
(§VII). 

IV. THE PEAK NUMBER DENSITY OF THREE-DIMENSIONAL FIELDS 

a) The Number Density Fitting Formula 
In this section, we sketch the derivation of the differential number density where v = F/o0 with g0 the rms fluctuation 

level of F. [From now on, we let denote differential number densities, and npk(v) denote number densities integrated over 
v.] We also present an accurate fitting formúla lo our result. The derivation is given in detail in Appendix A. The steps are as 
follows: 

1. To evaluate equation (3.3) with the added requirement that the points are maxima rather than just being extrema, we first 
obtain the Gaussian joint probability distribution p(F, rj,X)dFd3rjd6Ç. Since Cij is symmetric, there are only six independent 
components. The integral is over all values of ( for an extremum. 

2. To obtain the density of maxima, £ must be negative definite. In that case, it is useful to rotate to its principal axes. A set of 
Euler angles defines the rotation matrix, R, which diagonalizes (• diag (2l5 Â2, 23) = —RÇRî, Rf denoting the transpose. The 
eigenvalues are positive at a maximum and are ordered by 

/i > 22 > 23 . (4.1) 

The condition that the extremum be a maximum is therefore simply ¿3>0. The density of maxima is 

^pk(v) = <<5(F/(7o-v)|21/223|0(23)(5(iy)>, (4.2) 

where the average is taken using the probability distribution p(F, rj, (). The density of minima is related to that of maxima by 

3. Partial integrations of this expression are of some interest, since they tell us about the distribution of shapes near the peak, 
where F(r) æ F(0) — £ ^rf/l. This is discussed in § VII. We have obtained an analytic expression (eq. [A14]) for JTpk(v, x), where 
x = (2i + 2,2 + 2,3)/<72 (cr2 is a parameter defined in § YVb). The integral over x must be done numerically. 

4. We express the (comoving) differential peak density in terms of a function G(y, w), where w = yv, and y is a spectral quantity 
defined in § I Vh: 

J"pl;(v)dv = ^.'^3 e_v2/2G(y, yv) . (4.3) 

The (comoving) length R* is also defined in § IVh. The explicit form of G is given by equation (A 19). 
5. The following fitting formula designed to agree with the asymptotic large v behavior is accurate to better than 1 % over the 

range 0.3 < y < 0.7 and — 1 < w < oo of cosmological interest, with the accuracy increasing to better than one part in a thousand 
for w > 1 : 

G(y, w) = 
w3 - 3y2w + [B(y)w2 + C^y)] exp [ —A(y)w2] 

1 + C2(y) exp [ —C3(y)w] 

The coefficients A and B are taken from the asymptotic expansion, and the Ci are fits 

5/2 „ 432 

(4.4) 

A = B = 

(4.5) 

(9 - 5y2) ’ (10tc)1/2(9 - 5y2)5/2 ’ 

C, = 1.84 + 1.13(1 - y2)5-72 , C2 = 8.91 + 1.27 exp (6.51y2), C3 = 2.58 exp (1.05y2) . 

b) Spectral Parameters 
The peak density equation involves the parameters y and R* which are related to various moments of the power spectrum 

P(/c) = <|F(/c)|2>: 

<k2} _ <r2 

? </c4>1/2 <72<T0’ 
(4.6a) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

6A
pJ

. 
. .

30
4.

 . 
.1

5B
 

No. 1, 1986 GAUSSIAN RANDOM FIELDS 21 

Here the mean square density fluctuation at time t is 

f* dk 
a2

0(t) = j P(^ O = £(0, 0 ^ <F(r = 0, t)2> . (4.6b) 

It is convenient to extrapolate F by linear perturbation theory to the present (t = t0) to define (To(t0). Thus, in an Einstein-de Sitter 
universe, the redshift at which the rms density fluctuations went nonlinear is given by 1 + znl = <T0(t0). The znl expression is more 
complicated for Q < 1 universes because of the deviation of the perturbation growth law from (1 + z)-1. The parameters (jl and ö-2 
are members of a set of spectral moments weighted by powers of /c2 : 

C k2dk 
aj(t) ^ j ^ P(k, t)k2' . (4.6c) 

Of course, since the density field grows in a self-similar way in the linear regime, the ratios (Tj/(T0 are time independent. Thus y and 
R* and hence the comoving density of peaks do not depend upon the time at which the density is measured. They only involve the 
moments 

</c2> = aj/al = 3(y/K*)2 

<k4> = oHal = 9y2IR% , 
(4.6d) 

which are — 3£"(0)/£(0) and 5¿(If;)(0)/¿(0), respectively, when expressed in terms of derivatives of the density correlation function at 
zero separation. Notice that the peak density only depends upon the spectrum through y except for the overall multiplicative 
volume term R\. The values of y reflects the range over which k3P(k) is large, since <(A/c2)2)1/2/</c2) = {y~2 — 1)1/2 measures the 
relative spectral width. If P is a ¿-function, then 7 = 1; whereas, if k3P is constant over a wide range of /c, then y is much less than 
unity. 

Gaussian smoothing of the random field F(r) on the comoving scale Rf leads to the new field 

' f d3r' 6XP - ^n2 )F(r ) F(r, Rf) ^ 
2Rj (2nRj) 2,3/2 

k" exp [ —(fcR/)2] , 

whose Fourier components and power spectrum are Gaussian-filtered on this scale: 

F(k; R/} = exp ( — R2k2/2)F(k) , P(k; Rf) = Qxp 

For the special case of a power-law spectrum which has a Gaussian filtering, 

P(k; Rf) 

the rms fluctuations scale with the filtering length as 

G0(Rf)a:Rj(" + 3»2 

and the other spectral quantities are given by 

c2i(Rr) (" + 3)n-2 aîiPf) (« + 5)(n + 3) n_4 

¡iw““*' 

- R2 k2)P(k). 

o2o(Rf) 
2 (K + 3) 
r =■ 

The number density is therefore ozRf 3. 
Another popular filtering choice is top hat smoothing: 

f'Vuiu Rth) = 0 1 - 
\r — r 

F in 
F(F) 

(n + 5) 

d3r' 
(4nR3

m/3) ’ 

n + 5 

1/2 
R f • 

FrH(k; Rt„) = W(kRTH)F(k), PTH(k; Rrli) = W2(kRTH)P(k), W(x) = 
3(sin x — x cos x) 

(4.7) 

(4.8) 

(4.9) 

(4.10a) 

(4.10b) 

Here 6 is the Heaviside unit function. Sharp /c-space filtering on the scale kc leads to the smoothing function [_k3/(6n2y]W(kc r). In 
both cases, the sharpness results in oscillations in the correlation functions in the conjugate space which have significant amplitudes 
out to many times the cutoff scale. Gaussian filtering avoids this undesirable feature by balancing the smoothing and filtering 
requirements in an optimal manner. The identification of a given RTH with an equivalent Rf depends upon which features of the 
fluctuation we are most interested in. For example, the mass enclosed by the smoothing function applied to the uniform background 
is the same for Rf = 0.64RTH. 

In Figure 1, we plot the parameters y and R* for two currently popular spectra, one corresponding to the adiabatic cold dark 
matter (CDM) model (Peebles 1982a; Blumenthal and Primack 1984; Bond and Efstathiou 1984; Bardeen 1985), the other 
corresponding to the isocurvature axion CDM model (Bardeen 1985; Efstathiou and Bond 1985). The transfer functions corre- 
sponding to these cases, and also to hot and warm dark matter, are given in Appendix G. The initial conditions for the density 
fluctuations were taken to be the Zeldovich spectrum (n = 1) for the adiabatic model and flicker noise (n = — 3) for the isocurvature 
axion model; both forms are predicted to arise in inflationary models. (For the Zeldovich spectrum, it is the gravitational potential 
which has the scale-invariant flicker noise spectrum.) The fluctuations evolve as the universe expands, leading to spectra with 
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effective power-law indices [neff(/c) = d In P(k)/d In k~\ ranging from — 3 on small scales up to 1 on large scales. On galactic scales 
(Rf ~ 0.5 /z-1 Mpc), the index is ~ — 2 for the adiabatic spectrum and ~ —2.5 for the isocurvature one. The moments of the 
spectrum clearly favor those wavelengths near the filtering scale, so the value of y will reflect the value of neff at this scale. Indeed, neff 

should be defined by equation (4.10b) for a given Rf in order to use it in the peak density formula. In Figure 1 we also plot 
log o0{Rf). Thus, Figure 1 can be used to determine the relative epochs at which different scales go nonlinear. 

c) Differential and Cumulative Density Results 
To illustrate the results we have plotted the differential number density for various values of y in Figure 2. Typically, there is a 

broad peak for maxima with heights about equal to the rms, v ~ 1. Note however that for small y æ 0.3, neff æ —2.8, the peak is 
v ^ 0, reflecting the fact that on all scales, there is significant power, so there are many peaks even below the rms. For large y ä 0.9, 
neí{ ^ + 5.5, all the power is at short wavelengths, and the peaks are therefore relatively isolated and typically quite high (v ä 2). In 
all cases, the falloff is steep beyond v ä 2. The cumulative number density of peaks higher than height v, 

npk(v) = (4.11a) 

is plotted in Figure 3. The asymptotic cumulative number giving the comoving density of peaks of arbitrary height is a useful 
quantity which can be evaluated analytically : 

npk(-co) 
29-6^6 
53/22(2ti)2RI 

= 0.0167?* 3 . (4.11b) 

The fraction of peaks above a threshold can therefore be read off Figure 3. It can also be computed using equation (4.21) below. 
A physical selection criterion for peaks which would form a given class of objects is unlikely to be so sharp as to make npk(vt) the 

relevant density, where vt is the threshold height. Instead, we might introduce a selection function i(v/vf), which gives the probability 

Rf [Mpc] 
Fig. 1.—Spectral parameters for the adiabatic and isocurvature cold dark matter models evolved from Zeldovich initial conditions as a function of Gaussian 

filtering scale The quantities y, R*, and a0 are defined by eq. (4.6). Conditions chosen were h = 0.5, Q = 1, QB Q. The scaling of Rf approximately follows 
(Qh2)~1 (see Appendix G). An equivalent top hat filtering scale is RTli ä 1.6Rf. Normalization for cr0 at the present time on galactic scales is discussed in § VI/. 
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V 
Fig. 2.—Differential number density J/'pk(v)dv of peaks between v and v + dv for various values of y. Spectral parameters y and R* are defined by eq. (4.6). 

that a peak of height v forms one of the objects. The number density would then be 

«pkM = t(v/v,)Jrpk(v)dv 

For the sharp threshold, the selection function is a Heaviside : r(v/v,) = 0(v — vt). Consider instead the class of functions 

(4.12) 

i(v/v„ q) = (v/v/ 
1 + (v/v,)« 

(4.13) 

which also select sub-vt peaks, although with low probability. [We will usually let npk(vt) denote the density [4.12] if the selection 
function is of the form of eq. [4.13].) The g—► oo limit reproduces the sharp threshold case. If q is too small, low peaks dominate even 
if the probability of their selection is small, due to their large abundance. These affects are illustrated in Figure 4. 

d) The High Peak Limit and the Euler Characteristic Density 
In the limit of large yv, the function G gives the high peak limit 

«k2ypf12 

^pk(v)dv- 

npk{v)- 

(2n)2 

(</c2>/3)3/2 

(2n) 

(v3 - 3v)e~v2l2dv 

2 (v2 — l)e-v2/2 

as v—> oo , 

as v—> oo . 

(4.14) 

This result agrees with the expression given by Doroshkevich (1970) and Adler (1981) for the high peak limit. It is clear from Figure 
2 that this approximation is not accurate for moderate values of v. 

As discussed by Adler (1981), a useful approximation to the number density of extrema (or maxima) lying above a high threshold 
vt should be given by (one-half of) nx(vt), the density of the Euler characteristic. The Euler characteristic for a scalar field F is defined 
to be 

X = number of maxima + number of minima — number of saddle points 
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V 
Fig. 3.—Cumulative number density npk(v) of peaks with height in excess of va0 

of the density contour surface F(r) = vto0. To define maxima and minima, we require that a direction be specified. Locally, the 
two-dimensional surfaces can be defined by x3(x1, x2), where the x3 coordinate has been singled out as the dependent variable. The 
quantity x can then be calculated in this chosen coordinate frame. Of course, the result is independent of the particular choice of the 
coordinate axes and dependent variable, due to the isotropy of the random field. Following geometrical considerations similar to 
those in § III, the mean value of x per unit volume is 

nx(v) = {ó(F-vto0)\r}3\(ClíC22-CÍ2)} (4.15) 
(Doroskevich 1970; Adler 1981), where ^=7/2 = 0 in the averaging procedure. This integral is straightforward to calculate 
(Appendix A) once the Gaussian probability distribution 

P(^ ^ Cll, Cl2? C22)^VCll^l2^22 
has been evaluated : 

= 2 (4,16) 

Except for the multiplicative factor out front, this agrees with Doroshkevich’s (1970) expression. 
For large values of v, (in units of the rms) these contour surfaces become predominantly simply connected “bags” surrounding 

those extrema whose heights exceed the level v, and which are almost surely maxima. Thus, in the high v, limit, the Euler 
characteristic counts one minimum plus one maximum for each bag, i.e., for each field externum, so nx must approach twice the 
asymptotic limit of npk(vt), equation (4.14). However, neither provides an accurate estimation of peak density over the regime of 
cosmological interest. Indeed, for equation (4.16) to reproduce equation (4.11a) with 10% accuracy, yv > 2.5 is required. 

e) The Number Density ofUpcrossing Points on Contour Surfaces 
A more accurate formula in the regime of cosmological interest for the integrated peak density can be obtained analytically by 

evaluating the density of a special class of points which are generalizations of the upcrossing points defined by Rice (1944). One of 
Rice’s most useful analytic results for one-dimensional Gaussian fields was the number of upcrossings of a given threshold level 
that occur per unit “time”; that is the density of points satisfying F = F„ dF/dt > 0. Adler treats the Euler characteristic density as 
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V 
Fig. 4.—Product of the selection function eq. (4.13) and the differential peak number density for v, = 3.5 and g = 8 and 16 demonstrates the effect of fuzzing out 

the sharp threshold. 

the appropriate generalization of this concept to multiple dimensional fields. We believe there is a natural class of points for 
isotropic random fields which better generalize the Rice points. These upcrossing points ru lie on the contour surfaces of threshold 
Fv As in the Euler characteristic case, we again choose a specific direction and label it the x3-axis. These points belong to the set 

^ I FiTu) = Ft > 
dF{vu) 

dx* 
> 0 . 

dF(ru) 
dxl 

= 0 , mo 
dx? 

= 0 (4.17) 

For given vn a set of disconnected bags, each of which is generally multiply connected, is defined. As we travel upward from negative 
to positive x3, the upcrossing points are those points on the bag tangent to the (xu x2)-plane from which the high v interior of the 
bag is entered when x3 is further increased. 

The statistics of the point process 
nuP(r) = Z <5('- - '■„) (4.18) 

u 
can be evaluated using the methods of § III (eq. [3.4]), where our three variables are now = rj^ y2 = ^2, and y3 = F, not rj3. The 
determinant of (y*j) is easy to evaluate. The point process is transformed into 

«»pW = I »is 11C11C22 - Í121 %3> ■ (4.19) 
The mean value is very similar to the Euler characteristic expression except that the absolute value of the C-determinant is required 
and downcrossing points are excluded : 

<”upW> = ^ *0) I r¡3 I e(rj3) ICnCzz ~ CÏ2 I > 
Kfc2)/3)3'2 r 2 

(2n)2 LV' 
- 1 + 

4^3 
5y2(l - 5y2/9)112 6 

5y2v,2/18 e -v,2/2 (4.20) 

The derivation is given in Appendix A. The extra exponential term ensures that nup is always positive. Note that the result is 
symmetrical about v, = 0, reflecting the fact that the contour interiors for negative vt are “inside-out” versions of those for positive 
vf. This is in contrast to the peak density which is, of course, asymmetric. Nonetheless, equation (4.20) reproduces equation (4.11) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

6A
pJ

. 
. .

30
4.

 . 
.1

5B
 

26 BARDEEN ET AL. Vol. 304 

with better than 10% accuracy for v > 2.5y and better than 1% by 3y. Even for vt ^ 0, equation (4.20) is never very far off; by then, 
the total peak number, equation (4.1 lb), is a good approximation. 

The fraction of all peaks larger than height vt is therefore approximately the ratio of equations (4.20) and (4.1 lb) : 

/(>v() » 1.56r -1 + 
4^3 

5y2(l — 5y2/9)1/2 
5y2Vi2/18 - v,2/2 vt > 2.5y . (4.21) 

For very high thresholds, the number of upcrossing points provides a good estimate of the number of disconnected contour 
surfaces. An estimate of the average volume enclosed within one of these high contours can then be obtained by taking the ratio of 
the volume filled by those points above threshold within a volume F, VP(>vt) = V erfc (vt/2

ll2)/2, to the number of upcrossing 
points in the volume, ^(Vj) F : 

vol (v,) = P( > v,)/nup(vt) —> (2n)3l2(RJy)3v^ 3 as v,-> oo . 

Therefore, the linear scale of the contour “ bags ” decreases as v, 

/) The Average Velocity Distribution F unction for Peaks 
Peaks move with a peculiar velocity v. The distribution of velocity is given by the distribution function 

fpk(r, I’d) = <5(» - Vo)npk(r), (4.22) 

where npk(r) is the peak density “operator” (eqs. [1.1] and [3.3]). The statistical average of this expression is easy to obtain since, at 
any point, v is only correlated with i/, being statistically independent of the integration variables v, (• The average distribution 
function 

^ ^ ^ exp [-3d2/2<t^(1-??)] ^ ,,, , ^ J3 <fPk(r, v, v))dvd3rd3v = ~ TW pk( )dvd r 

implies a conditional probability for the velocity of peaks 

P(v |v, peak) = </pk(r, v, v)>/.4/ pk(v) 

which differs from the peculiar velocity distribution of ambient field points 

through the presence of 

yv = - 
^0 

C7_ii7i 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

Here o_1, defined by equation (4.6c) for j = — 1, is related to the three-dimensional velocity dispersion of field points (tv by equation 
(4.25). Peaks have lower peculiar velocities than field points. For Gaussian filtering of power-law spectra, (T_1 & Rf(n +1)12 and 
y2 = (n + l)/(n + 3), n > — 1, reflecting the fact that velocities are correlated over much larger distances than densities. 

Such quantities as the distribution of line-of-sight velocity differences as a function of projected separation are of great interest for 
comparison with observations. However, they are quite difficult to calculate and are not considered in this paper. 

V. SPATIAL MODULATION OF THE PEAK NUMBER DENSITY 

In this section, we first discuss some of the issues and difficulties in relating observed cosmic structures to the peaks determined 
from the filtered linear perturbation spectrum (§ Va). A particularly simple selection criterion is adopted, which identifies a given 
class of cosmic objects (e.g., luminous galaxies) with peaks in the smoothed density perturbation field Fs exceeding a global 
threshold level Ft. The filtering scale Rs appropriate to the class of objects depends on the physical mechanisms which set the 
threshold and on the amount of subsequent infall to be expected, but should correspond to a mass not very much less than the 
characteristic mass of the objects. The motivation for this kind of selection criterion applied to galaxies and rich clusters is discussed 
in § Vb. 

The number density of peaks above such a threshold depends strongly on whether the large-scale environment in which the peak 
resides is overdense or underdense. To illustrate this, we show in § Vc how the number density of peaks above threshold changes 
when the density perturbation field is biased by an externally imposed background level fb. 

The overdensity in a cluster or supercluster is not an externally imposed density excess. Rather, it comes from smoothing on a 
large scale Rb the same random field whose peaks when smoothed on the scale Rs are associated with galaxies. Depending on just 
how the field is smoothed on the larger scale, there are varying degrees of correlation between the small-scale random field Fs and 
the large-scale random field Fb. The number density of peaks above threshold at places where the field Fb has a given value is 
derived in Appendix E and is discussed in § Vd. The ambiguity in the definition of Fb makes application of this formalism to 
estimating mass-to-light ratios in clusters of galaxies imprecise. We argue that a top hat smoothing for Fb probably best corresponds 
to the way clusters are defined observationaffy and present some numerical results which suggest that an enhancement by ~ 5 in 
the number of galaxies per unit mass in rich clusters compared with the universe as a whole is plausible. Therefore, a global density 
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parameter Q = 1 may not be inconsistent with virial mass estimates for rich clusters even if there is no separation of baryons from 
dark matter on large scales. 

a) Selection Criteria for Cosmic Structures 
As we have discussed in the introduction, we wish to identify the sites of formation of condensations of mass ~ M with the local 

maxima of the initial density field when smoothed over a filtering scale Rf, where M oc Rj. The structures that have formed by time 
t will be among those that have gone nonlinear F(Rf, t) = v(Rf)<j0(Rf, t) > 1. By itself, this is a threshold criterion. Other criteria 
would presumably have to be satisfied as well. 

Once <t0 is fixed at some scale (e.g., that of bright galaxies) at some time (e.g., the present), it is known at all other smoothing radii 
from the power spectrum, and at all other times by the linear fluctuation evolution law. That is, once the spectrum and cosmological 
parameters are set, the only other free parameter determines the overall spectrum normalization. One may take this to be, for 
example, the “ redshift of galaxy formation.” For a given smoothing scale, the nonlinear threshold function <Jq 0 decreases with 
time, so peaks of progressively lower height v > 1 will have begun to collapse. In hierarchical scenarios, Oq1 is a monotonically 
increasing function of Rf. For the adiabatic and isocurvature cold dark matter spectra, Figure 1 shows log [^(Ry-)] up to a constant 
which would be fixed by the normalization criterion. At a given time, only rare, high v large-scale objects would have gone 
nonlinear, although even rms fluctuations may have collapsed on smaller scales. Even on the smaller scales, it may be that only rare 
high v peaks form observationally interesting structures with the rms peaks (v æ 1) forming underluminous objects. 

The sort of objects that these nonlinear structures form depends upon the details of the astrophysics of collapse. Ideally, there 
would be a unique selection function in (v, Rf) or (F, M) space for each type of cosmic object. This simplified view is at the heart of 
the extensive applications of the influential spherical top hat model of Gunn and Gott (1972) to hierarchical scenarios by Gott and 
Rees (1975), Rees and Ostriker (1977), White and Rees (1978), Peebles (1980), Faber (1982), Silk (1983), and Blumenthal et al. (1984), 
among others. We discuss this model in more detail in § Yb. However, such applications neglect one of the central difficulties in 
working with hierarchical random fields, the cloud-in-cloud problem that within clouds centered on peaks determined after large- 
scale smoothing are smaller scale clouds which are themselves made up of subclouds. Although such substructure is smoothed away, 
the details of it may be crucial in determining the nature of the final object that forms. For example, stars may form in the subclumps 
and become supernovae early enough to blow away the gas before the larger scale fluctuation collapses, or mergers of subclumps 
within the smoothed cloud may be deciding influences. The environment may also play a large role in determining the final object 
which forms. For example, if angular momentum is crucial, then the position and height of neighboring clouds may be necessary 
information to determine the degree of tidal-torquing (although the local tidal field smoothed on large scales might suffice). The 
asymmetry of the peak will certainly play a role if angular momentum is important, and it will be significant for such issues as degree 
of ellipticity of the final object. - 

In this paper we focus mostly on the density and distribution of points required to be peaks of the smoothed density field with a 
certain height or range of heights. The statistics of these points is that of the point process npk(r) = Y^P b(r — rp) defined in § I. In 
principle, we can select the points rp according to any prescription necessary to define the local initial conditions required to make a 
given class of cosmic objects. This may prove tractable if the added criteria are not too complex. For example, background field 
constraints are discussed in § Vc, and shape constraints are discussed in § VII. An angular momentum constraint might also be 
amenable to a statistical treatment. However, ellipticals forming as a result of the merging of two spirals will surely not represent an 
analytically tractable class. Nonetheless, even in this case, analysis of numerical A-body studies within the framework of con- 
strained point process densities should prove useful. 

We regard the filtering operation as essential in dealing with fluctuation spectra with power covering a wide range of scales. 
Otherwise, the statistics is dominated by the smallest scale phenomena. However, the best choice of smoothing for a given 
astronomical object is debatable. One of the major difficulties with filtering the density field is that, in some cases, peaks on larger 
filtering scales may just be smoothed versions of peaks on smaller scales. This problem is especially acute for steep power spectra 
with high n, for most of the clouds are intrinsically of small scale. Fortunately, the cold dark matter spectra that we use throughout 
this paper to illustrate the use of our statistical results are not overly plagued by this difficulty because they are relatively flat on 
small scales. The structure and average density of the peaks is predominantly determined by the nature of the spectrum near the 
filtering scale, provided it is monotonically decreasing (§ YVb). Nonetheless, the optimal choice of filter function is debatable, and 
conclusions drawn which are sensitive to the specific choice are suspect. 

The mass function for a given class of objects n(M)dM would be highly desirable to obtain. Unfortunately, due to the cloud-in- 
cloud problem, we have not come up with an adequate definition. The obvious choice, analogous to that given by Press and 
Schecter (1974), is n(M)dM = ^(dnpk/d In Rf)dM/M, with the total derivative including partial derivatives with respect to vt(Rf), 
y(RfX and R*(Rf). However, this choice ignores the strong correlation between small-mass clouds and large-mass clouds that we 
derive in § Yd and does not include the loss of small-scale objects due to incorporation in larger ones, the essence of the hierarchical 
process. 

In spite of the difficulties associated with the identification of protoobjects in the smoothed linear density field, and, if appropriate, 
in (v, Ryj-space, we feel our method offers a powerful approach within which to test in detail the viability of simple hypotheses for 
structure formation. 

b) Global Thresholds 
Here and in § VI, we explore the properties of that subset of peaks which have initial amplitude above some threshold value vt, 

typically ~2-3. We specify that the threshold should be global, by which we mean that it should be constant throughout the whole 
of space. 
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Abell’s rich clusters are an example of a set of objects which may reasonably be associated with high peaks above a global 
threshold. It is fairly clear that in these objects, which contain only a small fraction of all galaxies, we are seeing the high-mass end of 
the distribution of those perturbations which had sufficient amplitude to have collapsed by now. The selection criterion is therefore 
that the linear extrapolation of the height of the peak in the density perturbation field, smoothed on an appropriately large mass 
scale, should exceed a value/c, corresponding to complete collapse at the present time t0: vt>fcaöl(Rf, t0). Such a threshold is 
certainly global. 

For spherical top hat models, the perturbation turns around at F = 1.06 and is completely collapsed when F is 

3tcV/3 

1.69 . (5.1) 

The collapsing structure virializes at half the radius of maximum expansion. This would give a density contrast at the time of 
“complete collapse” of ~ 170. For an isolated structure, the density contrast would grow as (1 + z)~3 thereafter. These results hold 
for a flat universe, Q = 1. In a low-density universe, collapsing structures virialize at a density contrast which is, very roughly, Q-1 

times larger than in the flat universe. 
The simple spherical top hat model is clearly an unrealistic idealization. We will discuss the expected shapes of peaks in § VII. 

Anisotropy will be amplified as the collapse proceeds, and, at least for collapse without substructure, high densities will first be 
reached in a planar configuration, as discussed by Zeldovich (1970). However, in order to form a compact configuration, such as a 
rich cluster of galaxies or an individual galaxy, it is necessary to collapse in all three dimensions. We feel that equation (5.1) is a 
reasonable estimate of the linear density contrast required for such a collapse to have occurred. In this regard, it is encouraging to 
note that within an Abell radius of the center of a rich cluster, a scale which Abell clearly felt characteristic of the extent of these 
objects, the mean density is ~ 200 times the critical density, in good accord with the simple theory. 

The same collapse criterion could also be applied to galaxies. Bright galaxies may tend to form preferentially around high peaks, 
with the collapsed structures of lower v forming underluminous galaxies or structures not recognized as galaxies at all. This 
hypothesis has been termed biased galaxy formation. The suggestion is that bright galaxy formation is a “ self-limiting ” process, so 
that once a small fraction of material has turned into galaxies by a time tg (redshift zg), the conditions in the external medium are 
modified sufficiently to suppress the formation of bright galaxies elsewhere. With/C the linear extrapolation of the height of the peak 
to the time of complete collapse and Rs the galactic filtering scale, the threshold now becomes 

v( ~fc Co‘OR,, tg) =/c(l + to) . (5.2) 
One can imagine many processes by which newly forming galaxies can influence their environment, including heating by radiation, 
shocks, or energetic particles (e.g., Rees 1985; Silk 1985). However, not all of these may give rise to segregation of the kind we are 
discussing here. If, for example, the feedback mechanism is of limited spatial range, then it is inappropriate to model the effect by a 
global threshold. Unfortunately, it is difficult to develop a convincing case for any particular threshold mechanism, given our poor 
understanding of the details of star formation and galaxy formation. 

The feedback mechanism cannot be expected to take full effect instantaneously, so the physical threshold will not be perfectly 
sharp. The threshold function ^v/vj introduced in equation (4.13) is our attempt to model this in an ad hoc way. The threshold level 
vt is defined so that the probability of a peak becoming a “galaxy” is 1/2 when v = vt. Since the differential number density of peaks 
increases rapidly with increasing v for v > 2, unless the threshold function is fairly sharp more “galaxies” may form from peaks 
with v < vr than from peaks with v > vr 

An important constraint on the choice of vt (or on the consistency of the model if vf is determined from other considerations) is 
that the number density of peaks meeting the threshold criterion be at least roughly equal to the number density of the class of 
objects one is trying to represent. The vr thus chosen will depend on the filtering scale Rs used to pick out the peaks and on the 
sharpness of the threshold, through equation (4.12). 

The precise relation between the galaxy filtering scale Rs and the characteristic mass of luminous galaxies in the present universe 
is not obvious. The mass enclosed by a Gaussian smoothing function is 

Ms = (27i)3l2pR3
s = 4.37 x 1012R3 /T1 M0 , (5.3a) 

and for top hat smoothing is 

Mth = (4nß)pR3
H = 1.16 x 1012R3h h”1 Mq , (5.3b) 

with Rs and RTH in units of h~1 Mpc. While Rs slightly less than 1 /i“1 Mpc would give a mass (including the dark halo) 
characteristic of present luminous galaxies, the threshold is presumably set considerably before the present, and the mass collapsing 
at the earlier time might be considerably smaller. Average density profiles around peaks (§ VII) suggest that a significant amount of 
mass will be associated with a high peak in excess of that given by equation (5.3a). On the other hand, if Rs is too small, the 
correspondence between peaks above threshold on the scale Rs and present galaxies will not be at all one-to-one, because of merging 
of neighboring peaks and deviations from the average profile. Our threshold hypothesis is at best a crude representation of what a 
complicated process of galaxy formation implies for overall average properties of galaxies. 

Some attempts have been made to associate the morphological type of the galaxy with the height of the peak in the density 
perturbation field. Blumenthal et al. (1984) have argued that high v peaks are relatively isolated, are therefore less subject to tidal 
torquing, and are more likely to become elliptical galaxies. However, tidal torquing is a local process, so the height of the peak 
relative to the global (70 is not relevant. The argument would suggest that there should be fewer low-spin objects in the high-density 
environment of a protocluster, contrary to observation. An alternative explanation for the distinction between ellipticals and spirals 
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is that elliptical galaxies form from mergers of smaller scale peaks, while spirals form from relatively isolated peaks which are able to 
accumulate mass by infall over a substantial range of radius. This would also associate ellipticals with higher v peaks smoothed on 
the mass scale of the final galaxy, but the difference in apparent angular momentum would be due to different degrees of radial infall 
of baryonic matter. 

c) Modulation of Number Density by a Background Field 
The field Fs(r) defines a population of peaks, and a global threshold vr selects a subset of these peaks with a certain global number 

density npk(vt). However, one is often interested in the local number density of a class of objects, such as the density of galaxies in a 
cluster or the density of clusters of galaxies in a supercluster, and the relation of this local number density to large-scale variations in 
the density perturbation amplitude. Here we consider adding an external, statistically independent background field/& to Fs, with 
the understanding that fb is a slowly varying function of position compared to the mean separation of the peaks in Fs. The number 
density of peaks of the combined field above the spatially uniform threshold characterized by vt will depend on the local value offb 
and therefore will fluctuate on large scales. The number density will be enhanced where fb is positive and will be suppressed where/b 
is negative. This construction will prove useful for calculating correlations of galaxies on large scales in § VI, but, as we shall see in 
§ Vi/, it is not appropriate, except for providing qualitative insight, if the background is the large-scale density perturbation 
associated with a particular cluster of galaxies. 

Let E(fb) be the ratio of the local number density of peaks in the presence offb to the global number density with/b = 0. To 
calculate the local number density, note that the combined field exceeds the global absolute threshold ft when Fs exceeds a local 
threshold ft —fb. In terms of v, the local threshold is then vt — fb/(T0s. In the limit fb is approximately uniform on the scale Rs, such 
quantities as y and R* are unaltered, and the enhancement factor is just 

£(/4 = -/w^oJ/KpkW • (5-4) 
For a perfectly sharp threshold in the limit yvt >1, equation (4.14) is a good approximation to ^(v,). Substituting this expression 

into equation (5.4) and keeping only the leading term, we find 

E(fb) ~ exp (vt fb/<70s) (orfh 4 a0s and v, > 1 . (5.5) 

The enhancement can be highly nonlinear in fb even though/& may be small compared with 1 at the time galaxies form. 
Unfortunately, equation (5.5), while qualitatively correct, is not quantitatively accurate for the range of vt relevant to galaxies. We 

find that a Taylor series expansion of In (£), keeping only the terms which are linear and quadratic in fb, 

E(fb) * exp Mv, y)(fb/(70s) - i/?(vf, y)(fb/a0s)2^ , (5.6) 

is a good approximation as long as vt > 2. The coefficients a and ß also depend upon the sharpness of the threshold, as characterized 
by the index q (eq. [4.13]), and are obtained by differentiating equation (4.12) inside the integral and integrating by parts: 

'Mv) y) 

J dv npk(vt) 

2_ Cd2t(v) >-pk(v; y) 
a J dv2 npk(v,) 

(5.7) 

Table 1 shows how these parameters vary with q and vr A perfectly sharp threshold {q = oo) has the largest value of a for a given v„ 
and therefore the most rapid increase of peak density with/fc, but this maximum a is still less than the value a = vt as estimated from 
the high threshold limit enhancement factor, equation (5.5). Equation (5.6) is accurate to within a few percent out to fb/(T0s % 1 for 
vf ~ 2 and out tofb/o0s æ 2 for Vj ^ 3.5. 

d) The Segregation of“ Protogalaxies "from the Mass 
The enhancement F is a strongly increasing function offb, particularly if the “ galaxies ” contain a small fraction of the mass, so vt 

is high. Notice also that the quadratic term in equation (5.6) reveals an asymmetry. For fixed \fb\ the suppression factor in a 
“ protovoid ” will exceed the enhancement factor in a “ protocluster.” The enhancement factor saturates when the local effective 
threshold is small and almost all the peaks are counted as “galaxies,” but there is no upper limit to the suppression factor in a 
“ void.” 

In the global threshold model “galaxies” are born with large-scale clustering which gives a distorted picture of the mass density 
contrast. One can think of the galactic peaks as having been “ painted on ” to their Lagrangian sites at early times. The Lagrangian 

TABLE l 
Peak Enhancement Factor Coefficients for y = 0.619 

q = ce q — 16 q = & 

v, oí ß oí ß oí ß 

2  1.408 0.956 1.373 0.903 1.260 0.799 
3..  2.425 1.061 2.215 0.941 1.835 0.767 
4 3.500 1.082 2.937 0.868 2.203 0.659 
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points flow through Eulerian space toward mass concentrations, carrying the painted points along with them. The “ painted on ” 
density contrast has the same sign as the true mass density field which is determined solely by gravitational forces. 

One might be able to observe the effects of this statistical enhancement directly, before there has been considerable dynamical 
evolution on the scale of the clusters. This would be the case for galaxies observed at high redshift: a protocluster would appear as a 
strong galaxy density enhancement even though the underlying density contrast was small at that time. Similarly, a supercluster at 
the present time may appear as a strong enhancement of rich clusters. In other applications the mass density field will be nonlinear. 
We can still obtain the number of “ galaxies ” per unit mass, and the overall number density can then be determined if we know the 
motion of the mass. 

The high vt result of equation (5.5) gives a very rough idea of the parameters required to obtain a strong nonlinear enhancement of 
the galaxy density within a protocluster. Model the cluster as an externally imposed “ top hat ” field with amplitude just sufficient to 
collapse by the present. The condition for nonlinear enhancement, vt(fb/(70s) > 1, is satisfied provided 

vr2 > 1 + z0 > (5.8) 
where zg is the redshift at which peaks associated with galaxies collapse. Note that this condition is independent of the mass of the 
protocluster and the present rms amplitude of density fluctuations on the cluster scale. Since only collapsed systems are amenable to 
virial analyses, there is a lower limit to measured galaxy-per-unit-mass ratios and presumably a corresponding upper limit to 
measured mass-to-light ratios. Such an upper limit does seem to be present in the galaxy cluster data. While the upper limit has been 
interpreted as evidence for D < 1, we see that it has a natural interpretation in an Q = 1 universe. 

There are a couple of reasons to think that the enhancement factor in this externally imposed “ top hat ” protocluster model, as 
calculated from equation (5.6) rather than from the crude approximation of equation (5.5), is an underestimate of the enhancement 
in a real protocluster. A more realistic model would not have a uniform density excess in the protocluster volume, and the average of 
an exponential is greater than the exponential of the corresponding average. Perhaps more seriously, a protocluster is not an 
externally imposed background. It is defined by a large-scale smoothing of the same density perturbation field F which is smoothed 
on a smaller scale to get the field Fs. 

Let Fb(r) denote this large-scale smoothed field. At least roughly, a region which has collapsed by the present is a region where the 
average overdensity of the extrapolated linear density perturbation field is greater than a value fc . For a spherical collapse fc = 1.69, 
and the appropriate average is over a sphere centered on the protocluster containing a mass equal to the final collapsed mass. This 
suggests defining Fb by a spherical top hat smoothing of F. Of course, actual collapses are usually not spherical, but the spherical 
model should be a reasonably good guide as to what sort of overdensity is required to produce an Abell cluster, as discussed in § Vh 
(see § IVb for the power spectrum associated with top hat filtering). 

In Appendix E, we derive 'Ar
pk(vs, vb)dvsdvb, the joint probability per unit volume that there is a peak in the Fs field with height 

v5 = FJg0s in the range dvs and that the background field has height vb = Fb/a0b in the range dvb at the peak (eq. [E5]). The 
differential number density of peaks at a point where vb has a specified value is the conditional density (eq. [Ell]) ^Fpk(vs| vfc) = 
J^pk(vs, vb)(2n)1/2 exp (vb/2), and the local number density of peaks satisfying a global threshold criterion is 

«pk(v, I Vfc) = dvs t(vs/vt)J^pk(vs I v,,) . (5.9) 

The enhancement factor is 

£(vfJ = npk(vt I vb)/npk(vt) . (5.10) 

Numerical evaluation of equation (5.9) is straightforward since the form of the integral is similar to the standard number density 
integral. 

The enhancement in ^Fpk(vs | vb) is much greater for the higher peaks than for the lower peaks. If elliptical galaxies are associated 
with high v peaks, this could be part of the reason ellipticals are much more common in rich clusters than in the field. 

Numerical results for the enhancement factor are sensitive to the smoothing function used to define Fb, even when the back- 
ground scale Rb is very large compared to the scale Rs of the peaks. The parameter e = <vs vb> is a measure of this, since in the high 
threshold limit E(vb) = exp (v^v*,). For a sharp filter in k space defining Fb, e = (T0h/(70s, leading to results similar to those in § Vc, 
but the corresponding smoothing function is an oscillating spherical Bessel function. For a Gaussian filter, e æ 2itl + 3)l2(j0h/a0s, 
where n is the effective spectral power law index on the background scale Rb. Top hat smoothing in real space gives intermediate 
results. We feel that top hat smoothing makes the most sense physically for treating rich clusters, although this is certainly 
debatable. 

Another problem is that a top hat centered on the cluster gives an expected number density for a point near the center of the 
protocluster, which may be an overestimate of the average number density in the protocluster. Also, such a top hat may not be 
representative of all points with the same value of Fb. In order to resolve some of these uncertainties it may be necessary to resort to 
numerical realizations of these random fields in which the relevant quantities can be directly measured. 

Some numerical results for the enhancement factor E are presented in Table 2. The examples are from Table 3 (see also Fig. 5). 
The perturbation spectrum is the adiabatic one appropriate to cold dark matter (Appendix G). In all cases, the cluster-scale top hat 
has a smass 5 x 1014 h~1 M0, corresponding to the top hat filtering scale 7.6 h~l Mpc, and the constrained value Fb = 1.69, 
corresponding to spherical collapse at the present. For a given sharpness parameter q, the threshold level vt is fixed by requiring that 
the number density of selected peaks equal the number density of galaxies in the CfA redshift survey (Davis and Huchra 1982), 0.01 
h3 Mpc-3. The range of values of the enhancement factor comfortably brackets the range desired to make cluster M/L values 
consistent with a global Q = 1. We also give in each case the value of vb determined by normalizing the overall density perturbation 
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TABLE 2 
Enhancement Factors for Galaxies in Rich Clusters 

Rs 
(/i-1 Mpc) q vt E(Fb) vb zt zg 

0.178  16 3.47 9.2 4.4 3.7 3.6 
8 3.90 5.2 3.7 5.3 4.0 

0.356  8 2.75 3.9 3.4 2.9 2.9 
4 3.22 2.7 3.0 4.3 3.0 

amplitude to make the present galaxy-galaxy correlation 5 /z-1 Mpc, using the results of § VI. The quantity z, is the redshift of the 
collapse of a peak of height vp while zg is the average collapse redshift of a peak which becomes a “ galaxy.” The determination of 
these quantities is discussed more fully in § VI/ 

The values of the enhancement factor would be reduced by ~30%-40% if we were to ignore the correlation between the 
background field and the high-frequency field which generates the peaks (i.e., take € = 

A factor of 5 enhancement relative to the overall galaxy number density 0.01 h3 Mpc-3 within the mass of 5 x 1014 /U1 M© 
corresponds to ~ 90 “ luminous galaxies,” ignoring mergers of individual peaks. Of course, what is perceived to be the cluster would 
be larger than the completely collapsed core. The mass of 5 x 1014 /z-1 M© is just a little less than what is contained in an Abell 
radius if the mass overdensity is 170. 

The values of vb in Table 2 are uncomfortably large, given that rich clusters are not all that rare. According to Gaussian statistics, 
less than 0.2% of the mass should have vb > 3. Things are actually somewhat better than this, since a single point of the smoothed 
density field with Fb > 1.69 can mean a whole cluster will have collapsed. This large value of vb might be taken as an indication there 
is relatively more power on large scales in the real universe than predicted by the simple adiabatic CDM spectrum or as a suggestion 
that the simple uniform threshold biasing scenario needs modification. Of course, a larger value of RXH for clusters makes the 
problem worse. 

We now discuss some further consequences of the “ biasing” hypothesis. The mass-to-light ratio for any large system is, according 
to equation (5.6) or (5.10), determined only by the net initial density contrast, and therefore by the final density of the system. Hence 
the mass-to-light ratios should be anticorrelated with the mass density of the system. Applying this test is complicated by the fact 
that mass and density are both derived from virial analysis. In the absence of any intrinsic correlation we would expect any scatter in 
the observed quantities to introduce a correlation which is of the opposite sign to that we have predicted. It may therefore be very 
difficult to disentangle these two effects from the data which, at least in the case of very rich clusters, seem to be consistent with zero 
correlations between mass and density (Dressier 1978). 

Another consequence of the hypothesis is that one should observe an increase of M/L in the outer parts of clusters, since Fb goes 
down. A problem here is that the radial dependence of M/L depends on the assumed anisotropy of the orbits. Kent and Gunn (1982) 
claim that the data for Coma are consistent with constant M/L and constant anisotropy. A trend of M/L in the direction predicted 
here would be consistent with the observations if the outer orbits tend to be more radial, as would be expected in the type of scenario 
we are considering. Also, we would only expect to see the trend at large radii, since in the inner cluster the galaxies and mass should 
be fairly well mixed. However, at large radii ( > 2 /z -1 Mpc, say) the usual assumptions made in deriving mass-to-light ratios are not 
likely to be accurately obeyed. 

So far we have concentrated on galaxies as “ rare events.” As noted above, it is more likely that rich clusters can be associated with 
the high peaks of the initial density field, and it is more straightforward to estimate vf and cr0s than for the galaxies. The filtering scale 
Rs is now taken to be that associated with rich clusters ( ~ [7-11] /z-1 Mpc for top hat filtering). In this case vt/(r0s æ 3-4, whereas for 
galaxies this quantity is, according to our estimate above, close to unity. Thus, in large low-density systems such as superclusters, the 
density enhancement of clusters (~exp [(v/aoJFJ) can be much larger than that for galaxies. Similarly, one can expect that the 
suppression of structure formation in a “void” would be much more complete for clusters and that regions which are devoid of 
clusters would be much larger than those which are devoid of galaxies. 

TABLE 3A 
Asymptotic Correlations for the Adiabatic Spectrum 

rs <vyçp/oi 
h (/T1 Mpc) q vt <v> (r = 5 /T1 Mpc) 

0.4  0.178 16 3.47 2.62 0.271 
8 3.90 2.22 0.194 

0.445 16 2.23 1.59 0.225 
8 2.29 1.47 0.191 

0.5  0.143 16 3.74 2.80 0.202 
8 4.31 2.31 0.137 

0.356 16 2.62 1.92 0.214 
8 2.75 1.73 0.173 
4 3.22 1.36 0.107 

TABLE 3B 
Asymptotic Correlations for the Isocurvature Spectrum 

Rs <v>2V^o 
h (/C1 Mpc) q vt <v> {r = 5 h 1 Mpc) 

0.4  0.178 16 3.12 2.47 0.970 
8 3.43 2.17 0.745 

0.445 16 1.79 1.35 0.444 
8 1.80 1.28 0.394 
4 1.87 1.10 0.295 

0.5  0.143 16 3.40 2.67 0.854 
8 3.83 2.29 0.626 

0.356 16 2.23 1.71 0.536 
8 2.30 1.58 0.458 
4 2.57 1.32 0.317 
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Fig. 5.—Two-point statistical peak-peak correlation functions of peaks of galactic scale Rs for the adiabatic {a) and isocurvature (b) cold dark matter models with 
Q = h = 0.4. Given Rs and the threshold sharpness parameter ^ (16 and 8 for the small and large Rs), the threshold is determined by equating <npk(v,)> to the 
observed density of bright galaxies: {a) vt = 3.5, 2.3, (b) vt = 3.1, 1.8 for Äs = 0.18 and 0.45, respectively, for the two cases. The direct calculation (§ Vlb) is ¿pk, and the 
one utilizing the peak-background split (§ Vic) is £pb. For comparison, the mass correlation function £p, amplified by a constant factor determined from the 
large-scale limit of £pk is also shown. The peak-peak correlation is much closer to a power law than that of the mass. Dynamical evolution of these statistical 
correlation functions must be included to reach the correct current amplitude of £pk. 

We have shown here that if galaxies are associated with the high peaks of the initial density field then they will be strongly 
segregated from the mass in all objects which are sufficiently dense to have collapsed by the present. The effect is predicted to be 
much stronger for rich clusters and these may be segregated from the mass on much larger scales in systems which are still in the 
linear regime. This segregation means that galaxies may give a strongly distorted picture of the degree of matter clustering on cluster 
scales. We now turn to the clustering statistics for high peaks which show that galaxies and other objects may give a strongly 
distorted picture of the distribution of mass on a//scales. 

VI. CORRELATIONS 

a) Overview 
We now turn to a statistical analysis of the effects of a threshold for galaxy formation on the clustering of galaxies. In § V we saw 

how a modest overdensity on some large mass scale can lead to a strong enhancement in the local density of galaxies. The same 
mechanism has an effect on the statistical measures of galaxy clustering, such as the two-point correlation function. A statistically 
enhanced clustering of small groups of galaxies relative to the mass distribution may explain the relatively low amplitude of 
two-point velocity correlations found in redshift surveys (Davis and Peebles 1983) compared to what is expected in an Q = 1 cold 
dark matter universe if the galaxies trace the mass. Substantial fluctuations in how galaxies are distributed relative to the matter also 
imply a galaxy-galaxy correlation function which would have a significant amplitude even at early times when the density 
perturbation amplitude is relatively small on cluster scales, a prediction which should be testable in the near future. 

Complete information about the statistical distribution of galaxies in space is contained in the hierarchy of n-point correlation 
functions (Peebles 1980). Reliable observational data are available for the two- and three-point functions. These are important 
constraints on any theory of large-scale structure in the universe. Correlations between clusters of galaxies probe the structure of the 
universe out to even larger scales. The major goal of this section is to calculate two- and three-point correlation functions of galaxies 
starting from the hypothesis that galaxies are identified with high peaks of the linear density perturbation field. The qualitative 
picture is clear from § V : peaks above the threshold are much more likely to occur in regions where on a large scale the level of the 
density perturbation field is greater than zero. 
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Our primary focus will be on the initial correlations in the peaks above threshold, before any dynamical corrections due to the 
amplitude of the large-scale perturbations becoming larger than the amplitude of the statistical fluctuations in the density of the 
peaks are made. To linear order in the amplitude of the density perturbations it is reasonably straightforward to set up a calculation 
of dynamical corrections, but all we will do here is to consider the simplest case, when the zeroth-order (statistical) correlations are 
small. 

In principle, one can calculate the zeroth-order (in dynamics) correlations exactly using the machinery outlined in §§ II and III. 
The rc-point correlation function requires constructing a joint probability distribution in lOn variables, at each point giving the 
value of the smoothed density field Fs, the three first derivatives rjh and the six second derivatives ^j. While the covariance matrix 
for these variables at a single point has a reasonably simple form, there are a large number of nonzero correlations between the 
variables at different points. Even for the two-point function, the task of integrating over all of these variables is not pleasant to 
contemplate. Fortunately, approximations can be made to greatly simplify the calculations, and these approximations are reason- 
ably accurate once the correlation lengths are more than a few times the smoothing radius Rs used to define the peaks. 

In the context of a direct calculation of the peak correlations one key approximation is to neglect derivatives of the density-density 
correlation function of Fs, ¿(rtJ), which appear in the correlation matrix. If the density perturbation power spectrum is roughly a 
power law of index n, then the normalized mass density correlation function 

(6.1) 

falls off as r-(" + 3), while dki¡//drk falls off as r-(n + 3+k\ For values of the index n < —2 the neglect of the gradients of i/j may be 
justified when ij/ itself is still not very much less than 1. 

The only cross-correlations between points which survive in this approximation are 

<v(ri)v(rj)> = lA(fy) = i/iy , i ^ j ■ (6.2) 

The 8n x 8n part of the correlation matrix involving the first derivatives and the variables describing the anisotropic part of the 
second derivative matrix is now diagonal, and the integrals over these variables are identical to those in the average peak number 
density formula. 

A further approximation, justified if the are all at least moderately small compared to one, allows the integrals over the 
x(i) oc — V2Fs(rI) variables to be done analytically. The n-dimensional integral over the v{i) must still be evaluated numerically, but 
this is quite feasible for n = 2 at least. 

We also discuss an alternative approach to the rc-point correlation functions in which the density perturbation field Fs, smoothed 
on the scale Rs of interest for the peaks, is considered as the sum of a “background” field Fb, filtered on a scale Rb substantially 
larger than Rs, and a “peak” field Fp. The local density of peaks in Fp is calculated as a function of the local value of Fb using the 
procedures of § V. Correlations of this peak density field npk(r) depend on the probability distribution of Fb, which in turn can be 
expressed in terms of the normalized two-point correlation function of Fb with itself: 

= <FÁr¡)Fb(rj)>/vob ■ (6-3) 

Clearly, the local peak density field contains no information about the correlations of peaks at separations less than Rb. Even for 
separations large compared with Rb the relationship of the correlation function of npk to the correlation functions of the peaks in Fs 
is rather obscure, since, strictly speaking, the local density of peaks depends upon the precise smoothing function used to define Fb. 
However, the choice of a filter for Fb is purely a mathematical device and can have no effect on the actual correlations of peaks of Fs. 

Our procedure is as follows. Pick a convenient (e.g., Gaussian) filter to define Fb. Pretend Fp is an independent random field, so 
that the power spectrum of Fp is the difference of the power spectrum of Fs and that of Fb, ignoring the correlations between Fp and 
Fb. Calculate the local density of peaks npk as a function of Fb, using the number density formula of § IV with a local threshold in Fp 
biased by Fb to keep the threshold in Fs at the desired global value. Integrate over the F^) weighted by the joint probability 
distribution for the Ffe(rf) to find the rc-point correlation function of npk. 

The advantage of the peak-background split is that npk can be rather accurately approximated by equation (5.6): 

npk(Fb) = «o exp lc/.Fb/o0b - jß(Fh/a0h)2~\ , (6.4) 

with a and ß chosen to fit the first and second derivatives of npk(Fb) at Fb = 0. The form of equation (6.4) allows the integral for the 
n-point correlation function of npk to be done analytically. 

As discussed in more detail below, we find good agreement between the direct calculation of the two-point correlations and the 
calculation using the peak-background split provided that : 

1) The quantity Rb/Rsis large enough (> 3) so that the local statistical properties of Fp are nearly the same as those of Fs. The 
power spectrum moments cr1 and a2 are then nearly equal for Fp and Fs, although (j0 may differ substantially, since o0 has 
important contributions from fairly long wavelengths if n is close to — 3. 

2) The quantity r/Rb is large enough ( > 4) so that the two-point density correlation functions Çb(r) and £s(r) are nearly the same. 
The peak-background approach gives reliable results for the peak correlation function only for r/Rs > 12, so the direct calcu- 

lation of the correlations will be preferred when it is feasible. We will use the peak-background approach to obtain results for 
three-point correlations and to discuss the effects of dynamical evolution of the density perturbation field on the correlations. Much 
of the present amplitude of the galaxy-galaxy correlation function must be due to a nonzero amplitude of the density fluctuations, 
rather than the zeroth-order statistical correlations by themselves. 

The following discussion will focus on how to apply our formal results for the rc-point correlations, and in particular for the 
two-point and three-point correlations. Technical details of the derivation are given in Appendix F. 
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Please note that all our approximations in this section are predicated on the density perturbatioh spectrum having a substantial 
amount of power on large scales. The power spectrum should have an index n < — 1. In particular, if n = 0, the mass correlation 
amplitude \jj falls off exponentially (when Gaussian filtered), and the neglect of derivatives of i/f compared with ÿ is not valid even at 
large separations. If rc > 0, the correlations are dominated by fluctuations on scales considerably smaller than the separation of the 
points, so the rationale for the peak-background method is totally destroyed. 

b) Direct Calculation of Correlations 
Consider the rc-point correlation function of peaks satisfying some sort of threshold criterion. The rc-point correlation function is 

defined such that 

1 + •••’'■«)= (»pkM "■ "pkK)>/<«pk>" (6.5) 
is the joint probability that a peak is in a volume about each rh divided by the nth power of the global average peak density times 
the product of the The joint probability distribution of n peaks depends upon 10 variables F, ly, ÇA at each point, with the same 
weighting factors at each point [det (£)] as in the peak number density calculation of § IV. Proper choice of variables (see 
Appendix A) simplifies the correlations at a single point, so that only the correlation between v = F/(t0 and x = —V2FIg2 is 
nonzero. However, cross-correlations between most of the variables at different points are nonzero. 

Our approach is based on work in progress by Bardeen et al. (1985). Cross-correlations involving any derivatives of F at either 
point are proportional to derivatives of the density correlation function ¿;(rl7). The derivatives of Ç fall off substantially more rapidly 
with increasing separation r0- than £ itself, particularly when £ falls off slowly, as it does on galactic scales in cold dark matter 
scenarios. By the time rl7 is more than 4 times the smoothing length Rs which defines the peaks, the cross-correlations proportional 
to derivatives of £ are small enough that it is a reasonable approximation to set them to zero and just retain cross-correlations 
between F(i) and F(j). This simplifies the correlation matrix enough to get an explicit expression for the joint probability distribution 
in the v(i) and x(i), after integrating over all other variables. 

To describe the result, we use a matrix notation. Let v and x be «-component column vectors, with components 

v(i) = [v(0 - pc(¡)]/ü - y2) (6.6) 

and x(i), respectively. Define an « x « matrix *P with off-diagonal elements the normalized density cross-correlations given by 
equation (6.2) and with zero diagonal elements. Also, we define a related matrix 

C = [¥(1 + ¥/(! - y2)]-! , (6.7) 

with I the unit matrix. The expectation value of the product of local peak densities which appears in equation (6.5) can then be 
written 

<«Pk(»-i) • • • MO) = (47r2i^)-"{ciet [I + 47(1 - r2]}-i/2 dx(i) r[v(i)/v,M4¡), y, yv(¡)> v<i)2/2 exp (ivtCv). 

(6.8) 

Here g is the integrand of the integral over x (eq. [A 19]) in the function G(y, yv) which appears in the number density formula 
(eq. 4.3): 

g{x, y, yv) =f(x) exp 
[ 

(x - yv)2' 
2(1 - y2) 

[2;r(l - y2)]1'2 . (6.9) 

In general, since the matrix C is intrinsically nondiagonal and since the vector v depends on both the v(0 and the x(i), the integrals in 
equation (6.8) do not factor into independent terms. The 2tt-dimensional integral makes the evaluation of even the two-point 
correlations difficult unless further approximations are made. 

One regime in which the integral does simplify is the limit in which all the i^l7 satisfy the condition 

vf'l'u < 1 > (6.10) 
for then 

exp ffiCv) ä 1 + jv^Cv , (6.11) 

so the integrals over x and v can now be done separately at each point. Let <v> be the average of v over all the peaks selected by the 
threshold criterion. The «-point function becomes 

£pkVi, ■■■,?„)= X <v>2ip(r¡j) = XCpiVij). (6.12) 
i<J i<J 

This is the limit discussed by Kaiser (1984) in regard to the statistical enhancement of clustering of Abell clusters. Compared to the 
two-point mass density correlation function ¿p(rl7), the two-point density correlation function is enhanced by a factor (v)2/^. 

To facilitate numerical evaluation of <v> we have found an approximate formula for the average value of x at fixed v : 

<x> = yv + 6(y, yv), (6.13) 

_ 3(1 - y2) + (1.216 - 0.9/) exp [-y/2(yv/2)2] 
[3(1-y2) +0.45+ (yv/2)2]1/2 + yv/2 ' } 
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The value of 9 is accurate to better than 1% over the range of values of y and yv relevant for galaxies: 0.4 < y < 0.7 and 1 < yv < 3. 
Further, it has the correct asymptotic behavior as yv—> oo. In the high v limit, 0—► 0 and <x>—► yv. Using equation (6.13), <v> at 
fixed v becomes 

<y> = V - y0/(l ~ y2). (6.15) 

Typically, we have y ^ 0.6, v æ 3, so 0 & 1, and <v> is significantly less than v. 
We have tried more than one approach to simplifying equation (6.8) in the nonlinear regime, all based on approximating the 

integrand to allow analytic evaluation of the integrals over x(i) in terms of accurate interpolation formulae, leaving only the integrals 
over the v(i) to be done numerically. See Appendix F for a discussion of some of the alternatives. What we present here is an 
approach which seems to offer the best combination of accuracy and ease of use. 

Consider approximating the function g (eq. [6.9]) by a Gaussian in x, 

g(x, y, yv) x g(xm, y, yv) exp \_-jßs(xm)(x - xj2] . (6.16) 

We evaluated the function ^ numerically for each of several pairs of values of y and yv at three evenly spaced values of x centered 
close to the maximum of g, with g at the smaller and larger values about two thirds of the maximum. The Gaussian fit to these 
values determines xm and ßg at each y, yv. We found interpolation formulae for xm(y, yv) and ßg(y, yv) which give a good fit over the 
range of values of y relevant to reasonable density perturbation spectra (0.4-0.7) and over the range of yv where the integrand in 
equation (6.8) is large. Some care was needed because g(x) is not particularly close to a Gaussian for x substantially different from 
xm. The result of all this is 

3(1 - y2) + (1.1 - 0.9y4) exp [-y(l - y2)(yv/2)2] 
Xm 7V [3(1-y2) +0.45+ (yv/2)2]1/2+yv/2 

ß (x ) = —î 1 3(x^; + 3)  Pg( m> l — y2 (x2 -3)2[x2 + 164exp(-5x2/8)]- 

The value of g(xm) can be calculated directly through equation (6.9) with/(x J approximated by 

f(xm) Ä xm(x2 - 3) + (2.41x2 + 1.73) exp (-fx2). 

(6.17) 

(6.18) 

(6.19) 

The interpolation formulae are based on large x asymptotic expansions since xm is greater than 2 even for yv < 1 ; over this range, 
they are accurate to better than 1%. 

Note that though the interpolation formula for xm is similar to that for <x>, it is not identical. The difference reflects the 
non-Gaussian nature of the true g(x). A modification which improves the accuracy of the final results for the correlations signifi- 
cantly is to replace xm in equations (6.18) and (6.19) by <x>, so in equation (6.8) 

g{x) « 3(<x» exp [-iß,«x»(x - <x»2] . (6.20) 

In particular, this guarantees accuracy when the correlation amplitude is small and equation (6.12) applies. 
Since the integrals over the x(i) in equation (6.8) are now integrals over the exponential of a quadratic form, they can be evaluated 

analytically using standard techniques (see Appendix F). Let v be the column vector with components 

V(i) = [v(0 - Kx>]/(1 - y2), (6.21) 

and let ß be the n x n matrix with the ith diagonal element equal to ßg((x(i)')) and all off-diagonal elements zero. Equation (6.8) 
reduces to 

FI VW) = (4^2rD "M 
dv(i) f[v(0/v,] </[<x(f')>, y, yv(i)~\ exp [-v(¡)2/2] 

x exp &Clß- Cy2/(1 - y2)2]-1/?* (27rr/2{det Iß - Cy2/(1 - y2)2]} 2^1-1/2 (6.22) 

Numerical evaluation is very manageable for n = 2 and feasible for at least n = 3. 
For consistency, the global average number density of peaks <npk) should be calculated using the same approximation for g(x) 

that was used to arrive at equation (6.22) : 

<npk>=(47r2R^-1 dv 
2n 1/2 

t(v/vt)g(<x}) exp (-v2/2), 
U9K*»J 

so numerical errors in the absolute densities have a minimal effect on as found from equation (6.5). 

(6.23) 

c) Peaks on a Fluctuating Background 
A heuristic approach to understanding why the peak correlations are enhanced relative to the density perturbations is to consider 

the local density of peaks as a function of the mass overdensity averaged on a scale somewhat larger than the mean separation of 
peaks. The local peak density increases rapidly with an increase in the background mass overdensity since the effective threshold is 
reduced. In this approach the peak correlations are an amplified reflection of the background density correlations. The local peak 
density is treated as a continuum process rather than the point process of §§ IV and V. 
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To make this approach explicit and quantitative, write the full (smoothed) density field Fs as the sum of a peak field Fp and a 
background field Fb. The latter is defined by smoothing the full density field F on a scale Rb larger than the scale Rs used to define the 
peaks in Fs. The smoothing can be thought of as a convolution integral as in § IV, 

Fb(r) = c¡,( k - »•' I )F(r')d3r' , (6.24) 

or as a low-pass filter Cb(k) acting on the Fourier transform of F just as for Fs itself. In some sense the peak field Fp should describe 
the local properties of the peaks in Fs, whose long-range clustering properties are defined by the information in Fb. In this spirit, if 
»pk(/■’,,) is the local density of peaks in Fp, we want to compute the (¡-point correlations from an expression of the form 

<npk(»-i) • • • npk(r„)> = Vb(>)¥vb(i)Pb'bO), ■■■, vb(ny] , (6.25) 

with 

vb = Fb/a„ , al = <Fj> . (6.26) 
Since Fb is a Gaussian field in its own right, its probability distribution for the values vb(i) in a range dvb(i) about vb(i) at n-points is, in 
matrix notation, 

F[vb(i), vb(i)J = (27r)-"/2[det (I + 1F)]~1/2 exp [-H(I + . (6.27) 
The matrix is the same normalized two-point density correlation matrix for the field as was introduced in § VIb for Fs, with 
off-diagonal elements 

'I'ij = tPb{rij)lGb = <X(iK(/)> • (6.28) 

In § V we discussed how to calculate directly the probability per unit volume of a peak in Fs subject to the constraint that the field 
smoothed on a larger scale has a particular value Fb. It might seem reasonable to use this as an estimate of the local peak density 
npk(vb) in equation (6.25). However, the results for the correlation functions would depend on the choice of the smoothing function 
Cb and would not agree with the correlations calculated directly, even at separations large compared with Rb. As we saw in § V, the 
problem is that the peak field defined as 

FP = FS- Fb (6.29) 

is correlated with Fb, {FpFb} ^ 0. The background is not statistically neutral (except for altering the effective local threshold), as it 
should be to use equation (6.25). Only if the background is defined by a perfectly sharp low-pass filter in k space, Cb(k) = 6(kb — k), is 
<FpFby = 0, but then the background two-point function Çpb oscillates strongly with separation r until r is very much larger than 
Rb ~ kb 

1. 
Our way around these problems is to define Fp as a Gaussian random field statistically independent of and uncorrelated withF&. 

The field Fp is characterized by its power spectrum, which is equal to the difference of the power spectrum Ps(/c) ofFs and the power 
spectrum Pb(k) of Fb. Furthermore, we choose a Gaussian smoothing for Fb, with 

Cb(r) = (2ny3l2Rb
3 exp(-^r2/R¡), (6.30) 

to eliminate the ringing of the mass correlation function Çpb. If P(k) is the power spectrum of the unsmoothed density perturbation 
field F, 

Pb(k) = exp{-k2R¡)P(k), (6.31) 

Fp(k) = [exp ( — k2Rj) — exp (—k2Rby]P(k) . (6.32) 

With this definition of Fp, the field F's = Fp + Fb has the same power spectrum as Fs and therefore has all of the statistical 
properties of Fs. Nevertheless, if Fb is calculated from Fs by an explicit convolution integral, Fp cannot be, and members of the 
ensemble {F's} cannot be identified with members of the ensemble {Fs}. 

The global threshold is applied to F', but the local density of peaks npk(vb) is given by the number density formula of equations 
(4.3)-(4.13) applied to Fp. Let 

^ = <^2> = <(F')2>, 

°21P = <(VFS)
2> = (j\s - o\b , 

yP = <4P/Kp<72p), 
The differential number density JFpk(vp\ yp, R^), with 

k = Fp/a0p , (6.34) 

for peaks in Fp has the same form as equation (4.3). As a function of \b the local density of peaks above threshold is 

< = <^> , 

= <(V2FS)2> = <4 - <4 , (6.33) 

^*p = V^ipAkp • 

VW = 

,*oo 
dvpt[{\pa0plc0s + v6ff0i,/CT0s)/v(]J/~pk(vp) . 

Jo 
(6.35) 
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What makes the peak-background calculation worthwhile in competition with the direct calculation of the correlations discussed 
in § Ylb is that equation (6.35) can be approximated accurately in a way which allows the integral in equation (6.25) to be done 
analytically. The form is (see eq. [5.6] but note that a and ß are defined differently here) 

«pkW = no exp (av„ - tfv¡) . (6.36) 

The parameters n0 and a are found from the Taylor series expansion of equation (6.35) at vb = 0. Note that at v& = 0 there is an 
effective threshold parameter 

v; = v,(T0s/a0p . (6.37) 

The integral for n0 is 

n° = Jo ^Vi(V/Vt)*y^pk(v; fp’ R*p) ’ (6-38) 

and can easily be evaluated numerically using the interpolation formula, equation (4.4), for the differential number density. If i(1) is 
the first derivative of í(v/v¡) with respect to its argument, then 

« = («0 4) Vot/ffop) ^vi<1)J^pk(v) . (6.39) 

While ß could also be evaluated from the Taylor series, it is in practice better to determine ß by forcing equation (6.36) to agree with 
a numerical evaluation of npk(vb) from equation (6.35) at vb = 2, say. 

The first use of equation (6.36) is to calculate the global average of the local number density. The spatial average is equal to the 
integral over the Gaussian probability distribution, 

<«Pk> = n0(2n) 1/2 dvb exp [av6 - |(1 + ß)vf] 

= «o(l + /T1/2 exp [W/(l + /?)] 
(6.40) 

An important consistency check on the peak-background split is to compare this <npk) with the global number density from Fs. We 
find good agreement to within a few percent once Rb > 3RS even though n0 may be several times less than <rcpk>. Also, Rb > 3RS 
ensures that the local properties of the peaks, as measured by the moments a1 and a2, are nearly the same for Fp and Fs. 

Analytic evaluation of the integral in equation (6.25), using techniques similar to those of § Ylb and Appendix F, gives 

fl npkW^) = n"0{det (I + V) det [¿31 + (I + *I')-1]}~1/2 exp ^a2 £ {[/?I + (I + 'P)“1]“• (6.41) 

Use equations (6.40) and (6.41) together to find 

1 + ...,rn) = <npk(»-1) • • • npk(»-„)>/<npk>" • (6.42) 

If ß 1, which holds in the limit Rb P Rs, so (Joblo0p 1, 

£Pb » exp «2 X •A.j - 1 . (6.43) 

Equation (6.43) has the same form as the expression for the n-point correlation function derived by Politzer and Wise (1984) in the 
high threshold limit. However, for realistic thresholds, by the time equation (6.43) is valid the argument of the exponential is small 
compared with one, and the n-point correlation function is just a sum over two-point correlations. 

Of course, equations (6.40)-(6.42) can only be expected to give an accurate approximation to the real £pk if the minimum 
separation ru of the points is large enough compared with Rb that the background mass correlation Çpb is close to Çps. A numerical 
comparison of the two-point £pb and ¿pk is given in § Yld. For parameters appropriate to galaxy correlations a ratio r^/Rf, greater 
than 4 seems to be sufficient for an accuracy of a few percent, which implies a ratio rij/Rs greater than ~ 12. Asymptotically at large 
rip where 1, comparison of equations (6.40)-(6.42) and (6.12) shows that the two estimates of ^pk are the same if 

(v^aKs/^Xl+Zr1- (6.44) 

d) Two-Point Statistical Correlations 
To illustrate the application of the formalisms discussed in §§ Ylb-c we present numerical results for two-point correlations here 

and for three-point correlations in § Yle. Our calculations are designed for comparison with the data on the two-point galaxy- 
galaxy correlations from the CfA redshift survey as analyzed by Davis and Peebles (1983). The theoretical background is the cold 
dark matter class of cosmological models together with the origin of density perturbations during an inflationary epoch in the very 
early universe (Starobinski 1982; Guth and Pi 1982; Hawking 1982; Bardeen, Steinhardt, and Turner 1983). We expand upon the 
discussion of these models in § I Vb. 

The cold dark matter cosmological scenario is the one most likely to be compatible with an assumption that galaxies form at 
peaks of the primordial density perturbation field. If the density perturbations are generated from quantum fluctuations in the Higgs 
scalar field which gives rise to an inflationary epoch, the primordial fluctuations should have a scale-invariant Zeldovich spectrum, 
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P(k) ce k~3, when expressed in terms of a hypersurface-independent measure of the metric fluctuations. The evolution of these 
perturbations through the epoch when the universe becomes matter dominated results in a well-defined power spectrum of density 
perturbations just prior to galaxy formation, the “ adiabatic ” power spectrum, so named because initially there is no perturbation in 
the ratio of cold dark matter density to entropy density. This CDM adiabatic spectrum was first obtained by Peebles (1982a). More 
refined calculations have been carried out by Blumenthal and Primack (1984), Bardeen (unpublished), and Bond and Efstathiou 
(1984), and an accurate fit is given in Appendix G. 

Another conceivable, although less strongly motivated type of density perturbation spectrum to come out of inflation with cold 
dark matter is associated with quantum fluctuations in an axion field (Steinhardt and Turner 1983; Linde 1984). When these 
fluctuations become perturbations in the cold dark matter energy density at the chiral phase transition (T ~ 200 MeV) the total 
energy density necessarily remains unperturbed, since the wavelengths are much larger than the horizon at that time. The evolved 
density perturbation spectrum just before galaxy formation is called the isocurvature spectrum since there is no initial perturbation 
in the spatial curvature—unlike the adiabatic case. Bardeen (unpublished) and Efstathiou and Bond (1985) have computed the form 
of this spectrum. Accurate fits are given in Appendix G. 

The isocurvature and adiabatic spectra become identical at long wavelengths. On shorter wavelengths, the isocurvature is 
generally flatter than the adiabatic, with more power on cluster scales, and with effective index n & —2.5 on galactic scales 
compared with n & —2 for the adiabatic. We shall see that these shape differences have a relatively important impact on the 
correlations we compute for the two models. 

The precise scaling of these density perturbation spectra in relation to present observations depends on the value of the Hubble 
constant, since this determines the scale which comes inside the horizon just as the universe becomes matter dominated. If we 
assume that the present value of the cosmological constant model is zero and the cosmological density parameter Q = 1, constraints 
on the age of the universe from globular cluster evolution strongly suggest that the Hubble parameter h is no larger than 0.4 or 
perhaps at most 0.5. 

The remaining parameters for our model of galaxy formation are the smoothing radius Rs for the peaks and the parameter q in 
the threshold function t(v/vt) which governs the sharpness of the threshold. Our best guess is that Rs should correspond to a mass 
somewhat smaller than the total mass (including the dark halo) of a typical luminous galaxy, since some of this mass would no 
doubt have accreted onto a central core after the epoch at which the threshold was set. The mass within the Gaussian smoothing 
window is given by equation (5.3a). 

The choice of q is also uncertain. However, in the context of a threshold hypothesis, a reasonable requirement on q is that the 
distribution in v of peaks selected as “ galaxies ” be not too asymmetric about its maximum and the maximum be reasonably close to 
vr This requires a large q when vt is large and a smaller q when vt is not so large. 

With the above as background, we first examine the asymptotic amplitude of the correlations in the limit £pk ^ 1 when equation 
(6.12) is a good approximation to ¿pk. The quantity <v) can be considered an effective threshold level for the correlations, since 
£pk = <v>2^p/ö-o? 

and <v> approaches vt for a perfectly sharp very high threshold. The integral 

<~V> = dv[y - 70/(1 - y2)]t(vlv^^(v) (6.45) 

is easily evaluated, and some illustrative results are shown in Table 3. 
The masses associated with the values of Rs in Table 3 range from Ms =1.3 x 1010 /*-1 M0 for Rs = 0.143 to Ms = 3.9 x 1011 

h~l Mq for Rs = 0.445. The smaller pair of values of Rs and the larger pair of values of Rs each represent a single smoothing radius 
when the perturbation spectrum is rescaled to make it independent of h. For the two smaller values ofRs, y = 0.555 for the adiabatic 
spectrum and y = 0.437 for the isocurvature spectrum. For the two larger values of Rs, y = 0.599 for the adiabatic spectrum and 
y = 0.500 for the isocurvature spectrum. 

The value of v, for each /z, Rs, and q is chosen so that the global average number density of peaks above threshold is <npk) = 0.01 
h3 Mpc~3, the number density of the galaxies counted in the CfA redshift survey (Davis and Huchra 1982). Note that as the 
threshold becomes less sharp (q decreases), there are more peaks with v < vt counted as “ galaxies ” and vt must increase to keep the 
total number density constant. On the other hand, <v> decreases because the average height of the peaks decreases. The distribution 
of peaks in v is reasonably symmetric about vt for g = 16 when vt & 3.5 and for g = 8 when vt æ 2.5-3.0 (see Fig. 4). By the time 
vt <2 the differential number density is no longer rapidly varying, and g = 4 is probably as sharp a threshold as can be expected. 

The last column in Table 3 gives values of the asymptotic expression for the zeroth-order two-point correlation function 
evaluated at r = 5 /T1 Mpc, where the observed correlation amplitude is one. The actual peak correlation amplitude is significantly 
larger unless (v}2Çp/gI ^ 1. These values give some idea of the trend of the overall amplitude of the peak correlations with h, Rs, 
and q. As Rs decreases, <v> increases because vt must increase to keep the global number density constant. The quantity a0 is also 
increasing at just about the same rate. In fact, the trend with Rs is opposite for h = 0.4 and h = 0.5. The correlation amplitude can be 
rather sensitive to h since at fixed observed separation (in units of /z”1 Mpc), ip/ol decreases rapidly with increasing h. This is largely 
balanced by an increase in <v> at the larger Rs, but not at the smaller Rs. 

In contrast, g0 rises more slowly as Rs decreases for the isocurvature spectrum. Also, once vt < 2.5, <v> changes more rapidly with 
Rs. Both effects combine to make the correlation amplitude rather sensitive to the value of Rs for the isocurvature spectrum. Of 
course, for a given choice of <rcpk> there is a maximum possible value for Rs at which vf—> — oo. 

For each type of spectrum, we pick two cases shown in Table 3 to show how the actual ¿¡pk varies with r = \r2 — r^. First consider 
the adiabatic spectrum. One case has a small value of Rs (0.178 /z"1 Mpc with h = 0.4) and a reasonable threshold sharpness (q = 16) 
for the fairly high value of vt. The second case has a larger Rs = 0.356 /z-1 Mpc with h = 0.5 and a correspondingly softer threshold 
(q = 8) for the smaller value of vr 
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The direct calculation of the correlations from equation (6.22) is straightforward. The matrix C has components Cll = C22 = 
— ÿliKX — y2\ Ci2 = ^21 = ^12- The double integral over v(l) and v(2) is evaluated numerically. The results for the adiabatic 
spectrum are plotted as the solid curves in Figure 5a. The approximations made in arriving at equation (6.22) are estimated to have 
errors of a few percent at r = 4.5RS, which rapidly diminish to less than 1% as r increases. To show how the statistical enhancement 
modifies the slope of the peak correlation function from that of the mass correlation function we plot <v>2^p/cro for Rs = 0.178 /z-1 

Mpc. Note how this asymptotic approximation approaches £pk once £pk < 1. 
In Figure 5a, it is remarkable how closely {pk follows an r"18 power law, like that of the observed galaxy correlation function, 

even though the mass correlation function is not particularly close to a single power law. That this is so over the whole range of 
Rs likely to be relevant for galaxies is an accident of the particular shape of the adiabatic density perturbation spectrum and of the 
observed number density of luminous galaxies. If galaxies were rarer objects so that, for a given Rs, vt were larger, then the nonlinear 
statistical enhancement of the correlations when {pk > 1 would be greater, and £pk would rise more steeply at small r—as was 
predicted by Politzer and Wise (1984) from an approximation to ^pk valid only in the very high vt limit. If luminous galaxies were 
more common, v, and <v> would be smaller and ¿pk would follow in shape more closely at small r as well as at large r. 

The amplitude of ¿pk is 3-5 times smaller than the observed correlations, indicated by the (5/r)18 line. However, remember that 
the £pk plotted here is the correlation function of the peaks in the limit that Çp £pk, before any significant dynamical evolution of 
the correlation function. At the present time, £p cannot be very much less than one on scales of several megaparsecs, since a 
significant fraction of the universe has collapsed on these scales to form bound clusters of galaxies. Also (j0 must be large enough so 
that galaxies formed at a reasonably early time. 

To follow the dynamical evolution of £pk when it and £p exceed one is a job for numerical simulations. Davis et al. (1985) give 
some results of a pioneering attempt to follow the clustering of galaxies identified with high v peaks in a cold dark matter dominated 
universe. The two-point correlation function £g of their “ galaxies ” increase in amplitude without steepening on comoving scales of 
2 < r < 10 Mpc (see Fig. 17 of their paper), suggesting that dynamical evolution of a zeroth-order ¿¡pk like that shown in Figure 5 
may be consistent with observation. The numerical simulation does show steepening on smaller scales once dynamical clustering 
becomes highly nonlinear; this is not seen in the observed correlations. However, the accuracy of these numerical simulations on 
such small scales is open to question. Much more work is needed. We will explore the dynamical evolution of the perturbations 
when both £p and ¿¡pk are less than one in § VI/ 

One important further point in Figure 5a is the comparison of the £pk(r) calculated directly with £pb(r), which is the zeroth-order 
peak correlation function calculated using the peak-background split of § Vic. Equations (6.41) and (6.40) combine to give 

1 + £pb = {1 - [/(Ai2/(1 + £)]2}-1/2 exp {[a/(l + /)]2iAi2/[1 + ^i2/(l + £)]} , (6.46) 

where i//12 is the normalized two-point correlation function for the background field Fb as defined by equation (6.28). 
For the case plotted, the background smoothing radius is Rb = 0.593 h~r Mpc, 3.33 times Rs. The values 

a = 2.169, / = 0.426 (6.47) 

(eq. 6.36), and n0 = 0.00224 h3 Mpc-3 follow. The effective threshold (eq, [6.37]) is at v't = 4.249, and the parameter yp for the peak 
field is 0.6534. The global number density from equation (6.40) is <npk> = 0.00976 h3 Mpc-3 compared with 0.01009 calculated 
directly. The peak-background estimate of <v> is 2.64 compared with 2.62 in Table 3. The agreement of £pb with £pk is excellent once 
r > 2 Mpc ä 3ARb. This gives us confidence in the peak-background method, which we will use exclusively in §§ YIe-f. 

Now consider the results for the isocurvature spectrum, as shown in Figure 5a. The two examples from Table 3 are /i = 0.4, 
Rs = 0.178 /z-1 Mpc, q = 8 and h = 0.4, Rs = 0.445 /z-1 Mpc, q = A. Taking q = 8 rather than 16 in the first example means that the 
average value of v is somewhat smaller than vr It appears that ¿pk agrees very well with the observed galaxy-galaxy correlations at 
r > (4-5) h~1 Mpc, but remember that ipk is the unevolved peak correlation function. If o0 is large enough for galaxies to form at a 
reasonable redshift, the peak-peak correlations at the present time will have grown to be considerably larger than the observed 
galaxy correlations (see § VI/). 

There are still problems if we try to minimize £pk at 5 /z-1 Mpc, as in the second example. While the level of ¿pk now does allow for 
some dynamical evolution, the level of <70 is still constrained to be too small to allow galaxies to form at a reasonable time. Also <v> 
is so small that the statistical segregation of galaxies from mass in clusters and superclusters (§ V) is too weak to be of much help 
with the missing mass problem. We conclude that a pure isocurvature density perturbation spectrum is incompatible with at least 
our simple version of a threshold hypothesis for galaxy formation. 

From these preliminary explorations it seems promising that the threshold hypothesis together with the adiabatic density 
perturbation spectrum can give a good account of the observed correlations of galaxies (see also § Vic). The same formalism can be 
applied to correlations of other rare objects such as rich clusters of galaxies (Kaiser 1984). However, the adiabatic spectrum seems in 
some difficulty here, since, according to Bahcall and Soneira (1983), £cl for the Abell cluster sample remains positive out to 
100 /z-1 Mpc, while <^p goes negative at r æ 20(Q/z2)-1 Mpc for the adiabatic spectrum. While our approximation schemes break 
down as £p changes sign, it seems highly unlikely that the peak correlations will behave very differently from the density correla- 
tions. 

e) Three-Point Correlations 
The three-point correlation function for galaxies has been inferred from angular correlation measurements (Groth and Peebles 

1977) and has been directly estimated from redshift surveys (Efstathiou and Jedrezejewski 1984). The usual way of decomposing the 
three-point function is to write it as a sum of the two-point correlations £12, £23, ¿13 at each of the three separations r12, r23, r13, 
plus a connected part denoted by C123 = C(ru r2> r3): 

£(3,('-l,»-2,»-3)=£l2 + ¿23 + £l3 + íl23 • (6.48) 
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The observational results are consistent with £123 being a sum over products of two-point functions with a coefficient Q which is at 
least approximately scale independent : 

Ci23 = 0(C 12 C23 + C23C31 + C31C12) • (6.49) 

The value of Q is estimated to be close to one, with an uncertainty of ~0.2 either way. 
The three-point function is also an important diagnostic for numerical simulations of clustering of galaxies. Davies et al (1985) 

find in their cold dark matter simulations that Q is usually in the range 1.5-2, at least for smaller separations, when they force the 
three-point correlations into the form of equations (6.48) and (6.49). When they introduce biasing like that assumed in this paper 
they obtain a value of Q somewhat closer to one. 

Politzer and Wise (1984) found that the connected part of the three-point function for points above a high threshold has the form 

C123 = Í12C23 + C23 Í31 + C31C12 + C12 C23 C31 • (6.50) 
The last term dominates when > 1. 

A direct calculation of the three-point function using equation (6.22) requires evaluating a triple integral over the v(i). This is 
certainly feasible, but the analytic calculation using the peak-background split is much simpler and is all we present in this paper. 

Reduction of the matrices in equation (6.41) is beginning to get a bit complicated for three-point correlations, but it is still 
straightforward. Let 

D = {det (I +'F) det [^1 + (I + ^)_1]}“1/2(1 + ^)“3 

= i-('AÎ2 + 'Al3 + '/'li)[Mi+iS)]2 + 2^12^23^3i[Mi+ra3. (6'51) 

Then 

1 + £Pb(''i> »y,»-3) = 1 + 4,3
b
, = ß-1/V\ 

x = 
D(1 + ßf 4>12 + 'l'23 + •Asi - 

ß 
1+ß 

+ •Ais + •Ali + •Ail •Aïs + ll/23 •Asi + ^31^12) + 
ß2 

(i + ßy 
3iA12iA23iA3i (6.52) 

Some simplification is possible if the three points rl5 r2, r3 are at the corners of an equilateral triangle, so r12 = r23 = r31 = r and 
•Ai2 = ^23 = iAsi = <A-We find 

1 +£ (3) _ pb 
W T1 

i+ß_ 
1 + 

2ßiß -1-1/2 

1 + ß_ 
exp 3[«/(i + A)]2 ¡A I 

1 + 2/W(l + ß)i ’ 
(6.53) 

which is rather similar to equation (6.47) for ç(
p
2

b*. 
Consider the limit when both ßil/^ and [a/(l + /J)]2iA¡j are small compared with one. Expanding the exponential and D in 

equation (6.52) to second order in iß and then reassembling terms to replace the expansion in i/V by an expansion in (see eq. 6.47) 
gives for the connected part of the three-point function 

Í123 * [1 - W + /0/«2Ml2 ¿23 + ¿23 ¿31 + ¿31¿12) • (6.54) 

As expected, this has the form of equation (6.49). The asymptotic value of 0 at large separations is then 

Q*l-ß(l+ ß)/a2 . (6.55) 

While both a and ß depend on the ad hoc choice of the background smoothing radius Rk. the scaling of a and ß with Rh is such that 
Q is independent of Rb, at least when Rb/Rs is large, as it should be. 

If ßißij 1, but [a/(l + /j)]2tA,j is not small, which requires [a/(l + /?)]2 > 1, 

<f3> « exp {[a/(l +/J)]2(iAi2 + ^23 + iAsi)} 

*(1+ £12)(1+ £23)(1+ £31)-1 • (6.56) 

This is equivalent to the Politzer-Wise form, equation (6.50), and is incompatible with the form of equation (6.49) once the 
correlations are large. 

What is the situation for peaks selected to model the distribution of galaxies ? In order that the peak-background split apply when 
the correlation amplitudes are at least beginning to get large, Rs should be relatively small. Consider the case shown in Figure 5a 
(adiabatic spectrum), with a and ß given by equation (6.47). Then a2/[/?(l + ßj] = 1.1 A, and the asymptotic Q = 0.871. At smaller re- 
define an effective 2, ge, which is calculated by taking £(3) from equation (6.52), subtracting the sum of the two-point correlations 
£12, £235 £31 from equation (6.46), and then dividing by the sum of the pair-wise products of the When r12 = r23 = r31 — 2 h~1 

Mpc, the smallest separation at which the peak-background split seems to be reliable, we find £(3) = 12.33, £(2) = 1.638, Ç123 = 7.42, 
and Qe = 0.922. The Politzer-Wise form would give £(3) = 17.35, almost 50% too large. Repeating this calculation for a variety of 
different r0-, including all kinds of triangle shapes, always gives values of Qe in the range 0.87-0.92. The moral is that as the 
correlation amplitude becomes large, what is a fairly small percentage error in the exponent in equation (6.52) can be a substantial 
error in the correlation. 

The fact that Qe for the peaks is approximately scale independent and has a value agreeing remarkably well with the observed Q 
for galaxies is encouraging, but should not be taken too seriously. The problem again is that what we have calculated for the peaks is 
zeroth-order in dynamics, while the galaxy three-point function is only measured on scales (<2 /z-1 Mpc) on which there has been 
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significant dynamical evolution. Since the evidence from the numerical simulations is that dynamical evolution drives Q toward one, 
at least one can say that our threshold hypothesis seems to be consistent with observations of three-point correlations of galaxies. 

/) Dynamic Evolution of the Correlations 
The precise calculation of the dynamic evolution of the correlations is rather complicated since the correlations are defined in 

terms of physical distances in our present universe, whereas the probability distribution for the random field Fs and quantities 
associated with it are known in terms of the linear perturbation field as a function of Lagrangian (comoving) coordinates. At the 
outset one can restrict oneself to considering dynamics as a linear perturbation away from the homogeneous isotropic background, 
leaving the nonlinear problem to numerical simulations. However, the statistical effects are highly nonlinear in general, and the 
statistical and dynamical contributions do not couple in a simple way. 

We leave the general problem to future work, and consider here only the much simpler limit when the separations of the points 
are very large compared with Rs and the statistical correlation amplitudes as well as the dynamical perturbations are small. In this 
limit, the n-point correlation function is just a sum over two-point functions, so we need only consider the two-point correlations. 
There is also plenty of room to apply the peak-background method, which is conceptually and mathematically relatively simple. 

In the peak-background split of § Vic, there is a comoving density of peaks, npk, which depends only on the background 
overdensity vb(r, t) evaluated at i = 0. Here r is the comoving position and t is the time. While to lowest order in the dynamics vb is 
independent of time, the fractional perturbation in the physical density at time i ^ 0 should be written as 

Fb(r, t) = vb(r, t)ob(t) , (6.57) 

since the correlations are second order in the density perturbation amplitude. 
The number of peaks per unit physical volume is then 

N
Pk = npklvb(r, 0)] [1 + vb(r, t)(jb(t)¡] . (6.58) 

The two-point correlation function can be written as 

£pb(*i2, t) = <Npk(xu t)Npk(x2, t))KN2
pky , (6.59) 

with xi2 = \ x1 — x2 \ of fixed physical (Eulerian) separation in the present universe. The averages are uniform in physical volume. 
To evaluate them, we note that when Rb > Rs, equation (6.36) for npk reduces to 

"pk ~ rc0[l + avb(fV0)] (6.60) 

since a scales as (Tb/(js and ß scales as (ojof1. (To be completely careful about second-order terms, we should have kept terms of 
order ß and a2 here, but these obviously cancel between the numerator and denominator of eq. [6.59].) Since 

d3x = d3r/ll + vb(r, ¿K] , (6.61) 

it is easy to see that <Vpk)x = (npk)r = <npk) as required for consistency. (The subscripts x and r denote volume averages in 
Eulerian or Lagrangian space.) Also, by definition, 

d3x vb(r, t) = 0 , d3r vb(r, 0) = 0 . (6.62) 

Write the integral in the numerator of equation (6.59), keeping only terms up to second order in oc or ob, as 

d3Xirto[l + V(,((-!, iVfJCl + vb(r2, r)ffj + d3r1«o otVfcO*!, 0)[1 + vb(r2, rK] + d3r2nl<xvb{r2, 0)[1 + Vj^, f)<T6] 

+ d3r1nl a2vb(r0)vb(r2, 0) . 

All explicit first-order terms vanish, and in explicit second-order terms we can identify vb(r, t) and vb(r, 0). As in § Vic, let ^12 = 
<v&(r i)v&(r2)>- Then 

{pb(t) = (a + ob)2i/,12 = {[ipb(0)]1/2 + KP«]1/2}2 . (6.63) 

The second version of equation (6.63) may well be a reasonable approximation even when the statistical correlations are not really 
small enough for the above derivation to be strictly valid. We have compared the time evolution predicted by equation (6.63) with 
the “ biased galaxy ” numerical simulation of Davis et al. (1985) and find rather good agreement. 

For a given zeroth-order correlation function, equation (6.63) can be used to estimate the present amplitude of density pertur- 
bations necessary for the evolved peak correlations to match those of galaxies, with £pb 1 at r = r0 = 5 /t~1 Mpc. For instance, 
the adiabatic spectrum predicts a zeroth-order £pb of ~0.2-0.3 at r0, so at r0 should also be ~0.25. In particular, the model in 
Table 3 and Figure 5a with h = 0.5, Rs = 0.356 /i-1 Mpc, and g = 8 has £pb(r0, 0) ^ 0.18 which requires £p(r0, t0) & 0.33. The 
corresponding g0s ä 2.4. This value for o0s in turn allows an estimate of the cosmological time of collapse of a typical peak. For a 
spherical peak at the maximum of the distribution in v, the collapse redshift is zg = <t0Xv>/1.69 — 1 æ 2.9. The collapse redshift 
would be somewhat larger if, as is likely, the peaks are somewhat aspherical. This value of a0s was also used in Table 2 to estimate vb 

and zt = gqs vt/1.69 — 1 for this model. A similar procedure was followed for the other models listed in Table 2. 
To see the trouble with the isocurvature spectrum explicitly, consider the model in Table 3B with the smallest statistical 
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correlation at r = r0, the model with h = 0.4, Rs = 0.445 h~l Mpc, and q = A. This has (see Fig. 5b) Çpb(r0, 0) æ 0.31, and 
¿pb(ro, t0) = 1 gives ip(r0, i0) ~ 0-20. The corresponding a0s ä 0.9, which together with the threshold at vt = 1.87 implies a threshold 
collapse redshift zt æ 0.0. The typical peak counted as a “galaxy” has <v> » 2.1, so zg & 0.1. Even in this extreme model, which 
would have relatively little biasing in the galaxy/mass ratio, “ galaxies ” would form unacceptably late with a significant fraction not 
collapsed at present. Without any biasing at all, the collapse of a typical peak with v æ 1 is at a redshift z æ 0.2 [with the 
normalization ip(r0, i0) = 1]. 

For scales r > r0, equation (6.63) implies that the peak correlation function is amplified over the mass density correlation 
function, £pk(r, t) æ b2Çp(r, t), by the square of the spatially uniform biasing factor b(t) = <v>/<70s(i) + 1. A common way to normal- 
ize the overall amplitude of the linear perturbation spectrum is to relate the quantity J3(r) = jo Ç(r)r2dr on scales r r0 to that 
determined from galaxy redshift surveys, J3g. The assumption that galaxies are unbiased tracers of the mass distribution corre- 
sponds to J3p = J3g on sufficiently large scales, where J3p is determined using the mass autocorrelation function. Since the dominant 
contribution to J3g(r) comes from scales >r0, with biasing J3P(r) = b~2J3g(r) is a good approximation. The power spectrum 
normalization with biasing is simply lowered by the factor b~2 over that determined assuming “light traces mass.” Predictions of 
the microwave background anisotropies AT/T are lowered by fr“1 over the values obtained using the “light traces mass” 
assumption (e.g., Bond and Efstathiou 1984). For the adiabatic CDM model with h = 0.5, Rs = 0.356 /i-1 Mpc, and q = $,b = 1.7. 
For the isocurvature CDM model with h = 0.4, Rs = 0.445 /i_1 Mpc, and q = 4, b = 2.2. The advantage of such a normalization 
procedure in the present context is that we can be relatively confident that equation (6.63) holds on scales r > r0 even if it fails on 
much smaller scales. However, the differences between J3 normalization and the normalization at r0 that we have adopted here for 
simplicity are not too large since the correlation functions we predict, especially in the adiabatic model, are quite similar to the 
observed galaxy correlation function. 

VII. DENSITY PROFILES AROUND PEAKS 

If prominent cosmic structures do indeed arise from condensations of gas and dark matter around primordial density peaks, then 
the initial conditions for nonlinear collapse will be the density and velocity profiles in the neighborhood of the peak as determined in 
the linear regime. Here we focus on the density only. Similar methods would be used to determine the velocity. In § Vila, we obtain 
the distribution of the asymmetry parameters of the peak, which determines the lowest order Taylor expansion of the density profile. 
In § Yllb, we calculate the average shape and its dispersion as we go farther away from the maximum. In § Vile, we apply our 
results to clusters in neutrino-dominated universes. 

a) The Triaxial Ellipsoid Approximation 
In the immediate neighborhood of a peak, the density profile is given by the Taylor expansion 

F(r) = F(0) - X À,rf/2 . (7.1) 

The axes are oriented along the principal axes. Since all are positive, the contour surface of constant density/, defined by F(r) = /, 
defines a triaxial ellipsoidal surface with semiaxes 

at = 
~2(F(0) -n\112 

_ ^ J 
(7.2) 

at least provided F(0) — /is small. Since is by definition the largest eigenvalue, collapse will first occur along the 1-axis, resulting 
in pancake formation as described by Zeldovich (1970). Depending upon the distribution of the other 2f, collapse may or may not 
follow quickly along the other two axes. 

We characterize the asymmetry by the parameters 

e = 
21^ ’ 

2i — 222 + 23 
P~ 2L2,. 

(7.3) 

Thus, e (>0) is a measure of the ellipticity of the distribution in the 1-3 plane, and p determines the degree of oblateness (0 < p < e) 
or prolateness (0 > p > —e) of the triaxial ellipsoid. Oblate spheroids have p = e, and prolate spheroids have p = — e. As we shall 
see, spheroidal distributions are highly improbable. 

In terms of the asymmetry parameters and the variable x = — V2F/<j2 introduced in § VI, the small r expansion of the profile is 

F(r) ^ vo0 - xo2 — [1 + A(e, p)J as r- 0, 

A(e, p) = 3e[l — sin2 0(1 + sin2 </>)] + p(l — 3 sin2 9 cos2 </>) . (7.4) 

We have adopted spherical coordinates with the 1-axis chosen as the azimuthal one and x3 = r sin 9 sin </>. Note that the angle 
average of the asymmetry measure A(e, p) vanishes. The distribution of shapes in the immediate neighborhood of a peak of given 
height v can be expressed in terms of the distributions for x, e, and p. 

The conditional probability for x, given that the peak has a height v, is independent of the asymmetry parameters e and p: 

p [ \ \j _ >~pk(v> x)dx _ g(x, 7, x*)dx _ exp [-(x - xj2/2(l - y2)] f(x)dx 
*U|Vj ^pk(v) G(y, X*) l2n(l-y2)V12 G(y,yv)- ' ^ 
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FIG. 6—The constrained probability P(x \ v) of eq. (7.5) giving the distribution of x = -V2F/a2 for peaks. (The x used here is 1.58 times that in the text.) 

Here g and G are defined by equations (6.9) and (4.3), and/(x) is given by equation (A15); it is monotonie, ~x8 for small x and ~x3 

for large x. This probability distribution function (7.5) is plotted in Figure 6 for a specific value of y appropriate to galactic scale 
peaks in the adiabatic CDM picture, and for a variety of v. This function is sharply peaked at its maximum, which occurs at xm, 
fitted by equation (6.17). 

i) The Distribution of Ellipticity and Prolateness 
Only rarely occurring peaks are spherical. To determine the degree of asphericity expected, we need the conditional probability 

for the asymmetry parameters e and p subject to the constraint that the peak has a given height v and x. This turns out to be 
independent of v : 

3255/2 V8 

Pep(e,p\v,x)dedp=Pep(e,p\x)dedp = -^-ÿ^j^e~(5l2)x2(3e2 + p2)W(e,p)dedp. (7.6) 

This result and details of the subsequent discussion are given in Appendix C. The function W(e, p) is a polynomial of order 5 in both 
e and p which is constrained to vanish outside of the | p | < e, e >0 domain. Indeed, the allowed domain is the interior of a triangle 
bounded by the points in the (e, p)-plane: (0, 0), (¿, —£), and (^, ^). See Appendix C for details of the form of W. We plot various 
contour lines of the probability distribution (7.6) in Figure 7 for a variety of yv. We have taken x = x* as the constraint which, 
according to equations (6.13) and (6.19), is the mean value and most probable value for large yv. 

Notice that the most likely value of p quickly goes to zero. High v peaks are neither oblate nor prolate, but they are definitely 
triaxially asymmetric, since ~ (^i + Indeed, in the large x limit, e and p are small, and we can approximate P by a 
Gaussian : 

Pep(e, P) * Pep(em, Pm) ^Xp 
(e - o2 

2(72 

where the most probable values and their dispersions are (for large x) 

(P - Pnf 
2*1 r 

 1 
em - x/SxCl + 6/(5x2)]1/2 ’ 

6 
’m “ 5x4[l + 6/(5x2)]2 ’ 

(7.7) 
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Fig. 7.—The 95%, 90%, and 50% contours of the conditional probability for ellipticity e = y/x and prolateness p = z/x subject to the constraint of given x for 
peaks (eq. [7.6]). (The x and x* used here are 1.58 % y-1 times those used in the text, so v = 1, 2,..., 6 corresponds to the different curves.) This figure demonstrates 
that, even for high v, the shapes are triaxial. The values of e and p are constrained to lie in the triangle. 

The cross term proportional to (e — em)(p — pm) has a coefficient which rapidly goes to zero for large x and can be ignored. Thus, 
although pm goes to zero much more rapidly than em, the constant Pep contours should be approximately elliptical with axial ratios 
1.4 to 1 and with principal axes oriented along the e and p axes. This is evident from Figure 7. High peaks tend to he more spherically 
symmetric than low ones. This is evident from equation (7.7): sphericity is approached as (51/2yv)_1; the dispersion about sphericity 
approaches zero at about the same rate. 

However, for CDM, we typically have x* ^ (0.4-0.7)v, so significant deviation from sphericity is expected even for v æ 3. For 
example, for peaks on the scale Rs = 0.5 h_1 Mpc of height v = 2.7 in the adiabatic cold dark matter model with Q. = 1 and h = 0.5, 
we have y = 0.62; hence, the most probable value of x ä l.Sx* æ 2.5; therefore, the most probable æ 0.17 and pm& 5 x 10“3 by 
equation (7.7). These values are in good accord with Figure 7. The eigenvalues would then be related by = 1.3/l2 = 1.723. The 
axial ratios (eq. [7.2]) immediately follow: the long (3) semiaxis is only 1.3 times the short one. However, since the short axis goes 
nonlinear first (collapsing when the expansion factor is 1.3 smaller than when the 2-axis collapses in the Zeldovich 1970 
approximation), this asymmetry amplifies in the nonlinear regime (Lin, Mestel, and Shu 1965; Zeldovich 1970). The generic 
collapsed structure will be pancake-like. 

Note that artificial spherical smoothing tends to sphericalize pancakes and filaments, so the asymmetry parameters obtained 
from this distribution will generally be underestimates—unless the filtering is physical. 

b) The Average Shape and Its Dispersion 
Although we have determined the shape in the immediate neighborhood of the peak from § Vila, we still need to obtain the 

higher order terms in the Taylor expansion in r. We also wish to determine how far out we can go before the density at r becomes 
uncorrelated with that of the peak. The former requires the average of F(r), the latter requires its dispersion. 

A peak is characterized by the parameters C = (v, 2l5 /2> ft 7}- The latter three parameters are the Euler angles which 
define the orientation of the principle axes of Cij. We also let C include the information that r = 0 is a peak. The shape about the 
peak would be fully determined if we could compute a hierarchy of conditional probability distributions PfF^), ..., F^)! C] as 
iV—> go. Here we will just compute F[F(r) | C]i7F(r), the probability that at a displacement r from the peak (taken to be at r = 0), the 
density field has value F. As we show in Appendix D, this is a Gaussian distribution characterized by the mean value of F at r 
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(7.9) 

We have introduced the notation \j/(r) = ¿;(r)/Ç(0) for the normalized density-density correlation function as in § VI, r is measured in 
units of R*, A is given by equation (7.4), and i)/' = di/z/dr. The parameters x, e, and p are to be chosen from the distribution equations 
(7.5) and (7.6). The dispersion is independent of these parameters, and is spherically symmetric. At large distances, the mean also 
becomes spherically symmetric, although this reflects a lack of correlation rather than indicating sphericity of the actual structures. 
At short distances, a Taylor expansion of 7.8 in r does indeed reduce to equation (7.4) in lowest order. 

A less useful quantity arises when we average the shape over all possible orientations of the principal axes. The result is, of course, 
spherically symmetric and depends only on the average curvature of the peak and its height: 

F(r) <F(r) \ v, x, e, p> _ <F(r) | v, x> v / V2i/A x/y Í 2 V2<A 

*0 “ ao ~ *0 ~ (1 - r2) v + 3 / o-y2)\y* 
(7.10) 

This orientation-averaged mean is independent of e and p and agrees with the mean of equation (7.8) if there is no asymmetry, 
e = p = 0. Also the dispersion is still given by equation (7.9). 

The mean shape averaged over all possible curvatures as well as orientations, <F(r) | v), is given by the same expression, except 
that x is replaced by its conditional average <x | v), which is given by equation (6.13). We plot F together with the curves F ± AF in 
Figure 8 for parameters appropriate to adiabatic and isocurvature CDM models. (Instead of <x>, we used x = x* in this figure. The 
difference is small in this case.) Equations (7.10) and (7.9) for peaks should be compared with the average density structure and its 
dispersion around an arbitrary point with the same height v as the peaks (Rice 1944; Dekel 1981): 

<F(r) I v, no peak)/a0 = vi//(r) , 

<[AF(r)]2 I v, no peak>/ffg = [1 - iA2(r)] • (7.11) 

This correlation function profile is also plotted in Figure 8. It falls off more slowly than equation (7.10). Generally, the added 

Fig. 8.—Orientation-averaged density profile about a peak of height v = 2.7 and its + 1 cr deviations are compared with the average profile for an ambient field 
point. Parameters are typical of CDM models of galactic scale structure. The mean spacings of peaks filtered on this scale in units oiRj- for the n = —2.5 and 
adiabatic examples, respectively, are 18 and 13 for v > 2.68; 7.5 and 6.3 for v > 1, which is also just about the spacing for peaks of arbitrary height. 
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constraint that the point is a peak serves to make the profile steeper. Further, the dispersion is less than for the ambient field point. 
The asymptotic limit of the variance with the peak constraint, 

<[AF(r)]2|v,peak>^(7g[l-(l-y2)-V2W], (7.12) 

approaches the uncorrelated limit al slower than the ambient point does by the (1 — y2)-1 factor. Typically, one can go several 
filtering radii before the dispersion becomes so large that knowledge of the central peak conditions gives us no information about 
the shape. The average spacing of peaks with v > 1 is ~7Rf and with v > 2.68 is ~ ISRj in both cases. The shapes have long since 
lost their coherence before this. 

The typical radius of a peak could be estimated as the distance at which the dispersion in the profile becomes unacceptably large. 
An alternative estimate is simply d/4, where d = 4.0R* is the average spacing between peaks of arbitrary height, as determined from 
equation (4.1 lb) for the integrated number density. 

The average shapes are, of course, more asymmetric than in the example of Figure 8. As an illustration, we plot (in Fig. 9) the 
density profile along the 1 and 3 axes for the same parameters as above, but for p = 0 and the choice of ellipticity e æ 0.2 which, 
according to the distributions of § VIIc(i), is the most likely value. The mean sphericalized profile of Figure 8 and an intermediate 
ellipticity profile are drawn for comparison. 

Although these statistically-averaged shapes are indicative of the profiles we may expect, we caution again that they will depend 
upon the filtering prescription. We believe that they do have physical meaning, however, since the profile is coherent out to so many 
filtering radii. Note that equation (7.10) is just £pk p(r)/(70 for peaks given v and x. 

c) Application to Hot and Warm Dark Matter Models 
The shapes are certainly meaningful if the filtering arises by a physical mechanism. Such is the case with collisionless damping in 

universes dominated by hot (massive neutrino) and warm dark matter with adiabatic fluctuations. Pancakes, where the largest 
eigenvalue of the shear tensor of the velocity field, has a local maximum, are apparently the first points where nonlinearity occurs 
(Zeldovich 1970). However, the matter flows away from these regions, accumulating ultimately at the points where the deepest 
potential wells exist—high maxima of the density field F oc ^ (jj-, the trace of the shear tensor. We can analyze the structure and 
spacing of the typical peaks in these models. 

Fig. 9.—Asymmetry of the v = 2.7 peak of the previous example with e « 0.2, p = 0, the most probable values. The density profile along the 1-axis is compared 
with the sphericalized mean {e = 0) of Fig. 8 and the profile along the 3-axis. An intermediate asymmetry is also shown. 
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According to Appendix G, the transfer function for the massive neutrino fluctuation spectrum is an exponential filtering term 
times the cold dark matter transfer function. The exponential has both a linear and quadratic piece, but the linear term is small. 
Therefore, it is reasonable to approximate the massive neutrino spectrum by a Gaussian-filtered cold dark matter spectrum with 
filtering scale Rfv ä 2.6(Q.vh

2y1 Mpc. We now discuss the application of the results of § VII to neutrino-dominated models with 
Q = 1 and h = 0.5. 

Using Figure 1, we obtain y æ 0.73, with the characteristic radius of peaks being R* ^ 1.28jR/v ^13 Mpc. The most likely height 
of the peaks is ~ 1.5; 35% have v > 2, and 6% have v > 3. The mean separation of peaks of arbitrary height is 52 Mpc; those with 
v > 2 are separated by 76 Mpc, and those with v > 3 by 130 Mpc. 

The average asymmetry parameters are e ^ 0.24, p ä 0.03. The structures are thus slightly oblate (with a large dispersion) and 
relatively flattened so that, with nonlinear amplification upon collapse, pancake-like structures are the typical ones expected. 

The flows are definitely not spherically symmetric into the peak, especially when later accretion from pancaked regions occurs. In 
spite of the asymmetry, one can use a spherical top hat model to obtain a crude estimate of the properties of the “ virialized ” state of 
such a system upon collapse. As the universe becomes nonlinear, much of its mass accretes onto the high peaks, resulting in 
extremely deep potential wells (White, Frenk, and Davis 1984). For definiteness, let us suppose that the universe goes nonlinear at 
z = 1 [<7o(R/v, t0) = 2]. Then v = 2 peaks would not completely collapse until z = 1.4, assuming the collapse parameter of § \b is 
fc = 1.69. Collapse along the shortest axis may have occurred as early as z = 3. The top hat collapsed system would have mass 
M ä 1015 M0, virialized radius Rv æ 1.2 Mpc, three-dimensional velocity dispersion v ^ 1600 km s_1, and temperature ~6 x 107 

K. It is not clear that the gas will be sufficiently abundant in these “ rich clusters ” to give very large X-ray luminosities, since it can 
suffer earlier shocking in pancakes which can separate the flow of gas from that of neutrinos. Nonetheless, these numbers do 
illustrate the difficulties in allowing neutrino-dominated universes to go nonlinear even at these redshifts. The properties of, and the 
potential problems with, huge neutrino clusters were investigated by White, Frenk, and Davis (1984). Our analysis gives similar 
cluster spacings and properties to their n-body results provided we use top hats on the current nonlinear scale Ry > R/v- 

For warm dark matter, a best Gaussian filtering choice does not give a good fit to the transfer function. The best Gaussian 
filtering scale would be Rf æ 0.4(Q*/z2)-1 Mpc (for gXdcc = 100; see Appendix G for notation). Thus, for h = 0.5 this is similar to 
the Rs = 0.5 /U1 Mpc example used in §§ Vlla-b. 

VIII. DISCUSSION 

There are two aspects to this paper. One is to present a set of new mathematical results on the theory of Gaussian random fields. 
The other is to suggest how such calculations can be used in cosmology to treat rather detailed questions of structure formation. 

a) Mathematical Results 
The main new mathematical results on the statistics of a random field Fs smoothed to filter short wavelengths are the following: 
1. Our calculations of the average number densities of peaks, both differential in height ^Fpk(v)i/v (eq. [4.3]), and integral in 

threshold height npk(vf) (eqs. [4.11a], [4.12], and [4.21]), and of upcrossing points on contour surfaces of given threshold height 
"upM (e(T C4-20])* 

2. The calculation of the number density of peaks constrained to having a background field smoothed on a larger scale of given 
height Fb at the peak points, npk(vf | Fb) (eq. [All]). The factor E(Fb) expresses this enhancement in the presence of an Fb over the 
average number in a dimensionless way. The related constrained probability P(Fb \ vr, peak) (eq. [A8]) of background field ampli- 
tude at points which are peaks above a threshold was also given. 

3. The shapes valid in the immediate neighborhood of a peak are to be determined from the distribution P(x \ v) (eq. [7.5]) and the 
distribution of ellipticity and prolateness P(e, p\x, v) (eq. [7.6]). The shapes farther from the peak point are to be determined from 
the Gaussian probability distribution of values of F(r) given that the center is a peak of given height, value of x and asymmetry 
parameters and orientation, with a mean profile (F(r) \ v, x, e, p} (eq. [7.8]) and a dispersion about this mean given by equation 
(7.9). Spherically symmetric (orientation-averaged) results were also given (eq. [7.10]). 

4. Correlation functions of peaks were determined only with approximations whose validity depends upon the specific sort of 
power spectrum (§ Vlfr). The quantity <Y[i npk(vv r¿)> was obtained in the limit that gradients of the normalized two-point function 
ij/ of the field could be ignored (generally in eq. [6.8], approximated by eq. [6.22], and in the linear limit of small ij/ in eq. [6.12]). The 
results were shown to deviate substantially at moderate threshold from correlation functions computed using the interiors (Kaiser 
1984, 1985; Politzer and Wise 1984) or surfaces (eq. [A23]) of contour regions. The contour region correlations overly weight the 
large contour regions. Another useful and conceptually simple method for the calculation of correlation functions uses the 
peak-background split, (Y[i n

Pk[vf I ^>(r¿)]> (ecls- [6.25] and [6.41]). The result was shown to agree with the direct calculation, 
provided the background Rb is sufficiently large compared with the smoothing scale Rs. The first order “dynamical” correlations 
<n rcPk[ví I ^z>(r;)][l + Fb(rh £)]> were also obtained in the limit that Fb(t) is in the linear regime (e.g., eq. [6.63] for the two-point 
function). 

b) Applications to Models of Structure Formation 
i) Framework 

We used the adiabatic and isocurvature cold dark matter spectra based on initial scale-invariant spectra to demonstrate the use of 
these statistical formulae in a cosmological setting. We emphasize that these methods are applicable to other power spectra which 
may be considered, although care is required in using some of the approximations (especially regarding the correlation functions) 
with steep (high n) spectra. Fits to the power spectra for the two cold dark matter models, and for the hot (massive neutrino) and 
warm adiabatic dark matter models are given in Appendix G. The methods we use can also be applied to the old isothermal and 
adiabatic structure formation models appropriate to baryon-dominated universes. Further, even if it is found that most of the 
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structure in the universe arose from explosive (Ostriker and Cowie 1981 ; Ikeuchi 1981) or radiative (Hogan 1983; Hogan and Kaiser 
1984) events, rare peaks in an initial fluctuation field would still be required to initiate the activity, and these can be analyzed using 
our methods. The only requirement for applicability of this framework is that the field be Gaussian. As a consequence of the central 
limit theorem, this is the most likely case, so the implications of such an assumption deserve to be fully explored. 

Our calculations give unambiguous answers about the texture of the linear density fluctuation field. However, relating structure 
present in the linear regime to final nonlinear luminous objects is a subject open to much debate. Our prescription here was to select 
a special class of points, the peaks of the fluctuation field smoothed by a filtering process applied to the power spectrum. We selected 
only those with heights in some specified range, typically taken to be above a global threshold, although restricted ranges of height 
may be more appropriate for some applications. For a given class of cosmic objects, the optical choice of filter and of the selection 
function (eq. [4.13]) is questionable. Selection functions might not just be based on height but on shape and internal or external 
environment of the peak. How to choose functions which select different Hubble types of galaxies is unclear. Filtering smooths small 
clouds into larger ones of lower heights, leading to the possibility of overcounting of the objects which are truly associated with a 
given scale. Dynamical merging of peaks as structure evolves modifies the observed number of a given scale. These difficulties 
complicate the comparison of the theory of the linear texture with the observations. 

ii) Profiles 
Average smoothed profiles associated with the peaks were considered in § VII. We found a triaxial ellipsoid approximation to be 

a valid description in the immediate neighborhood of the peak. The average degree of prolateness or oblateness of the ellipsoids is 
found to go to zero faster than ellipticity as the height of the peak is increased, although there is typically a wide dispersion in peak 
asymmetries (eq. [7.6]). Predominantly spherical or even spheroidal collapses are extremely unlikely except for very high peaks. 
This is predicted in spite of the tendency of the smoothing operation to reduce asymmetry. The average shapes valid farther from the 
peak (eq. [7.8]) reproduce the triaxial ellipsoid in close but become spherically symmetric far from the peak, reflecting not the true 
structure but only that the outer points are uncorrelated with the central peak—expressed by the growth of the dispersion equation 
(7.9) with distance to the asymptotic rms value a0. Indeed, the mean spacing between peaks of arbitrary height, 4.R*, implies that 
beyond ~2R* the variance in the shapes reflects the presence of other peaks. Nonetheless, since high peaks are relatively coherent in 
structure up to a few filtering radii, these shape calculations do give a strong indication of the smoothed generic collapse structure. 

Unless the filter is physical (as in pancake models), these profiles cannot be used for hydrodynamic or rc-body studies of collapse 
since substructure must be included. Subclumping within collapsing clouds will be important in determining their final configu- 
ration. This could-in-cloud problem is difficult because of the high degree of correlation of the structure on smaller scales with the 
smoothed structure. The probability P(Fb \ vs, peak) can be used to get an idea of the sort of environment in which a given peak finds 
itself. For Rb near to Rs, the dispersion is small, and the average background height, vb æ (Rs/Rb){n + 3)/2vs for Gaussian filtering, falls 
off slowly, showing that the typical small-scale peak is not isolated in the background. Although we have no adequate solution for 
the treatment of these subclouds, a crude estimate of the number of peaks in a given top hat region, (^n/3)E{vb)npk(vt)RjH, was given 
in § Vd for “ bright ” galaxies within an Abell radius of the cluster center. The value obtained, ~ 102, is similar to that observed. 

iii) Average Number Densities of Cosmic Structures 
Once a selection function is adopted, we can determine the average number of objects per comoving volume and relate it to 

observed values to fix, for example, the threshold. In § Vld we found the threshold required for galaxy formation by equating the 
density of peaks smoothed on a scale Rs » (0.2-0.4) /z_1 Mpc to the density of bright galaxies 0.01 h3 Mpc“3. Thresholds in the 
range vt æ 2-4 were obtained, depending on threshold function assumptions. That the density of bright galaxies is so low is an 
argument in itself that not all peaks collapsing on galactic scale can become luminous galaxies. Of course, this does not necessarily 
require a global threshold. 

The same operation can be applied to Abell clusters with density 6 x 10-6 h3 Mpc-3 for richness class > 1. We present the steps 
in the calculation to illustrate the results of § IV. We adopt a Gaussian smoothing radius Rs ä 5 /z-1 Mpc based on the mass 
5 x 1014 h-1 M0. If we assume an adiabatic CDM model with Q = 1, ft = 0.5, we can use Figure 1 to get y æ 0.73 and R* ^ 1.27RS 
at 10 Mpc. For simplicity, we adopt a sharp threshold. Using § IVc, we require the threshold satisfy npk(vt)/npk( — oo) % 0.01, i.e., 
npk(vt)Rl ~ l*5 x 10" 3. Interpolating between the y = 0.7 and 0.9 lines in Figure 3, we obtain vt ^ 2.8. (Another method valid in this 
regime would be to invert the upcrossing density [4.20]. A selection function with a soft threshold would require a numerical 
integration over the differential peak number density [4.13].) For clusters of this threshold height to have collapsed by now (in a 
spherical top hat model) would require <j0(5 ft-1 Mpc) = 1.69/vt ä 0.6. This, in turn, implies that on galactic scales ö-o(0.356 ft“1 

Mpc) ä 4. Normalization to the galaxy clustering data in § VI/gave the value 3 instead. Lowering the collapse factor / for rich 
clusters could bring these numbers closer. This problem is discussed more fully in § Vlllft(vii) below. Similar procedures could be 
adopted for determining thresholds for each richness class of Abell clusters in turn (Kaiser 1984). 

Bond, Szalay, and Silk (1986) have suggested that intergalactic Lya clouds are associated with primordial peaks filtered on ~ 102 

kpc scales with a hydrodynamically determined selection function arising as a consequence of reionization of the universe. The 
predicted density of selected peaks as a function of redshift can be compared with the observed density to test the theory. 
Appropriate selection functions for dwarf galaxies (Dekel and Silk 1985) may also lead to a confrontation of cold dark matter theory 
with observation. 

We have not been able to find an appropriate mass function n(M)dM for the objects due to the cloud-in-cloud problem. 

iv) Peak Enhancements in Overdense Regions 
Clustering is a consequence of two effects. One is statistical in origin : our peaks were already clustered when selected since peaks 

are preferentially found in overdense large-scale regions; this effect depends only on the background height v&, not on the amount 
that the background field has grown, i.e., on a0(t). The other is gravitational in origin : the peaks move with the mass as it flows into 
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overdense regions out of underdense ones; this does depend on the amplitude cr0(i). In the CDM models, we find that each is about 
equally important in determining the current degree of correlation of galaxies. 

Assuming that peaks flow with the mass, the enhancement factor E(vb) of peaks in overdense regions (5.10) derived from npk(vt \ vb) 
can be applied to the computation of peak-to-mass ratios, and, if a luminosity is associated with each object, of M/L ratios. We 
applied this to the enhancement of galaxy number in rich clusters in § Vd and found E æ 3-10 for peaks associated with the 
thresholds appropriate to “bright” galaxies. These values are sensitive to the choice of cluster filter and collapse criterion. We 
normalized the time of galaxy formation with the galaxy correlation function. We also predict that M/L should be higher in the 
outer regions of clusters and be smaller in denser clusters. The same methods can be used to estimate the paucity of peaks in voids. 
Also if we take supercluster environments as background constraints, we find even stronger enhancements in the cluster number per 
mass. 

v) Statistical Correlation Functions 
We presented a very detailed discussion of correlation function calculations in the two CDM models since this represents one of 

the most powerful applications of Gaussian statistics to cosmology. We first determined the correlation functions due to the 
statistical clustering efifects alone, then included dynamical effects in the linear approximation. Two different calculational methods 
were applied to statistical clustering. The most accurate used equation (6.21), the n-point function determined assuming the peaks 
are sufficiently far apart that derivatives of i// can be neglected. All nonlinear terms must be included, however, unless one is only 
interested in the linear regime of the peak correlation function. The peak-background split, equation (6.41), is somewhat easier to 
use, but only becomes accurate at a larger separation. The two-point correlation functions were determined assuming a global 
threshold exists for galaxy formation which is found by normalizing to the galaxy density. The choice of smoothing radius is 
debatable, so a range was selected. The principal results (Table 3 and Fig. 5) show that (1) in the large separation limit the peak 
correlation function is proportional to the (normalized) mass density correlation i/fp but is amplified by the square (<v>2) of an 
effective threshold (eq. [6.14]) which is significantly less than v2; (2) in the nonlinear regime, ¿pk > 1, the spectrum is quite close to a 
power law. What is remarkable is that these statistical correlations lead, for the adiabatic spectrum, to a fairly good r -18 power law. 
The slope is somewhat sensitive to the choice of filtering radius. Without including any dynamics, the isocurvature model with the 
smaller filtering radii already gives ¿pk nearly one at r0 = 5 /T1 Mpc, the point where the observed galaxy correlation function is 
unity. The adiabatic ¿¡pk is a factor ~ 5 smaller. 

The (connected) three-point (statistical) correlation function of the galactic peaks gives values of Q defined by equation (6.49) near 
to that observed (~1) for the adiabatic GDM model. However, a significant amount of dynamical evolution of the three-point 
function over the scales where it has been reliably determined would be expected, and this may modify the good agreement between 
theory and observation of Q. 

vi) Dynamical Correlations and the Reshift of Galaxy Formation 
Inclusion of dynamics is very complicated because the peak number density per physical (as opposed to Lagrangian) volume at 

the Eulerian position jc at time t depends not only on the 1 + F enhancement associated with the transition from Lagrangian to 
Eulerian volume, but also on the complex statistical field r(x, t) describing the motion of the peaks through Eulerian space. Only by 
ignoring the latter effect has the problem proved tractable. The approximation procedure adopted in § VI/ involved using the 
peak-background split, requiring Fb to be in the linear regime, and neglecting this intrinsic motion of the peaks. On large scales, this 
should be adequate, and the result is given by equation (6.63). For ¿pk < 1, we find çpk(r, t) æ b2(t)Çp(r, i), where b = <v)/cr0s(í) + 1, 
which measures the amplitude of biasing, is typically ~2. 

Requiring ¿pk(r0, t0) = 1 sets (T0 on galaxy scales at the present, giving a normalization to the power spectrum which fixes when 
structure collapsed on all other scales. Together with the galaxy formation threshold, <j0 determines the redshift of galaxy formation 
1 + =/c

_1<v)cr0 (Table 2). For definiteness, we discuss the Q = 1, /i = 0.5, q = $ adiabatic CDM example with Rs = 0.356 /z-1 

Mpc and/ = 1.69. Then vt æ <v> æ 2.8 and <70 ^ 2.4. Since objects on this scale with v >fcaô1 = 0.7 will have collapsed by the 
present, we must suppose “bright” galaxies were not made below the redshift zg = 2.9. It is not clear what these “failed” galaxies 
should be identified with observationally; they could just be low surface brightness objects. 

The prediction that galaxy formation occurred as late as the epoch zg ^ 3-4 may already be in trouble with limits from primeval 
galaxy searches. Koo (1985) estimates that zg > 5 is required, although with slow, steady star formation rather than a burst at galaxy 
birth or dust reradiation of the starburst energy in the infrared, such a strong limit can be avoided. We may rather regard a late 
galaxy formation epoch as one of the exciting testable predictions of biased galaxy formation. The collapse of halos at late times 
apparently does lead to appropriate halo profiles (~r~2) and velocity dispersions for spiral galaxy models in the CDM scenario 
(Ryden and Gunn 1985; Carlberg and Lake 1985; Miller 1985; Primack ei al. 1985; Frenk et al 1985). 

The amplitude of the statistical correlations in the isocurvature CDM picture implies there is very little room left for dynamical 
evolution. Even for the larger galactic filtering radii in Table 3B, the strongly inadmissable value æ 0.1 was obtained. In addition, 
the isocurvature models give large-angle microwave background anisotropies in excess of observational constraints (Efstathiou and 
Bond 1985). 

vii) The Cluster Threshold Problem 

Fixing a0 on galactic scales also fixes the threshold for peaks on rich cluster scales which will have collapsed by the present. 
Consider the adiabatic CDM example of § Vllh(vi). Scaling <7o(0.356 /T1 Mpc) ä 2.4 for h = 0.5 to (Gaussian) cluster smoothing 
scales, we find (j0(5 /U1 Mpc) ^ 0.4. Using a collapse parameter/ = 1.69 leads to the threshold vt ä 4.4; in § Vllb(iii), we found 
v, ^ 3 was required to reproduce the cluster number density. This special case illustrates a general problem with biased galaxy 
formation: pushing the epoch of galactic scale nonlinearity a0 down due to the galaxy correlation function bias also pushes down 
the amount of dynamical evolution on large scales so that clusters which have collapsed might be rarer than observed. Since cr0(R/) 
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falls off significantly with increasing Rf, larger filtering radii (which may be appropriate for Abell clusters of higher richness class) 
lead to more severe problems. Another prediction of the model is that the threshold would be a factor of 2 higher at redshift 1, 
implying collapsed clusters would be exceedingly rare then. However, an enhancement in the number of galaxies is predicted where 
rich clusters will eventually form, so “statistical” clusters may be seen. If an abundance of collapsed (virialized) clusters similar to 
that observed at z æ 0 can be shown to exist at z æ 1, the simple biasing hypothesis in the adiabatic CDM scenario can be ruled out. 

Although the cluster density problem indicates the adiabatic CDM spectrum may lack sufficient power on large scales with the 
biasing normalization to account adequately for the observed large-scale structure, we do not yet regard it as a fatal flaw for the 
model. Uncertainties in cluster smoothing scales and collapse parameters due, for example, to subclustering, asymmetric collapse, 
and lack of virialization make our estimates imprecise. This large-scale structure issue certainly warrants further investigation. The 
adiabatic CDM spectrum with Q = 1 and a global threshold imposed for galaxy formation does offer a promising explanation for 
the clustering properties of galaxies and a possible reconciliation of low M/L ratios in clusters with a global Q = 1 mass density. 
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APPENDIX A 

DERIVATION OF J^pk(v) 

We follow the Rice notation for the derivatives of the random field F(r, t): rji = V^F, Cy = ^WyF. The correlations of these fields 
at an arbitary point are 

2 
(FFy = cl, <^.>=^1^., 

(F^y = - ^ <5,;, <C7C*,> = y5 (ôijôkl + ôiköfl + ô„ôjk), (Al) 

(Fri¡y = 0 , <>?,■£,*> = 0. 

The joint Gaussian probability distribution for the variables F, rjh and £¿j is given by equation (2.2). Because of the symmetry of£0-, 
only six components are independent. We label them by where the A = 1,2, 3, 4, 5, 6 components of the six-dimensional vector 
refer to the ij = 11, 22, 33, 23, 13, 12 components of the tensor. The covariance matrix M thus has dimension 10; however, six of the 
dimensions are already diagonalized ({rji, A = 4, 5, 6}). To diagionalize the remaining four dimensions, we transform to a new set 
of variables : {ÇA, ,4 = 1, 2, 3} —► {x, y, z}, where 

-V2F= -(Ci + Ci + Ca), <72y= -(Ci-Uß, g 2 z 
= (Ci 2(^2 + £3)/2 . (A2) 

We also introduce v = F/cr0. With these choices, 

<V2> = 1, <X2> = 1, <xv> = y, <y2>=A, O2) = i, (A3) 

and all other correlations are zero. Thus, the matrix is now diagonal in y and z. The quadratic form Q appearing in P oc e - 0 is then 
simply 

Here 

2ß = v2 + (x - **)2 

(1 - y2) 
+ I5y2 + 5z2 + 

3i, »/ 6 
+ I (A4) 

x* = yv, = = <fc2> 
- (T2<J0 (k4y12 ' 

(A 5) 

At the moment, the variables x, y, and z are defined for an arbitrary choice of axes. The correlations given by equation (A5) are 
independent of this choice. We now restrict our attention to the principal axes and introduce the eigenvalues 2; of ( —CtJ); therefore, 
CA = A = 1, 2, 3, and x, y, and z are now defined in terms of the 2’s. The other three degrees of freedom in the matrix can be 
expressed in terms of the Euler angles a, ß, y required to define the orientation of the triad of orthonormal eigenvectors of {,7. 

In Appendix B, we prove that the volume element for the space of symmetric real 3x3 matrices can be expressed in terms of the 
eigenvalues and Euler angles (a, jS, y) : 

6 dQ. 
H ^ = i (¿i - 22)(a2 - - 23) i d^dÀ2 ^3 ’ 

A = i 0 

= sin ßdßdady . 

(A6) 
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Here, dQs3 is the volume element on the surface of the three-sphere. Since Q is independent of the Euler angles, an expression of all 
triad orientations being equally probable, we can integrate over the three-sphere, whose volume is 2n2. The factor 3 ! arises if the 
eigenvalues are not ordered. A first set of rotations of one of the coordinate axes to one of the principal axes requires only 4n/(2 x 3) 
sr of solid angle; the factor 2 comes from not caring whether the rotated axis points in the positive or negative direction; the factor 3 
comes from the one chosen axis necessarily being within 4n/3 sr of a principal axis, unless one of the principal axes is chosen for 
some special property (e.g., largest eigenvalue), and the principal axes are labeled according to this ordering. Having fixed one of the 
principal axes, a rotation in the plane perpendicular by an angle at most 27r/(2 x 2) will align the other two axes with the principal 
ones; again the factor 2 comes from not caring about the direction of pointing, and the other factor 2 comes from not trying to align 
labeled axes. The total volume of S3 needed is therefore 2n2/3 !. To transform from to x, y, z, we also need 

3 
Y\ dXA = fdxdydz 

A=l 
This I factor is compensated by a f factor that arises in transforming the determinant in the (’s to one in the x, y, z system. 

The relevant joint probability now becomes 
d3/fl 

P(v, ly, x, y, z)dvd3tidxdydz = N \ 2y(y2 — z2) \ e~Qdvdxdydz —r- , 

N = 
(15) 5/2 

^0 
(A7) 

327T3 <t3(1 ,,2p/2 ‘ 

No assumptions have been made so far about the ordering of the eigenvalues. We now enforce the order 

¿i > l2 > /I3 . (A8) 

Since there are five other possible orderings we could have chosen and P is invariant under changes of ordering, we must multiply 
the probability expression by 6 to account for this. This compensates for the 3 ! lowering of the available S3 volume due to the 
identical nature of the axes. Thus, if the eigenvalues are ordered, the entire volume of S3 is available for triad rotation to the 
principal. With this ordering, the constraints y>z> — y, y > 0 are imposed. These are the only constraints necessary if we are 
considering all extrema for which the 2t- can be positive or negative. A further constraint does arise if we require all eigenvalues to be 
positive, as is necessary for maxima. With our ordering convention, this amounts to the requirement that 2,3 = ö-2[(x + z)/3 — y] be 
positive. This is the extra constraint on the x, y, z domain of integration needed to deal with maxima. 

We now consider the consequences of requiring that VF vanish at an extremum. The shape of the random field F(r) in the 
neighborhood of the peak point rp is determined by a Taylor series expansion: 

F(r) v F(rp) + | £ (¿/''pH'- - rp)i(r ~ rp)j, ^¡(r) % £ Cij(r„)(r - rp)j. (A9) 
U j 

The full random density field for the maxima of height between v0 and v0 + dv is 

«pk(^ v0)rfv = £ <5<3)(r - rp) 
P 

= nr1)flM^)Oß2)e(X3)ö(v-v0)dv (A10) 

= I det (() I - V0)dv . 

Here 6 is the Heaviside unit function. Ideally, we would like to know the probability density functional of this random field. Notice 
that such a functional would be that of a point distribution since there are only countably many zeros of ly, each separated from the 
other (Adler 1981). This general problem appears to be intractable. In this appendix, we only determine the average of this 
expression. 

The average peak density for maxima of height v0 is therefore given by 

•^"pk/vo^v = <npk(f, v0)>(iv = <1/1^2/13 I 0(/Í3)<5(v - v0)>áv . (All) 

Of course, this mean density is independent of the position because of the homogeneity of the underlying random density field, so we 
suppress the r variable in the following. We also denote the average by ^Kpk. 

To calculate equation (All), we need to derive a number of results along the way which are useful in their own right. By 
introducing extra ¿-functions in equation (A 10), we can further restrict the class of maxima we are considering to be those with the 
parameters x, y, z as well as v in specific infinitesimal ranges. The density of this class of peaks is then 

^Lpkiv, x, y, z)dvdxdydz = 
(2n)3 

1 
(1 - yiyil e QF(x, y, z)xdvdxdydz, 

(x 

where 

0=T+§r=f) + 2(V + z2)’ 

F(x, y, z) = - k2)(k2 - /IjX/l! - k3) = (x - 2z)[(x + z)2 - (3y)2]y(j;2 - z2) 

(A 12) 

(A 13) 

and x is a characteristic function which is 1 if the constraints in the x, y, z domain are satisfied, and is 0 if they are not. This density is 
used in Appendix C to get the probability distribution of the asymmetry variables y and z. 
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52 BARDEEN ET AL. 

We can integrate equation (A12) first over z then over y to get the density 

g-v2/2 

■V'pjv, x)dvdx = (2n)2R3 /W 
exp [-(x - x„)2/2(l - y2)] 

I2n(l - y2)] 2^1/2 dvdx . 

Vol. 304 

(A 14) 

The integrals over z and y are contained in the function 

fix) = 
3255/2 

L. 

l'x/4 
e-(15l2)y2dy F(x, y, z)e-(5l2)z2dz + 

'x/2 
?-(15 

x/4 

5/2)y2dy I" F(x, y, z)e-{5/2)z2dz 
^3y-x 

The computation of/(x) is tedious, but the result can be expressed in closed form: 

/ (x) = (x3 — 3x)< erf 5\1/2 

+ erf 
5V'2 x 
2/ 2 

31x2 8\ 
—+5>_ 

5^8 + (|._^e 5x2/2 (A 15) 

The asymptotic limits of this function include a remarkable cancellation to eighth order at small x and the x3 law expected for 
spherical peaks at large x : 

fix) - 
3553/2 

7 x 

—> x3 — 3x 

A reasonable approximation to this function is given by 

/apM = ^c3 — 3x + 4.08/x2 

x8| 1 - nr ) as x^O; 
(A16) 

as x—> oo 

for x > 1.5 ; 

for x < 1.5 . 
(A 17) 

13.2(1 + 5x2/8) 
Another fit appropriate to the large x limit is given by equation (6.19). Whereas the function exp [ —(x — xj2/2(l — y2)] is rapidly 
falling as x increases,/is monotonically and rapidly rising: the product gives a relatively symmetric function with a clear maximum. 
(See Fig. 6 for the plot of a function proportional to this product.) 

We must integrate equation (A14) numerically over x to obtain the differential density of peaks in the range v to v + dv: 

= 
a2 

(2742 Vv/ScTj 
"v2/2G(y, xjdv . 

The function 

G(y, x*) = dx f (x) 
exp [-(x - xj72(l - y2)] 

[27t(1 - y2)]1/2 

(A 18) 

(A19) 

is very accurately fitted by equation (4.5) if the coefficients are given by equation (4.6). The fit was obtained by determining the 
asymptotic large x* expansion of G (eq. [4.5] with all Q = 0), then adding the appropriate nonzero to get accurate results at 
low x*. 

To obtain the number of peaks in excess of v, npk(v), a further integration is required. Again this integral must generally be done 
numerically, even using the approximate formula for G. 

The evaluation of the density of upcrossing points (eq. [4.20]) and of the Euler characteristic (eq. [4.15]) is straightforward. The q 
part of the calculation is trivial since the rji are statistically independent of the other variables. The rest of the calculation is most 
easily accomplished if the variable combinations 

« = (Cl! + £22)^2 , b = [({^ - C22)2 + (2C12)2]1/2/(2c72) , 0 = arctan - £22)] 
are used in place of the ( variables, for all three are independent of each other and only the first is correlated with v : 

P(v, a, h, (¡))dvdadb(j) = 
(15/8) 1/2 

2tc(1 - 5y2/6) 1/2 exp 
(v2 — 5yva/2 + 15a2/8) 

dvda 6(b) exp 
m 

15bdb 
d(j) 
(2^j 

(A20) 2(1 - 5y2/6) 

The quantity / has a random phase distribution and can be immediately integrated. Also since £nC22 ~ £11 = ß2/4 — h2, the b 
integration is straightforward in spite of the absolute value constraint. The simple analytic forms (4.15) and (4.20) follow because the 
range of the a integration is ( —00, 00). 

APPENDIX B 

THE VOLUME ELEMENT IN THE SPACE OF SYMMETRIC MATRICES 

In this Appendix, we sketch the proof that the volume element in the six-dimensional space of symmetric real matrices is given by 

rf vol = n Ka = I (¿1 - 22)(22 - - A3) I dXxdk2 dÂ3 d vol [SO(3)] , (Bl) 
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where 

d vol [SO^)] = sin ßdßdocdy (B2) 

is the volume element of the three-dimensional rotation group SO(3) and also of the three-sphere, the space which the Euler angles 
(a, y E [0, 27t], ß e [0, nj) coordinatize. 

We define the inner product of two symmetric matrices and S2 to be Tr (S^). The metric in the space of symmetric matrices is 
ds2 = Tr [(dS)2], where 5 is a symmetric matrix. Now S can be diagonalized by a rotation R to a diagonal matrix 2 = diag (2l5 22, 
23): S = R^aR. Hence, dS = R^(dÀ + [2, R^dRJjR, where the notation [, ] denotes the commutator. Thus, 

ds2 = Tr [(¿U)2] + Tr [2, R^R]2 . 

The cross terms disappear since they involve the trace of a product of a symmetric and an antisymmetric matrix. Now (R^dR)^ = 
€ijkcok is antisymmetric, where œk is a vector (infinitesimal) and €ijk is the alternating symbol, so [2, R^dR^ij = (2¿ — Àj)€ijkœk. Thus 
the metric on the symmetric tensors is 

ds2 = ^ (dÀi)2 + (22 — 23)2m2 + (23 — 21)2co2 + (2! — 22)2cof , 

with orthonormal basis 

{dAu dk2, dk3,1 22 — 23 I co!, I 23 — 2X| co2, \ A1 22 | co3} . 

Since the volume element is the “ wedge product ” of orthonormal basis elements, we have 

d vol = — 22)(22 — 23)(21 — 23)1^2! Adk2Adk3 Acoi Aco2Aco3 . 

However, the matrices RfdR form the Lie algebra of SO(3), the co¿ form an orthonormal basis, so the volume element of SO(3) is 
given by 

J vol [SO(3)] = co! A co2 A co3 . 

That the (unnormalized) volume element of the rotation group is in fact the same as the volume element of the three-sphere and is 
given by equation (B2) is standard. 

APPENDIX C 

CONDITIONAL PROBABILITY FOR ELLIPTICITY AND PROLATENESS 

The conditional probability for the parameters y and z subject to the constraint that the point is a peak with given values of v and 
x is simply obtained by taking the ratio of equations (A 12) and (A 14): 

, 7 3255/2 F(x, y, z)x 
R(y, z I v, x)dydz = —j= — exp - 2 (V + *2) (Cl) 

Jin f(x) 

where F is defined by equation (A 13) and / is the constraint characteristic function. In § VII, we introduced the “ ellipticity ” and 
“ prolateness ” parameters 

e = y/x , p = z/x , (C2) 

in terms of which 

11 if 0 < e < ¿ and —e<p<e 

X(e, p) = i 1 if ^ < e <i and —(1 — 3<?) < p < e . (C3) 

0 otherwise 

Notice that equation (Cl) is independent of v. To obtain equation (7.6) for the conditional probability P{e, p|x), we introduce the 
polynomial 

W{e, p) = x"8F(x, y = ex, z — px)x(e, p) = e(e2 - p2)(l - 2p)[(l + p)2 - 9c?2]*(c?, p) . (C4) 

The nature of the contour plots of P(e, p|x) given in Figure 7 suggest that a Gaussian approximation centered about the most 
probable values em and pm may be a good approximation. If we approximate V = We~x2(3e2 + p2)by 

ln V ^ —(p2 + 3e2)5x2/l + 3 In e - p2/e2 - 3p2 - 2p3 - 9e2 + 18^2p , 

then use the zeros of the gradient of V to obtain the most probable values, we get equation (7.7). Similarly, we define 

a -2 = e — 
fd2 ln V' 

V , 
\(em, pm), 
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with an equivalent definition for op. There should generally be a cross-correlation in this Gaussian approximation, but this term 
only adds 

(d2 In V\ x _ 
briTf'-'’-''60*-- 

The eigenvalues of the quadratic are only modified by a term oc and we can ignore this term, provided x is large. 

APPENDIX D 

DENSITY PROFILES 

To illustrate the methods we use for calculating probabilities, we present details of the derivations required for § Vllh. If we 
denote by ^Fpkfv, F(ry]dvd6ÇdF(r) the density of maxima with height v in the range v to v + i/v, = 1, ..., 6 in the range 
CA + dÇA which have the field in the range F(r) to F(r) + dF(r) a distance r away, then the conditional probability that F(r) falls in 
this range subject to the constraint that there is a peak at r = 0 of height v with second derivative matrix ÇA is 

PFlF(r)\v, CA-]dF(r) = 
^pk[v, Ç, F(r)-]dvd6i:dF(r) 

Qdvd6ç 

See the disussion in § III for a justification of this. Here 

^pk[v, Í, F(ry]dvd6ÇdF(r) = \ det C| P[F(0)Ato = v, i/(0) = 0, C, F{r)-]dvd%dF{r) . 

(Dl) 

(D2) 

There is also a constraint condition that £ be negative definite if the extremum is to be a maximum. The probability distribution 
appearing here is a multivariate Gaussian. The equation for </Fpk(v, 0dvd6Ç is similar to equation (D2). In particular, when the ratio 
in equation (Dl) is taken, the |det (| terms cancel, leaving the constrained probability (Dl) as a ratio of multivariate Gaussian 
distributions. There is a general theorem which is extremely useful when working with such ratios. 

Theorem. If F = (YA, YB), YA and YB aré all Gaussian distributed, where YA and YB are two-vectors of arbitrary length^ anddB, 
then the conditional probability 

P(Yb\Ya) = P(Ya, Yb)/P(Ya) , 

is a Gaussian with mean 

<yb\ ya> = <yb® ya}(ya® y,*)-1 rA 

and covariance matrix 

<AF* (g) AYb I YA} = <Fß(x) Yb} -<Yb® Ya}(Ya (x) Ya}-\Ya ® YB) , 

where AYB = YB- (YB \ YA). (We have assumed both <Fß> and <FA> vanish.) The tensor product notation YB (x) F^ just makes a 
dB x dA matrix out of the two-vectors in the obvious way; “ f ” denotes transpose. The proof is straightforward (see, e.g., Adler 1981). 

In our case, YB = F(r) is a one-dimensional vector, and YA contains all the other variables (v. i/, £ J. The constraint values of rj 
vanish, of course. As in Appendix A we find it convenient to introduce the x, y, and z variables instead of £^, A = 1, 2, 3, for then 
many of the cross-correlations vanish, and the correlation matrix of YA is largely diagonal (see eq. [A3]). We also choose to work in 
the principal axes system, so ÇA = 0, A = 4, 5, 6. The explicit dependence on the Euler angles disappears. These degrees of freedom 
were used up in defining the orientation of the axes. The application of the theorem then gives us equation (Dl) as a Gaussian with 
mean 

<F(r) 1 c>= (T^T)(<Fv> _ y<Fx>) + (T^Tj(<Fx> - KFv>) + 15<Fy>y+ 5<Fz>z (D3) 

and variance 

<[ÀF(r)]2 I C> = (7o <Fv}2 , . y 
1 - y2 + 1 - y2 <Fv><Fx> 

<Fx}2 

1-y2 
15 

l5(Fyy - 5<Fz>2 - I - <FCX>2 - S - <F%>2 ■ (D4) 

The identity 

3 L fl; fr,- - I a,-1 = 6 3) + 2 (ai 2a2 + a3)(^1 2b2 + b3 2 2 2 2 

where and bi are two-vectors, is useful in transforming back and forth between 2t- and x, y, z. It aids in proving the result 

15<Fy>2 + 5<Fz>2 + ¿ -2<
F^y=^-2 

y 
+(í" -^(Fx}2 

Here if = <F(r)F(0)) = al ip(r) is the correlation function. Also £ (Ft]¡)2 = (if)2 is required for the variance. 
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The mean and variance are therefore given by equations (7.8) and (7.9). Notice that the dispersion does not depend upon the 
parameters characterizing the peak. Also it only depends upon the magnitude of r. Far away from the point r, all derivative terms 
die quickly, giving the asymptotics 

<F(r)|C>- 
v + xy 

(1 - r2) 
•A, 

<[AF(r)]2 I C> 
as (D5) 

Thus, a long distance away from the peak the asymmetry is forgotten, and the average profile is proportional to the density 
correlation function. This behavior is only due to the outer regions becoming uncorrelated with the inner. This is reflected in the 
large dispersion beyond a few filtering radii (Fig. 8). An expansion of equation (7.8) about r = 0 yields the triaxial result, equation 
(7.4), to 0(r4). 

If we form the conditional probability for the density at F(r) and the Euler angles defining the principal axes orientation, 
P[F(r), a, /?, y I v, x, e, p], then this takes precisely the same form as equation (7.8), since the distribution of the Euler angles is simply 
that appropriate to all orientations being equally likely (eq. [A6]). If we now form the conditional average over this distribution, the 
average over the Euler angle distribution just amounts to an integration over 6 and 0, which results in the A term integrating to 
zero. Therefore, we only need v and x to specify this mean which is orientation averaged and thus spherically symmetric : 

<F(r) I v, x, e, p) = <F(r) | v, x> = 
(1 

y2V2^ xy / / , vy (D6) 

The dispersion equation (7.9) is already orientation independent, so this is the result upon averaging over the Euler angles. 
The distribution 

P[F(r) I v, peak] = P[F(r), x, a, /?, y I v, peakjdx sin ßdßdocdy 

is a non-Gaussian one, involving an x integration. Nonetheless, it is easy to show that the dispersiones still given by equation (7.9) 
and the mean by equation (D6), with <x | v, peak), the average of x subject to the constraint of being at a peak of height v (eq. [6.13]), 
replacing x in equation (D6). 

APPENDIX E 

PEAKS IN BACKGROUND FIELDS 

In this Appendix, we derive in § II the probability distribution for the background field to have a value Fb at a given point subject 
to the constraint that there is a peak at that point in the field smoothed on some smaller scale, Fs. In § II, we obtain t3Fpk(vs | vb)dvs, 
the number density of peaks in the Fs field of height between vs and vs + dvs subject to the constraint that the background field has 
height Fb = vb (70b at the peak point. 

I. CALCULATION OF P(vb | Vs) 
According to the theorem given in Appendix D, the probability that the background field has height vb subject to the constraint 

that there is a peak characterized by the data C of § Vllfr and Appendix D is a Gaussian. The mean and dispersion can be calculated 
in the same way that the profile was calculated. Since the correlations of Fb(0) with r¡h y, z and ^4 = 4, 5, 6 all vanish, these are 
especially simple : 

Vi, = <vb I C) = <>„ I vs, xs> = 
i -y; 

[vs(l -ri)] 

(Avt)
2 = <(Av6)2 I C> = «Av,)21 vs, xs> = 1 - (1 - 2r2r1 + r

2r2) . 

We have introduced the following notation for various spectral averages: 

(El) 

e = <vsvb) = 
Goh <fe2>i, 

<k2>s elhals ' 
ajii = 

d3k 

(2nŸ 
k2jCb(k)Cs(k)( I F(k) |2> , j = 0, 1,2 (E2) 

Quantities with the subscript s and b are defined as in § IVh. The quantities Cs and Cb denote general filtering functions defining the 
Fs and Fb fields. 

If both Cs and Cb are Gaussian, then the quantities in equation (E2) can be determined from equation (4.10). In that case, the Fb, 
Fs cross-correlations are also given by equation (4.10), with the filtering scale being the rms average Rh = [(Rj2 + R2)/2]1/2. If we also 
assume that the unfiltered spectrum is a power law, the parameters which enter into this expression are 

Rs Rb\
in + 3)l2 

Rb 

2R.,Y" + 3)/2 

*7 iHê 
= 

n + 3Y/2 

n F 5 
(E3) 

The limits are valid for Rs <g Rb. In that case, the dispersion deviates from unity only by a term of order e2 and the mean vb—>evs 
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with dispersion 1 for high peaks. This average should be compared with the value of vb obtained if the one peak of height vs on scale 
Rs is just smoothed to the scale Rb, for that contributes a term ~(Rs/Rb)3(Gos/

(Tob)vs ~ (^s/^b)(3 ”)/2v
s- F°r steep spectra (n > 0) this 

may be larger than vb æ (Rs/Rb){3+n)/2vs, whereas for shallow spectra (n < 0) with a significant amount of power between the two 
smoothing scales, it is smaller. 

It is not surprising that this conditional probability is independent of the orientation of the principal axes and the asymmetry of 
the peak. Thus, the conditional probability subject only to the constraint of peaks with fixed height vs and curvature parameter x is 

P(vb\vs, xs) = ■^pkfa, Vs, *S) 
' ^ *s) 

1 K - ñ)2 

2(Av6)2 _ ' 
(E4) 

We can use equation (E4) to obtain the joint differential number density of points which are peaks of the smoothed field of height 
vs and have the background height vb: 

•^pÂVt, Vs) = dx P(v„ I vs, xs) J^pk(vs, xs) = G(y, yv) exp [-(vs - evfc)2/2(l - e2)] e V|’2/2 

(2n)2Rl (1 — e2)1/2 ^ ' 
(E5) 

Here 

v = (! - rj) 
y (i - e2) 

(1 - e2rt) 
(1 — ,'i) 

€Vh y2 = ïs 1 + e 2 (! - '~i)r 

(1-e2). 
(E6) 

The tilde variables are introduced only for convenience in expressing the result. In the limit in which the background scale is 
sufficiently larger than the smoothing scale Rs that æ 0, these parameters become 

as 

where we have defined the “ peak field ” parameters 

vp = (vs - ev.j/d - e2)1/2 

0, 

yP = ys/(i - €2)1/2 

(E7a) 

(E7b) 

We have not required that e be small. For most spectra, r1 falls off faster than e (eq. [E3]). In this limit, the joint density is simply 

^pkK, vs)dvb dvs yFpk(vp ; yp)dvp P(vb)dvb . (E7c) 

Recall that Fb is Gaussian distributed : 

P(vb) = exp ( — . (E7d) 

Equation (E7c) is usually an excellent approximation, for it is only in G that the deviations occur. The relations between the tilde 
and peak arguments of this function can be used to estimate when the full formula (E5) should be used : 

ÿ2/y2p = 1 - 2e2r1(l - rJ2), yv = ypvp(l - ehj + y^v,, . 

We can form the conditional probability that the background field has height vb given that the peak has height vs 

_ vs) _ exp [-(v,, - €VS)
2/2(1 - e2)] G(y, ÿv) 

{2n{\ — e2)]1/2 Vl> G(ys, ysvs) 
P(vb I vs)dvb = - dv„ ■^Pk(v' 

In the Rs Rb limit, this becomes 

P(vb I Vs)dvb « E(Vi,)dvil./Fpk(vs - . 

(E7e) 

(E8) 

(E9) 

The constrained probability that the background field has height vb given that the smoothed field has height vs if the point is not 
required to be a peak of the Fs field is 

1 
P(vb I vs, no peakjdv, = __ exP (vfc - ev,)2 

2(1 -e2) 
dvb (E10) 

This yields the average <vj vs, no peak) = evs, the high vs limit of the result with peaks. Equation (E10) has been used by 
Blumenthal, Faber, and Primack (1985) with top hat filtering. In the limit that vs is high, the deviation from equation (E8) is small. 

II. CALCULATION OF Jr
pk(vs | Vb) 

The number density of peaks in the Fs field at points with the background field of some specified height also follows from the joint 
density equation (E5): 

In the Rs Rb limit, this becomes 

I vb)dvs 
■^pk(v¡,> Vs) , _ G(y, yv) 

P(Vb) Vs (2n)2Rls 
e~'’p2l2dvp . 

■^pk^s I vb) ~ ^"pkWA1 - e2)1/2 • 

(Ell) 

(El 2) 
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Notice that vp = (vs — <vsv&)v&)(l — <vsv5)
2)_1/2 is uncorrelated with v*,, and is Gaussian distributed with variance 1 and zero 

mean. The following simple approximation, valid in the limit Rs Rb, is useful: ^r
pk{vs\vb)dvs ä J^pk(vp)dvp, with yp and R*p 

evaluated from the power spectrum of vp in the differential density. 
If we drop the restriction that the Fs point be a peak, then the conditional probability that its height be vs given that the height of 

Fb is vb is identical to equation (E10) if s and b are interchanged : 

E(vs, no peak | = —— 
[2ti(1 e2)] 1/2 exp 

Once again, it is the field vp which enters. 

(Vs - ^)2 

2(1 -£2). 
dvs = Vp2/2dvp . (El 3) 

APPENDIX F 

ASYMPTOTIC PEAK CORRELATION FUNCTIONS 

In this Appendix, we determine the rc-point correlation function of peaks in the limit that terms involving gradients of ij/(r) can be 
neglected in comparison with terms involving ijj alone. Since dn\///drn falls off a factor of r-" faster than i// for large r, this 
approximation should prove accurate in the small ÿ regime. These asymptotic results are based on work in progress by Bardeen et 
al. (1985) where the two-point function of peaks is calculated for all r, and small and large distance expansions are given. 

We label the positions of the peak points by T;, / = 1,..., n. The (unreduced) rc-point correlation function of the peak densities is 

FI Moy = (n <5[v(0 - F(r¡)/a0-] I 1• (FI) 

To evaluate this, we need to know the joint Gaussian probability density for lOn variables: 

E[v(i),i;(0,U0,^ = l,...,6|i=l, ...,«]. 

Generally, this requires knowledge of <v(i)v(/)>, <v(/)iy(/)), (v(ï)ÇA(j)} and the rç, ( cross-correlations for / # Since all but 
<V(0VQ)> = = *A( I ri ~ rj\) involve derivatives of xj/, we need only retain this spatial correlation connecting i to j. 

At each point, we rotate to the principal axes and use the x(i), y(i), z(i) variables of Appendix A. The correlation matrix between all 
lOn variables reduces to two pieces: (1) The 8n x 8n matrix involving the y(i), z(i\ and £^(0> A = 4, 5, 6 variables is diagonal and 
independent of i//. The corresponding contribution to P is the product y(i), z(z), ÇA(Ï)] of independent terms. We can 
therefore immediately integrate over these 8n variables : 

n «pki/i, v(í), *œ] ) = ( n (F2) 

The average is now over the remaining 2n variables {[v(z), x(z)]};/(x) is given by equation (A 15). (2) To evaluate this average, we 
need the 2n x 2n correlation matrix in these variables. It is convenient to consider the matrix as a tensor product of a 2 x 2 and an 
n x n matrix. The tensor product of A and B, mA x nA and mB x nB matrices, respectively, is an mAmB x nA nB matrix A ® B. We 
make use of the properties 

(A (x) B)(C (x) D) = AB® CD , (A® B)"1 = A-1 ® B-1 

The correlation matrix M can be written 

M = A 

(A ® B)r = Af ® B1 

» I + u ® 'F , 

Tr A ® B = Tr A • Tr B . (F3) 

(F4) 

where the (v, x) correlation matrix is 

A = 
7 1 

1 0 
0 0 

I is the n x n identity matrix, and W = iA(z)')(l — <5fj-) is an n x n matrix with components \l/(ij) if i ^ j and 0 if z = j. 
The inverse of M is required for E[v(z), x(z)] : 

where 

and 

M"1 = A'1 ® I - A-^A“1 (> 

C = 'F[I + ^/(l - y2)]“1 

A“1 = - 1 -7 
1 

A^uA“1 = 
1 

(1 - y2)2 7 

(F5) 

(F6) 

(F7) 

(F8a) 
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The properties given in equation (F3) and the relation 

(A-1u)r = A_1u/(1 - y2)r_1 , for r an integer (F8b) 

have been used. 
The quadratic 2Q = where y = ® e¡ is a 2n-dimensional vector. Here, ei denotes the n-dimensional row 

vector with 1 in the ith position and 0 elsewhere. For ij/ = 0 the quadratic reduces to a sum of independent terms : 

öo = i MOxoiiA-'ixoxior = + 
¡ ¡ 2 2(1 - y2) 

leading to a product of n independent v(i) — x(¡) probabilities, 

P(v, x)dvdx 
exp ( —v2/2) exp [-(x - x*)2^! - y2)] 

dvdx , 
¿n [>(1 - y2)]1/2 

a combination which has appeared repeatedly throughout the paper. The full quadratic can be written 

6 = ßo - i Z > 

where 

y,- = [v,. - yx(i)]/(l - y2). 

The joint probability also involves 

det M = det (A (g) I) det [I + ¥/(! - y2)] . 

The unreduced differential correlation function for fixed v(i) and curvature parameters x(i) follows: 

n npkirh v(o, 40] ) = n i p[v’0T 40] 
exp (vtCv/2) /[4Q]   

(2n)3l2R3J {det [I + VAl - y2)]} 1/2 

(F9) 

(F10) 

(Fila) 

(FI lb) 

(FI 2) 

(FI 3) 

The next step is to integrate equation (FI 3) over the x(i). The integrals would factor if it were not for the cross terms v(i)C;j v(j)/2, 
i ^ j in the exponents. One way around this is to replace v(0 by 

where 

Write 

v(0 = v(0 - y40/(i - r2), 

v(0 = [v(0 - y<x(0>]/(l - y2), 40 = 40 - <40> • 

ß = Q' - î I y2c¡j 4040/(1 - y2)2 • 
i*j 

(F 14) 

(F 15) 

(F 16) 

Define <x(0> to be the average of x(0 weighted by the integrand with Q replaced by Q'. This modified integrand does factor into 
terms of the form 

with 

and, in matrix notation, 

where 0 is a vector with components 

/C40] exp {-i[x(0 - x40]2/[i - y(02]}, 

i - ÿ(02 = (1 - y2)/[i - y2cui{\ - y2)], 

x# = (I + 'F)-1 yv + 
i - y 

i + 
(i - y2). 

€0 

(F 17) 

(FIS) 

(F19) 

40 = <40> - xji) ■ (F20) 
The interpolation formula given in equation (6.14) can be used to evaluate 0(0 if y(0 replaces y and xji) replaces yv. Equation (F19) is 
then an implicit equation for the xji) which must be solved by iteration, although the iteration process does converge fairly rapidly. 

Since the integrand is fairly sharply peaked about <x(0> as a function of x(0, the error in replacing Q by Q' is of order 
[y2'Ml - y2)2]2, as can be seen by expanding exp [-j(Q - ß')] in a power series. The error is small unless some of the ij/u are close 
to one, regardless of how large the v(0 are. 

Reexpressing Q' in terms of the x(i) gives, in matrix notation, 

e' = 2? 
1 v [x(0 - xHt(i)]

2 , 1 
1 -y2 

1 

2 (1 - y ) 
0^0 + 

(i - y2) 
i + 

(i - y2). 
(i + v)-^)©, (F21) 
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where C is the matrix containing just the off-diagonal components of C. The integrals over the x(i) have now just the same form as in 
the number density integral, with yv(i) replaced by x*(i) and y replaced by y(i), so they can be expressed in terms of the function 

7(0> f°r which we have the accurate interpolation formula given by equations (4.4) and (4.5). 
The procedure outlined above is quite accurate as long as ifrij < i (or for even larger if y < 0.5), but is obviously rather 

cumbersome. For this reason, the Gaussian approximation to the integrand in the x(i) is the recommended procedure in § Ylb. 
Comparing the approximation schemes offers cross checks on their accuracy. A straightforward Gaussian approximation using xm 
gives a result for the two-point correlation amplitude ~4% larger than the result of the above procedure when iA12 is small and 
~10% larger when i^12 (for y = 0.555). The fudge of replacing xm by <x> reduces the discrepancy to ~1% and 2.5%, 
respectively. Of course, i^12 æ ^ is also where the approximation of neglecting derivatives of ij/ is beginning to break down. The 
accuracy of neglecting the y(i)y(j) cross terms can be checked by dropping these terms in the Gaussian approximation. This lowers 
ifk by ~4% at i¡/12 ~ but the discrepancy decreases rapidly (as t/^2) for smaller i^12. Dropping the derivatives of i¡j probably 
raises since the exact should become negative once r12/Rs < 1, due to the smoothing. 

Kaiser (1984) introduced the effective field 0[v — F(r)/(70] which describes those regions with densities in excess of the height v. 
Politzer and Wise (1984) calculated the n-point correlation function of this field. An equivalent result can be obtained very concisely 
by considering instead the effective field 

Dv(r) EE ¿[v - FMK] (F22) 

which is nonvanishing only on the contour surfaces F(r) = vcr0 used in § TVd where the Euler characteristic of these surfaces per unit 
volume is given. At low v, these surfaces are multiply connected, and the correlation function of Dv will tell us nothing about peak 
clustering. However, at high v the contour surfaces split up into disconnected “ bags,” each surrounding a peak of height in excess of 
v. For distances large compared with the scale of an individual bag, the correlation function should then equal that for peaks. Since 
the n-point (unreduced) correlation function of Dv is exactly the joint distribution for Firff..., F(rn), the calculation is trivial : 

1 + Znlri, v(l), ...,rn, v(n)] = 
(EL gyc-,(>•■•)> plF(r,) - v(¿K, t = 1, ..., n] 
n.- <Dv(,/'-,•)> El.- PLFird = v(i)ff0] 

exp [v^d + ‘F)-V2] 
[det (I + *F)] 1/2 > exp as i/f —► 0 (F23) 

In the high v limit, the 0[v — F(r)/(j0] field also gives this result, as Politzer and Wise (1984) demonstrated. The degree to which it 
fails to provide a description of the clustering of peaks is the degree to which v differs from v. In most of the cosmologically 
interesting regime, the deviation is substantial. 

APPENDIX G 

POWER SPECTRA AND DARK MATTER 

The only information required to specify our homogeneous isotropic Gaussian random fields is their power spectra. We define the 
transfer function for linear perturbations which takes the initial Fourier components of the density F(/c, i,) at some very early time 
to the final ones F(k, tf) at some late time by 

m f(/c, tj 
( ’ f) b(tf) F(k, t;) 

(Gl) 

where b(t) specifies the linear growth law of long wavelength perturbations. The difficulty with this definition of the transfer function 
is that it depends upon the choice of gauge and the choice of hypersurface upon which the density fluctuations are measured. 
Gauge-invariant quantities can easily be constructed to alleviate the first problem. In equations (G9) and (G10) below, we give a 
hypersurface-independent way of treating the transfer function which we feel is superior to the usual definition, equation (Gl). The 
density perturbations should be taken to be those defined, for example, in the popular synchronous gauge (Peebles 1980) referred to 
some specific choice of synchronous hypersurfaces. Referring the density fluctuations to comoving hypersurfaces would give the 
same result for T. In the matter-dominated regime in an Einstein-de Sitter universe, b = a, where a(t) is the expansion factor. For 
most cosmological models, T is approximately time independent below a redshift z ^ 100. The power spectrum of density fluctua- 
tions evolves according to 

P(K tf) = "Ml2 

_b(tf)_ 
t2(/c, tf)P(K ti). (G2) 

The following fitting formulae drawn from the work of Bardeen (1985), Bond and Szalay (1983), Bond and Efstathiou (1984), and 
Efstathiou and Bond (1985) accurately reproduce the transfer functions at late times for universes dominated by collisionless relics 
of the big bang in which the baryon density QB is much smaller than the density of dark matter Qx. 
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Case 1 : Cold dark matter, adiabatic fluctuations: 

TcDM.ad,;#) = - (12
+Jq

34q} 0 + 3-89<Z + (16-^)2 + (5A6q)3 + (6.71g)4]-1/4 , 

k0112 

q = (Qx h2 Mpc“1) ' (G3) 

Here 0 = pcJ(lMpy) is a measure of the ratio of the energy density in relativistic particles (photons plus neutrinos) to that in 
photons. The expression 6 = \ corresponds to three flavors of relativistic neutrinos plus the photons. Other CDM fits appropriate 
to the case when QB is not small are given in Bond and Efstathiou (1984) (see also eq. [G6] below). The transfer function of the 
baryons is “ filtered ” on small scales due to the finite baryon pressure around recombination : 

^CDM, ad, ßW == ^DM, ad, xW[l + (^Jr)2/^] 1 > Rjr = 1.6(Qxh2) 1/2 kpC . (G4) 
Case 2: Massive neutrinos (one species), adiabatic fluctuations: 

Tv,Jk) = exp [ —0.16(fcK/v) - (kRf v)
2/2][l + l.6q + (4.0q)V2 + (0.92q)2y 1 , q = k/(Qvh

2 Mpc1) , 

Rfv = 2.6(nv/i2)"1 Mpc , 

Tv>ad(fc)«exp(-3.99-2.V). (G5) 

The first expression gives an exponential damping factor times the cold dark matter spectrum appropriate to a universe with two 
species of relativistic neutrinos (9 = Ö.87). The quantity Rfv is a characteristic damping length for neutrinos. The damping is 
dominated by the Gaussian part of the filter. If we define a characteristic Gaussian filtering length by the radius at which the filtering 
function drops to 1/e, then this radius is 1.1R/V. In § Vile, we just use Rfv which gives a fairer estimate of the short wavelength falloff. 
The second expression is a straight fit to the results. Note thatQv h2 = 0.31mv/(30 eV). 

Case 3: Warm dark matter, adiabatic fluctuations: 

^CDM, ad, x(k) ? 

Tcdm, ad, x(k) = [1 + Uq + (4.3q)3/2 +q2y1, q = (n^2 {^-1) ’ ^ = °-2(^) MPC ' (G6) 

d{k) « exp 
kRt mfj

2 

Here gXdcc is the effective number of particle degrees of freedom when the X particles decoupled ; values in the range 60-300 are 
typical of minimal grand unified theories over the range of decoupling temperature T æ 1-1018 GeV. The quantity Rfw involves the 
free-streaming length for the warm dark matter as in the neutrino case. Note that Qxh2 = 1.0(öfXdec/100)_1(mA:/keV) for warm dark 
matter. The same form for the exponential as in the massive neutrino case was chosen for simplicity, at the expense of goodness of fit. 
Notice that the damping is effectively gentler than in the neutrino case. The 1/e Gaussian filtering length is 1.9Rfw, but this gives far 
too much damping on larger scales. The exponential damping term multiplies the 0=1 cold particle spectrum. The CDM transfer 
function given in equation (G6) provides an alternative simpler fit to the CDM transfer function, although it is not quite as accurate 
as equation (G3). In both the neutrino and warm dark matter cases, the baryons have the same power spectrum as the collisionless 
relics. 

To get the final power spectra, the initial spectrum is required. This is usually assumed to be a power law with index n. In 
particular, the index n = 1 defines the Zeldovich spectrum that arises in inflation. The asymptotic form for the output power 
spectrum of cold dark matter density fluctuations is therefore ~Ak for small k and ~Ák-3(ln k)2/16 for large /c, with A a 
normalization amplitude. Hot (massive neutrinos) and warm dark matter have almost no power on small scales because of 
collisioniess damping. 

Case 4: Cold dark matter, isocurvature fluctuations : 
-5/4 

= (5.6g)2{l + [IS*? + (0.864)3/2 + (5.64)2]1-24}-0-807 , 

^  (G7) 
3 “ (Of/i2 Mpc“1)' 

Two excellent fits are given. The asymptotic behavior, -^>(5.6k)2 and —> 1 for large and small k, respectively, differs considerably from 
that appropriate to the adiabatic case. However, for the isocurvature axion mode, an n = — 3 initial spectrum is appropriate, which 
yields the ~/c and ~/c-3 limits for the evolved power spectrum as for the n = 1 adiabatic case. If primordial black holes form the 
dark matter, n = 0 might be the appropriate initial spectral index (£ = 0 for r ^ 0). This implies little power ( ~ k4) on large scales, 
scales. 

In addition, an overall amplitude must be specified to normalize these spectra. In § VI/, we discussed two ways to do this using the 
observed galaxy correlation function and the galaxy correlation function we predict using the threshold hypothesis. The first is 
simply to normalize £ to unity at r0 = 5 /z-1 Mpc. The second is to use J3(r) normalization for r > r0, using the spatially uniform 
biasing factor b. Another standard procedure would be to require that the power spectrum top hat filtered on scale RTH satisfy 

^cdm, isoc, x(k) — (5.64)" 1 + 
(4O4)2 

1 + 2154 + (164)2(1 + O.54) 
— + (5.64) 8/5 
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(70(Rth = 8 /î~ 1 Mpc, í0) = ¿?_1(í0), since this is the scale when the rms fluctuations in the number of bright galaxies equals unity. 
Deviations from the simple h2 proportionality on scales which contribute significantly to <[ANgal(RTH)/Ngal]

2) imply that J3 
normalization is preferred. 

Another way to characterize this overall amplitude is to relate the final density to an initial measure of the perturbation amplitude 
(so that tf in eq. [G2] is i0, the age now). In this case, it is useful to specify the initial amplitude in terms of quantities that are 
constant when the perturbation is outside the horizon. For adiabatic perturbations, 

Ç — 3</> + ôptot/(ptot + ptot) (G8) 

is such a measure which is hypersurface invariant. Ftere ptot is the total pressure and 0 is related to the spatial scalar curvature 
perturbation by ÔR = — 4V20 — 12C0/a2, where C is the background spatial curvature constant (see Bardeen 1980; Bardeen, 
Steinhardt, and Turner 1983 for notation). If Fx is extrapolated linearly to the present according to the flat universe growth law 
(~ a), then 

Fx(/c, i0) = 2.0 x 106(QX h2/Q)T(k, t0)q2^K Q (adiabatic) . (G9) 

We require ieq, where ieq is the time that the energy in relativistic particles equals that in nonrelativistic ones. To use this for 
Q<1, one should back track Fx to a time before a redshift Q_1, then evolve forward using the correct growth law for Q # 1 
universes (e.g., Peebles 1980). The n = 1 initial spectrum has < | £(k, í¿) |2> oc /U3. 

For isocurvature CDM perturbations, the hypersurface-invariant initial amplitude is measured by the fractional relative pertur- 
bation Ssx/sx of sx, the comoving entropy per X particle : 

FX(K to) = 6-3 x 10¿ 
Qxh2 

T(k, to. 
àsx(K tj) 

Sx(ti) 
(isocurvature) (G10) 

We advocate Fx/C and Fx/( — ôsx/sx) as better “transfer functions” than equations (G3)-(G7) for adiabatic and isocurvature 
cosmological perturbations, respectively, since, for waves that are inside the horizon at the present time, they are hypersurface- 
invariant characterizations. Notice that both converge to the same value, 2 x 106g2, as /c-> 0. 
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