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ABSTRACT 
Varied evidence suggests that galaxies consist of roughly 10% baryonic matter by mass and that baryons 

sink dissipatively by about a factor of 10 in radius during galaxy formation. We show that such infall strongly 
perturbs the underlying dark matter distribution, pulling it inward and creating cores that are considerably 
smaller and denser than would have evolved without dissipation. Any discontinuity between the baryonic and 
dark matter mass distributions is smoothed out by the coupled motions of the two components. If dark halos 
have large core radii in the absence of dissipation, the above infall scenario yields rotation curves that are flat 
over large distances, in agreement with observations of spiral galaxies. Such large dissipationless cores may 
plausibly result from large internal kinetic energy in protogalaxies at maximum expansion, perhaps as a result 
of subclustering, tidal effects, or anisotropic collapse. 
Subject headings : galaxies : evolution — galaxies : internal motions -— galaxies : structure — interstellar : matter 

I. INTRODUCTION 

The remarkably flat rotation curves of spiral galaxies (e.g., 
Bosma 1978; Rubin, Ford, and Thonnard 1980; Rubin 1982) 
demand explanation in any theory of galaxy formation. There 
are at least two aspects to be considered: flatness at large 
distances beyond the optical radius, which implies the exis- 
tence of large, dark halos with density falling approximately as 
r~2; and flatness at small distances, where the disk mass is 
gravitationally important. The observed smooth transition 
between the two suggests the existence of a physical mecha- 
nism which is responsible for the continuity between the mass 
densities of the disk and halo (Burstein and Rubin 1985; 
Bahcall and Casertano 1985). 

Although complete violent relaxation of an unbounded 
region produces an isothermal sphere with p ocr~2 (Lynden- 
Bell 1967; Shu 1978), AT-body simulations of collapsing spher- 
ically symmetric homogeneous “ top-hat ” fluctuations lead to 
density profiles that typically fall off as r"3,5 (Gott 1973). Sec- 
ondary infall of matter surrounding the perturbation can lead 
to density profiles that are less steep at large distances (Gunn 
and Gott 1972; Gott 1975; Gunn 1977). This was confirmed by 
N-body simulations of a region surrounding a central mass 
point containing ~ 10% of the total mass (Dekel, Kowitt, and 
Shaham 1981), although other work (Pryor and Lecar 1983) 
disagrees, possibly because the collapses there were unrealisti- 
cally constrained to be spherical. Recent related work has been 
done by Smith and Miller (1985). 

In this paper we consider the origin of flat rotation curves in 
a model of galaxy formation based on gravitational collapse of 
a protogalaxy containing a homogeneous mixture of dissi- 
pationless dark matter and roughly 10% baryonic material 
(White and Rees 1978; Faber 1982; Gunn 1982; Blumenthal et 
al 1984). Although galaxy mass models (Caldwell and Ostriker 

1982; Bahcall, Schmidt, and Soneira 1982) distinguish between 
dissipative and dissipationless components, most previous 
work on galaxy formation has treated the dissipationless halo 
as “rigid” (e.g., Fall and Efstathiou 1980). Here we explicitly 
consider the gravitational response of the halo to the dissi- 
pative baryonic infall. The next section treats this problem 
using a simple analytic model and concludes that baryonic 
infall can indeed produce rotation curves comparable to those 
observed starting from an isothermal sphere with a large core 
radius. Section III describes a crude first attempt at A-body 
simulations to model baryonic dissipation. Section IV dis- 
cusses the results in light of recent speculations on the origin of 
flat rotation curves, and § V summarizes our conclusions. 

II. ANALYTIC MODELS 

The response of a dissipationless halo to the infall of a small 
dissipational fraction of its mass can be conveniently described 
using an approximate analytic model. This model uses the fact 
that, for periodic orbits, § pdq is an adiabatic invariant, where 
p is the conjugate momentum of the coordinate q. If p rep- 
resents the angular momentum of a particle in a circular orbit 
within some spherically symmetric mass distribution M(r), 
then rM(r) is constant for that particle so long as the mass 
internal to its orbit changes slowly with time (Steigman et al 
1978; Zeldovich et al 1980; Ryden and Gunn 1984). For 
purely radial orbits, it is easy to show that the quantity 
rmax^(rmax) ^ also constant if M(r) varies in a self-similar 
fashion. Since there is more phase space available for nearly 
circular orbits than for radial orbits, we make the simplifying 
approximation that the orbits of dissipationless halo particles 
are circular. Furthermore, if the initial fraction of dissipational 
baryonic mass F = MJM 1, the mass interior to a dissi- 
pationless particle’s orbit will not show a large fractional 
change during one orbital period even if dissipation occurs 
rapidly, provided the particle is fairly far from the galaxy 1 Lick Observatory Bulletin, No. 1017. 
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center. This assures that the orbits of all but the innermost halo 
particles change adiabatically. 

Assume that the initial spherically symmetric mass distribu- 
tion of the galaxy M^r) represents a dynamical equilibrium 
state with a constant fraction F of dissipational baryons as a 
function of r. The dissipational particles will then cool and fall 
into a final mass distribution which, in the case of a 
spiral galaxy, is constrained by the initial angular momentum 
distribution. The adiabatic invariant of the dissipationless par- 
ticle orbits implies 

r[Mb(r) + Mx(r)] = rf = r* Mx(r)/(1 - F) , (1) 

which can be solved iteratively for the final dark-matter mass 
distribution Mx(r) given the initial total mass distribution 
Mfri) and the final baryon mass distribution Mb(r). Here rt is 
the initial orbital radius, and Mx(r) = (1 — F)Mi(ri)i because by 
assumption dissipationless particle orbits do not cross. We 
take the initial mass distribution M^) to be an isothermal gas 
sphere with a core radius acore = 3<T/(4nGp0)1,2, where p0 is the 
central density and a is the one-dimensional rms velocity dis- 
persion. The final baryonic mass distribution is assumed to be 
of the form Mb(r) oc 1 — (1 + r/b) exp ( — r/b), which describes 
the radial mass distribution of a thin disk whose density in the 
plane of the disk decreases exponentially with scale length b. 

Figure 1 shows the rotation curves for various values of F 
and b resulting from dissipation within an initial isothermal 
sphere whose core radius a is 42% of its outer (truncated) 
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radius. We assume there is no baryonic infall and therefore no 
change in the dissipationless matter beyond r = 1. The figure 
shows that for F = 0.1 and h = 0.07, the rotation curve is 
rather flat beyond a couple of disk scale lengths, even though 
the initial rotation curve is not flat. Figure 1 also demonstrates 
the sensitivity of the resulting rotation curves to the dissi- 
pational mass fraction F and the disk scale length h. For F 
substantially greater than 0.1, the rotation curve declines after 
about two disk scale lengths, while for very small F, dissipation 
produces too little change in the rotation curve. This choice of 
initial core radius and b then requires 0.05 < F < 0.2 to repro- 
duce observed rotation curves. The final rotation curve is also 
sensitive to the amount of dissipational infall. For very small h, 
the large central mass concentration of both dissipationless 
and dissipational particles leads to a peaked rotation curve, 
whereas, for too little infall, the rotation curve rises monotoni- 
cally. The amount of dissipational infall producing a flat rota- 
tion curve corresponding to h = 0.07 is comparable to the 
amount of baryonic infall implied by the tidal torque theory of 
galaxy angular momentum for disks with heavy halos (Fall and 
Efstathiou 1980). 

Using the solution to equation (1) for Mx(r) and for the 
relation between the initial and final disspationless particle 
radius, it is straightforward to solve for the radial dependence 
of the density 

p(r) = lM'b(r) + M'x(rWnr2 , (2) 

BLUMENTHAL ET AL. 

Fig. 1.—A plot of the rotational velocity, v = (M/r)1/2, vs. r for the adiabatic invariant result given in eq. (1). The curves assume an initial isothermal gas sphere 
with core radius aC0Te = 0.42. The baryonic fraction F is assumed to dissipate and fall into an exponential disk with scale length b. No dissipation is assumed to occur 
beyond r = 1. All curves except the plusses correspond to total rotational velocity; the curve denoted by plus signs is the rotational velocity due to the dissipationless 
particles alone for the case where F = 0.1 and b = 0.07. 
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where 

M*,r)= r, - ^1 - F) + MW/MW • (3) 

and where the prime denotes differentiation. Figure 2 shows a 
plot of the density distributions, assumed spherical, that corre- 
spond to the rotation curves in Figure 1. The figure shows that 
substantial changes in the density of dissipationless particles 
occur within a few exponential scale heights of the baryons. In 
fact, after dissipation, the distribution of dissipationless par- 
ticles no longer resembles an isothermal sphere but is instead 
much more centrally peaked. For the case F = 0.1 and 
b = 0.07, which gives a flat rotation curve, the densities of 
dissipational baryons and dissipationless particles are about 
equal at r = h. 

An important feature of Figures 1 and 2 is that the final 
“effective core radius” of the dissipationless halo particles is 
significantly smaller than the initial core radius a because of 
the effects of baryonic dissipation. For initial core radii some- 
what larger than the value a = 0.42 used in Figure 1, it is still 
possible to obtain acceptable rotation curves for reasonable 
values of F and b. However, we find that much smaller initial 
core radii lead to peaked rotation curves if F is close to 0.1 and 
b is about 0.07. The issue of how to determine an appropriate 
value for the initial core radius is discussed further in the fol- 
lowing section. 

29 

III. AT-body simulations 

The analytic models just described are based on the use of an 
adiabatic invariant that assumes circular or purely radial 
orbits, spherical symmetry, and an equilibrium starting point. 
These assumptions can be relaxed and more general cases can 
be investigated using iV-body techniques. 

a) Methods 

iV-body simulations were carried out using the NBODY2 
code developed by S. J. Aarseth (1979) using the Ahmad-Cohen 
scheme for the different treatment of the force due to nearby 
and distant particles. Particles interact via a softened potential 

Öij = - Gnii m J(r*j + e4)1/4 , (4) 

where the subscripts ij refer to particles and e is the softening 
parameter which suppresses two-body relaxation effects. The 
potential in equation (4) differs from the more familiar soften- 
ing expression of the form (r2 + e2)1/2; it was introduced to 
more accurately model the gravitational potential down to the 
effective radius 6 of the particles while still effectively suppress- 
ing large velocity changes in two-body encounters. Integration 
time steps were chosen so that the fractional change in the total 
energy AE/E < 0.01. The integration continued until several 
dynamical times after the system reached approximate equi- 
librium, usually 10-12 dynamical times in all; and the values of 

DARK MATTER GALACTIC HALOS 

Fig. 2.—A plot of the density p vs. radius r for the adiabatic invariant result given in eq. (2). The cases plotted are identical with Fig. 1, and symbols are as in 
Fig. 1. The open circles show the dissipational baryonic density for the case F = 0.1 and b = 0.07. The density is normalized so that M(l) = 1; this corresponds 
to an initial central density p(0) = 1.58. 
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quantities discussed below such as M(r) were obtained by 
averaging over the last several dynamical times. 

The system was chosen to have total mass M = 1.0 x 1012 

Me, consisting of 500 dissipationless particles (the dark 
matter) and 500 dissipational particles (the baryons). The 
baryons typically constituted 10% of the total mass, so that the 
dark matter consisted of 500 clouds of mass mx= 1.8 x 109 

M0 each, and the baryonic matter initially consisted of 500 
clouds of mass mb = 0.2 x 109 M0; however, we also ran 
simulations with different percentages of dissipational 
material. 

The key feature of the simulations is the dissipational 
material that we identify with baryons. In all simulations, the 
baryonic particles were initially mixed uniformly with the dark 
matter particles. In dissipational simulations, baryonic par- 
ticles were given a collisional cross section cr, which was kept 
constant throughout a simulation. A collision occurred if two 
particles i, j came within distance |r¿ — ul = (v/71)112 °f each 
other, in which case they merged to form a single particle with 
mass m = mi + ntj located at the center of mass (GM) of the 
two particles and moving with the CM velocity. Their relative 
energy was thus dissipated. Total angular momentum should 
be conserved with such a scheme, and it is found to have a 
fractional change <5J/J < 0.01. (Particle merging has been 
treated previously in the context of AT-body simulations by 
Jones and Efstathiou 1979 and Aarseth and Fall 1980, who 
modeled galaxy mergers.) 

The cross section cr is a tunable parameter that controls the 
rate at which baryonic material falls into the center; for larger 
a, the baryons fall in faster. We chose cr so that the total energy 
loss rate per unit volume for a system of baryonic particles 
with number density nb and a Maxwellian distribution of velo- 
cities equals the physical cooling rate (assuming fully ionized 
H + He): 

dE/dtdV = n2
b <7< 1I (5E0.) = n2

p A(T) , (5) 

where np is the proton number density, A(T) is the cooling rate 
(Gould and Thakur 1970), | Vi — Vj | is the relative speed of the 
two particles, SE^ is the energy lost in the inelastic collision, 
and the average is taken over a Maxwellian distribution of 
velocities. We find that 

„ * «(3.6 kpc)<I , Y„ A(P A 
\0.2 x 109 Mo/\10 23 cm3 ergs s 

x (6) 

The scaling of a with mb was tested by running two identical 
simulations that differed only in that one had twice the number 
of baryons of half the mass and half the cross section cr. We 
found no difference except for a few evolutionary details. 

This treatment of dissipation is of course very crude. For one 
thing, the cross sectional radius is a large fraction of the scale 
size of the system, especially in the inner parts of the galaxy. In 
future, one might wish to allow a some radial or ambient 
density dependence, to dissipate in some other way without 
merging, to terminate dissipation when baryonic density 
reaches the threshold for star formation, or to include shock 
and pressure effects on the motion of the baryons. 

b) N-Body Results 
The remainder of this section discusses three sets of N-body 

simulations: (a) “cold start” models, involving infall of a 

homogeneous sphere from rest with dissipation; (b) “ hot start ” 
models, in which infall starts from a uniform-density sphere in 
both position and velocity space with the virial condition 
Q = KE/\PE\ = 0.5 satisfied; and (c) “Hubble start” models, 
based on an initially expanding homogeneous sphere in pure 
Hubble flow. Results of a number of simulations are sum- 
marized in Table 1. 

The dissipationless cold start simulations agree with those of 
previous workers: v(r) = [GM(r)/r]1/2 peaks at about 15 kpc 
and then falls off, unlike observed spiral galaxy rotation curves. 
As might be expected from the analytic model discussed in § II, 
baryonic infall moves the peak in v(r) inward and accentuates 
its decline at larger radii, which agrees even less well with 
observations. 

The hot start results are more interesting. The dashed line in 
Figure 3 shows v{r) resulting from a dissipationless simulation. 
It resembles an isothermal sphere with a large core radius of 
about 45 kpc, reflecting the large initial kinetic energy. A simu- 
lation with the same initial conditions but including baryonic 
dissipation is shown by the solid curve in the figure. Owing to 
the large merging cross section, about half of the baryonic 
mass ends up merged into a “ fat baryon ” at a radius of about 
12 kpc, which is of course unrealistic. Nevertheless, the overall 
shape of the rotation curve ought to approximate fairly well 
the dynamical effects of baryonic infall, at least at radii well 
beyond the fat baryon. Dark matter is pulled in toward the 
center, and the rotation curve is rather like those of real gal- 
axies. 

The dotted curve in Figure d compares the hot start model 
with an analytic version of the same calculation, as described 
in § II. The analytic version starts with the final mass distribu- 
tion from the dissipationless AT-body simulation (dashed curve) 
and brings the baryons to a final spherical distribution with the 
same Mb(r) as in the dissipational AT-body simulation. The 
resulting rotation curve is in rough agreement with that from 
thé dissipational AT-body simulation, although the analytic cal- 
culation somewhat overestimates the pulling in of the dark 
matter compared to the A/-body simulation. This occurs 
because of the assumption in the analytic calculation that the 
baryonic infall is spherically symmetric and because the infall 
takes place after rather than simultaneously with dynamical 
relaxation, as in the A/-body simulation. Note that baryonic 
infall does not affect the outer rotation curve, which declines 
with radius in both simulations. The simulations are probably 
not to be trusted at large radii because of edge effects. On the 
other hand, the behavior at large radii cannot yet be checked 
directly, because the observations of rotation curves of galaxies 
do not extend out this far. 

In the Hubble start simulations, the initially purely radial 
velocity is somewhat randomized as subclusters form while the 
system expands and contracts before violent relaxation. The 
resulting dissipationless simulations thus have fairly large core 
radii, about 15 kpc. In the simulations that include baryonic 
infall, dark matter is pulled in toward the center, producing 
relatively flat rotation curves that resemble those of real gal- 
axies. Figure 4 shows the results of such a simulation. As 
before, the formation of a “ fat baryon ” makes the inner part of 
the simulation unrealistic. If the protogalaxy had acquired 
more internal kinetic energy—through effects not included 
in our simulations, such as a spherical collapse, tides, or 
the gravitational interactions of preexisting internal 
subcondensations—then the core radius of the dissipationless 
simulation would have been larger, and the intermediate part 
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Fig. 3.—Rotation velocity, v = (M/r)1/2, vs. r for a “hot start” N-body simulation (4th row of Table 1). Dashed line, rotation curve for the dissipationless iV-body 
simulation ; so/id line, curve for the dissipational simulation. Dotted line obtained by applying the method of § II (see text). 

Fig. 4.—Results from a “ Hubble start” N-body simulation (8th row of Table 1). Dotted curve, [MDM(r)/r]1/2 from the dissipationless simulation; dashed curve, 
corresponding result from the dissipational simulation. Solid curve, rotation curve v = (M/r)112 from the dissipational simulation. 
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of the rotation curve from the dissipational simulation would 
have been flatter or still rising. This would have been more like 
the analytic calculations graphed in Figure 1 and would agree 
even better with real galaxies. This simulation illustrates how 
important it is to understand the clustering properties of the 
dark matter in the absence of dissipation and, in particular, 
how large and diffuse the core radii of dissipationless halos 
would be. Estimates of the range of internal kinetic energy to 
be expected in real protogalaxies can perhaps be obtained from 
AT-body simulations of the evolution of a larger region contain- 
ing several galaxies, starting from an appropriate initial fluc- 
tuation spectrum. 

Table 1 summarizes various properties of these simulations 
and compares results for various cases. One of the quantities 
shown is Mb(20)/Mj,ot, which is roughly the fraction of baryons 
that ultimately wind up within the optical radius of the galaxy. 
This is a measure of the efficiency of baryonic infall and is 
typically around 60% for most models. The corresponding 
figure for no dissipation is about 2%-3%. Another quantity 
shown is which is the mass ratio of dark 
matter for the dissipational and dissipationless cases within 
roughly the optical radius (20 kpc). This quantity is a measure 
of the pulling in of the dark matter by the baryons. For the hot 
start case that yields the flattest, best fitting rotation curve, this 
ratio is around three, not far different from the value of two to 
three that is obtained at the analogous radii for the best fitting 
analytic model of § II. 

The table also shows the final ratio of baryonic to dark 
matter within 20 kpc. This ratio varies considerably for the 
various cases but is close to unity for the best fitting hot start 
model. This agrees well with real galaxies, for which the mass 
in baryons approximates the mass in dark matter within the 
optical radius (e.g., Burstein et al 1982). 

Most of the AT-body simulations were run with the dimen- 
sionless angular momentum parameter 1 = J\E\illG~1M~512 

having an initial value 2 = 0.07, as obtained in numerical simu- 
lations (Peebles 1971 ; Efstathiou and Jones 1979). Here E is the 
total energy of the system, and the angular momentum is 
imposed by rigid-body rotation. Table 1 shows that the effects 
of varying the initial value of A are as one might expect: the 
extent of baryonic infall decreases as À increases. This is analo- 
gous to varying b in the analytic models of § II. 

Table 1 also shows that the simulations are very sensitive to 
the parameter F, the ratio of baryonic to total mass. This is 
also in agreement with the analytic results and is discussed 
further in the next section. 

IV. DISCUSSION 

Two recent papers (Burstein and Rubin 1985; Bahcall and 
Casertano 1985) have called attention to the fact that galactic 
rotation curves are remarkably flat and featureless. As Figure 1 
illustrates, this behavior is not an inevitable feature of galaxy 
models with two different kinds of mass: witness the rising 
rotation curves and curves with local maxima illustrated there. 
The above authors have speculated whether there might exist 
some higher, controlling process that regulates the distribution 
of both mass components, merging them in such a way that no 
discontinuities remain, or whether there may even be just one 
kind of matter—baryonic—that is in some regions visible and 
in others not. 

The present numerical experiments shed some new light on 
this question. They suggest a plausible scenario involving dissi- 
pational infall that can lead naturally to flat rotation curves if 
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two conditions are satisfied. The first is the existence of halos 
with intrinsically large, diffuse cores and flat outer rotation 
curves in the absence of dissipation. These characteristics can 
both be achieved, we have seen, if substantial internal kinetic 
energy exists at the epoch of maximum expansion, and reason- 
able mechanisms for generating this energy are known. The 
second condition calls for a balance between the mass fraction 
in baryons and the degree to which they fall in, which are 
controlled by the parameters F and A respectively. There are 
significant observational constraints on F that place it near 0.1 
in rough order of magnitude (Blumenthal et al 1984). Likewise, 
theoretical estimates place 2 near 0.07, as noted above. Inter- 
estingly, with large-core halos, these values yield just the right 
balance between baryon mass and infall to produce fairly flat 
rotation curves in our simulations. The compression of the 
dark matter by baryonic infall further serves to smooth out any 
discontinuities in the rotation curve that might have resulted 
from infall in a purely rigid halo. It is not known whether the 
above scenario for producing flat rotation curves with dissi- 
pative infall is unique, but it does have the advantage that each 
of its key elements is either plausible or supported by indepen- 
dent arguments. 

This picture is encouraging but not yet complete. For 
example, Burstein and Rubin (1985) have noted that the rota- 
tion curves of galaxies divide into several distinct families. The 
mass distribution has a similar form within a family and a 
substantially different form from those of other families. 
Remarkably, there seems to be little correspondence between 
the Hubble type or visible baryonic mass distribution and the 
form family. The origin of these form families of rotation 
curves is not yet understood in the dissipative infall picture of 
galaxy formation. 

V. CONCLUSIONS 

The principal conclusion of this paper is that dark-matter 
halos of galaxies are “squeezable” during formation via the 
dissipative infall of baryons. The resultant inner density pro- 
files are strongly perturbed, with smaller core radii and higher 
central densities than would have been obtained without dissi- 
pation. As a result, it is unlikely that halos today have strictly 
isothermal profiles. Halo compressibility also means that the 
final collapse radii and radial distribution of the baryons 
cannot be computed with the rigid-halo approximation. 

Baryonic infall increases rotation velocity in the inner 
regions and is therefore incapable of flattening out an initial 
rotation curve that falls too steeply ; indeed, it merely worsens 
the effect. A final flat curve therefore requires a fairly flat curve 
in the absence of dissipation. This occurs naturally in models 
with substantial internal kinetic energy at maximum expan- 
sion. Models of this type coincidentally develop large, diffuse 
cores, consistent with the conclusion that today’s small cores 
are the result of substantial compression. The origin of the 
necessary internal kinetic energy is still unclear, but there are at 
least three possibilities: subclustering, aspheric collapse, and 
tidally induced internal streaming. 

Rotation curves flat enough to match the observations are 
obtained only with a restricted range of infall parameters. For 
models with large, diffuse cores, a good match is obtained if the 
baryonic fraction F and the ratio of exponential disk scale to 
infall radius b/R both lie between roughly 0.05 and 0.2. This 
general range is in good agreement with limits set by observa- 
tional data and the tidal torque theory of angular momentum. 
A scenario based on dissipative infall with large, diffuse halos 
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in the absence of dissipation and with F and b close to their 
conventional values thus provides a plausible explanation for 
flat rotation curves in two-component mass models for gal- 
axies. 

There are several ways in which the present models need to 
be improved. Most important is a realistic final baryonic 
density distribution, without which the details of the inner 
rotation curve remain unconvincing. A larger expansion factor 
is also needed in the expanding Hubble case to give sub- 
clustering a fairer chance to develop. Subclustering also 
depends on the initial density fluctuation spectrum, which in 
the present models is simply Poisson white noise. Other cases, 
such as cold dark matter, need to be investigated. Finally, the 
present calculations model only the volume occupied by the 
protogalaxy itself. Ideally this volume should be embedded 
self-consistently within a larger volume of the expanding uni- 
verse. It is hoped to explore some of these refinements in future 
work. 

This paper was partly inspired by conversations with Dr. 
David Burstein and Dr. S. J. Aarseth. We also thank Dr. 
Aarseth for instructing us in the use of his AT-body code. After 
doing the calculations reported here, we learned of related 
work from Dr. James Gunn, who told us of calculations by his 
student Barbara Ryden (Ryden and Gunn 1984) that resemble 
those reported in § II, and from Dr. Joshua Barnes, who has 
independently done some similar AT-body calculations. We 
thank them for sharing their results in advance of publication. 
Our work has been supported by NSF grants PHY84-15444 
and AST 82-11551, by a UCSC faculty research grant, and by 
Department of Energy contract DE-AC02-ER03230 at 
Brandéis. In addition, we are extremely grateful to Professor 
James Bensinger for allowing us to use the High Energy 
Physics VAX at Brandéis and to Professor Karen McNally for 
allowing us to use the Seismology VAX at Santa Cruz for the 
AT-body simulations. 
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