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ABSTRACT 
We present a technique for detecting the presence and significance of a period in unequally sampled time 

series data. We review the calculation of the modified periodogram for unevenly sampled data. We clarify the 
proper definition of the variance that is used to normalize the power of the modified periodogram. We prove 
that the probability that a peak in the periodogram is noise or signal can be easily assessed by the method 
given here only when the total variance of the data is used to normalize the periodogram power. 

We discuss the crucial choice of independent frequencies in calculating both the periodogram and the false 
alarm probability from unevenly sampled data. We derive an empirical formula for estimating the number of 
independent frequencies. 

In addition, we review the formula for the uncertainty of a frequency identified in the periodogram. We 
prescribe a method for detecting the presence of an alias frequency caused by the interaction of the window 
and signal. 

With some examples of periodic signals, we show the minimum number of points required to measure reli- 
ably a signal. We investigate the signal-to-noise ratio and the number of points required to extract signals 
when one or two periodicities are present in the time series. 
Subject headings: numerical methods 

I. INTRODUCTION 
Many astronomical processes are periodic in nature, and the best known way to describe these periodicities is through Fourier 

analysis. Because of the nature of observational astronomy, the data to be analyzed are frequently unevenly spaced in time and often 
contain large amounts of random (and even nonrandom) noise. Rebinning the unevenly sampled data to equally spaced bins and 
calculating a conventional periodogram may alter the perceived frequency and significance of a periodic signal. 

In this paper we discuss the normalized periodogram given by Scargle (1982), whose method treats without bias the periodogram 
calculated for unevenly sampled time series. Scargle (1982) also provides, through the “false alarm probability,” a simple estimate of 
the significance of the height of a peak in the power spectrum. A debate has arisen concerning the correct normalization of the 
periodogram required to achieve the simple exponential probability distribution that Scargle (1982) derives (Black and Scargle 
1982; Lockwood et al 1984; Baliunas et al 1985; Brosius, Mullan, and Stencel 1985; Gilliland and Fisher 1985). Scargle (1982) 
normalizes the periodogram by a2, the variance of the noise. Some people have incorrectly interpreted the phrase “ variance of the 
noise ” to mean the variance remaining after a sine curve has been removed from the data, or to mean the observational uncertainty. 
We prove that these interpretations of the variance destroy the exponential behavior of the probability distribution of the 
periodogram and invalidate the subsequent estimates of the false alarm probability. The probability that a given frequency is a true 
signal can be estimated correctly only when the periodogram power is normalized by the total variance of the data. 

Upon further analysis of the modified periodogram, we discover some important properties concerning the number of indepen- 
dent frequencies. With simulated sets of data and periodograms of these data, we derive an empirical formula that estimates the 
correct number of independent frequencies to use when calculating the false alarm probability. 

We also examine the impact of signal-to-noise ratio, number of sampled points, aliasing, and multiple signal frequencies on the 
calculated periodogram. We provide an estimate of the error in frequency of a significant peak in a periodogram. These techniques 
should be valuable for analyzing a wide variety of time series measurements. 

II. CALCULATING THE PERIODOGRAM 

For a times series X(if), where i = 1,2,..., AT0, the periodogram as a function of the frequency œ is defined (Scargle 1982) as 

Px(o>) = ; 
1 ÍE^i Y(r,.) cos cMti - t)]2 [£7°, Y(i;) sin oj(ti - t)]- 

XjN=1 cos2 «(tj - 7 73=1 sin2 co(tj-r) 

where t is defined by the equation 
/No \ If N° 

tan (2cot) = s*n ^œtjj j X cos ^wtj 

757 

(1) 

(2) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

6A
pJ

. 
. .

30
2.

 .
75

7H
 

HORNE AND BALIUNAS Vol. 302 758 

When Px(co) is defined in this manner, it has several useful properties which the usual discrete Fourier transform does not have. 
First, the inclusion of the t terms makes the periodogram invariant to a shift of the origin of time. Second, this form makes 
periodogram analysis exactly equivalent to least-squares fitting of sine curves to the data. More importantly, Px(m) is defined so that 
if the signal X{tj) is purely noise, then the power in Px(m) follows an exponential probability distribution. This exponential 
distribution provides a convenient estimate of the probability that a given peak is a true signal, or whether it is the result of 
randomly distributed noise. 

a) The Correct Variance 
The correct normalization factor for Px(œ) is the total variance of the data. The proof of this statement can be derived following a 

(3) 

(4) 

(5) 

(6) 

(7) 

Now, if we assume that X is pure independently and normally (Gaussian) distributed noise with zero mean and constant variance 
(T0

2, then we can write its distribution function as n(y; 0, a0
2) = \l[<T0(7.n)ll2~\e~yll2°o1. The function C(o>) is a linear combination 

of independent normally distributed random variables, so it too is a normal random variable. The mean of C is zero, <C> = 0, and 

a2 = <C2> = A2(70
2 £ cos2 o)(tj - t) = ff0

2 . (8) 
j 

Similarly, S(co) is a normal random variable with zero mean, <S> = 0, and 

<7S
2 = <S2> = B2<j0

2 £ sin2 co(tj - r) = o0
2 = ac

2 . (9) 
j 

C(co) and S(co) are normal random variables only if X is also a normal random variable. 
With these assumptions, it is simple to show that the distribution functions for C2(co) and S2(co) have identical gamma density 

functions of the form 

close look at Appendix A in Scargle (1982). The function Px(co) can be rewritten as 

Px(co) = i[C2(co) + S2(co)], 

where 

C(œ) = -4 X ^(0) eos ^(0 — T) ’ 
j 

S(co) = # X ^(0) s^n ^(0 — T) ’ 
j 

AM = cos2 «(0 - 7J 

and 

B(oj) = ^ sin2 œ(tj - t)J 

r   -x/2a2 
(J(2nx)1,2 (10) 

Px(co) is the sum of these two functions with gamma distributions (divided by 2), so it has the distribution function (cf. Hoel, Port, 
and Stone 1971) 

F(z; ac + oes — 1, a) = ^ « z/it2 . (11) 

Thus, only when the periodogram is normalized by the total variance, 

PjvM = Px(có)la2 , (12) 

does the periodogram have the desired e~z probability distribution. Other distribution functions for X give different distribution 
functions for C and S, which consequently yield different distributions for Pv. 

We would like to emphasize the importance of normalizing the periodogram by the total variance of the data and not by an 
estimate of the noise derived either from the residuals after a signal has been removed or from the uncertainty in the measurement. 
There are two reasons why any estimate other than the total variance is unacceptable in the normalization. First, the subtraction of 
a sinusoid from the data assumes a signal is present. In this case, the subsequent use of the false alarm probability to test for the 
presence of the same signal is circular reasoning and therefore fallacious. More importantly, it is only the normalization by the total 
variance of the data that yields the correct statistical behavior of the periodogram. Other normalizations will not produce the 
desired exponential distributions. 

b) The False Alarm Probability, F 
The e~z distribution is very useful, because it means that for any frequency cu0, the probability that PN(co0) is of height z or higher 

is Pr [PN(co0) > z] = e~z. Suppose that z is the highest peak in a periodogram that sampled N¡ independent frequencies. The 
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probability that each independent frequency is smaller than z is 1 — e-z so the probability that every frequency is lower than z is 
[I — e Thus, the probability that some peak is of height z or higher is the false alarm probability F = 1 — [1 — (cf. 
Scargle 1982). The false alarm probability tells us the probability that a peak of height z or hither will occur, assuming that the data 
are pure noise. Consequently, the quantity 1 — F is the probability that the data contain a signal. It is vitally important, however, 
that we define the normalized periodogram PN(œ) = Px(co)/(j2, where o2 is the total variance of the data. Any other normalization 
except the total variance of the data will destroy the definition of the false alarm probability given above. It is therefore unjustified to 
use any other value for er2, such as an independent estimate of the experimental error or the variance after a sine curve has been 
subtracted. 

c) The Number of Independent Frequencies 
An important ingredient for the calculation of the false alarm probability is the number of independent frequencies, To 

determine the correct value of Nh we simulated a large number of data sets. All data sets were pseudo-Gaussian noise, with several 
different spacings in the time coordinate. There were three major types of simulations. First, the data were evenly spaced in time. 
Second, each time followed the previous time by a random number between 0 and 1. Third, data were clumped in groups of three 
points at each evenly spaced time interval. The periodogram of each data set was evaluated from œ = 2n/T toœ = nN0/T, where T 
is the total time interval. The periodogram frequencies range from a single frequency up to the Nyquist frequency, so they include all 
of the periods that can be safely studied in each time series. The highest peak then was chosen in each periodogram. The highest 
peaks from periodograms were then combined, and a false alarm function 1 — [1 — e-2]*' was fitted to the peak distribution with 
Ni as the variable parameter. The results of the simulations are shown in Table 1. We fitted a parabola to the empirically generated 
values of Arf as a function of A0 and derived the formula 

Af= -6.362 + 1.193No + 0.00098No
2 . (13) 

With unevenly spaced data, the power in the sidelobes of the peaks of the window function is greatly reduced (Deeming 1975). The 
reduction in power in turn suppresses the possible combinations of frequencies that lead to peaks. Therefore, deviations from the 
evenly spaced case can actually reduce the number of independent frequencies, for example, down to Nt = N0/2.9 in the case of three 
data points clumped per time point (see Table 1). Not surprisingly, simply evaluating unevenly sampled data may be preferable to 
rebinning it into equally spaced bins. The rebinned data will have more independent frequencies and a less significant false alarm 
probability than the unevenly sampled data. 

d) Spectral Leakage 
Occasionally more than one peak with a significant height according to the false alarm probability appears in a periodogram. 

Multiple, significant peaks may be caused by the presence of more than one periodic signal in the data. Alternatively, a true signal at 
frequency co0 can cause peaks in the periodogram at frequencies other than co0 because of the finite length of the data window and 
irregularities in the data spacing. These sidelobe peaks in the window function may have significant heights. This problem is 
commonly referred to as spectral leakage, or aliasing if power from high frequencies leaks to lower frequencies. One useful method 
of determining whether any additional peaks with significant false alarm probability are physically real is to subtract from the data a 
sine curve with frequency œ0 corresponding to the most significant peak and then to recompute the periodogram. A good 
computational method for subtracting a sinusoid may be found in Ferraz-Mello (1981). This procedure lessens the problem of 
leakage to a great degree. After filtering, any remaining significant frequencies other than co0 are likely to be signals. For this second 
periodogram, however, the probability analysis is slightly different than that of a periodogram with no sine curve subtracted. The 
second periodogram has been created under the assumption that a frequency œ0 does indeed exist in the data, and a sinusoid with 
that frequency has then been subtracted from the data. Therefore, the second periodogram must be normalized by the variance of 

TABLE l 
Independent Frequencies in Simulated Data 

Number of Number of Number Type 
Data Points Independent of of 

(N0) Frequencies (N,) Tests Spacing 

10  9.70 1395 even 
15  14.45 347 even 
25  27.38 213 even 
35  38.40 214 even 
50  54.45 369 even 
64  71.76 512 even 
75  86.05 153 even 

100  119.58 296 even 
128  152.53 913 even 
170  218.33 218 even 
256  369.97 224 even 
300  455.95 107 even 
400  618.69 106 even 
128...  43.90 1094 clumps of 3 
128  137.34 587 random 
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the data after the sine curve with frequency œ0 has been subtracted. Additionally, the probabilities for any frequencies determined in 
this manner should be quoted as the probability that the frequency is real assuming that there exists a signal at co0. 

e) Uncertainty in the Frequency 
It is also possible to compute the uncertainty in the determination of a frequency. Kovacs (1981) found the standard deviation of 

the frequency to be . 
3n(7N ÖCD = 

2{N0)1/2TA 5 (14) 

where A is the amplitude of the signal, (jN
2 is the variance of the noise after the signal has been subtracted, and T is the total length 

of the data set. Kovacs’s derivation assumes a single signal, with Gaussian noise, and even data spacing. Uneven data spacing does 
not seem to degrade the uncertainty to any noticeable degree (cf. Bahúnas et al 1985). Multiple signals, on the other hand, can cause 
further shifts in detected frequencies if they are closely spaced (Kovacs 1981). Linear trends over the span of the data can also cause 
additional shifts in the determined frequency. 

III. EXAMPLES OF PERIODOGRAM ANALYSIS 

With these definitions, it is easy to calculate the sensitivity of the modified periodogram technique to a variety of signals. 

a) Pure Signals 
First, let us assume that our signal is a pure sine curve, so that X(t) = X0 cos œ0t. In this case, <A) = 0 and <t0

2 = {X2} — 
X0

2/2. If we ignore the t terms, which are usually very minor corrections and assume that the iy are not badly bunched in time, then 
cos2 cotj = N0/2 so 

C(co0) = ¿ X *o cos2 co0 tj = X0{N0I2Y>2 (15) 
j 

and 

^(wo) = ^ X cos œ0 tj sin co0tj = 0 (16) 
j 

so 

PN(œ0) = C2{œ0)/2a0
2 = N0/2, (17) 

and 

F = 1 - [1 - e-Nol2~}Ni . (18) 

Some values for F are tabulated in Table 2. The results listed in Table 2 show that the peaks quickly become very significant, with 
only twelve points needed for 95% certainty that a signal exists. The table starts with five points, because the periodogram 
determines four parameters : the amplitude, the frequency, the phase, and an additive constant. Thus, the modified periodogram 
requires sampling at least five points, and preferably many more points. 

b) Signal Plus Noise 
Most real data sets consist of a signal plus noise, so it is instructive to consider the case where X(t) = X0 cos co01 + R(t), where 

R(t) is a randomly distributed normal variable with variance a2 and zero mean. In this case, we still have <X> = 0 and 

a0
2 = (X2}=(X0

2/2) + c7r
2 + X0(R(t)cosw0ty = (X0

2/2) + al.2 . (19) 

TABLE 2 
False Alarm Probabilities 

for a Pure Signal 

False Alarm 
Probability 

Number of 
Sampled Points 

0.7138  
0.5402   
0.3845   
0.2622   
0.1737   
0.1129  
0.0724   
0.0461   
0.0292   
0.0184..... 
0.0116  
0.0011  
1 x 10~5.. 
8 x 10"8 .. 
5 x 10"10. 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
20 
30 
40 
50 
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and S(œ0) = 0 so 

CK) = X0(N0/2)112 + A Z R(tj) cos co0tj = X0(N0/2y'2 

j 

Xq2N0 

2X0
2 + 4ar

2 

(20) 

(21) 

We define the signal-to-noise ratio £ = X0
2/2a2, which is the ratio of the power caused by the signal to the power caused by the 

noise. The false alarm probability is 
F=1_il_e-(No/2)(i+s-i)-iyi, (22) 

which can be rearranged to yield the value of Ç necessary to detect a signal with a failure rate F, 

N0 
W 

£= -0 + 2 In [1 - (1 - F)1/Nq 
(23) 

Table 3 shows the necessary values of £ to be 95% certain that a signal exists for a variety of values of N0. The periodogram can pick 
out the signal even for very poor signal-to-noise ratios, as long as some modest number of points are sampled. The table also shows 
the uncertainty in the discovered period, (ôœ)T. This uncertainty decreases as N0 increases, even though F stays the same. This can 
be understood by considering the general rule from statistics that the uncertainty of the resolution of the centroid of a peak is equal 
to s/n1/2, where s is the standard deviation of the peak and n is the number of points. 

To further illustrate the value of the normalized periodogram in detecting a weak signal from noisy data, we constructed a sample 
signal X(t) = 0.75 cos (0.6i) + R(i), where R(t) is Gaussian noise with a variance a 2 = 0.902. The period of this signal is 10.47 time 
units. We sampled this signal at the integers between 1 and 100, threw away 10 points randomly, and found that a0

2 = 1.199 so 
= 0.313. The resultant signal is shown in Figure 1. The initial period cannot be detected by visual inspection because the 

signal-to-noise ratio is so poor. We then calculated the power spectrum displayed in Figure 2. 
The smallest frequency we sampled, 2n/T, corresponds to just one cycle in the data. This is not a firm lower limit. Clear signals 

with period slightly longer than T can sometimes be detected, but with poor resolution. All periods with less than two cycles in the 
data are somewhat questionable, as they could have been caused by an event such as a single flare. The largest frequency we 
calculated was nN0/T which is the traditional Nyquist frequency for evenly spaced data. The Nyquist frequency is not well defined 
for unevenly spaced signals, but it can serve as a reasonable upper limit for the calculation. We generally sample the periodogram 
with a coarse frequency spacing of about 1/T. This procedure samples each peak well enough, without requiring excessive 
computation time. Recomputing the periodogram in the region around the highest peak with higher resolution gives more precise 
values of the peak height and frequency. We caution that the mean must be subtracted from the data before the periodogram is 
computed. A nonzero mean of the data will destroy the probability distribution and may cause other problems. 

In our simulation, the highest peak is situated at co = 0.608 with a height of z = 13.34 (Fig. 2). The false alarm probability (eq. 
[18]) in this case yields F=1.52 x 10“4, which means that only 1 in 6600 data sets with the same variance and no sine curve will 
have a peak of that height or higher. For comparison, we have marked on Figure 2 several false alarm levels. The 50% line is the 
level above which half of all noise spectrums will have one or more peaks when there are 90 data points. The 10% line is the level 
above which 10% of all noise spectrums will have one or more peaks, and so forth. The uncertainty in the frequency we calculate to 
be Sco = 0.006 (eq. [14]), so co = 0.608 ± 0.006, or almost exactly the same as the frequency we used to create the signal. Notice that 
it is impossible to pick this signal out by eye, but the signal is clearly detected by the periodogram. 

c) Two Sinusoids Plus Noise 
If our signal is the sum of two sines, then X(t) = X0 cos co0t + Xt cos ctqi + R(t). Once again, <Y> = 0 and 

<70
2 = (X0

2/2) + (X1
2/2) + ar

2 + XoX^cos co0t cos œ.t) = (X0
2/2) + (Z^/2) + ar

2 . (24) 

TABLE 3 
Required £ for 5% False Alarm Probability 

Number of Signal-to-noise Uncertainty in 
Sampled Points Ratio (£) Frequency (ôœ)T 

12  0.473 1.40 
13.. .   0.431 1.41 
14   0.397 1.41 
15   0.368 1.42 
20  0.276 1.42 
30  0.192 1.39 
40.. ...  0.152 1.35 
50  0.128 1.32 

100  0.077 1.20 
200  0.047 1.08 
500   0.025 0.95 

1000.....   0.015 0.87 
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Fig. 1.—Simulated data set with X{t) = 0.75 cos (0.6r) + R{t), where jR(i) is Gaussian noise with variance ar
2 = 0.902. The period is 10.47 time units. These data 

have a signal-to-noise ratio of £ = 0.313. The sample times are the integers between 1 and 100, with 10 integers discarded randomly. Because the signal-to-noise ratio 
is low, it is impossible to select the period by eye. 

Also C(œ0tl) = X01(N0/2)1/2 and 

^(^0,1) (25) 

As we add more signals, it becomes, not surprisingly, more difficult to pick out the signals. Compared to the case of a single sinusoid, 
the analysis of data with multiple periods will require a higher signal-to-noise ratio in order to detect peaks with the same 
confidence. 

Some additional complications may occur when multiple frequencies are present (cf. Kovacs 1981). If the data are evenly spaced 
in time, then the spacing between the frequencies is 2tc/T which is also conveniently at the first zero of the sine function. Each peak 
in the periodogram has a full width at half-maximum of 5.5662/T. Some problems can occur if the independent frequencies are 
closer together than that. Any uneven spacing in the data will perturb these frequency spacings, making some closer to and some 
farther away from each other. If two powerful frequencies are closer than 5.5662/T from each other, the resultant periodogram peak 
will lie between them. This type of complicated peak can usually be noticed by its large width and unusual shape. 

IV. SUMMARY 
The modified periodogram calculated according to Scargle (1982) for unevenly sampled data is extremely valuable in assessing 

periodicities in astronomical time series. The likelihood of the existence of a periodic signal can be established with the false alarm 
probability. We have proven that the simple exponential behavior of the false alarm probability is valid only when the total variance 
of the data is used to normalize the periodogram. Other estimates of the variance, for example, the residual after a signal has been 
removed, will result in an incorrectly normalized exponential probability distribution. The false alarm probability can be 
calculated using the formula for the number of independent frequencies derived in § lie. This formula is accurate for evenly spaced 
data. The formula will overestimate the number of independent frequencies for the same data unevenly sampled. The unevenly 
sampled data will therefore have lower false alarm probabilities. If a data set is severely unevenly sampled, the true false alarm 
probability could be significantly smaller. The significance of a peak in the periodogram will be correspondingly underestimated. In 
this case, it can be worthwhile to determine the correct false alarm probability from a series of simulations. Properly used, the 
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Fig. 2.—Fourier transform of the data in Fig. 1. The periodogram was calculated from co = In/T to a> = nN0/T with a spacing of about 1/T. The highest peak is 
at w = 0.608 + 0.006 with a false probability of F = 1.52 x lO-4. Various false alarm probability levels are marked. Despite the low signal-to-noise ratio and the 
lack of a visible period in Fig. 1, the periodogram easily finds the correct period. 

periodogram can detect even faint signals in noisy data. The uncertainty of a detected frequency can be evaluated easily, even when 
multiple signals are present. 
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