. Gravitational instability of a two-component medium in an

expanding universe
L. V. Solov’eva and A. A. Starobinskir

Moscow University

and Landau Institute of Theoretical Physics, USSR Academy of Sciences, Moscow

(Submitted April 23, 1984)
Astron. Zh. 62, 625-632 (July-August 1985)

In the Newtonian approximation, exact new solutions to the problem of the linear gravitational instability of a
two-component hydrodynamic medium in an expanding Friedmann universe are obtained for two particular
cases: @) one component is dustlike, its sound speed vanishing; b) one component has an adiabatic index
¥ = 4/3 (in both cases the other component has arbitrary but constant y).

1., INTRODUCTION

Galaxies and clusters of galaxies unquestionably con-
tain material that is hidden from us, or "missing mass,"
hence nonluminous, dark matter evidently accounts for
much of the total density in the universe, From astro-
physical and cosmological arguments it appears that the
dark material is not composed either of baryons or of
particles having a zero rest mass. At present the most
likely candidates are thought to be heavy particles that
interact hardly at all with ordinary matter or each other,
They would manifest themselves solely through their
gravitational interaction, Neutrinos of finite rest mass
are a possibility, as are more hypothetical particles such
as gravitinos, photinos, and axions.

It follows that when studying how spatially inhomo-
geneous fluctuations would have evolved in a Friedmann
model universe during the postrecombination era, one
should treat matter as a two-component medium, One
component would be conventional baryon matter —the re-
combining gas, since radiation will not contribute very
significantly at this stage; the other would consist of mas-
sive collisionless particles. All velocities would now be
.small compared with the speed of light, The first compo-
nent may be described hydrodynamically as a barotropic
fluid, with a definite equation of state; but the second will
in general require a kinetic description.

However, if two conditions are satisfied, namely if
(a) the collisionless particles have a random-velocity
dispersion small compared with the ordered velocity they
acquire in the ambient gravitational field, and (b) one con-
siders scales longer than these particles' mean free path
over the whole time the universe has been expanding, then
the second component may be treated as "dust" (that is,
hydrodynamic material having an equation of state p= 0), with
its own hydrodynamic velocity, different from that of the
baryon component. It is well recognized that collisionless
diffusion may be neglected for masses in excess of
10%2[m/(1 keV)]~? Mg, where m denotes the rest mass of
a collisionless particle (this statement refers to particles
which at some prior epoch had been in thermodynamic
equilibrium with the radiatien,

We therefore are confronted in a natural way with the
problem of linear gravitational instability in a Friedmann
model universe filled with two hydrodynamic components
of matter that interact with each other exclusively by
gravitation, In one component the sound speed would be
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zero, From a theoretical viewpoint, though, it is also of
interest to consider the general probler) of linear gravi-
tational instability in a multicomponent medium whose
sound velocities are arbitrary, in the context of an ex-

panding universe,

In 1946 Lifshitz! golved the general-relativistic
problem of the gravitational instability of a one-compo-
nent medium for a Friedmann model, The gravitational
instability of a multicomponent medium against the back-
ground of a steady-state universe has been thqroughly
investigated in the Newtonian approximation by Grishchuk
and Zel'dovich? (see also Polyachenko and Fridman's dis-~
cussion®), Fargion,! followed by Nurgaliev and one of us,’
have treated the corresponding problem for a multicom-
ponent medium in an expanding universe, again in the
Newtonian approximation. Asymptotic expansions have
been obtained*?® for the solutions ask —0 and k— e [k =
2xa/ A, where A is the perturbation wavelength and a (t)
is the scale factor of the Friedmann model], as well as
exact solutions for the cases of identical components
and components whose adiabatic index ¥ =d(lnp)/d(n
p) = 4/3.

Extending the analysis, we shall establish exact solu-
tions in this paper for the evolution of small fluctuations
in the density of a two-component medium against the
background of an expanding Friedmann universe in the
Newtonian approximation, for two cases: the situation
of greatest interest, where one component has a sound
speed of zero, and the case where neither sound speed
vanishes but one component has an adiabatic index ¥ =4/;.

2. DENSITY PERTURBATIONS IN TWO-COMPONENT
MEDIUM

Consider a two-component hydrodynamic medium
having the equations of state pj =pj(P§) (i =1, 2), with
p; € €5 & P, where the ¢, denotes the components' en-
ergy densities (throughout we set the velocity of light
¢ =1). The dimensionless sound speeds g = (dpilde 1)1/2
will be much smaller than 1. Define &; = (6e/e); &
(6p/p);. Thenin the Newtonian approximation the evolu-
tion of the & for one mode, that having a spatial depen-
dence exp (ik-r), in an expanding Friedmann model with
scale factor a(t) will be described by the equations (see.
for example, Zel'dovich and Novikov®)

a.+2;:a¢ +— B0imdaG (pdipads),
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3.2 _“;b, + -’;—' Bs26,=47G (p.B,+psbs), @)
where k = |[k| = const,

Equations (1) will hold provided |6;] « 1, g; « 1.
One need not impose the constraint k/a » a/a (or A«
t). To demonstrate this fact we derive the general-rela-
tivistic analogs of Eqgs. (1) in the Appendix; they differ
only in having extra terms that contain quantities of
order g0,

Let us take the stage of expansion when the radiation
energy density has become negligible., Assume zero
spatial curvature for the Friedmann model, and a zero
cosmological constant. Then

add e« th  p=Q/6aGt’, Qi=const, Q,+Q,=1. 2)

Suppose now that the components have equations of
state p; « Py Y1i, with the Y = const. Accordingly ,31
Py i tz(i’yl) Define

K= _k Btv-"*=const. 3)

a(t)

Equations (1) will then take the form

1
61+—-61 (Duztg(s v‘)——g‘%‘) 61—-i 92 8as
@
—V 2 Q
62+ 62+(%2t( v) g ?22)63 — 161

On eliminating 8, from Eqs. (4) we obtain for 6, the
fourth-order equation

2(% —v‘) 2 (= —
+ &+ [%1215 + %92

+[4u1 (é——vl)t_ (§—+zv.)+%”zzt—(§+ﬂ.)+9i] 5,

om0

ol ((%_ 2\?1) (3—2y1) —'%Qz ) ; (& +2v)

-+ +=w-)] 8y—=0. )

—_— % %zzglt
If either k =0 or g; =B, =0, the quantities vy = ®y =
0; Egs. (4), (5) will then have the solution

8,=Bit*+Bat~*+B,+Bua",
8,=B,t"+B,t~*+Bys+Bgt~",
91B3+Qng=QjB‘+QzBa=O. (6)

First obtained by Wasserman,’ this solution will remain
valid in the multicomponent, general -relativistic case if
the pressures p; =0. Only one mode here is a growing
mode,

For k s 0, %% +%y%» 0,.and 2,2, » 0, the general
solution of Eq. (5) can be expressed in terms of standard
transcendental functions in four particular cases: 1)
V1=V %y =% 2) ¥y =Y =4/3, hy  Ry; B) %y =0, 74
arbitrary; 4)y , = 4/3, withy 4, ®y, %, arbitrary, Cases
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1 and 2 were first discussed by Fargion; the solutions
are given in terms of power functions and Bessel func-
tions. In Sec. 3 we present solutions for cases 3 and 4,

3. NEW EXACT SOLUTIONS FOR DENSITY
PERTURBATIONS

a. Case 3: B, = 0. By the definition (3), the
sound speed 8, =0, so the second component will be dust-
like, As mentioned in Sec. 1, this is the most interesting
case physically. We introduce the new variable

—24-a i \* 8 ( Ll )z/a
T=xnla""t =(—t-) , a=21,——3-, ty= m . (7

Equation (5) will then become (with an operator A = x-
d/dx)

[(a+2)a (8- )(a -t oo (ar 2o
rog(ala-g) -0 oo

Its general solution can be represented in terms of the
Meijer G-functions®:

®

Q204 )

_ " 4
6,=C,Gxu (z|b‘b,bbe)+C.G“ ( bibabsbe

w0 in 0ia, ) w( —in @40s )
+C\Gu (ze i bibababs +C.G.*°\ ze bebsbbe )
1 1
bx=—?‘a, b,=0, ba=_3;, b‘=—,
1 —
0= —(1FV14240;). @)
6a

The solution for 6, has the same functional form, but with
different values for the constants ay:

a,=1+ %(FFY 1+24Q;,). (10)

The first Meijer G-function can be written as a Mel-
lin—Burns integral in the following way®:

ik (1—asts) II (bn—s)
aa,

1 ne=i
G (-Z ‘ bibzbab&)=-2—ﬂ_' '\. iI‘(az_s)

e—foo

ztds, (11)

where the ej are arbitrary constants. The contour of in-
tegration in Eq. (11) circuits all the poles of the functions
I‘(bn —s) n=1, 2, 3, 4) from the left (that is, clockwise),
and all the poles of the function I'(1 — &, + s) from the
right (all these poles lie along the real axis, Ims =0).
Moreover the function

a,a,
G 00( +in )
N bbb

erbic IIP(b —s)

ne={

=— —_—————— zle*'™ s,
2 o L (ai—s)T (a.—s) 12)
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where the upper sign in the exponent corresponds to e¢; >

1
- (nz-zb,—a,—az )=6—<1_z_
1/6a, e, arbitrary, The integration contour circuits all
the poles of the functions I'(b, —s)-(0 =1, 2, 3, 4) from
the left.

Asymptotic expressions for the Meijer G-functions
will be found in the literature,?*® or can be obtained di-
rectly from the integral representations (11), (12). For
definiteness let us take vy > 4/ 3, > 0; then the range
x » 1 will corresponds to the range t « tj. .

As x— « one may shift the integration contour in Eq,
(11) leftward in the complex s-plane, taking the ej to be
large negative numbers, Then the integral (11) will rep-
resent a sum of residues at the poles of the function I'(@ —
a, + 8) [ in general the poles of I'(1 —a, + s) and 1’(bn -
8) will not coincide]. The main contribution will come
from the pole on the far right, s = ¢; —1. Hence as x —
« we may write

arbitrary; the lower sign, tc e, >

4
|| By

e 1Y) 13
“ aa ) e 140( L)),
Gu (:I: I b:bzbab) I"(a,—a,+1) ( z ))

In the case of Eq. (12) one cannot shift the integration
contour indefinitely leftward, since either e, or e, should
exceed 1/6a. However, as X — « the integral can be eval-
uated by the method of steepest descent.’ By expanding
the gamma-function in the integrand of the expression
(12) for large values of the argument, one readily finds
that the integral for G(xel”) has a saddle point at s =
—ivx, and the contour of integration ought to go through
that point in the direction of steepest descent, at a 135°
angle to the real axis (Im s =0)., Similarly, the integral
for G(xe-i7) has a saddle point at s = iVx, which the in-
tegration contour should cross at a 45° angle to the real
axis, Consequently as x — e we will have
2_1
Gt (xe!M)= Y T (zetim)® ¥ exp (F 20V 7) (1 + O ().

4
1 (14)
Gue Z ba—a1—a; = 3

Nemi

Substituting now the expressions (13), (14) into Eq.
(9) and revertigg to the variable t, we arrive at the
asymptotic form of 6, ast —0. In light of Eq. (10) we
see that as t —0 (x—)thefirst two terms in the ex-
pression (9) will describe growing and decaying mono-
tonic perturbations, respectively, residing predominantly
in the dustlike component:

1 s
— (& ViFug, -1 2V — —
I , leég( i ) 3

- SNTARSIAR

while the last two terms will represent traveling acoustic
waves in the finite-pressure component:

1 (- 3)

4
oot 7 gy (02T,

Y1—3

exp (—T—i
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These asymptotics coincide with those determined earlier
in Refs, 4 and 5.

By analogy to the one-component case we can deter-
mine the Jeans wavelength for each component separately:
Agi~ B;t. Inour present case Aj; =0, while throughout
the region x> 1 (t « tj) the perturbation wavelength A «
A ;. This region, according to the relations (15), (16),
contains just one growing monotonic mode [upper sign in
expression (15)], which in the lead approximation corre-
sponds to ordinary Jeans instability in component 2, taken
by itself, The gravitational coupling between the two com-
ponents is manifested by the fact that the density pertur-
bation 8, of the first component also develops a growing
mode, Initially 8 has a much smaller amplitude than &,,
but it grows rapidly with time, becoming comparable to 6,
in absolute value at x ~1 (t~ tj), that is, when A ~ A ;.

The amplitude (16) of the acoustic waves in component
1 will increase with time if y; > 5/3, remain constant if
vy = 5/3, and diminish if v, < 5/3. The gravitational cou-
pling of the two components serves to produce a small
oscillating mode in 6,, For x ~1 the oscillations in 6,
6, will achieve comparable amplitudes, but when x« 1

both these oscillations will be quenched.

For values x £ 1, when A exceeds the Jeans wave-
lengths of all components, the gravitational coupling will
be strong and the 6; will have amplitudes of the same or-
der in the natural modes. To determine the asymptotic
behavior of 6; as x—~ 0 (t — ) we have to shift the inte-
gration contour in Eqs. (11), (12) to the right, taking the
ei to be large positive numbers., Then the integrals (11),
(12) will represent a sum of residues at the poles of the
functions I'(b, —8) 0 =1, 2, 3, 4), and we will arrive at
the standard representation® of the Meijer G-functions
(11), (12) as a sum of four generalized hypergeometric
series ,F;(x) multiplied by the quantities =Pn, This rep-
resentation is convenient as well for numerical evaluation
of the G-functions when x is finite.

When x « 1 (t» tj), if we retain only the leading term
(unity) in each of the generalized hypergeometric series
we will asymptotically obtain expressions of the form (6).
Of special interest here is the coefficient B; for the grow-
ing perturbation mode; it is given by

m=t () r ()7 (55) [ Sty

+C P(i_a2+b1)

2 T (a1 b b]_)
1 —j 2 i 2=
3 3o
F T @—tT@—5y ¢~ TCe )] . @)

Clearly each term in the expression (9), even the second
term (which describes what initially is a purely decaying
mode), will in general make a nonzero contribution to B,
that is, to the mode that grows as t— «. If the coefficients
Cp m =1, 2, 3, 4) are statistically independent, then Bym»
0. Only if the Cp are correlated in some manner can By
vanigh,

Thus the exact solution (9) enables us to relate the
asymptotic expressions (15), (16) for 6, and 8, when t «
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t; to the asymptotes {6) when t » t5, and to calculate
transitional coefficients.

b. Case 4: vy, = 4/3. Allowing vy, %y, %y t0
be arbitrary, we make the change of variables (7) in Eq,
(5). It turns out that the solution of the resulting equa-
tion, as well as of the analogous equation for 8,, can again
be expressed in the form (9), but now with different co-
efficients a , by:

buss =—1[1=F(13—18u =i12V 1+(6Q -3)x*+-3u‘)%]
1,2,834 6“ 2 1 2 4 2 1]

1 —_—
Q3= E(;(FFV 1+24Qz"36%31) for 61,

1 e
a1+ (1FVTTRAR30w) for 8, (18
]

The asymptotic relations (13), (14) will continue to hold
true.

As before, t =ty is the epoch at which A ~ Ay, In-
terpreted physically, the constant ®, is of order A j,/A
(this ratio will be independent of t for a medium with y =
4/3).

In the range x » 1 ( « tJ), unlike the preceding case,
a monotonically growing mode for 6, and for the total
density perturbation 6 = 6,9y + 3,Q, will not exist only
in the event that »,? < (2/3)Q,, that is, for large enough
perturbation wavelengths A, This criterion gives a crit-
jcal A -value that coincides with the Jeans wavelength for
a medium having ¥ = 4/3, provided the components do
not interact gravitationally., For t« tj and », > 1 the
perturbations of both components will represent two types
of acoustic waves.

Analysis of the expressions (18) shows that just one
value of each quantity by (that with:the upper signs) can
be negative, so that as t — e only one growing mode will
exist., This result bears out the findings of Grishchuk
and Zel'dovich.? For ®, »1 this mode will grow as t%,
with q =1/,¢/1 + 24Q, — 1), while the perturbation &, =
(29,/3n,?) 4, so that |6,| « |8;|. In other words the
growing perturbation will reside predominantly in the
first component, For %, « 1, component 2 will be essen-
tially dustlike; Eqs. (18) will reduce to Egs. (9), and we
will be back to the case worked out before.

APPENDIX: GENERAL-RELATIVISTIC DERIVATION
OF EQS. (1)

Suppose that a Friedmann model, expressed in a
synchronous reference frame

dst=dt?—a?(t) (Bvo+hv) dz¥dz®, v, 0=1, 2, 3, (A.1)
and subject to small perturbations, is filled with two
hydrodynamic fluids that interact with each other only by
gravitation, The indices v, o will be raised and lowered
by means of the Cartesian metric §,5. We will stipulate
a spatial dependence exp (ik, x¥) for the perturbations,
with k% =kyk¥. Scalar perturbations, as Lifshitz showed,!
can be represented in the form

o

1 al
h,o=? (l.+p,)6.."—7~T. (A.2)
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where 4, A are functions of k, and t.

We introduce the following gauge-invariant quantities,
which will vanish in fictitious perturbations of the metric:

K .
U = — (h+p) = adh,
8 (A.3)

K S
Uhre (A+p) + a(ad)’.

The quantity W has a simple physical meaning: it is di-
rectly relatéd to the invariant of the conformal Weyl ten-
sor characterizing the departure from a conformally flat
metric, since Cy;ynCKI™MP = W% 34t. By virtue of the
(v, 0) components (» = o) of the Einstein equations for
the problem at hand, W = 2U, so U has the same physical
significance as W,

Now let vj denote the velocity potentials of fluids
i =1, 2, representing the 3-components of the covariant
4-velocity up =v , =ik,vV. As gauge-invariant quan-
tities to characterize each fluid we may take

_ hat
V=v——,
2 (A.4)

Be—be+3(e+0) — v,
a

where O¢ denotes the energy-density perturbation in the
synchronous frame. The quantity 8¢ coincides with the
energy-density perturbation in a comoving reference
frame whose three-dimensional hypersurfaces of constant
time are orthogonal to the 4-velocity.

The quantities we have introduced are related very
simply to the gauge-invariant variables of Bardeen!:

3

em =" (A.5)

1
0.4=—2F u-w), 05=~2—k;, vg=k7,
The Lukash scalar!! q is expressed in terms of them by
q = 3(vé& /a — U/ 2K?).

On rewriting the (0, ) components of the Eingtéin
equations and of the conservation law Tr?m= 0 for each
separate component in terms of the gauge-invariant quan-

tities, we obtain the system of equations

U+ = U=—8nGk'Z (e+0) 44,
a

i

5 \" ¢ . é\* R 1 U\
(0 ML R SR P (A Y
Bs? a a a? 2k2 Be?

Bi?8: = —p T Se=tel(etn) (A.6)
where the quantities g;* = (dp/de); may depend on the &;.
Equations (A.6) will in fact hold for an arbitrary number
of hydrodynamic components that mutually interact only

by gravitation,

The undisturbed Friedmann solution will conform to
the relations

a

a\* @
(—) =—4RGX,(e+p)«, (z+p)¢’-—3-—a-(1+b4')(e+p):. A7
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In the two-fluid case we can eliminate U from Eqgs. (A.6)
and use the first Eq. (A.7) to obtain

D
81— 38— By + 3 51— 1208 (ea + pa) (72— 5) =0 (A.8)

with a similar equation for 8,. Multiplying Eq. (A.8) by
a?, differentiating with respect to t, and using the second
Eq. (A.7), we finally get

31 +2 %‘ 51 + % B125,— 4G [(e1 + P1) 8y + (e2 + p2) B3]

= % (adBy%B:)" + 121G (ea + p3) (Ba2bz — B1281)
t

— 1206 - (1 4+ 38 (ea - ) | (BB — BBy . 4.9)
By interchanging subscripts 1, 2 in Eq. (A.9) we obtain
the parallel equation for 8,,

If the g;« 1, all the terms in the right-hand member
of Eq. (A.9) will contain a small extra factor of order
B4 compared with the leading terms on the left in Eq.
(A.9). In principle the integral in the last term on the
right can give a large factor of order t, but it is offset!
by the coefficient & /2 ~ t~1!, Hencein the Newtonian ap-

proximation (p;« €, Bj € 1) we are justified in omitting
the whole right-hand member of Eq. (9) as well as the
pressures pj on the left-hand side. Further, we will then
have 6; ® 64, and Eq. (A.9) and its counterpart will re-
duce to Eq. (1).
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The baryogenesis process in the early hot universe is investigated by means of relativistic kinetic theory. An
exact solution to the kinetic equations for supermassive bosons serves to refine previous results: the optimum
baryon-production domain m, >a,m VN is now complemented by bosons of low mass, m, <aymyV'N,
thus removing the cosmological lower bound that had limited the mass of superheavy bosons.

Sakharov! and Kuz'min? have suggested that the baryon
asymmetry which we observe in the universe (nB/n.Y ~
10-%) is an artifact of CP-noninvariant processes that vio-
lated the conservation of baryon charge. One such process
would be the decay of supermassive X bosons, a conse-
quence of grand unification models:

X=g+g; X=qti @)
(q designates a quark, ! alepton), But as Okun' and Zel'-
dovich® have pointed out, if these processes occurred
under LTE conditions (in Lorentz retarded time), then not
even CP noninvariance and baryon-charge nonconservation
would suffice to create an excess of baryons over anti-
baryons., In addition, LTE would have to break down for
the reactions (1) in order for a net baryon charge to re-
sult, and the X bosons would need time to withdraw from
a state of statistical equilibrium. Such a circumstance,
calling for a boson decay time T 3 t, could arise® if

mx>azme YN )

[mx denotes the mass of an X boson, mp, = (Hc/G)Y/? is
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the Planck mass, ax is the interaction constant and N
species of particles are present], setting a stringent
lower bound on the X-boson mass.

Several authors have sought to estimate the baryon
asymmetry of the universe on the preinise that LTE was
indeed violated.*™® The following value has been obtained
for the ratio of the baryon number density np to the total
entropy density s:

n, 458 (3 Nx

O,
where Nx is the number of supermassive-boson species
and Ar denotes the difference between the relative decay
probabilities by the routes X—~q +  and X — q + ! that
results from the CP noninvariance (the Boltzmann con-
stant k is set equal to 1), Applying relativistic kinetic
theory, Fry et al.® have performed numerical calculations
of the np/s ratio, largely confirmiing the estimates.*™

These investigations, however, have a salient draw-
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