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ABSTRACT 
We have derived a semianalytic model for the time-dependent structure of a stellar atmosphere traversed by 

periodic shock waves. The derivation assumes that (1) motions are purely periodic (no mass loss); (2) the 
shock waves are radiative, with postshock cooling time much less than the period; and (3) the postshock 
motion of individual fluid elements is adiabatic, with arbitrary adiabatic exponent and entropy distribution. 
An analytic solution is first presented for a plane-parallel atmosphere. This solution underlies an approximate 
solution to the more general spherical problem. 

The model is applied to Mira variables. Observations by Hinkle and coworkers of the CO At; = 3 
vibration-rotation bands in four Mira variables (o Cet, T Cep, % Cyg, and R Cas) have been analyzed and 
show a good fit to the model, enabling us to determine the radius, shock strength, and density in the layer 
where the lines form. The derived pulsation constants do not resolve the dispute over pulsation mode because 
of the uncertainty in stellar masses. The shock model implies that very large (up to ~ 104 L0) shock lumi- 
nosities exist during premaximum phases. Rough estimates of mass loss based on the breakdown of radiative 
cooling at low densities and the formation and radiative acceleration of dust grains lead to rates up to ~ 10-6 

Mq yr-1; the latter mechanism is probably necessary to produce terminal velocities as high as are observed. 
Subject headings : shock waves — stars : long-period variables — stars : pulsation 

I. INTRODUCTION 

Long-period (or Mira) variables present a number of 
enigmas that have made understanding their atmospheric 
structure difficult. They typically vary by 5 or more visual 
magnitudes during a period of about 1 year, but their bolo- 
metric luminosity, most of it in the infrared, changes much less. 
They show strong Balmer and fluorescence emission lines at 
phases near visual maximum (Merrill 1947), but the visual 
absorption lines show little velocity variation (Joy 1954). They 
are surrounded by large dusty envelopes, often with SiO 
(Snyder and Buhl 1975; Clark et al 1981) and OH (Reid 1976) 
masers. They typically have mass loss rates of ~ 10-6 M0 yr~1 

(Gehrz and Woolf 1971; Bowers and Kerr 1977; Knapp and 
Morris 1984). The interpretation of these disparate observa- 
tions is that shock waves propagate through Mira atmo- 
spheres once a period, producing the emission lines and aiding 
the mass loss process. The atmospheres are very opaque in the 
visual, so the absorption lines are thought to form in a circum- 
stellar shell, perhaps near the SiO masers (Hinkle, Hall, and 
Ridgway 1982). 

Early shock wave models of Gorbatskii (1961) and Tsuji 
(1971) sought mainly to explain the optical (and near-infrared) 
emission- and absorption-line observations. The task of con- 
structing model Mira atmospheres eased considerably when 
infrared observations probing deeper layers became available 
(Machara 1971; Hinkle 1978; Hinkle and Barnes 1979a, b). 
These new data guided Wood (1979) and Willson and Hill 
(1979) in presenting fairly detailed calculations of the atmo- 
spheric motions and helped them to draw tentative conclu- 
sions about the size and mode of pulsation of Mira variables 
and the cause of their high mass loss rates. Unfortunately, the 
conclusions of these two groups were often contradictory 
(Willson 1982; Wood 1982). 

Recent advances in high-resolution infrared spectroscopy 
provide a new opportunity for understanding shock waves in 

Mira variables. Hinkle and his coworkers (Hinkle, Hall, and 
Ridgway 1982; Hinkle, Scharlach, and Hall 1984) have 
obtained radial velocities, excitation temperatures, and CO 
column densities for vibration-rotation transitions in the 2 gm 
spectral region. These observations provide a wealth of data 
that would be difficult to assimilate in earlier shock models, 
spurring us to develop a more realistic model. The model is 
semianalytic rather than numerical, with the consequent 
advantage that we do not have to worry about numerical tech- 
niques affecting our results in unknown ways ; our model thus 
provides a computational test for numerical models. 

To derive the shock model, we assume that (1) the atmo- 
spheric motions are purely periodic, so that fluid elements 
return to their initial conditions after one period ; (2) the shock 
waves are radiative, i.e., shocked gas quickly cools by emission 
of radiation in a thin layer behind the shock front; and (3) the 
postshock motion of individual fluid elements is adiabatic, but 
with arbitrary exponent ( = ratio of specific heats) and specific 
entropy. Assumptions 1 and 2 are perfectly correct sufficiently 
deep in the atmosphere, while assumption 3 is an Ansatz that 
allows us to obtain a semianalytic solution. By “ adiabaticity ” 
we mean that the postshock fluid elements evolve with a fixed 
ratio of specific heats y, i.e., d In p/d In p = 7 is a constant for a 
fixed fluid element. Since y is arbitrary and may vary with 
Lagrangian coordinate (in the spherical case), assumption 3 is 
more general than the isothermal or adiabatic assumptions 
made by Hill and Willson (1979) and Wood (1979). 

In § II we present the shock solution in the plane-parallel 
limit where fluid elements move distances that are small com- 
pared with the stellar radius. In this case an analytic solution 
can be found. Unfortunately, it is easy to demonstrate that the 
plane-parallel assumption is violated for long-period (and 
other) variables. In § III we therefore generalize the solution to 
allow certain quantities to vary with radius. An exact analytic 
solution is then no longer possible, but we obtain an approx- 
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imate semianalytic solution by dividing Lagrangian fluid tra- 
jectories into “ planar ” and “ spherical ” parts. The variation of 
the adiabatic exponent and specific entropy with radius are left 
arbitrary, to be specified by observations or some assumption 
about the thermodynamic properties of the atmosphere. The 
model is hydrodynamic only; we do not treat radiative transfer 
or the effect of the radiation on the gas. 

In § IV we fit our model atmospheres to the best data 
presently available, the CO Av = 3 vibration-rotation band 
observations of Hinkle, Hall, and Ridgway (1982) and 
Hinkle, Scharlach, and Hall (1984). The thermodynamic quan- 
tities and radius are obtained from fits to the phase-dependent 
excitation temperatures and velocities; from these and the 
column densities we obtain a complete hydrodynamic descrip- 
tion of the region in which the lines form. By making an 
assumption about the thermodynamic properties of gas at 
other heights, we are able to extrapolate the model to describe 
a large range in radius. In this way we calculate a model shock 
luminosity curve, and conclude that at early phases the visual 
luminosity of Mira variables is dominated by shock emission. 

In § Va we try applying the model results to the question of 
what pulsation mode is appropriate for Mira variables. Unfor- 
tunately the result depends importantly on the stellar masses, 
which are not known well enough to answer the question. We 
have better success adddressing mass loss (§ Vh). We show that 
radiation pressure on grains condensing in the cool layers 
pushed up by the shocks is the most likely source of mass loss. 
We conclude (§ Vc) with several suggestions of how the results 
of this paper may be extended to obtain a still better under- 
standing of Mira variable atmospheres. 

II. PLANE-PARALLEL PERIODIC SHOCKS 

In this section we derive an analytic solution for the struc- 
ture of a plane-parallel, pulsating stellar atmosphere traversed 
by periodic shocks. We will find that the plane-parallel 
assumption is violated for long period variables, but it lays the 
foundation for a more general approximate spherical treat- 
ment. 

Figure 1 is a schematic diagram of the atmospheric structure 
between two shocks. In the plane-parallel limit considered 
here, an infinite series of shocks coexists in the atmosphere, but 
determining the structure between two shocks is sufficient to 
give the structure everywhere. The upper shock is at a height 
z = zs(t). The preshock gas enters the shock with speed 
(measured in the shock frame), density pj, and pressure px = 

where Ji^ is the preshock Mach number and y is 
the effective adiabatic exponent (ratio of specific heats) of the 
gas. The shocked gas radiatively cools to a temperature 7^ in a 

11,\>P\’771\ 
shock: 2 = 2c (t) 

^ccccCcoolmg regionvccccco 

n I 1 1 c 
^ ^ deceleration region 

next shock: 

z = zs - h Ç0 
Fig. 1—Schematic view of the atmospheric structure between two shock 

waves in a Mira variable. Gas enters the upper shock with density pl and 
velocity ux (in the shock frame); the Mach number is JÍv The gas cools to a 
temperature Tc by emission of radiation in a thin cooling layer, below which 
the gas is decelerated by gravity before being shocked again. (The relative 
thickness of the cooling layer is greatly exaggerated here.) Many shocks may 
be present, with a new one forming at the base of the atmosphere every period. 

thin layer behind the shock. If u1 > 60 km s-1, the shock may 
be preceded by a radiative precursor (Shull and McKee 1979; 
Gillet and Lafon 1983, 1984), where molecules are photo- 
dissociated and H is photoionized by Lyman continuum radi- 
ation emitted behind the shock. We are not concerned here 
with the structure of the cooling layer or precursor, provided 
that they are thin compared with other dimensions. This will 
be the case in the lower atmosphere, but at high altitudes 
cooling will become ineffective, and the model will break down 
(§Vh). 

We assume here that Tc—which is determined by atomic 
physics—is independent of shock height; that after the gas 
relaxes it has the same chemical state as the preshock gas (i.e., 
the same mean molecular weight p and effective adiabatic 
exponent y); and that this chemical state is independent of 
height. The chemical state differs in the cooling region because 
of dissociation, ionization, and recombination, but the details 
of these processes may be ignored here, since we are concerned 
only with the state of the gas after it has relaxed. The motion of 
individual fluid elements is treated after cooling as being effec- 
tively adiabatic with exponent y, but the specific entropy may 
vary from element to element. We do not assume that the 
atmosphere is isothermal unless y = 1 ; our derivation holds for 
any y > 1. In the spherical generalization of the periodic shock 
solution (§ III), Tc, p, and y are allowed to vary with height, as 
they do in a real star. We neglect their variation here, however, 
in the spirit of the plane-parallel approximation. 

After the gas cools radiatively, it passes through a deceler- 
ation region, where gravitational forces are important. 
(Gravity may be neglected in the cooling region, where time 
scales are much less than one period.) A gas element is initially 
accelerated upward by the shock, then gradually decelerates 
and falls back to its original height before being shocked again. 
We assume strict periodicity with zero mass loss, so that a fixed 
fluid element is always shocked at the same height. We will 
show later that this assumption is valid in the dense lower part 
of the atmosphere even if there is mass loss occurring from 
higher altitudes. 

Because of the plane-parallel assumption, the gravitational 
deceleration g = GM/R2 is constant. The isothermal cooling 
sound speed Cc = (kTc/p)1/2 is also constant by assumption. 
Since strict periodicity also requires that the period P ( = the 
time interval between successive shock passages through a 
fixed gas element) be a constant independent of height, it 
follows from dimensional analysis that is independent of 
shock height. (The period is constant and must be proportional 
to both CJg and ujg) If is constant, the shock velocity vs 
(measured in the stellar rest frame) is also constant. Observa- 
tions of Mira variables indicate that u1 actually varies with 
height (Fox, Wood, and Dopita 1984), so the plane-parallel 
and constant cooling sound speed assumptions cannot both be 
fully valid. In § III we will relax these assumptions, with the 
results (§ IV) showing a good fit to the observations. 

We now solve for the fluid motion in the deceleration region. 
The fluid equations are 

dp_ 
dt 

d d\ - + v-p=_p{V.vh 

dv 1 dp 
dt p dz -g > 

^ + yp(V •!>) = () 

(2.1) 

(2.2) 

(2.3) 
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These are respectively the continuity, Euler, and energy equa- 
tions. The velocity v — vez is in the vertical direction, and is 
measured in the stellar rest frame. In the plane-parallel limit 
\ • v = dv/dz; more generally, \ • v = dv/dr + Iv/r, where r is 
the radius measured from the center of the star. Note that the 
heat equation can always be written in the form of equation 
(2.3) (with y varying in general with position and time), but we 
make the simplifying assumption that y is a constant. 

The exact form of the energy equation is (e.g., Goldreich and 
Scoville 1976) 

de=JLdp (C - H) ^ 
dt p2 dt mH2nH2(l+//2) ’ 

where e is the internal energy per gram including dissociation 
energy, C is the rate of radiative cooling (in ergs cm-3 s_1), H 
is the rate of radiative heating, mH2 is the mass of a hydrogen 
molecule, nH2 is the density of molecular hydrogen, and / is the 
ratio of atomic to molecular hydrogen. The internal energy is 
related to the density and temperature through the equation of 
state. Here the thermodynamics of the gas and the interaction 
of the gas with radiation are described by an effective adiabatic 
exponent y. We infer effective values of y from observations of 
Mira variables (§ IV) and then discuss the physical basis for y. 

It is convenient to nondimensionalize the fluid variables in 
terms oí and g. We first define the scale height 

h^uj/g. (2.5) 

The fluid variables are now written 

t = hx/iii , z = vst — hÇ = h(ÔT — 0 , 

v = u^V = vs — UiU = m1(<5 — U) , p = Pi(zs)D , 

P = Pi(Zs)uiP , 7=^-9. (2.6) 

Here Ç is the distance behind the shock in units oí h ; U is the 
downward velocity as seen in the shock frame in units of ; 
and so on. The ideal gas law gives 0 = P/D. (The dimensionless 
pressure P should not be confused with the period; the differ- 
ence will be clear from the context.) Note that uu vs = öu^ and 
h are constants, but the preshock density generally varies with 
the shock height zs. Nondimensionalizing the fluid equations 
(2.1H2.3) now yields 

f- + y(DU)= -Sh^+D, (2.7) 
ox oÇ dzs 

T + u^ + i^=l’ (18) ox dç D ÔÇ 

ÔP r,0P n
8U ,,d^nPln 

^+U^ + yP^=-0h — P- (19) 

region, so, while the gas cools, we have 

P + DU2 = P1+DiU
2

i = \+dl. (2.11) 

At the top of the deceleration region the gas has cooled to 
Tc = {pu\lk)Qc, giving, for ( = 0 + , 

D = Dc , U = Dc 
1 , P = 0CDC , (2.12) 

where Dc follows from 61 and 6C : Dc is the larger root of 

0CDC
2-(1 4-0!)/), + 1 =0. (2.13) 

At the base of the deceleration region, ( = (o> periodicity 
implies that the solution must match the preshock boundary 
conditions for the next shock, 

[7=1, D = Pl(Zs ~ ^ , P = D0i, 0 = 0!. (2.14) 
0i(zJ 

Note that in the shock frame the flow is subsonic at C = 0, with 
Mach number squared Jt2 = p(v — vs)

2/(yp) = l/(yOcD
2) < 1, 

but is supersonic at C = (o: > 1- The flow must 
therefore contain a sonic point in the deceleration region, 
where J( = \. 

For the flow to be periodic, since the nondimensional pre- 
shock density D1 = 1 is a constant, the nondimensional density 
in front of the next shock must also be a constant, and can be 
written D(t, Co) = exP (aCoX for some constant a. It follows that 
d In pjdzs = — a/h is a constant, giving 

Pi(zs) = Poe~°‘z’,lh, (2-15) 

where p0 is the preshock density at the fiducial height zs = 0. 
Now the boundary conditions at C = 0 and C = Co f°r the huid 
equations (2.7)-(2.9) are all steady (independent of t), so the 
nondimensional solution must also be steady, giving d/dx = 0, 
d/d^ d/dl Note that at a fixed time, the preshock density 
distribution is not exponential (since other shocks occur higher 
in the atmosphere), but as a given shock propagates upward, 
the density immediately in front of it falls off exponentially 
with time (with density scale height /z/a). 

To solve the nondimensional fluid equations, we write them 
in the form 

dU U - ase 
~d£~U2-y6’ 

U^-\n (DU) = aö , 
di, 

^ In 0 = -(y - 1)In 1/. 
dÇ dÇ 

(2.16) 

(2.17) 

(2.18) 

Equation (2.18) may be integrated at once to give 

e = e1u~(y-1), (2.19) 

Boundary conditions for the fluid variables are applied 
above the shock, immediately below the cooling layer, and at 
the base of the deceleration region. First, from equations (2.6), 
atz = zs

+,C = 0~, 

u = u1 = i, 0 = 0^1, p = e = e1=(yjiiy1. 

(2.10) 

since [7 = 1, 0 = 0! at ( = (o. Equation (2.19) must hold also 
at ( = 0, where U = D~1 and 9 = 6C, giving 

9c = Dr1ei. (2.20) 

Substituting this in equation (2.13) now gives Dc in terms of y 
and^#!: 

DJ+1 - (1 + yJiDD, + y^#i = 0. (2.21) 

Next, provided that the cooling layer is thin (uiicooi <? h), mass Equation (2.21) has a unique root D,. :> 1 for . //, > 1. y > 1. 
and momentum fluxes are constant throughout the cooling For y = l,Dc = ■ /i\. as expected for an isothermal shock. 
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As noted above, the flow must pass through a sonic point, 
where the numerator and denominator of equation (2.16) both 
vanish. This condition, together with equation (2.19), gives U 
and 9 at the sonic point (subscript asterisk) : 

U* = b-1, e„=(yb2)-1, (2.22) 

where 

b = — = J^2
1
l(y + 1). (2.23) 

y 

Making use of the sonic point has thus given us ocô in terms of y 
and 

To integrate equation (2.16) it is convenient to express the 
velocity in units of its value at the sonic point, 

w = U/U* = bU , 

and to rescale the nondimensional height : 

x = b2C . 

The equation of motion (2.16) now becomes 

dw wy — 1 
dx = xvy + 1 - 1 ’ 

(2.24) 

(2.25) 

(2.26) 

and is subject to boundary conditions 

w(0) = a = bD~1 , w(x0) = b , (2.27) 

where x0 = h2C0- Note that y > 1 and .y#! > 1 ensure that 
a < l and b > 1, so that a sonic point occurs at w = 1. Equa- 
tion (2.26) may be integrated by quadratures, using w as inde- 
pendent variable (valid, since dw/dx >0): 

x(w) = 
’w 

Ja 

/+1 - 1 

/-I 
dy . (2.28) 

For rational y the quadrature may be evaluated analytically; in 
general a numerical quadrature is performed. Equation (2.28) 
gives, in particular, the nondimensional separation between 
shocks, Co = b ~2x(b), in terms of y and 

The last step remaining in the solution is to integrate equa- 
tion (2.17) and to impose boundary conditions on the density 
(cf. eq. [2.12]): 

In DU = y 
pv yy + 1 _ 1 dy 

L f-i y' 
(2.29) 

Evaluating D at C = Co (w = giyes (cf* ecls- [2.14], [2.15]) 

^ %b dx dw 

LJfl dw b 
Clearly 0 < <5 < 1, as expected (vs> 0^> S > 0, vx = vs — u1 < 
0 => <5 < 1). The full solution in the deceleration region is now 
given by equations (2.19H2.21) and (2.23)-(2.30). It is specified 
completely by giving y plus one other parameter (e.g., 9u 
9C), most conveniently taken to be the preshock Mach number 

r dxdw 

I dw w 
(2.30) 

Before graphically presenting the plane-parallel solutions, 
we derive the flux of radiation Fs emitted in the postshock 
radiative cooling layer as shocked gas cools to Tc. Fs follows 
from the mass and momentum shock jump conditions (2.11) 
and the energy jump condition 

2 7 — 1 Pc Pi^i 2 y - 1 Pi 
(2.31) 

where the subscript c refers to conditions at the base of the 
cooling region. Equation (2.31) is simply a statement of energy 
conservation, and gives Fs independently of how the cooling 
gas radiates. It is valid provided that preshock conditions are 
taken above the radiative precursor (if one exists), and that 
heat conduction and radiation pressure can be neglected (this 
is true here). While photons emitted in the postshock cooling 
layer may be absorbed higher in the atmosphere (cf. Fox, 
Wood, and Dopita 1984 for absorption of Balmer emission 
lines), this fact is accounted for by leaving the postshock adia- 
batic exponent y a parameter to be determined, and otherwise 
has no effect on the jump conditions. Combining equations 
(2.11) and (2.31) now yields 

—% = i (1 - AT2) - —^-T (ec - 0i) • (2.32) 
PX 2 y -1 

The shock luminosity follows by multiplying Fs by the shock 
surface area. As we will see in § IVd, shock emission in Mira 
variables provides a substantial fraction of the visual lumi- 
nosity at early phases. 

Figure 2 is an Eulerian snapshot showing the distribution of 
fluid velocity, density, temperature, and pressure, for the plane- 
parallel case y = 1.10, =9, corresponding approximately 
to R Cas and % Cyg near maximum light (cf. § IV). Two shocks 
and three deceleration regions are shown. The zero point of z 
(or, equivalently, the phase) is arbitrary, since the formal solu- 
tion extends over — oo < z < oo ; of course, in a real star the 
shock forms first in some definite layer. To obtain the distribu- 
tions at a later time, one simply shifts the curves to the right by 
vjh per unit time, while simultaneously lowering ln D and ln P 
by ocvjh per unit time. 

With y = 1.10 and Jlx = 9, numerical quadrature gives pa- 
rameter values 

Dc = 58.93 , Ô = 0.4198 , Co = 0.6022 , 

a = 21.24. (2.33) 

The radiative shocks compress the fluid by an amount Dc ; we 
note from Figure 2 that this compression is superposed on a 
roughly exponential density distribution. (By comparison, for a 
hydrostatic, isothermal, plane-parallel atmosphere the density 
distribution is exactly exponential.) The temperature also 
jumps behind each shock, although not by a large factor here, 
since y is close to unity. The velocity changes sign at the 
shocks, which convert infall (v < 0) into outflow {v > 0). The 
peak outflow velocity is less in magnitude than the peak infall 
velocity by a factor of (<5 — D^^Al — <5) = 0.6944. In the limit 

oo, this ratio approaches unity. 
Figure 2 may be compared with the isothermal numerical 

simulations of Wood (1979, Fig. 7; see also Figs. 11-13 below). 
The velocity and density profiles are qualitatively similar, 
although in Wood’s models the shock velocity and separation 
between shocks decrease with height. The difference occurs 
primarily because of our plane-parallel assumption. Since (for 
fixed y and i;s oc gP, hccvsP, and g oc r-2, we may antici- 
pate that the shock velocity and separation will decrease with 
height when spherical effects are included (§ III). 

The plane-parallel solution is particularly simple in the limit 
of a strong shock, $> 1. We then have (cf. eq. [2.33]) 

D.xd;1 xiyj?2)^ , Ô^Co~l, 

<x&2yJ/21
l(y+1) ■ (2.34) 
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2/h 

2/h 

Z/h 
Fig. 2.—Eulerian view of the plane-parallel periodic shock model showing the nondimensional fluid velocity V, density D, temperature 6, and pressure P (see eq. 

[2.6] for units) vs. height z/h. The model shown here assumes shock Mach number ./#! = 9 and postshock adiabatic exponent y = 1.10, roughly appropriate for x 
Cyg and R Cas near maximum light. 

The separation between shocks is just Co^ = 2wi/#> while the 
preshock density scale height is h/(x(l/2y)(yb)llyC^/g. By con- 
trast, the density scale height for a hydrostatic, isothermal, 
plane-parallel atmosphere is C2!g. The atmospheric structure 
is changed considerably when shocks, and not hydrostatic 
pressure gradients, provide the support. Strong shocks (h 1) 
increase the scale height and thus increase the density over that 
in a static atmosphere. Note also that for > 1 the upward 
shock velocity equals in magnitude the preshock velocity, 
when both are measured in the stellar rest frame. The limit 

1 is just the “ballistic” limit of Hill and Willson (1979), 
in which pressure forces are unimportant. This is because 
pressure forces are important only above the sonic point, 
which occurs close behind the shock: Ç* ~ {yJi\)~2l{y + Y) Co- 
For Ji x 1 shocked fluid elements fly upward and back on 
essentially ballistic (freely falling) trajectories. 

We have obtained the Eulerian solution for the fluid motion, 
but it is also useful to have the Lagrangian description giving 
the motion of a fixed fluid element. This is necessary in particu- 
lar to derive the period P in terms of quantities defined above. 
To derive the trajectory of a fluid element, we integrate its 
equation of motion, 

^ = t, = Ul(<5 - U) . 

The solution may be written parametrically : 

where 

z = z0 + h(ÔT 0, 
h 

t = t0  T , 
Mi 

(2.35) 

(2.36) 

C(w) = b-2x(w), t(w) = fr1 yy+ 1 - 1 dy 

-1 y ■ 
(2.37) 

The fluid element is shocked at z = z0, t = t0, w = a, and 

returns to be shocked one period later, at z = z0, t = t0 + P, 
w = b. Using equations (2.30), (2.36), and (2.37), we obtain the 
period : 

£ h 
P = ^ — . (2.38) 

0 Mi 

For a strong shock, <5 ~ C0 ^ i (eq. [2.34]), giving the standard 
result vs = gP/2 for ballistic trajectories. 

Figure 3 shows a series of shock lines and particle trajec- 
tories in a spacetime diagram plotting height versus phase, 

St 

To’ 
(2.39) 

for the case y = 1.10, = 9. For these values P = lA34h/ul. 
As in Figure 2, the zero points of z and 0 are arbitrary; the 
trajectories for different particles may be obtained simply by 
varying z0 or t0. The shock lines are straight because in the 
plane-parallel solution the shock velocity is independent of 
height; consequently the particle trajectories are identical 
except for the shift along the shock lines. Note that because the 
shock compression is so large (eq. [2.33]), the postshock par- 
ticle velocity very nearly equals the shock velocity : <5 — D“1 « 
S. Because is large, the particle trajectories deviate little 
from ballistic trajectories z = z0 + ^gP2(¡)(l — 0). 

Now that we have the trajectories of individual fluid par- 
ticles, it is also possible to compute the Lagrangian fluid dis- 
tributions, i.e., the velocity, density, temperature, and pressure 
following a fixed fluid element. Parameterizing the solution by 
w, we obtain 

V(w) = S-U, D(w) = (7 ~1 , e(w) = elD
y-1, 

P(w) = 6^ , (2.40) 

where D and P are normalized in terms of the preshock density 
and pressure seen by the given particle. The results are plotted 
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Fig. 3.—Spacetime diagram for the model atmosphere of Fig. 2. The straight lines show the upward propagation of shocks with increasing phase. The oscillating 
curves give the trajectories of selected fluid elements. Each element is propelled upward by the shock and postshock pressure forces, but eventually falls back because 
of gravity. 

against time (phase) in Figure 4, again with y = J4x = 9. 
The fluid element passes through the sonic point at </> = 0.235. 
At later phases pressure forces become negligible, and the fluid 
element decelerates uniformly with dv/dt = —g. The mass flux 
in the shock frame following the element is constant, DU = 1, 
because in this frame the nondimensionalized flow is steady. 
The postshock flow is adiabatic, hence PccDy, 0ocDy_1. 
Because the preshock density decreases with height, however, 
different fluid elements are on different adiabats. 

As noted above, the plane-parallel assumption is violated for 
Mira variables. The assumption is valid if and only if the 
separation between shocks is much less than the stellar radius, 

or h/R <1. A simple estimate shows this requirement to be 
violated for long-period variables : 

h = fô_ PulV12 

R " Vio Gm) 

m( u, y/y p/yr \ 
\10 km s-1/ Vm/mJ 

1/2 
(2.41) 

Since Mira variables have P ~ 1 yr and M ~ Mö, and obser- 
vations indicate that u1 ~ 30 km s_1 in the deeper parts of the 
atmosphere (Hinkle, Hall, and Ridgway 1982; Hinkle, Schar- 

PHASE 

PHASE 

PHASE 
Fig. 4.—Lagrangian view of the model atmosphere of Fig. 2, showing the variation of the fluid variables along a fixed particle trajectory 
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lach, and Hall 1984), the plane-parallel assumption is clearly 
violated. The implications are that (1) the shock velocity is a 
significant fraction of the escape velocity ve, since 

i;s\
2 ô2 h 

(2.42) 

and (2) the vertical amplitude of a particle trajectory is not 
small compared with its radius. Under these conditions it is 
inappropriate to assume g = constant. 

III. SPHERICAL PERIODIC SHOCKS 

In this section we generalize the plane-parallel periodic 
shock solution derived above to include spherical effects. In 
contrast to § II, here we allow Tc, g, and y to vary with 
Lagrangian radius, but we do not assume any particular func- 
tional dependence. We will assume throughout that the atmo- 
sphere contributes a negligible amount of mass to the star, so 
that we may set M = constant. Later this assumption will be 
verified from model fits to stars. As in § II, we choose to work 
in the shock frame, but now we can no longer assume that the 
shock velocity is constant. 

We make the following definitions, all generalizations of the 
plane-parallel case. The shock radius measured from the center 
of the star is rjt). The shock velocity is drjdt = vs(t), and the 
preshock fluid speed in the shock frame is u^t) = 
vs(t)/ô(t). The escape velocity from height rs is 

2GMy/2 _ vs(t) 
. rs ) = ß(t) ' 

(3.1) 

If ß > 1, a particle at height rs moving with speed vs will be 
unbound. [This definition of ß differs from that of Hill and 
Willson 1979, who used the postshock fluid velocity i;c rather 
than vs. The two definitions differ by a factor of vc/vs = 
1 — l/(ôDc); for the values in eq. (2.33) this factor is 0.96.] The 
effective gravitational deceleration measured in the shock 
frame is 

where 

, x GM dvs 

- “T + * - 

X(t)= 1 + 2ß2 d In vs 

d\n rs' 

(3.2) 

(3.3) 

The second term of equation (3.2) (dvjdt) arises because the 
shock frame is accelerating. Again we define the scale height 
h(t) = u2Jg ; it follows that 

h_2jP 

rs X<52 ‘ 
(3.4) 

The preshock density, pressure, and Mach number are, respec- 
tively, p^i), p^i), and ^^i). 

The independent variables are transformed from (r, t) to 
(£, t), where 

r = rs(t) - h(t)C , dt = —— dx . (3.5) 

The dependent fluid variables v, p, p, and T are non- 
dimensionalized as in equation (2.6), but with u1 and p^ func- 
tions of time (or shock height rs). Nondimensionalizing the 

fluid equations (2.1)-(2.3) now yields 

dD 
dx Wi/ 

dJ¿ h Ô-U 
8C + r.l-Çfi/Ui 

olôD , (3.6) 

ÔU hd\nu1 sr7 / ? h\dU ' \ dP 
"b 7T + I U — C I “77 + ~ ‘TT dx rs d in rs \ u1J dÇ D d( 

= l---(2-C-j, (3.7) 
Xrs\ r. 

dP ^ h din u1 — + 2   
dx r, d In r. 

where 

Jdjj ^ ■■ + yP — + 2 - 
h Ô-U 

\5Ç rsl - ih/ul 
= aôP, (3.8) 

a(i) = - 
h d In px 

rs d In rs ' 
(3.9) 

The nondimensional fluid equations (3.6)-(3.8) must satisfy 
boundary conditions imposed by periodicity, and the radiative 
shock jump conditions equations (2.11). Assuming that the 
cooling region is much thinner than rs, or equivalently that 
¿cool ^ P, equations (2.12) and (2.13) must hold in the spherical 
case too. Equations (2.20) and (2.21) also hold, provided that 

and 9 are referred to the shock about to be crossed by a 
fluid element, not the shock crossed one period ago, which is 
higher up in the atmosphere. To justify the application of equa- 
tions (2.20) and (2.21) here, we note that periodicity and zero 
mass loss require preshock gas to be on the same adiabat as 
gas that has just cooled, leading to equation (2.20). Since the 
fluid flow is adiabatic after cooling, if a fluid element had a 
different specific entropy after cooling than it had before being 
shocked, its entropy would be different after one period, and it 
could not return to its initial density, radius, and velocity, as 
demanded by strict periodicity. This same argument applies in 
the planar case, where it leads to equations (2.19) and (2.20). 
(Eq. [2.19] is just the entropy integral of the planar fluid equa- 
tions.) Given equations (2.12), (2.13), (2.20), and (2.21), we can 
now specify boundary conditions at (£ = 0+, x) (i.e., at the 
bottom of the cooling region) in terms of y and Note 
that y may depend on the height at which a fluid element is 
shocked, i.e., its Lagrangian radius. (We do restrict y to be 
constant for a given fluid element, however.) 

Boundary conditions at the bottom of the deceleration 
region are not as simple here as equations (2.14), however, 
because, by the time a fluid element encounters the next shock, 
the velocity, preshock density, and so on, of the upper shock (in 
terms of which the fluid variables are nondimensionalized) may 
be quite different from those of the lower shock. Also, the 
boundary conditions are time dependent. Unfortunately we see 
no way to remove this time dependence and analytically inte- 
grate equations (3.6)-(3.8), as was done in the plane-parallel 
case. 

Although an analytic solution of equations (3.6)-(3.8) seems 
impossible, an approximate solution may be obtained that 
should be sufficiently accurate for our purposes. The method of 
approximation, in brief, is to use the analytic plane-parallel 
solution for the postshock flow until pressure forces are negli- 
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gible, and thereafter to treat the motion as ballistic. A Lagrang- 
ian approach is adopted. For a particle crossing the shock at 
(r0, i0), the plane-parallel solution will give the correct trajec- 
tory for a short distance behind the shock, provided that the 
shock velocity, Mach number, cooling sound speed, and so on, 
are not varying too rapidly as the shock propagates upward, so 
that they may be approximated by their values at rs = r0. Spe- 
cifically, we require the three conditions 

d In (Wl, Dc, 6C) 
d In r. 

d In p1 

d In r. 
(3.10) 

to be satisfied. The logarithmic derivatives on the left-hand 
side are all of order unity, since rs provides the only scale on 
which uu Dc, and 0C can vary. If equations (3.10) are satisfied, 
then all the time-dependent and spherical terms in equations 
(3.6)-(3.8) may be neglected for postshock distances Çh 
satisfying 

C^xrs. (3.11) 

Equation (3.11) is equivalent to the requirement that a particle 
not rise a significant fraction of its original height r0 during the 
interval of planar approximation. 

Applying the plane-parallel solution reduces equations (3.10) 
and (3.11) to the two conditions 

(3.12) 

where w = U/b parameterizes the planar solution (cf. § II), and 
ô, x, b = and ß are evaluated at rs(t0) = r0. To be 
certain of satisfying equations (3.12) we will apply the planar 
solution only for 

(3.13) 

The method of approximation used here is good for wmax > 1, 
so that (1) the planar treatment is valid for w < wmax and (2) the 
ballistic trajectory treatment is valid at later phases, since the 
sonic plant is at w = 1 and pressure forces can be neglected 
along a trajectory for w 1. If wmax > h, then the planar solu- 
tion is used along the entire trajectory. We do not know a 
priori whether wmax 1 will be satisfied in any given variable 
star; we will discover below (§ IV) that this condition is weakly 
satisfied for Mira variables. 

To apply the planar solution, we need J?ß, S, x> Do etc-> 
which depend on the unknown shock velocity and height. To 
obtain these quantities, we first note that the only independent 
model parameters describing a variable star atmosphere are y, 
GM, P, Cc, and vs. (The shock radius and velocity are not 
independent, since the solution will relate them.) From these 
quantities we can form exactly three independent dimension- 
less parameters : 

a < w < wn 
= / w2 

\2ß2) 

TC^, 
GM 

Pv 
GM ' 

(3.14) 

All three of these quantities may vary with shock height rs. The 
problem is now formulated as follows: given y, k and À, find 
Jiß, and d In vjd In rs. All other quantities then follow. For 
example, the shock radius is 

rs = 2ß2 ™ = 2ß2A ~ 2,3(GMP2)113 . (3.15) 

Equation (3.15) enables us to determine the shock trajectory 
rs(t) by integrating the equation of motion 

1/3 
(3.16) 

We impose the constraint that the trajectory must give 
d In vjd In rs self-consistently; this constraint will effectively 
determine x (eq. [3.3]). Next, the preshock velocity in the shock 
frame is u1 = vjô, where Ô follows from 6C = (CJu^2 and 
equations (3.14): 

¿ ; (3.17) 

equations (2.20) and (2.21) determine Dc and 9C from y and 
Note that ö is not given by equation (2.30) because the planar 
solution is not necessarily valid everywhere. Finally, the pre- 
shock density distribution p^r^ follows up to a constant multi- 
plicative factor from equation (3.9); a is given by equation 
(2.23), since we assume that the planar solution is valid at least 
through the sonic point w = 1. In short, once we know y, k, 2, 

and ß, we have the complete solution, provided that 
^max ^ 1- 

To obtain Jfi and ß from y, tc, and A, and to obtain the fluid 
motion for w > wmax, we need the ballistic particle trajectories. 
The trajectories follow from integrating Newton’s law 

fr_ GM 
dt2 r2 (3.18) 

with initial conditions provided by the Lagrangian formula- 
tion of the plane-parallel solution at w = wmax. The solution to 
equation (3.18) may be written in the parametric form (0 
should not be confused here with the nondimensional tem- 
perature of § II) 

r = (GMP2)ll3x(0), i = i0 + P^(0) , (3.19) 

where 

dx 
dcj) 

= (2e)1/2 cot 9 , 
dt 

{<t> - </>2)(2€3)1/2 = 9-92 
1 

(sin 29 — sin 2#2) • (3.20) 

Since pressure forces are negligible, the nondimensional par- 
ticle binding energy is 

1 1 / ¿Lc\2 

x 2 \d</>) 
(3.21) 

and is constant for a particle during the ballistic phase. Initial 
conditions x{92) = x2, (j>(92) = 02, and dx/d(f)(92) = 
1 — U2/ô = 1 — wmaJbô are provided by the planar trajectory 
(eqs. [2.36] and [2.37], with z replaced by r), evaluated at 
w = wmax. All shock parameters (a, b, h, Ô, wl5 Cc, etc.) are 
evaluated when the particle crosses the shock at rs(t0). As 
shown above, these parameters follow from GM, P, y,K,X,J?u 

and ß. 
Finally, we can obtain and ß from y, k, and 2. There are 

two constraints that must be imposed on the ballistic trajec- 
tories: after one period, a particle must return (1) to its original 
position, (2) with its original preshock velocity. These condi- 
tions follow from the assumptions of periodicity with no mass 
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loss. They may be written 

(2e)1/2 cot 6, = À1/3(ô - l)/ô (3.22) 

and 

(1 - 02)(2e3)1/2 = ei-92- i(sin 291 - sin 262), (3.23) 

where 
0! = 7i — arcsin [(ex0)1/2] , (3.24) 

with x0 following from equation (3.19) (r = r0). Evaluating the 
first of equations (3.20) atx = x2 gives 02. Equations (3.22) and 
(3.23) implicitly relate y, k, X, Jiu and ß, since e, 6u ô, etc., all 
follow once these quantities are known. It can be shown 
numerically that, given y, /c, and A, equations (3.22) and (3.23) 
uniquely determine J#! and ß, so the shock model is unique. 

Equations (3.13)-(3.24), plus the relevant equations of § II, 
determine the spherical periodic solution, i.e., they give the 
atmospheric structure for a variable star with shocks once y, 
M, P, and Cc are specified. (It is necessary to give the depen- 
dence of y and Cc on Lagrangian radius to obtain the solution 
over a similar range in radius.) They do not fix the minimum 
shock radius (this follows from stellar pulsation theory; cf. 
Keeley 1970 and Wood 1974) or the unit of density (since the 
density is determined only up to a constant multiplicative 
factor), but these may be inferred from observations (cf. § IV). 
The constraint equations (3.22) and (3.23) are implicit, so that 
an explicit solution is not possible, but an accurate numerical 
solution using Newton-Raphson iteration is easy to obtain. 
The solution procedure amounts to varying and ß until 
equations (3.22) and (3.23) are satisfied, for given y, /c, and A. 
This gives the solution at a height rs given by equation (3.15). 
We then decrease A slightly and change y and Cc as necessary 
and repeat the procedure to obtain the solution at a higher 
altitude, checking to ensure that d In vjd In rs, approximated 
by finite differences, satisfies equation (3.3) for x; this condition 
requires an additional Newton-Raphson iteration. This pro- 
cedure is repeated varying rs to obtain the solution over any 

175 

desired range in radius. As noted above, a given star will have a 
minimum rs below which shocks do not appear; it will also 
have a maximum rs above which mass loss ruins the assump- 
tion of periodic orbits. 

Obtaining a periodic shock solution requires specifying y(rs) 
and /c(rs), which depend on thermodynamic properties of the 
stellar atmosphere. In principle they can be determined theo- 
retically, but this requires calculating the details of shock struc- 
ture, gas properties, and radiative transfer. The purpose of our 
model is to give a reasonable description of a Mira atmosphere 
without such a complicated treatment. Fortunately y and Cc 
can be determined empirically (§ IV), although present obser- 
vations fix them at only one point in radius. Lacking complete 
knowledge of the thermodynamics, however, we still find it 
useful to make reasonable guesses about their dependence on 
height. 

In Figures 5-8 we plot fundamental quantities for the spher- 
ical periodic shock solution, where we have made the simplest 
possible assumption about y and Cc, i.e., that they are indepen- 
dent of height. We fix them at values given by model fits to a 
deep atmospheric layer of x Cyg (§ rV)> y = 1.10 and 
k: = 0.0175. The small glitches present in the curves occur 
where wmax = b, and are due to our approximate method of 
solution. The entire solution may be derived as described 
above from Figures 5 and 6. Figure 5 graphs the shock Mach 
number versus X/k = (vs/Cc)

3 (rather than A) because an 
increase in k can nearly be compensated for by a proportionate 
increase in A. Figure 6 graphs the ratio ß of shock velocity to 
escape velocity as a function of A. Varying k affects Figures 5 
and 6, but only for small Mach number; this is because, by 
definition, k measures the relative importance of gas pressure 
in the deceleration region (cf. eq. [3.14]), and pressure forces 
are unimportant for 1. Varying y changes ^ slightly, 
but both ß and the shock compression Dc (which depends on 
J?! and y) are practically independent of y. Thus Figures 5 
(with Dc instead of and 6 may be applied to widely differ- 
ent cases of y and k, with errors of a few percent or less for 

PERIODIC SHOCK WAVE MODEL 

Fig. 5.—Dependence of shock Mach number on X/k = {vJCcf for the spherical periodic shock model with thermodynamic parameters y = 1.10, /c = 0.0175, 
appropriate for the deep layers of x Cyg. The assumption of constant y and k (independent of height) used here is unrealistic, but for large x this figure can be 
applied for varying y and k, as described in the text. 
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L 0 G10 X 

Fig. 6.—The ratio ß of shock velocity to escape velocity, as a function of À = Pv^/GM, for the same solution as in Fig. 5. Fluid elements are bound for /? < 1. This 
figure is insensitive to the values of y and k, except at small vs {À < 0.1). 

J?! > 3. This implies that although the thermodynamic vari- 
ables (p, T) are sensitive to y and k, the fluid trajectories are 
not, so long as the shock is strong. 

Although k and A are convenient quantities to parameterize 
the spherical solutions, it is physically more useful to plot 
and ß against radius instead, as in Figures 7 and 8. The unit of 
radius is (eq.[3.15]) 

/ M \ll3f P\213 

[r] = (GMP2)113 = 5.094 x [jTJ 
cm • (3-25) 

Figure 7 shows that, as a shock propagates up through a Mira 
variable atmosphere, it weakens, if constant cooling sound 
speed is assumed. (The shock will weaken in general if the 
preshock sound speed, or equivalently Cc, does not decrease 
too rapidly with radius.) Because Cc is here a constant but ve 
decreases with r (eq. [3.1]), a sonic point exists (where x = 1), 
beyond which the flow cannot support a periodic shock and 

must turn into a wind. The rapid radiative cooling assumption 
is likely to break down interior to this, however, moving the 
sonic radius further in. 

Figure 8 shows the variation of ß with radius. At small r, ß 
approaches 1 and particle orbits become very extended. With 
increasing radius, ß first decreases, since the shock velocity 
decreases more rapidly than r-1/2. But if and when the shock 
becomes weak, pressure forces keep vs from falling as rapidly as 
ve, and ß increases again. The minimum in ß becomes deeper 
and shifts to increasing r as k: is decreased, because pressure 
forces are then less important. Note that ß is not constant, as 
was suggested by Hill and Willson (1979) on the basis of 
numerical simulations. [Adopting their definition ß = vc/ve 
makes the variation of ß with radius shown in Fig. 8 even 
greater, because Dc = vj(vs — vc) decreases with increasing 
radius.] They pointed out that constant ß would lead to mass 
loss because beyond some radius gravitational forces could not 

LOG10 R 
Fig. 7.—Same as Fig. 5, except that is plotted vs. radius, with units given by eq. (3.25). The shock would not weaken so rapidly with radius had we assumed 

more realistically that the isothermal cooling sound speed Cc decreases with radius. 
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L 0 G10 R 

Fig. 8.—Same as Fig. 6, except that ß is plotted vs. radius, with units given by eq. (3.25). At small radius /?—> 1. 

then return a particle to its initial radius in one period. 
However, this cannot be considered as a physical mechanism 
for mass loss (Willson and Hill 1979), because there is no a 
priori reason that ß should be constant. 

So far we have derived the Lagrangian solution for the 
motion (i.e., fluid trajectories) of periodically shocked gas in the 
spherical case, but not the thermodynamic quantities. Since the 
postshock motion of a fixed fluid element is assumed to be 
adiabatic, these all follow from the density p. For w < wmax, 
when the planar solution is used, the density along a particle 
orbit is just given by equation (2.40). We now derive the density 
in the ballistic phase of motion, when the trajectories are given 
by equations (3.19)-(3.21). 

Consider two mass shells, one crossing the shock at (r0, i0), 
and the other, at (r0 + dr0, t0 4- dt0), where dr0 = psd£0. Let dr 
be the vertical separation (at fixed time) between the shells. 
Since the shells cannot cross, conservation of matter implies 

dr 
pr2dr = const. = , (3.26) 

o 

where p is the density at (r, i), and p^ = p(r0, i0) is the preshock 
density. The factor l/<5 appears because the upper shell is still 
falling in (with speed vjô in the shock frame) when the lower 
shell is shocked. Thus the density along a particle trajectory 
follows once the orbits r(t) and hence separation between 
adjacent particles are known. 

Equations (3.19)-(3.21) give the particle trajectories in the 
ballistic phase, which may be written implicitly r = r(r0, 0), 
where 0 measures time along the orbit of a particle with 
Lagrangian coordinate r0, the height at which it is shocked. 
Since dr0 — vsdt0 and the particle velocity is t; = (l/P)(dr/d(j))ro, 
equation (3.26) becomes 

To compute the partial derivative in equation (3.27), we note 
that equations (3.19)-(3.21) are written in the form r = r(r0, 6), 
0 = 0(ro, 9), since e and 91 are functions of r0. (For conve- 
nience we use the difference between expressions eqs. [3.20] 
and [3.23], not eq. [3.20], to give 0 in terms of 6, e, and O^) We 

thus have 

if) ‘(f) +(s) if) • VrJ* \Sr0Je V50AoV5roA 

where 

(3.28) 

\dr0)g\ôe)ro 

The desired partial derivatives are 

(3.29) 

/ dr \ r de f dr\ sin 29 

o/» e dr0 ’ ld0Ao e 

=:Æ + 3(2e)1/2(^j)2î 
AoA r dr0 2V r dr0 ' 

(3.30) 

The total derivatives de/dr0 and d9/dr0 are obtained by 
numerically differentiating the solutions obtained earlier, since 
all quantities are tabulated as a function of shock height. The 
preshock density is given up to a normalizing factor by inte- 
grating equation (3.9); the normalization will be computed in 
§ IVc from observed absorption-line column densities. The 
pressure and temperature measured along a particle orbit 
follow simply from adiabaticity, e.g., 

T = (3.31) 

Once the Lagrangian solution is known, giving the variation 
of the fluid variables along particle trajectories, the Eulerian 
solution may be derived, giving the variation with height at 
fixed time. The procedure is simply along each trajectory to 
invert the relation t = t0 + Jït(w)/u1 to give w = w(t) (eq. 
[2.36], for the plane-parallel portion of a trajectory), or t = t0 
+ P0(0) to give 9 = d(0) (eq. [3.19], for the ballistic portion of 

a trajectory). These inversions are performed numerically using 
Newton-Raphson iteration. We will present graphs of the 
Lagrangian and Eulerian fluid distributions in § IV, where the 
results of this section are applied to fit infrared spectral line 
observations. 
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IV. COMPARISON OF SHOCK MODELS WITH OBSERVATIONS 

Until recently, observations of Mira variables have not war- 
ranted a complex theoretical model of their atmospheric struc- 
ture like that presented in §§ II and III, although useful 
numerical hydrodynamical simulations have been made 
(Wood 1979; Willson and Hill 1979). The situation has 
changed completely with infrared spectroscopy by Hinkle and 
his coworkers (Hinkle 1978; Hinkle and Barnes 1979a, b; 
Hinkle, Hall, and Ridgway 1982, hereafter HHR; Hinkle, 
Scharlach, and Hall 1984, hereafter HSH). Since the atmo- 
spheric opacity of Mira variables is much less in the infrared 
than in the visual, infrared absorption lines sample the deep 
layers where the indication of shock waves is unambiguous, in 
contrast with shorter wavelengths (Wallerstein 1977). The best 
observational data presently available for sampling the deep 
atmospheric layers come from the 1.6 /un àî; = 3 vibration- 
rotation bands of CO. From spectra of these bands, HHR 
deduced radial velocities, excitation temperatures, and column 
densities at a variety of visual phases for the Mira variable x 
Cyg. HSH measured the same quantities for eight additional 
Mira variables plus X Oph, a low-amplitude, long-period vari- 
able. In this section we analyze the observational data of HHR 
and HSH for the four Mira variables with the most data: o Get, 
T Cep, x Gyg, and R Cas. For each star the data are fitted by a 
spherical periodic shock model. The model fits allow us to infer 
the deep atmospheric structure of these Miras, from which we 
can estimate shock luminosities and pulsation constants. 

Table 1 summarizes for each star the model input pa- 
rameters: period, center-of-mass radial velocity (heliocentric), 
visual phase when the shock passes through the CO Av = 3 
line-forming region, postshock cooling temperature, and CO 
column density (in cm-2). The phase offset A</> is defined as the 
visual phase when the shock emerges through the CO Av = 3 
line-forming layer, and is estimated as the phase when the 
excitation temperature is a maximum. Since CO is dissociated 
in the strong (>30 km s-1) shocks present in the deep layers, 
the values of A0 are somewhat uncertain, but probably not by 
enough to change the model fits appreciably. The cooling tem- 
peratures Tc are determined by a fit to the temperature varia- 
tion over an entire cycle, and so may not agree precisely with 
the peak observed temperatures. Similarly, the stellar radial 
velocities v* are determined by a model fit to the observed 
velocity variation, and disagree slightly with radial velocities 
determined from circumstellar thermally excited microwave 
emission lines (HSH). 

The spherical periodic shock model used here has three 
dimensionless parameters that are determined by fitting to the 
data (eq. [3.14]). Of these, y and k depend on thermodynamics 
and vary in an unknown way with radius; 2 depends on the 
shock velocity, whose dependence on radius is fixed by the 
model once y and k are given. We assume that the gas is 
primarily H2, with /i = 2mH, but the results are not sensitive to 

TABLE 1 
Shock Model Input Parameters 
1 ■*€ 

Star (days) (kms-1) A</> (K) log10 N(CO) 

oCet  332 58.8 -0.04 4790 23.6 
TCep   388 -17.0 -0.22 3850 24.0 
X Cyg    407 -7.0 - 0.10 3960 24.3 
R Cas      431 19.4 -0.04 4170 23.7 

AND CHEVALIER 

this assumption. The ratios k and À depend on the stellar mass 
M, which is poorly known for long-period variables. A mass of 
0.7-1.8 M0 has been estimated for the variable component of 
the binary o Cet (Fernie and Brooker 1961). In the following 
we set M = 1 M0, but the value adopted does not affect our 
model fits. All of the derived parameters depending on M will 
be given with the explicit mass dependence. 

The procedure for fitting a model to the data consists of 
computing the velocity and temperature of a fixed 
(Lagrangian) fluid element as functions of phase, and then 
comparing them with observational data. Since the CO At; = 3 
lines have roughly constant column density over most of a 
period (HSH), we assume that the lines sample the same layer 
at a variety of phases. While this assumption is correct for a 
plane-parallel atmosphere, when spherical effects are properly 
included the column density measured to a fixed mass shell 
decreases when the shell rises, and increases when it falls. 
Because the density gradient is steep (\d\n p/d In r| > 1), 
however, the resulting column-density changes (a factor of 2 or 
so between the minimum and the maximum radius of a fixed 
shell) correspond to much smaller errors in radius, velocity, 
and temperature. For simplicity we thus neglect the column- 
density variations and fit the observations as if they sample a 
fixed mass shell, although we will note the resulting errors. 

The Lagrangian assumption clearly fails when the shock 
passes through the layer, because the CO is then dissociated; 
the column densities are observed to be smaller during these 
phases. The model fits are thus weighted toward intermediate 
phase, when the Lagrangian hypothesis seems justified. We 
note that the lines are doubled around the time of shock 
passage. This is due to absorption occurring both above and 
below the shock, with different velocities for these layers. To 
resolve the ambiguity, we set zero phase by the peak excitation 
temperature, for which the lines also have approximately the 
maximum blueshift. For doubled lines the blue component 
(postshock gas) is assigned the smaller possible phase (typically 
0 < (j) < 0.1), while the phase is greater by 1 (1.0 < <j) < 1.1) for 
the red component (infalling gas). The model fits are applied 
only for 0 < 0 < 1, hence low column density red components 
of double lines are excluded. 

a) Temperature 
Figures 9a-9d superpose model fits and observed CO At; = 3 

excitation temperatures for the four stars analyzed. As noted 
by HHR, at the depths where the lines are formed it is valid to 
equate the excitation and kinetic temperatures. The phases are 
offset by an amount A</> (Table 1) from phases determined by 
the visual light curves. Error bars were taken from HSH where 
available; otherwise we set errors of ±200 K except for R Cas, 
where two points have been assigned errors of ±400 K. (The 
error bars are shown only to aid in the graphical comparison 
of the model fits with the data.) The dimensionless parameters 
y, k, and 2 were varied until reasonable fits by eye were 
obtained. Least-squares fitting was not used because there are 
some systematic differences between the models and the data 
(These differences occur primarily near the time of shock 
passage, when the data are not expected to sample a single 
layer.) We estimate model uncertainties to be ±0.01 in y and 
±5% in kM and AM. The temperature profiles alone deter- 
mine k well, but they fix y and A less well, since an increase in 
one of these can be nearly compensated for by a decrease in the 
other. Fortunately, the velocity fits are sensitive to A but not to 
y, so the ambiguity is resolved. 
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The glitches present at middle phases in the model tem- 
perature curves of Figure 9 are due to the switch from the 
plane-parallel approximation (which includes pressure forces) 
at early phase to the spherical ballistic approximation (which 
includes spherical effects but neglects pressure forces) at late 
phase. Since the temperature in the ballistic portion is deter- 
mined by adiabaticity with the value at 0 = 1 set by shock 
jump conditions, the models do not force continuity at the 
break. Since the resulting discontinuities are small compared 
with the uncertainties in the data, we do not consider them a 
serious problem. An exact solution of the Lagrangian equa- 
tions of motion (3.6)-(3.8) would give a smooth curve matching 
the approximate solution at early and late phases. 

Table 2 lists the dimensionless parameters describing the 
shock model fit. The adiabatic exponents y are all close to 
unity. The values of k are small, showing that pressure forces 
are not very important except immediately postshock, as also 
demonstrated by the moderately large Mach numbers The 
relatively large values of ß (the ratio of shock to escape veloc- 
ity, both measured in the stellar rest frame) indicate that the 
vertical amplitude of the observed layer is large. From the fits 
we estimate the uncertainties in and /? to be ± 5%. The last 
column of Table 2 gives wmax, a dimensionless parameter re- 
flecting the soundness of the plane-parallel and ballistic 
approximation used to solve the equations of motion. The 
approximation is valid when wmax > 1. Although this condition 
is not strongly satisfied here, the relatively small model tem- 
perature discontinuities in Figure 9 show that in practice the 
approximation is satisfactory. 

The model fits of Figure 9 look quite good, except for the 
high temperature observed in T Cep at </> = 0 (visual phase 
— 0.22) and the large scatter and high temperatures in o Cet 
and R Cas at late phases. HSH suggested that in R Cas the CO 
lines may be blended with strong H20 lines, giving misleading 
results. Other possible reasons for the deviations from the 
model are that y may vary somewhat even for a fixed fluid 
element, and that the same fluid element may not always be 
sampled. As noted previously, for spherical motions, constant 
column density implies varying fluid element. For x Cyg the 
effect is to decrease the maximum radius of the sampled layer 
(at 0 = 0.5) by about 18%, increasing the temperature by 
about 20%. Taking account of this would make the theoretical 
temperature profiles slightly shallower at early phases and 
steeper at late phases, improving the fits. 

The most important point to be gleaned from Figure 9 is 
that the temperature of a fixed fluid element decreases almost 
monotonically after it is shocked. Isothermal (y = 1) models 
cannot reproduce this fact, which is a strong argument that 
y = d\n p/d \n p > 1. Even the isothermal model of Wood 
(1979), where the temperature decreases with radius (the gas is 

TABLE 2 
Derived Dimensionless Parameters for CO Av = 3 

Line-forming Region3 

Star y kMh312 )Mf 3 ^ l/2f 1 ß wmax 

oCet  1.14 0.019 0.507 9.17 0.391 2.61 
T Cep  1.08 0.016 0.217 6.67 0.324 2.90 
Z Cyg   1.10 0.0175 0.503 8.92 0.389 2.64 
R Cas  1.10 0.020 0.636 9.21 0.408 2.52 

a M is the stellar mass in M0, 2fimH is the mean molecular weight of the gas, 
and/is a geometrical correction factor due to limb darkening which multiplies 
the observed radial velocities. 

AND CHEVALIER 

assumed to be in local thermodynamic equilibrium with the 
radiation field, whose intensity diminishes with radius), would 
fail here because it predicts a U-shaped temperature profile, 
with the preshock and postshock gas having the same tem- 
perature. Since we derive adiabatic exponents that are close to 
unity, it is likely that radiative transfer does affect the gas 
thermodynamics, but fortunately in a way that can still be 
approximated by an adiabat along a fluid trajectory. Of course, 
this is not proof that the same exponent and cooling tem- 
perature apply at all radii. Most likely the cooling temperature 
decreases with Lagrangian radius (§ IW), but this has no effect 
on our model fits here, since they are applied only to a fixed 
fluid element. Testing the thermodynamic parameters at differ- 
ent layers requires temperature measurements probing differ- 
ent depths. 

b) Velocity 

Figures 10a-10d show observed velocities (measured in the 
stellar rest frame) and theoretical model fits for the CO äp = 3 
absorption lines. The observational errors are smaller than the 
symbols plotted, although the scatter present in pairs of mea- 
surements made at the same phase (separated by a whole 
number of periods) suggests that the true uncertainties are 
larger. The possibility of a geometrical or limb- darkening cor- 
rection factor multiplying the observed radial velocities is 
included in our analysis. Parsons (1972) suggested that the 
observed velocity variations in Cepheids should be increased 
by a factor f & 1.31 to account for these effects, and similar 
arguments are often made for Mira variables. If the absorption 
occurs in a shell high above the continuum-forming region, 
however,/ = 1. We found that, aside from o Cet, the velocity 
and temperature measurements could not both be fitted unless 
/M“1/3 ä 1. In o Cet the high-velocity tail present at late 
phases would fit the model slightly better if/M_1/3 ^ 1.2. This 
suggests that if / = 1 for all of the variables, then o Cet has a 
smaller mass than the others. Note that if M is changed for 
fixed 2, the temperature fits will be nearly invariant provided 
that kM = constant. This is because, for large Mach number, k 
just scales with the temperature. 

The stellar velocities v* listed in Table 1 were obtained from 
the velocity fits of Figure 10; changing v* would shift the data 
points up or down. Stellar velocities have been measured for o 
Cet, x Cyg, and R Cas from microwave thermal and maser 
emission lines (for references see HHR and HSH), and are 2-3 
km s-1 less (i.e., bluer) than those obtained here. The reason 
for this discrepancy is unclear. We note that if the geometrical 
correction factor/ varies systematically with phase, this would 
affect our determinations of v* and 2. In any case the observed 
velocities are fairly sensitive to radiative transfer effects that 
previously could not be evaluated well. Evidence for such 
effects exists in o Cet at late phases and T Cep at early phases. 

In T Cep the premaximum “hook” present in the velocity 
data corresponds to CO column densities that are less by 
factors of >2 than the other points. This difference in column 
densities suggests that the premaximum measurements are 
sampling material approximately one density scale height 
higher in the atmosphere. At these phases this material would 
be falling toward the shock, leading to bluer velocities than 
expected, as is observed. It is not clear why this effect should be 
so prominent only in T Cep; x Cyg shows similar changes in 
column density near maximum (although of shorter duration) 
but lacks an obvious velocity hook. 
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TABLE 3 
Derived Physical Parameters for CO Av = 3 Line-Forming Region 

roM"1/2 uj-1 p1Mf~2 QMf~2 

Star (1013cm) (km s ^ (gem 3) (days) 

oCet  2.30 32.9 2.07 x 10"10 0.0553 
T Cep   3.08 24.0 4.22 0.0417 
XCyg   2.62 30.9 4.51 0.0557 
R Cas  2.56 32.6 2.17 0.0611 

The theoretical velocity curves of Figure 10 show that the 
velocity of a fixed fluid element varies slowly at early phases, 
while the element decelerates nearly uniformly at intermediate 
phases, and with increasing deceleration at late phases. This 
behavior is easy to understand. At early phases, shortly after 
the element is shocked, upward-directed gas pressure forces are 
important, and they keep the element moving nearly at the 
shock velocity (cf. Figs. 2-4). At late phases pressure forces are 
unimportant, so the fluid element moves ballistically with 
acceleration dv/dt = —g, g = GM/r2. The maximum deceler- 
ation occurs just before the element is shocked, when r is a 
minimum. Between phases 0.3 and 0.7 the element is higher up, 
so g is less than at </> = 0; # changes slowly then because v is 
small, and thus r changes relatively little. This qualitative 
behavior must occur whenever there are no other forces (e.g., 
radiation pressure) acting on the gas. Of course, this assumes a 
fixed mass shell. The theoretical velocities are not corrected for 
mass shell variations occurring for constant column densities. 
These corrections increase the velocity by ~ 5 km s ~1 at </> = 0 
and 0 = 1, compared with 0 = 0.5, improving the fits some- 
what. 

The increasing gravitational deceleration with phase can 
lead to faulty mass estimates for Mira variables. HHR noted 
that the mean deceleration is ~0.098 cm s-2 for % Cyg, and 
with an estimated photospheric radius of 1.7 x 1013 cm they 
deduced M æ 0.2 M0. But the deceleration deduced here is 
twice as large when the CO Av = 3 line-forming layer is 
shocked. Also, the photosphere probably lies interior to this 
region. Both corrections increase the estimated mass; M æ 1 
M0 seems plausible. 

An attempt was made to fit observations of the low- 
amplitude, long-period variable X Oph to a periodic shock 
model, with little success. The problem is that the velocity 
curve shows deceleration for only about half the period (HSH). 
There appears to be a premaximum “ hook ” as in T Cep, but is 
much more pronounced in X Oph. If this is due to radiative 
transfer effects that can be accounted for, then perhaps a satis- 
factory shock model fit could be obtained. 

c) Derived Parameters 

Table 3 lists for each star physical parameters derived from 
model fits for the CO Ai; = 3 line-forming region. Columns 
(2)-(4) give the radius when the shock passes through this layer, 
the preshock velocity, and the preshock density. The depen- 
dence on the velocity correction factor /, the mean molecular 
weight /¿, and the unknown stellar mass M stems from equa- 
tions (3.9), (3.14), and (3.15). We estimate the uncertainties in r0 
and u1 to be ±5%; p1 has larger uncertainty, as we discuss 
below. Column (5) gives the pulsation contant Q, defined by 

m_YI2(^Y12 

mJ \Re) 
(4.1) 

In § Va we discuss the implications of these pulsation con- 
stants for the mode of pulsation of Mira variables. 

The density at the CO Av = 3 line-forming layer is inferred 
from column-density measurements by simply integrating over 
radius the Eulerian density computed from model fits. Since 
the density above a shock (at fixed time) decreases essentially 
exponentially with height for a decade or so (cf. Figs. 11-13), 
we may write 

Pi(r0) » —mHNj , (4-2) 

where N(H) is the column density of hydrogen nuclei in atomic 
or molecular form. Table 1 gives AT(CO); we assume iV(H)/ 
N(CO) = 103-3 for o Cet, T Cep, and R Cas, and N(U)/ 
N(CO) = 103 0 for the S-type Mira x Cyg. These abundance 
ratios are somewhat uncertain, but are not as uncertain as the 
observed column densities, which were determined by fitting 
observed curves of growth to a plane-parallel isothermal 
model. The inferred densities may therefore be uncertain by a 
factor of 10 (HSH). Theoretical curves of growth based on the 
model atmospheres obtained here should improve the density 
estimates. In any case these density estimates show that the 
atmospheric mass is only a small part of the total stellar mass. 
For % Cyg, the mass of gas lying above the CO Av = 3 line- 
forming region is 

Matm * 0.025M2 M0 , (4.3) 

where M is the stellar mass in M0. Thus our assumption of 
constant mass used in deriving the gravitational force for the 
models in §§ II and III is fully justified. 

The model derivations also assumed that particle orbits are 
purely periodic, i.e., that a shocked fluid element returns after 
one period to exactly the same radius and velocity. Now we 
can show that this condition is well satisfied at the CO At; = 3 
line-forming layer. Suppose that the orbits are not closed, so 
that after one period a particle is shocked ar r0 + Ar, Ar > 0. 
This corresponds to an outward mass flux of p1Ar/P, or a 
steady mass loss rate of 

M - 4nr° Arpi 

P 
(4.4) 

For x Cyg this gives Ar/r = 22M~2M, where M has units of 
M© yr-1. Since Mira variables typically have M ~ 10~6 M© 
yr-1 (Gehrz and Woolf 1971; Bowers and Kerr 1977; Knapp 
and Morris 1984), Ar/r ~ 2 x 10"5 <tl and orbits are closed 
to a high degree of accuracy. Note that since p1 falls rapidly 
(roughly exponentially) with radius, the purely periodic 
assumption must break down at some radius. But the density 
scale height is much less than r, so the periodic assumption will 
be good out to radii just short of the point where orbits open 
up and mass loss originates. 

The determination of the density and temperature along a 
streamline allows a discussion of the thermodynamic proper- 
ties of the gas. We consider x Cyg, in which T = 3960 K, 
p = 2.1 x 10“8 g cm“3 at phase 0 (at the end of the shock 
wave cooling zone) and T = 2500 K, p = 4.5 x 10“10 g cm“3 

at phase 1. Under these conditions the time scale to achieve 
chemical equilibrium is less than the adiabatic expansion time 
(Tsuji 1964), so that equilibrium molecular concentrations are 
applicable. We find that the fraction of H atoms in molecular 
form varies from about 0.5% at phase 0 to about 10% at phase 
1 (Vardya 1960; Tsuji 1964). Essentially all of the C is in the 
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R R 

R R 
Fig. 11.—Eulerian fluid distribution at visual phase 0.0 for the spherical periodic shock wave model, with parameters set at the CO Av = 3 line-forming layer (the 

innermost shell plotted) by a fit to x Cyg. The units are 1013 M cm {R; M is the unknown stellar mass in M0), km s -1 (F; no geometrical correction factor has been 
applied), M -1 gem-3 (p), K (T), and (pM)-1 dyn cm-2 (P; 2mHp is the mean molecular weight). The extrapolation to larger radius assumes constant ratio of specific 
heats and cooling temperature. These assumptions lead to unrealistically high temperatures at large radii. 

form of CO over the entire range of phase. This shows that the 
constancy of N(CO) with phase implies the constancy of total 
mass column density, as was assumed above. 

If radiative processes are not important, the effective y of the 
gas is determined by the thermodynamic equilibrium of the 
gas, composed primarily of hydrogen. For a gas of molecular 
hydrogen with vibrational degrees of freedom not excited, 
y = 1.4; for molecular hydrogen with vibrations excited, 

y = 9/7; and for atomic hydrogen, y = 5/3 (e.g., Zel’dovich and 
Raizer 1966). In the temperature range where molecular vibra- 
tions are excited (several thousand K), molecular dissociation 
is usually important and can lower the effective y of the gas. 
Vardya (I960) has computed adiabats for a temperature and 
density range which covers the conditions along the streamline 
in x Cyg. At phase 0, when the gas is primarily atomic hydro- 
gen, yeff ^ 1.6, and at phase 1, when the amount of molecular 

R R 

R R 
Fig. 12.—Same as Fig. 11, except that the cooling temperature is taken to decrease with radius so that the atmosphere is isentropic, i.e., - ^ = constant 
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R R 

R R 
Fig. 13íi 

R R 

Fig. 13.—Eulerian fluid distributions at visual phases (a) 0.0, (b) 0.25, (c) 0.5, and (d) 0.75, computed with the assumption that the preshock temperature decreases 
as r-2. Units and other parameters are the same as in Figs. 11 and 12. The innermost shell is taken to be at the estimated photosphere, and is shocked at visual phase 
-0.27. 

hydrogen becomes substantial, yeff ^ 1.18. The value of yeff 

deduced from the model fit to the observations is lower than 
this range, implying that radiative processes are significant. A 
detailed discussion of these processes lies beyond the scope of 
this paper. 

Mira variables have long been known to have very extended 
atmospheres, but the strong dependence of opacity on wave- 
length has made observational estimates ambiguous (e.g., 

Labeyrie et al. 1977), and theoretical models have also given 
conflicting results (e.g., Willson 1976; Wood 1979; Hill and 
Willson 1979). HHR estimated the photospheric radius of x 
Cyg to be 1.7 x 1013 cm, less than the radius we have derived 
for the CO Av = 3 line-forming layer for M > 0.65 M0. Weak 
CO emission at visual phases as early as —0.3 suggests that the 
photosphere lies interior to the layer where the absorption 
lines are formed. We will further discuss the location of the 
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photosphere below, when we extrapolate the shock propaga- 
tion to earlier and later phases. 

d) Radial Structure of Mira Atmospheres 
The model fits of Figures 9 and 10 and the corresponding 

parameters of Tables 2 and 3 apply only to a fixed Lagrangian 
mass shell, the CO Av = 3 line-forming layer. But the shock 
models may be computed over any range in radius. While 
high-quality data are not yet available to test models at other 
depths, it is clearly desirable to extrapolate the models to make 
predictions. This extrapolation depends on how the thermody- 

namics is treated. The solution presented in Figures 5-8 
assumed that the adiabatic exponent y and cooling sound 
speed Cc are independent of height, but the solution method 
outlined in § III is more general and allows these quantities to 
vary with radius. Here we will present the structure of model 
atmospheres computed with the parameters of % Cyg (fixed at 
the CO Av = 3 layer) for the cases (1) Tc = constant, (2) 
7^piT

(y~1) = constant, and (3) T^xr-2. (Tc and pc are 
the cooling temperature and density, and 7^ is the preshock 
temperature.) In all cases a constant adiabatic exponent 
y = 1.10 is adopted independent of radius. Thus, the motion of 
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a fixed fluid element is treated as adiabatic with exponent y, 
but the variation of specific entropy from element to element 
dififers in each of the three cases considered. We emphasize that 
these dependences of y and Tc on radius are only guesses and 
that observations at other radii are needed to pin them down. 
But we believe that useful insights into the atmospheric struc- 
ture of Mira variables can still be obtained by extrapolating 
the solutions in this way. 

Figure 11 shows the Eulerian fluid distribution computed 
for x Cyg at visual phase 0.0 (after the shock emerges through 
the CO Av = 3 line-forming layer at visual phase —0.10) for 
the constant cooling temperature case, corresponding to 
Figures 5-8. The minimum radius has been set by the CO 
Av = 3 layer. The maximum radius is limited because beyond 
^ 1014 cm the shocks become too weak (Jil —> 1) to support a 
purely periodic flow. The small glitches in p, T, and p are due 
to the approximate method of solution. Three shocks are 
apparent, the upper two having passed through the lower 
layers of the star at earlier phases. As we anticipated in § II, the 
shock velocity and separation clearly decrease with height. The 
temperature remains high at large radius, however, because of 
the assumption Tc = constant. Because temperatures are high, 
the upper shocks are weak, so the density scale height increases 
at large radius (cf. eqs. [2.34] and [3.9]). In this model a sonic 
point exists around 1014 cm, beyond which mass loss must 
occur. We estimate the mass loss rate from the shock mass 
flux: 

M ~ 4nrsPc vs, (4.5) 

giving M ~ 10~6 Mq yr-1 for rs = 1014 cm, vs = 4 km s-1, 
and pc = 1 x 10“15 gem-3 (cf. Fig. 11). We consider this coin- 
cidence with observationally inferred mass loss rates (cf. 
Knapp and Morris 1984) to be fortuitous, however, because 
the assumption of constant cooling temperature is clearly 
unrealistic. Gas at nearly 4000 K will cool relatively quickly 
because of the low opacity present high above the photosphere. 

A slightly more plausible temperature distribution results 
from assuming that the stellar atmosphere is isentropic, i.e., 
Tc Pc-07-1* = constant. In this case the specific entropy (defined 
with respect to the index y) of the gas is constant not only for a 
fixed fluid element but also for different elements. The tem- 
perature is thus everywhere given by the density: T = Kpv_1, 
where K is a constant. The isentropic assumption may be rea- 
sonable if the gas does not interact with the radiation, although 
it is unreasonable to expect that y = 1.10 everywhere. Figure 
12 shows the resulting Eulerian structure, with the same pa- 
rameters as Figure 11. Now the temperature decreases mono- 
tonically with radius, because the density does. Consequently 
the shocks do not weaken steadily with radius; in fact, they 
strengthen at large radius because the shock velocity is falling 
only as a power of radius but the sound speed is falling expo- 
nentially. 

In spite of the very different thermodynamic properties of 
the model atmospheres shown in Figures 11 and 12, the veloc- 
ity profiles, hence fluid and shock trajectories, are quite similar. 
This similarity occurs because, so long as the shocks are 
strong, the fluid trajectories are nearly ballistic. The velocity 
profiles differ significantly only where the shocks weaken in 
Figure 11. Thus absorption-line radial velocities measured 
over a period can in principle give a good estimate of the 
height at which the lines form, even without accurate excita- 
tion temperatures or column densities. In practice, unfor- 
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tunately, this method works well only for deep layers where the 
velocity variation is large. 

The isentropic assumption, although more reasonable in our 
view than the isothermal cooling (Tc = constant) assumption, 
neglects the interaction between the gas and radiation. We are 
thus led to consider the case where the gas and radiation are 
strongly coupled, at least at some phases. The stellar bolo- 
metric luminosity (neglecting the postshock emission) is 

L = 47irp a T4 , (4.6) 

where rp is the photospheric radius and Te is the effective tem- 
perature of the radiation field. Assuming that the shocks are 
well outside the photosphere (this is probably not true; see 
below) and that the preshock gas is optically thin and in 
thermal equilibrium with the radiation field, equation (4.6) gen- 
eralizes to give 7] oc r~2. (The postshock gas is much hotter, 
but we suppose that the gas can come into equilibrium with the 
radiation just before it is shocked again.) This condition gives 
the radial dependence of k implicitly (specifying Tc gave k 
explicitly from eq. [3.14]), but it is easy numerically to find K(rs) 
and thus the radial dependence of the solution. 

Figures 13a-13d show the Eulerian structure computed for x 
Cyg with 7] oc r-2 at visual phases 0.0, 0.25, 0.5, and 0.75. The 
solution has been extrapolated both inward and outward from 
the CO Av = 3 line-forming layer; the innermost shell is 
shocked at visual phase —0.27 at a radius of 1.7 x 1013 M/2 

cm, chosen to correspond to the photospheric radius estimated 
by HSH. (A few of the inner Lagrangian shells have been 
omitted from Fig. 13a, because slight shell-crossing occurred as 
a result of our approximate method of solution.) The outer 
boundary is arbitrary in the model, but we will argue in § Yb 
that the purely periodic assumption, and hence the model, 
breaks down at r æ 5 x 1013 M cm. We consider the ther- 
modynamic assumptions made here to be the most reasonable 
of the three cases considered. The solution is presented at 
several phases to show the time dependence of the atmospheric 
structure. 

Comparison of Figures 12 and 13a shows that the particle 
orbits are virtually indistinguishable, while the temperature 
profiles e fairly different. As noted above, particle orbits are 
ballis*’ > the strong shock limit, which applies in both figures. 
In F 1 , however, because of the slow radial decrease in 
tern ure, the Mach number does decrease at large 
rad . («y#! = 3.3 at rs = 1014 M cm.) Another point to note in 
comparing Figures 12 and 13a is that the thermodynamic vari- 
ables (particularly the density) do not differ greatly for 
r < 6 x 1013 M cm. We therefore hope that real Mira atmo- 
spheres have similar profiles, allowing us to make order-of- 
magnitude estimates of mass loss in § Yb. 

It is interesting to compare Figure 13a with Figure 7 of 
Wood (1979), who used an Eulerian finite-difference scheme to 
integrate the fluid equations numerically. To drive a shock 
through the atmosphere, Wood applied a sinusoidally varying 
pressure at the inner boundary, which was fixed in radius. He 
assumed that the gas is isothermal, with temperature depend- 
ing on radius as r-2 far above the photosphere, which he set at 
3.1 x 1013 cm. His thermodynamic assumptions were thus 
similar to those adopted here, except that the temperature was 
not allowed to jump across a shock. Wood’s numerical results 
agree qualitatively with those obtained here, but his velocities 
are about 40% smaller. Consequently his shocks are weaker 
and the density profile falls off* less steeply than in Figure 13. 
Increasing the amplitude of pressure variation at the inner 
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boundary did not on average increase the velocities, but 
instead resulted in orbits bifurcating, with alternate shocks 
propagating with different velocities. Since observed CO 
Av = 3 velocities are constant from cycle to cycle (at least for 
the Mira variables observed by HSH), this behavior, similar to 
that observed in RV Tau variables, may be a result of Wood’s 
inner boundary condition or numerical treatment. Our solu- 
tion method, since it assumes the shocks to be fully developed 
and enforces periodicity, does not allow study of this period- 
doubling phenomenon. 

The time sequence of Figure 13 shows the shocks propagat- 
ing up through the stellar atmosphere with advancing phase. 
As a shock propagates upward, it slows roughly as vs oc rs

-1-5 

as long as it remains strong. Figure 13 also shows the periodic 
motion of the inner shell, rising until visual phase 0.25, and 
then falling back down to be shocked at visual phase 0.73, just 
before the last snapshot. The velocity jump across the shock is 
u1 — 48.9 km s-1 at this minimum radius. In a Mira variable 
the shock results from a nonlinear steepening of a general 
stellar pulsation, and the shock is probably not this strong 
when it first appears. Such a large shock velocity would par- 
tially ionize He and produce He i emission, which is not seen 
(G. Wallerstein 1985, private communication). 

One additional observational test of the shock model, which 
gives good agreement with Figure 13, comes from the low- 
excitation CO Ai; = 2 lines. For visual phases between 0.03 and 
0.27, HHR measured in % Cyg a component with excitation 
temperature 800 ±100 K, column density iV(CO) = 1022,0 

cm-2, and velocity within a few km s-1 of the stellar rest 
velocity. For the density profiles of Figures 13a and 135 the 
observed column density corresponds to pæl.O x 10-13 g 
cm-3 or a radius just interior to the second shock at r = 
(5-6) x 1013 M cm. Happily, the model postshock tem- 
peratures are about right, Tc æ 800-900 K, suggesting that our 
thermodynamic assumption 7^ ccr~2 may not be very far off 
the mark. We would predict the lines to be blueshifted by 3-4 
km s -1 more than is observed, however, although the observed 
lines are ~8 km s-1 across in the core. SiO maser emission 
(Kaifu, Buhl, and Snyder 1975; Snyder and Buhl 1975) and 
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some visual absorption lines (Willson, Wallerstein, and Pila- 
chowski 1982) proably originate at about this same radius 
(HHR), but it is difficult to prove this without column densities 
or excitation temperatures. 

Figure 14 plots the radius of Lagrangian fluid trajectories 
and shock lines against time (visual phase) for the shock model 
of Figure 13. Trajectories are shown for every factor of 4 
decrease in preshock density. Slight shell-crossing occurs for 
the lowest shells because of the plane-parallel and spherical 
ballistic approximation used, but this has no effect on the CO 
Av = 3 line-forming layer. Note that the vertical amplitude is 
more than a factor of 2 for the lowest shells, but decreases with 
height as the shock velocity decreases. 

Figure 15 plots on the same scale the visual light curve of x 
Cyg (Campbell 1955) and the shock luminosity Ls = 47rr2Fs 
(with Fs given by eq. [2.32], using the model described above) 
versus visual phase. The luminosity scale depends on the 
observed CO column densities and could be a factor of 10 too 
high. The visual light curve has been shifted vertically to 
produce the best fit between maximum and minimum. Obser- 
vations show shock emission beginning in x Cyg as early as 
visual phase —0.3 (HHR); we chose the innermost shell to be 
shocked at phase —0.27. The radius and luminosity where the 
shock originates are uncertain, however, because, as noted 
above, the shock does not begin fully developed. Our model 
therefore overestimates the shock luminosity and velocity at 
early premaximum phases. The minimum shock radius of 
1.7 x 1013 M cm is thus a lower limit, and a peak shock lumi- 
nosity of 104 L0 (assuming no error in the column density) is 
probably reasonable. 

The infrared light curve of Mira variables has small ampli- 
tude (1-2 mag at 2 /mi; Hinkle 1978), while the visual ampli- 
tude is 8 mag for x Cyg (HSH). We propose that the large 
increase in visual luminosity at early phases comes from the 
shock emission, and justify this by the good fit for postmaxi- 
mum phases. Fox, Wood, and Dopita (1984) observed lumi- 
nosities as high as 1.8 L0 in Hy alone for o Cet at visual phase 
— 0.03. The Balmer lines show strong overlying absorption at 
early phases (Gillet, Maurice, and Baade 1983; Fox, Wood, 

PERIODIC SHOCK WAVE MODEL 
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o 

VISUAL PHASE 
Fig. 14.—Spacetime diagram for the model atmosphere of Fig. 13. The monotonie curves are shock lines, while the oscillating curves give fluid trajectories for 

every factor of 4 decrease in preshock density. The approximate method of solution leads to slight shell-crossing in the densest layers. 
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VISUAL PHASE 
Fig. 15.—Visual light curve {solid curve, shifted vertically to fit model) and shock luminosity {dashed curves) for the model atmosphere of Fig. 13, versus visual 

phase. Uncertainties in measured column densities make the luminosity scale uncertain by a factor of 10. The model overestimates Ls at phases ^ — 0.10 by assuming 
the shock to be fully developed. The good fit for phases between 0.0 and 0.6 suggests that over most of the cycle the visual luminosity comes from downgraded shock 
emission. 

and Dopita 1984), so the emitted line luminosities are 
undoubtedly much larger. Most of the photons emitted behind 
the shock are absorbed and scattered many times before escap- 
ing, so rather than coming out entirely in lines, the shock 
radiation is spread over the entire visible spectrum. Spectro- 
photometry (from 4000 Â to the blackbody peak near Ija) 
should provide a test of this hypothesis. 

Figure 15 shows that the shock luminosity decreases rapidly 
with phase, even if the shock remains radiative. By visual phase 
0.5, Ls is only 10~3 of the value at visual maximum. We suggest 
that the disappearance of the emission lines at intermediate 
phase (Gillet, Maurice, and Baade 1983; Fox, Wood, and 
Dopita 1984) is due to this steep decrease in shock luminosity, 
rather than the shock becoming too weak to excite hydrogen 
collisionally (Wood 1979). Note also that after one period the 
shock luminosity is down by a factor of 10-6. We are therefore 
skeptical of claims (Gillet, Maurice, and Baade 1983) that emis- 
sion has been seen from two shocks at the same phase. 

v. DISCUSSION 

The periodic shock model derived in §§ II and III shows 
good agreement with detailed observations (§ IV). With this 
success we are encouraged to test whether the model can 
resolve two key debates concerning Mira variables, viz., the 
pulsation mode and the origin of mass loss. The results are 
encouraging but not definitive, as we show below (§§ Va, Vfr). 
More observations are needed, and in § Vc we suggest several 
fruitful areas for both observational and theoretical work. 

a) Pulsation Mode 
Considerable debate exists regarding whether Mira vari- 

ables pulsate in the fundamental (Hill and Willson 1979) or the 
first-overtone (Wood 1974, 1979) mode. The primary observa- 
tional test is the pulsation constant Q (eq. [4.1]). Theoretical 
stellar models (Keeley 1970; Wood 1974; Fox and Wood 1982) 
show that fundamental-mode pulsators have Q > 0.09 days, 
while first-overtone pulsation gives Q < 0.06 days. Table 3 lists 
the pulsation constants obtained by model fits to the CO 

Av = 3 line-forming layer. For M/”3 æ 1 M0, the results are 
somewhat ambiguous, with Q æ 0.06M-1/3 days aside from T 
Cep, which has an unusual velocity curve. However, we noted 
in § YVd that the shocks originate at a smaller radius, perhaps 
in or near the photosphere. In discussing the pulsation mode, 
Q should be evaluated at this lower height, since Qccr~3/2 at 
larger radii. For x Cyg we obtained a lower limit to the photo- 
sphere radius of 1.7 x 1013 Mf~2 cm, giving 

0.06 days < QMf~3 <0.11 days . (5.1) 

Our best estimate of the photospheric radius of x Cyg is rp » 
(1.88 + 0.15) x 1013 Mf~2 cm, obtained by assuming a con- 
stant shock velocity vs= 12.4 km s-1 interior to the CO 
Av = 3 line-forming layer and assuming that the shock begins 
in the photosphere at visual phase —0.27. This gives 

QMf -3 » 0.09 ± 0.01 days , (5.2) 

consistent with fundamental-mode pulsation for Mf~3 < 1 
M0, or first-overtone pulsation for M/-3 >2 M0. Unfor- 
tunately, existing mass estimates for long-period variables are 
inconclusive (Fernie and Brooker 1961), although the models 
fits presented above slightly favor Mf~3 æ 1 M0 (fundamental 
mode). Accurate stellar masses and improved photospheric 
radius estimates (from analysis of emission lines) are necessary 
before the pulsation mode question can be confidently re- 
solved. 

b) Mass Loss 
Deriving theoretical mass loss rates requires knowing the 

structure of Mira atmospheres at radii a factor of 2 or so 
beyond where the CO Av = 3 lines form. Since detailed obser- 
vations are not yet available to give the structure at large radii, 
we rely here on the extrapolated model shown in Figure 13. In 
support of this model we note (§ YVd) that it roughly fits the 
visual light curve and the few data points available from low- 
excitation CO Av = 2 measurements of HHR, but we caution 
that since our model assumes no mass loss, only order-of- 
magnitude estimates can be obtained from it. 
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Observations indicate that mass loss rates ofl0_6Mo yr-1 

are typical for long-period variables (Knapp and Morris 1984). 
The most widely accepted explanation is radiation pressure 
acting on dust grains that form in the cool extended envelopes 
(Hoyle and Wickramasinghe 1962; Kwok 1975). Atmospheric 
shock waves have also been suggested as either the dominant 
mechanism (Willson and Hill 1979; Jones, Ney, and Stein 
1981) or as an aid to the dust mechanism (Wood 1979). We 
consider here the role of shocks in mass loss in light of the 
atmospheric model presented in Figure 13. 

Refractory materials (Si, Fe, etc.) can begin condensing to 
form solid grains once the gas cools to a temperature Tcon ä 
1500 K (Field 1974). If the stellar radiation field is sufficiently 
strong, we can approximate the mass loss process by assuming 
that all the material lifted up to a height rcon, where T = Tcon, is 
driven away. This obviously changes the atmospheric structure 
from that shown in Figure 13. But because the density scale 
height is small compared with rcon, the purely periodic solution 
will be correct nearly out to this radius (cf. eq. [4.4]). We can 
thus use equation (4.5) and Figure 13 to estimate the rate at 
which matter is raised up by shocks to the height where grains 
can form, and hence the mass loss rate. From Figure 13 we 
estimate rcon æ 5 x 1013 cm, where the shock velocity is vs& 5 
km s-1, and the density is pcon æ 10-14 g cm-3. These 
numbers give M~3 x 10-6 M0 yr-1. This rate should be 
considered an upper limit because matter clearly cannot rise up 
to rcon as fast as the shock. Also note that a small uncertainty in 
rcon results in a large uncertainty in pcon (and hence M), because 
of the nearly exponential density distribution. A proper 
numerical calculation, instead of the rough arguments used 
here, gives about the same values for rcon, vs, and pcon but a 
mass loss rate about 10 times less (Wood 1979). We conclude 
that grain formation in a shock-driven atmosphere can prob- 
ably produce the large observed mass loss rates. 

Mass loss can occur without grain formation if the shock- 
heated gas is unable to cool (Wood 1979; Willson and Hill 
1979). In this case the specific entropy of a fluid element will 
increase each period, and it will be unable to return to the same 
height. Each additional shock kicks the particle further up, 
until eventually it is ejected. To estimate the mass loss rate 
here, we need to know how the gas cools. At temperatures 
below 2000 K the gas is mainly H2, and cooling occurs by 
collisional excitation of molecular lines. The radiative cooling 
time for H2 at a shock temperature T2 is tcool æ n(H2)/cT2/A(T2). 
The postshock temperature T2 is the postshock temperature 
given by the Rankine-Hugoniot conditions, i.e., it is the tem- 
perature before the gas radiatively cools. The criterion for mass 
loss to occur is (to order of magnitude) tcoo]/P > l. Setting 
P æ 1 yr and using the high-density cooling function of Lepp 
and Shull (1983), this gives T2 < 1500 K, the same as the dust 
condensation temperature. But the shock temperature is 
higher than the cooling temperature at the same radius, so 
T2 ä 1500 K corresponds to a slightly larger radius, rs = 5.5 
x 1013 cm, and a smaller velocity, v2 « 4 km s_1. The post- 

shock density given by the Rankine-Hugoniot conditions is 
p2 æ 4 x 10“15 g cm-3. Combining these values gives an esti- 
mated mass loss rate one-third as large as that obtained in the 
dust acceleration picture, or 1 x 10_6 Mo yr-1. The uncer- 
tainties in both estimates are larger than a factor of 3, however. 
Thus the breakdown of gas cooling can lead to mass loss as 
well. Even if the cooling breakdown process can produce a 
large enough M, however, the terminal velocity could not 
exceed vs æ 5/km s'1, which is only half as large as observed 

(Zuckerman 1980). We conclude that radiative acceleration of 
dust grains is needed to produce the high outflow velocities, 
but the breakdown of radiative cooling may help to increase 
the mass flux. 

c) Suggestions for Further Work 
The periodic shock wave model has been applied in this 

paper to Mira variables, but the derivation presented in §§ II 
and III is quite general, requiring only the three assumptions of 
periodicity, radiative shocks, and adiabatic postshock motion. 
It is thus logical to apply the model to other pulsating vari- 
ables with shocks, e.g., W Virginis stars (Wallerstein 1959) and 
RR Lyrae variables (Hill 1972). Atmospheric models could lead 
to a better understanding of the structure and evolution 
(through mass loss) of these stars. 

The application of the shock models to Mira variables pre- 
sented above could not have proved so useful without the 
detailed infrared absorption-line observations of HHR and 
HSH. Column densities were especially valuable because they 
showed where the CO Ar = 3 vibration-rotation lines form, 
and they allowed the density to be determined. Clearly it 
would be useful to have similar data for lines with different 
oscillator strengths and excitation energies, so that different 
atmospheric layers are sampled. 

Emission-line measurements also can provide valuable 
information about the atmosphere. We have suggested that 
essentially all of the optical luminosity near maximum phase is 
produced by shock emission. Since most of these photons are 
scattered many times before escaping, visual and infrared 
emission-line measurements and spectrophotometry would be 
helpful in testing this hypothesis. 

On the theoretical side, the model presented here can be 
improved in several ways. First, instead of using an approx- 
imate solution of the fluid equations, a more accurate numeri- 
cal solution can be obtained. The novelty of our method is to 
treat the shocks analytically by calculating their trajectories 
separately and using the jump conditions explicitly, rather 
than using numerical or artificial viscosity. This Lagrangian 
technique works well because the periodicity means that we 
only have to compute one shock trajectory to have them all. A 
more accurate Lagrangian method would solve the fluid equa- 
tions numerically between shocks using only a small portion of 
the spacetime diagram (Fig. 14) to represent the entire plane. 

The shock model can also be generalized to include steady 
mass loss. In this case fluid orbits do not close, but there is a 
steady mass flux from the stellar interior replenishing the lower 
atmosphere, so that the Eulerian structure is unchanged after 
one period. This type of model would allow mass loss rates to 
be calculated more precisely. 

With the shock model results obtained here, it is possible 
to go back, after the hydrodynamics has been done, to 
compute the radiative transfer independently. Because the 
atmospheric structure of Mira variables is so complicated, 
radiative transfer calculations are needed to compare the 
model with observations in all but the simplest cases. 

In conclusion, we believe that the present work provides 
several useful tools for interpreting the detailed observations 
that are now becoming available for Mira variables. We hope 
that this work will encourage increased efforts to understand 
their fascinating structure and behavior. 

We thank George Wallerstein and Lee Anne Willson for 
helpful comments and suggestions. This work was supported 
by NSF grants AST80-19569 and 84-13138. 
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