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Effect of the cosmological constant on large-scale anisotropies in
the microwave background
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Calculations of the large-scale microwave-background temperature anisotropy induced by flat-spectrum
primordial adiabatic perturbations in a flat Friedmann universe with a nonzero cosmological constant A show
that the A -term helps overcome the difficulties posed by models with cold, weakly interacting particles
(axions, gravitinos). In a cold-particle cosmology with the A -term, the quadrupole anisotropy diminishes to

AT/T=107°.

The cosmological constant A has a dramatic history.
Ever since Einstein's day physicists have time and again
resorted to the A-term as a possible way out of various
difficulties that arise in cosmology. But whenever these
perplexities have been surmounted in some other fashion,
or when there turns out to be no real problem after all,
the cosmological constant tends to be quite forgotton until
the next time around. That is the stage we are in now:
the interest in A has been rekindled, and for the following
reason,

Persuasive evidence suggests that the part of the
universe visible to us can be described by a Friedmann
cosmology with flat comoving space, so that all types of
matter combined have an energy density equal to the
critical value, or nearly so (a ratio Q¢ot ~ 1). From a
theoretical point of view a very small departure from the
critical state (|20t — 1| «< 1) is in fact predicted by scen-
arios wherein the early universe goes through an in-
flationary, de Sitter phase. From the standpoint of prac-
tical cosmology all existing models of an open universe
having € 2 0.3 face one insuperable difficulty: they imply
that the cosmic background radiation ought to display
temperature fluctuations AT/ T on small angular scales
(6 ~ 10') in excess of about 10~ (whatever the primordial
perturbation spectrum may have been), an amplitude at
least three times above the upper limit carrently set by
the observations,

TABLE I, Parameters Computed from A=Term Model for Selected @

2 Ky |zp Ky | K, K, . K, B [10%A
003 | 248 | 249 | 0420 0056 [2.440 | 1.951 | 1.810 | 10.91 0.7
005 | 223 | 167 | 0487 |0.088 |1.934| 1.778 | 1661 | 8454 | 08
01 192 | 1.08 | 0591 |0161 [1.635 | 1531 [1.449 | 5325 | 09
0.2 161 | 059 | 0707 |0288 [1.341 | 1.290 |1.245 | 2707 1.0
0.3 145 | 033 | 0779 |0.399 |1.490 | 1.467 [1.443 | 1.530 1.4
04 |1.33 | 044 | 0831 [0501 |1.102 | 1.095]1.083 | 0.887 1.2

1 ’ 1 | -1 l 1 I 1 l 1| 1 1 0 1.3

If, however, one assumes straightaway that the
density @ = 87Gp/3H? of matter (relative to the critical
density), including any weakly interacting particles such
as finite-mass neutrinos or axions, is equal to unity, then
one has to contend with two puzzling facts. In the first
place, direct virial-velocity estimates indicate!-4 that Q
iswellbelowunity: @ = 0.1-0.3, regardless of the present
value of the Hubble " constant” H. Second, accepting that
H = 50 km-sec™!. Mpc-!, one finds that for = 1 the uni-
verse would be no older than 13 billion years; yet certain
arguments (see, for example, Harris et al.%) suggest the
globular clusters are at least 15 billion years old.

Both these difficulties can be overcome by appealing
to the hypothesis of a nonzero cosmological constant (A >
0) which would bring the matter energy density up to the
critical value:

Qtot=Q+QA=1;

Several aspects of this possibility have been discussed
in the past few years.®~® In this letter we shall calculate
the large- scale!) temperature anisotropy AT/T of the
microwave background for the model (1), and shall in-
vestigate how compatible a A-term would be with various
forms of "dustlike" matter,

Q= Ac/3H2. 1)

During the matter dominated era of the universe,
the scale factor for the model (1) would evolve by the law

a(t)=ay éinh% Hot)l/’, Hy=c l/§< H, 2)

where g, is the value of the scale factor at the redshift
z = zp when p = py. The quantity

zA:<1EQ)’/'_1 "

Notation: €, matter density relative to critical value; Ky, coefficient in expres=
sion (4) for age of universe; zp, redshift (3) at epoch when p =pj; Kp, density-
perturbation decay coefficient in Eq. (14); Ky, peculiar-velocity decay coeffi-
cient in Eq. (17); K,, K3, Ky, multipole AT/T anisotropy amplification coeffi-
cients in Eq. (10) for 7 =2, 3, 4; B, factor in asymptotic expression (12) for high-
order multipoles, Last column, upper limit on amplitude A of initial perturba=
tions inferred from condition (AT T, ) = 0,01 (mKy* for angles in interval 6° =

6 = 180°, For comparison, last line gives values of parameters for A =0, thatis
Q=1,
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will have become quite small (see Table I, column 3), so
that A would not play a major role until after the galaxies
and galaxy clusters have formed. We shall proceed to
compare the model (1) systematically against the standard
A-free model (£ =1, A = 0) for equal values of H.

The A-term gives the universe a greater age t; than
in the standard model:

to= o K, (©) = 13153, (®) Gy @

where

H t
* K Q:
@)= g

km * sec™ « Mpe™!

n 1+yY1—-Q 1.
1—-y1—0

hso =

The funetion K¢(£2) is tabulated in column 2, If we accept
the globular cluster age data and regard t, as = 15 Gyr,
then we would have @ = 0.64 if hyy = 1, or & = 0,043 if

hy, = 2 (although this sharper constraint on € can hardly
be admitted, because a Hubble parameter H as high as
100 km . sec™!. Mpc~! would run into conflict in this model
as well).

The large-scale (harmonics I < 22~ 30, corre-
sponding to 6 > 2°) anisotropy AT/T should result directly
from perturbations in the metric, and is expressed by the
Sachs— Wolfe formula.!! For the nondecaying adiabatic
mode it is convenient to adopt a gauge such that the metrie
perturbation hy P =—ég,, ./ a®> — h(r)éy,h as t — 0 (m,
n= 1, 2, 3). All versions of the inflationary scenario pre-
dict that the Fourier components hy will be independent
Gaussian random variables, with

R =0; <h)h (k) = o 67k — k), (5)

where the factor A depends weakly (logarithmically) on
k= lkl. For our purposes we may regard A as constant,

Let us introduce a gauge-invariant metric per-
turbation in terms of the Lifshits variables A, u:

n 1 " k2
W =N _?A(k-i'll)? Wy =M +'§‘(7~k+}‘«k), (6)

where A is the Laplacian operator and a prime signifies
‘differentiation with respect to 7 = [dt/a(t). In Bardeen's
notation!? W = 24(& — &p). The quantity W directly
determines the Weyl conformal 4-tensor Ciys ; in par-
ticular, CiyoC¥or = W2/3a*.

For the nondecaying mode the main contribution
to AT/ T will come from the era when the perturbation
wavelength was comparable with the horizon (provided
this era arrives after the hydrogen recombination epoch).
In terms of the spherical multipoles of AT/T the cor-
responding characteristic epoch will be 1 ~ /L, whel}'e
Mo = M (f) . Thus for harmonics l<(mL(1Z_r:c’TQ/§ﬂ) A
we may neglect the influence of radiation and bé\gin in-
tegrating in the Sachs— Wolfe formula from time t= 7 = 0,
using the expansion law (2). For ! = 2 (the dipole-anisot-
ropy case, I = 1, will be considered presently) we thereby
obtain ‘
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AT 1 o7 .
T=_W3dk[—mhkexp(—tknno)

1 ¥, aw ™
+ g Y- exe (= ten (w1

where n is the observer's unit radius vector,

In the standard model [a(t) « t2/3] the quantity W =
const, so the second term in the integrand will vanish,
The presence of A causes the expansion to depart from
a power law and alters the AT/T value compared with
the standard model.

The evolution of perturbations in the model (1) has
been discussed by a number of authors, beginning with
Byalko.!3 An exact solution can be written for Wy, satis-
fying the initial conditions specified above:

Lt
W (t) = 2k2hy, (1 — % S a dt) = 2k2hf (2), (8)
0

with Eq. (2) for a(t). The function f(t) < e~Hot ag t — «,
while £(0) = 3/5.

We expand AT/T in normalized spherical harmonics
as

im

) Yim (6, ). 9)
im

Equation (7) will give an expression for the AT/ T if
a plane wave is expanded in terms of spherical waves.
One finds that the random quantities (AT/ T)im are Gaus-
sian, with zero mean value and with dispersions

AT \2 A?
(7)), >=Twmars &

Im
here the quantities

¢k t
1= 2000+ 1) S5 [ s+ {2 o —m]
0 0

¢ g 92— (o — : :
=1—20( gn. 2. M0 —(—n) Mo? 4 (Mo — 1)
§n Q’l( 20 (0 — 1) )

" 2me(no—m)

df(m) (Mo — M)’ —(no—n) o
A 2me—m)(Mo—m) '

(Mo —m)* 4+ (o — P\,
X( 2 (Mo —m1) (Mo —m) )'

RW=yF=12W; 1/ 2y Lo o

where the Q(y), Q;!(y) are Legendre functions of the
second kind. Note that the quantities df/dn and Qli(y) are
negative, The absence of any m-dependence is a con-
sequence of the isotropy. For the standard model,!4~17

kl =1, In the region of interest (R < 0,5) the second term
in the expression for the Kl2 in Eq. (10) will be small com-~
pared with the third term, so that the Kj here are greater
than 1. Accordingly the cosmological constant serves to
enhance the fluctuations AT/ T relative to the standard
model,z) assuming the perturbations have the same in-
itial amplitude,

e e
af (m)
200\ d d
+ § N d ™ § n

Table I gives some values of K; that we have com-
puted numerically for ! = 2, 3, 4, Throughout the most
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pertinent range, 0.03 < £ < 0.3, the following simple

approximations reproduce these K values of within 2%:
1--Q )"- .

Q 1

Dy =1.58, Dy = 1.31, D, = 1.12.

K, =1+ D;(zo— 1.04); xo=( (11)

For I = 5 the K; can be evaluated from the following ex-
pression, which is asymptotically exact as I — < (for
1=>5and @ = 0.03 the error is less than 1.5%):

B®)
1
I+

K12=1+

(12)

B (%) = 100m \ dn (o — n>(-:;%) -
0 ‘

The function B(R) also is given in the table. Interestingly,
the quantities K; as well as AT/T approach finite limits
ast— = (or & — 0),
34.5.

Thus the small-/ multipoles are somewhat ampli-
fied by thé cosmological constant. Just as in the standard
model, the quadrupole has the greatest amplitude, but not
overwhelmingly so. If @ = 0.2, for example, the total rms

multipole amplitudes
AT 2041 AT\ T
( T )1—[ 4o '<( T )lm):l
forl1=2,3,4,5,...stand in the ratio 1:0.80:0.68:
0.60....

The quantity determining the angular halfwidth of a
typical AT/T spot is the f1rst zero of the correlation
function gT(e)—<_T (o)__(e)> Its position depends

weakly on 2, increasing from 40° for & =1 to 43° for

Q = 0.03. The observations indicate!®!® that (AT,AT,) <
0.01 (mK)? throughout the interval 6° < 8 < 180°; sinee
the microwave background has T = 2.7°K, it follows that
£r(6°) < 1.4-107%,

On the other hand, by using the correlation function
for the standard model!® together with our tabular values
of the K; for I = 2, 3, 4 and Eq. (12) for [ = 5, we can ex~
press £(6°) in terms of the initial perturbation amplitude
A:

Er(67) =~ (3 + Z lz(ﬁ i 1 (K2 —1)+0.2B (9)) .(13)
In this way we obtain the upper limit on A given in the
last column of Table I. The limiting amplitude A can in
turn be used to set an upper bound on the quadrupole
anisotropy. The result, insensitive to @, is (AT/T), <
2.1075, This prediction is well below the upper limits
hitherto published. It is supported by some new experi-
mental findings,?

Now let us see what values of A and AT/T are to be
expected for the model (1), in light of ideas about galaxy
formation and the observed large-scale structure of the
universe. In the linear approximation, the perturbation
of the matter density in a synchronous reference frame
(coincident in our case with Bardeen's!? gauge-invariant
quantity) is expressed by 6p = W/ 167Ga?, with Eq. (8) for
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In partieular, lim K, ~ 3.6,lim B(Q) =~
2-0 2-0

W(t). As t — = the quantity 6p/p — const., Over the entire
era from z = z, to t = < the perturbation 6p/p grows on
all scales by only a factor 1.65. Once z has dropped below
zp the cosmological constant will retard the evolution of
structure in the nonlinear regime as well,

We introduce a coefficient Kp(ﬂ) expressing the
amount by which the A-term will have attenuated the
perturbations by the present epoch relative to the stan-
dard model, in which 6p/ p o< (1 + 2z)~1:

8p ) A +2)Kp(®); 215 2a;
(14)

P
20" dx-zt ]
—_ ] — <1
KO (Q) 3 [1' (1 Q)./l § "/ [} -+ x8 o~

[, is defined in Eq. (11)]. Table I gives some values of
Kp(Q); as @ — 0 we have Ky(®) ~ 1. 43791/3,

The early universe was radiation-dominated. Let
Req denote the present scale that was equal to the horizon
when p was essentially p,.. It is not hard to show that for
the model (1)

Req = 48.5k32 (T/2.TK)%hQ- Mpe, (15)

where % = Q/Qy, with Qy denoting the energy density
(relative to the critical value) now allocable to ultra-
relativistic particles (R « £). The quantity % = 1 if no
light (rest mass €10~4 eV) neutrinos exist, while ® = 1,68
if there are three such neutrino species. In stable-neu-
trino models Req is of the order of the cutoff scale Ay in
the perturbation spectrum due to the neutrino free path.
The combined mass of the neutrino species is taken to be

Y my— 24"3'( 2.€K )_39 ev.

Since Kp <1if A = 0, in order to produce galaxies
and structure we have to specify a larger amplitude A in
our cosmological-constant model than in the standard
model. An analysis indicates that pure baryon and stan-
dard-neutrino models with A = 0 will not work: for
Q = 0.3 both models would require a value A > 3-1073,
contrary to the upper limits in Table I. The A-term is
compatible only with models containing either unstable
particles (such a model will be treated in a separate
paper) or cold, weakly interacting particles like axions
or gravitinos,!421,22

Let £,(R) denote the present correlation function for
matter-density perturbations (in the linear approximation)
in the case of a standard cold-particle model (% = 1, A =
0), where R denotes distance at the present epoch. Then
a model of type (1) with eold particles will have a cor-
relation function

Er (R) = (16)

QK (), (RQ).
The properties of £y(R) imply?3~25 that £, (R) will be positive
for R < 1.1Req and negative forR > 1.1Req. In such a model
the scale Req has nothing to do with any structures observed;
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it merely serves to limit the zone of positive correlation.
The galaxy correlation radius will be determined by the
point at which £5(R) ~ 1; the locus of that point will depend
on the initial amplitude A. In principle, a positive value
for £ (R) out to scales of 100/hyy Mpc or more (depending
on 2) would enable the correlation functions of both galaxies
and rich galaxy clusters to be explained in terms of the
mechanism proposed by Kaiser,2®

We can evaluate A from the normalization condition

£A(10/h;y Mpe) = 1 or, following Peebles,!* from((SM/M)%) =

1 for R = 15/ hy, Mpe. Both methods give practically the
same value of A, In particular, if we take £ = 0.2, hy =1,
%= 1.68 we obtain A ~ 6.107%, In this event 6 M/ M(10%
Mp) = 1 when z ~ 2, 6M/ M(10° M@) = 1 when z ~ 5.
Equations (10) and (13) then give (AT/ T), ~ 107°, £1(6°) ~
5.10~1, values 2-3 times below the observational upper
limits., Nonlinear effects might diminish the requisite A
value by a factor of ~ 1.5, From the upper bounds on A
given in Table I we may also infer that QhZ) > 0.1 for
®=1.68.

The dipole component of the AT/ T anisotropy is
almost entirely due to the sun's peculiar velocity relative
to the cosmic microwave background; the nonlocal contri-
bution to the dipole anisotropy from metric perturbations,
as given by Eq. (10) with 7 = 1, is some 100 times smaller,
In a cold-particle model (1) the peculiar velocities v are
substantially lower than in the standard model: one can
show that

] / Z?—_:> —134hy (T%-)—2 w K (Q);

5Q% ¥ dr-zt an
" z-x

- 1.

K@ =g S — <

Several values of Ky(R) are tabulated above; as @ — 0 we
have Ky(f2) ~ 2,52, Inparticular, if 2 = 0.2, hyy =1, T =
2.7°K, % = 1.68, and A = 6-10"%, the rms peculiar velocity
V{v® =~ 500 km/sec.

On the whole, then, a cosmology with cold particles
but A # 0 is a decided improvement over a similar model
with £ =1 and A = 0, because it serves: 1) to make the
universe older; 2) to diminish the peculiar velocities of
galaxies significantly; 3) to lengthen the scaleReq greatly,
thereby enhancing the amplitude of fluctuations on 50-100
Mpc seales for a given initial perturbation amplitude A
and helping explain the observed correlation function for
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rich galaxy clusters; 4) to retard the evolution of struc-
ture when z < zp; 5) quite likely, to improve the correla-
tion between galaxies, clusters, and superclusters,

The authors are indebted to I. A, Strukov and D. P.
Skulachév for kindly supplying information on their latest
results,

)The small-scale AT/T fluctuations when A >0 have previously been con-
sidered™!? for the case of a closed Friedmam world with Qu; > 1.

*1In our notation, the approximation in which Peebles’ treats the large-
scale AT/T anisotropy corresponds to K; =1.
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