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ABSTRACT 
Upper and lower critical frequencies for adiabatic radial and nonradial oscillations of white dwarfs are 

established. It is found that acoustic modes are strongly damped by outwardly propagating running waves in 
the atmosphere when periods are less than 0.1-1 s. For gravity modes, a similar result holds when periods 
exceed x 103[/(/+ 1)]-1/2 s, where / is the colatitudinal spherical harmonic index. Applications to 
observed white dwarf variable periods are discussed. 
Subject headings: instabilities — stars: pulsation — stars: white dwarfs 

I. INTRODUCTION AND THEORY 

During the last decade it has become well established that 
there are at least three classes of variable white dwarfs:1 (a) the 
ZZ Ceti variables, which are DA white dwarfs of Teff ranging 
between 11,000 K and 13,000 K with perhaps an error of no 
more than 1000 K on either side (Weidemann and Koester 
1984); (b) the recently discovered “DB” variables, whose effec- 
tive temperatures are not well determined but which probably 
lie between 25,000 K and 30,000 K (Oke, Weidemann, and 
Koester 1984; Koester, Weidemann, and Vauclair 1983); (c) 
the very hot “ PG 1159” objects, which may constitute a 
homogeneous class, although even the prototype has an uncer- 
tain Teff lying between approximately 80,000 K and 150,000 K. 
Despite the wide spread in white dwarf evolutionary cooling 
history which these classes represent, they still share some 
common characteristics. In particular, all currently published 
observations indicate that their periods of variability are 
bounded by approximately 100 s and 1200 s and, from theo- 
retical studies, that they represent nonradial, gravity-mode 
pulsations of the star excited by the same mechanisms 
responsible for the variability of classical Cepheids and the 
like. Pertinent general references for this material are Winget 
and Fontaine (1982), Winget et al. (1983), Van Horn (1985), 
Starrfield et al. (1983h, 1984), and references therein. 

The object of this brief paper is to examine, in a preliminary 
way, whether theoretical upper and lower bounds may, in prin- 
ciple, be placed on the periods of these variables. 

The motivation for this study arises from two sets of pulsa- 
tional stability investigations which suggest that some of the 
variables are fully capable of varying with periods outside the 
observed range. The first set (Starrfield et al. 1983a; Saio, 
Winget, and Robinson 1983; see also Starrfield et al. 1984) 
concerns radial oscillations and predicts that some stars on the 
cooling track (notably DA white dwarfs near the blue edge of 
the ZZ Ceti temperature range) should oscillate with periods 
between 0.1 and 5 s. These periods usually correspond to modes 
of high overtone order. On the other hand, Robinson (1984, 

1 We shall exclude such pre-white dwarf objects as the variable planetary 
nucleus K1-16 in this paper (Grauer and Bond 1984; Starrfield et al. 1985). 
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and see references therein) has surveyed and reviewed fast 
photometric observations of 19 DA white dwarfs, of which six 
are ZZ Ceti variables, and finds no evidence of ultrashort 
period variability in luminosity down to periods of 0.1-0.2 s. 
The upper limit of relative luminosity variation was typically 
10“3 mag, a value considerably smaller than a typical white 
dwarf variable. These observations signal a significant diffi- 
culty for pulsation theory, because the methods and physical 
modeling used to make the predictions in the radial case are 
those also used in the very successful nonradial calculations (cf. 
Cox 1984). However, the latter are not entirely immune to this 
sort of difficulty either. Winget (1981; see also Winget et al. 
1982; Dolez and Vauclair 1981) finds instabilities for modes 
with periods longer than 1200 s in models which are cooler 
than the red edge of the ZZ Ceti instability strip. These periods 
are longer than any observed for these stars. Both the predicted 
short-period radial modes and very long period nonradial 
modes share a common feature, however; they are concen- 
trated in overall pulsation amplitude very near the surface of 
the stellar model. This suggests a possible resolution of the 
difficulty; namely, the surface atmospheric layers may not be 
able to properly reflect internal waves and, hence, the energy of 
a self-excited pulsation may leak out through the surface and 
thus eventually damp the pulsation. 

This idea has been applied to the Sun (as in Ando and Osaki 
1975, 1977; Mihalas and Toomre 1981, 1982) but not to white 
dwarfs. The major effort in this paper will be to estimate those 
ranges of pulsation frequency where wave leakage may occur 
and how important that leakage might be in damping pulsa- 
tion. In the remainder of this section we develop the necessary 
(albeit approximate) theoretical tools. In the last section we 
summarize our numerical results and conclusions and also 
discuss, briefly, some possible observational consequences, and 
problems. 

a) Critical Pulsation Frequencies 
Our takeoff point is from Unno et al. (1979, § 17.1, hereafter 

UOAS), where the appropriate surface boundary conditions 
for linear, adiabatic nonradial stellar oscillations are discussed. 
It is assumed there that the atmosphere lying above the photo- 
sphere (at Teff) is quasi-isothermal, which implies that the fol- 
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lowing atmospheric quantities (Vg and A*) are essentially 
constant : 

Vg= -(dlnp/dlnryr,. (1) 

where r is radius, p is pressure, and Ti is the adiabatic index to 
be used in the sound speed (squared), c2 = T^/p, and p is the 
density. The quantity A* is given by 

A* = -rN2/g , (2) 

where N2 is the square of the Brunt-Väisälä frequency and g is 
the local gravity. The latter may also be taken as constant 
above Teff. If R is the radius at Teff and x = r/R, then equations 
(1) and (2) imply that the atmospheric density distribution is 
given by 

p(x) = p(l) exp [ — (A* + Vg)(x - 1)] . (3) 

The analysis of UOAS proceeds by using the above condi- 
tions in the linearized adiabatic pulsation equations so as to 
reduce them to ordinary differential equations with constant 
coefficients. We also do so with the simplification that pertur- 
bations of the gravitational potential are ignored (the Cowling 
approximation). This is more than adequate for high-order 
modes in white dwarfs where (again) only the surface layers 
have an appreciable pulsation amplitude. Forming the coeffi- 
cient matrix, we find the characteristic roots 

^ = t[(^ + ¿* - 2) ± y1/2] , (4) 

where 

y = (A* — Vg + 4)2 + 4[(co2 - A*)(L>2 — TQ] , (5) 

which is that given in equation (17.34) of UOAS. Here, 
L2 = /(/ +1), and co is the dimensionless version of the pulsa- 
tion frequency a, i.e., 

co2 = a2R/g . (6) 

What equation (5) implies is that if y > 0, then 2± is pure real, 
and solutions are represented by rising or falling exponential 
behavior in the atmosphere. The exponentially damped solu- 
tion is that chosen for most pulsation calculations because it 
results in global modes trapped within the star, i.e., standing 
waves with perfect reflection at the photosphere. For y < 0, 
however, 21 is complex, and running waves are possible which 
may carry energy out through the atmosphere. 

The sign of y is determined by the value of œ2 (for given Vg 

and A*) and, hence, so is the condition for running waves. The 
values of co2 for which y = 0 are termed the critical frequencies. 
For Vg and A* large and positive (we exclude A* < 0, which 
implies a convective atmosphere) compared to L2 and unity, 
these critical frequencies are given approximately by 

co2 = (A* + Vgf/iWg) , (7a) 

which is the “ large ” root of y = 0, and 

œ2 = 4L2A*/04* + J^)2 , (7b) 

which is the second, and small, root. The subscript p(g) is used 
to denote a pressure, or p-mode (gravity, or p-mode) as these 
correspond to the high- and low-frequency solutions for non- 
radial modes in uncomplicated stars. Thus, if co2 does not lie 
between these two extremes, the mode has a running wave 
character. 

It is a fairly simple matter to estimate values for the critical 
frequencies for, say, an Eddington gray atmosphere. With 

Vg = 3gpR/(5Na /cTeff), where p is the mean molecular weight, 

co2
p * VJ2 , (8a) 

and 

œ] * CjVg . (8b) 

For a DA white dwarf (with Teff » 10,000 K, p ^ 1, 
R ^ 109 cm, and g ^ 108 cm s-2, we find Vg ^ 105, co2 ä 
5 x 104, and co2 æ 10_5L2. The corresponding critical oscil- 
lation periods are Pp æ 0.1 s and Pg æ 6000/L s. For moder- 
ately low L ä 2-3(/ ä 2-3), these periods are within a factor of 
2 of those discussed earlier in this section. 

For purely radial modes (/ = 0), there is only one critical 
frequency, and this is an upper bound for reflected waves. Its 
value may be simply derived (Ledoux and Walraven 1958, 
§ 68) to yield 

coi = Vgr
2/4. (9) 

This corresponds to a period Pr æ 0.1 s for the same gray 
atmosphere as before. It is not at all surprising that this period 
is very similar to the critical p-mode frequency, since high- 
order p-modes are not unlike radial pressure modes. 

b) Leakage Power Loss 
The critical frequencies discussed above define the limits for 

the reflection condition to be satisfied. Thus, for all frequencies 
outside these bounds there will be some mechanical power loss 
to the system. These mechanical power losses due to running 
wave leakage are relatively easy to derive. However, before we 
do so, it would be best to define the limitations of our analysis. 

Ideally, a calculation of the oscillations of a star should 
explicitly include the relevant heat transport mechanisms as 
they couple to pulsation. This is especially true in the outer 
stellar layers. In the pulsation vernacular, this means that we 
should do a complete nonadiabatic analysis of the leakage 
problem. However, to our knowledge, such a fully self- 
consistent analysis of this type has not been reported. In addi- 
tion, Mihalas (1984) has pointed out a conceptual error in the 
usual formulation of the interaction between stellar oscillations 
and the atmospheric radiation field. The consequences of this 
error have not yet been explored, but it raises serious doubts as 
to the validity of extant nonadiabatic analyses involving the 
outermost stellar layers. 

With this in mind we propose to continue with an adiabatic 
analysis, using it as a suggestive tool to estimate the effects of 
leakage. We shall quote numerical results but treat them as 
being qualitative. 

The instantaneous radial kinetic energy flux due to pulsa- 
tions is given by (UOAS, § 26) the expression p'v, where p' is 
the Eulerian pressure variation and v is the radial component 
of material velocity. Both these last two quantities are assumed 
to vary temporally as exp ( — iot). The leakage luminosity for 
running waves is obtained by integrating p'v over a sphere of 
radius r and then taking the time average over one pulsation 
period. We denote this luminosity by L. In terms of the 
“ Dziembowski ” pulsation variables yt (see UOAS, § 17), the 
result is 

L = InR^gpo Re (iy*y2) ? (10) 

where Re denotes “ real part of” and * means “ complex conju- 
gate.” Here a is regarded as purely real even though in a fully 
consistent analysis involving running waves it would be 
complex. 
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The general atmospheric solutions for ^ are given in UOAS 
(eq. [17.36]), and we do not repeat them here. The choice of 
particular solution depends on whether œ2 exceeds col or is less 
than co^. In either case we seek only outgoing waves. If co2 > 
co2

p (p-modes), then the root of equation (4) represents 
outwardly running group velocities (see UOAS). On the other 
hand, if œ2 < co^ (p-modes), then 2“ is chosen. We use L* for 
the luminosity in these two instances. Performing all the indi- 
cated operations in equation (10), while normalizing y x to be 
unity at the photosphere, we find the desired result:2 

I* = +7tgR4p<j\y\1/2/{I?/co2 - Vg). (11) 

Note that if co equals either of the critical frequencies, then y 
and hence L vanishes. If co lies between those frequencies, then 
the same result obtains because there are no running waves. 
Expression (11) also applies to radial modes if L2 is set to zero 
and y is replaced by J^(F\Vg — 4co2). 

A characteristic e-folding time tl for energy dissipation may 
be formed by dividing L into the total, time-averaged, kinetic 
energy of oscillation; that is, tl = T/L. From Cox (1980, 
§8.11). 

T = i<72j\^\2dm, (12) 

where £ is the relative Lagrangian displacement vector. The 
normalization of Ç must be consistent with that chosen for the 
y¿ in equation (10). All our numerical results for L and f are 
based on the normalization yj = ÇJr = 1 at Teff. 

II. NUMERICAL RESULTS AND CONCLUSIONS 

One way to gauge the possible importance of wave leakage 
for an unstable mode is to compare tl to the ^-folding time (td) 
for nonadiabatic driving of that mode. If tl is short compared 
to td, then we might presume that leakage dominates over 
internal driving. This comparison is difficult to effect directly 
for white dwarfs, because all calculations performed to date 
incorporate boundary conditions at the surface which assume 
complete reflection of the (standing) wave even when fre- 
quencies exceed, or are less than, critical values. The following 
representative ranges of td and T for three kinds of white 
dwarf variables are therefore taken from the literature (already 
cited) as they are and without further comment on their appro- 
priateness. One general rule of thumb to be noted, however, is 
that a low value of T usually corresponds to a short, rapidly 
driving, time scale for xD. Note also that calculations of 
p-modes are not available. 

For longer period unstable p-modes in both DA and DB 
white dwarfs, xD = 0.01-106 yr (or longer) while T= 

2 This result could also have been obtained by computing the work done 
per cycle on material exterior to the photosphere. See, for example, Baker and 
Kippenhahn (1965), or Ando and Osaki (1975). The present method was 
chosen because it involves the energy flux directly. 

1042-1043 ergs. The corresponding radial mode figures are 
xD = 0.01-103 yr and T = 1041-io44 ergs. For PG 1159-type 
variables, xD = 0.01-100 yr and T = 1044-1046 ergs for g- 
modes. For radial modes, Starrfield et al. (19836) state that td 

is at least two to three orders of magnitude shorter than for 
gravity modes for PG 1159 variables. No kinetic energies are 
given. We note that the kinetic energies for g-modes and radial 
modes are comparable, even though radial mode frequencies 
are much higher. The explanation is that the p-mode mass 
motions are dominated by the transverse component of dis- 
placement which is absent for radial modes, and this makes up 
the difference. 

The ingredients required to estimate L, tl, and the critical 
frequencies have been taken from our own evolutionary 
models for the various classes of white dwarfs (see also 
Kawaler, Hansen, and Winget 1985). Representative values of 
critical periods are listed in Table 1 for models with effective 
temperatures appropriate for the three types of variables. 
(Note that for p-modes we list PflL, because co2 scales directly 
as L2 by explicit calculation as indicated in the approximate 
expression [7b]). 

In order to calculate L, we must specify co2. For this purpose 
we have chosen p, p, and radial periods which are 5% greater or 
less than their respective critical values. Thus the results we 
obtain for L and tl will be representative of conditions near 
critical. Table 2 summarizes these results for the same models 
as in Table 1 and for the T quoted earlier. Here a +, —, or r 
superscript refers respectively to a p-, g-, or radial mode. The 
values of L quoted may be adjusted by a factor of 2 either way 
because they are typical results for a number of models. The 
quantity L for gravity modes is for / = 1 but does not vary 
strongly with /. 

If the entries for tl of Table 2 are compared to the non- 
adiabatic driving time scales given previously, we find the 
following: for gravity modes, tl is comparable or somewhat 
shorter than td (remembering that both quantities vary 
directly with T). We conclude that, for these modes, wave 
leakage may well compete with the intrinsic driving of the 
system and thus help damp long-period modes. This conclu- 
sion is somewhat weak, however, because the time scales are 
not dramatically different and a complete, self-consistent 
analysis could very well tip the balance one way or the other. 
On the other hand, very long period modes of frequency con- 
siderably below the critical frequency should not exist in prin- 

TABLE 1 
Representative Critical Periods 

(s) 

Variable PgL Pp Pr - 

ZZCeti(DA)   7 x 103 0.1 0.07 
DB  104 0.1 0.08 
PG 1159.    5 x 103 0.8 0.8 

TABLE 2 
Representative Values of £ (ergs s-1) and tl (yr) 

Variable L L+ xL+ U xLr 

DA  lx 1035 0.3-3 1 x 1040 NAa 4 x 1040 10"7 to 10"5 

DB  5 x 1033 6-60 4 x 1039 NA 2 x lO40 NA 
PG 1159   2 x 1036 2-200 3 x 1039 NA 1 x 1040 NA 

a NA, not available because kinetic energies are not available. 
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ciple. Thus, for example, we would be very surprised to find 
periods much in excess of 7000/L s for cool DA white dwarfs. 

This result may have important consequences in resolving 
the outstanding theoretical problem of the red edge of the ZZ 
Ceti instability strip (see Winget and Fontaine 1982 for a dis- 
cussion of this problem). The theoretical calculations suggest 
that pulsations should still be found in models with effective 
temperatures well below the observed red edge of the insta- 
bility strip. As models cool below the blue edge, the partial 
ionization zone moves deeper into the star, and driving is pro- 
vided for modes of lower and lower frequency. This is illus- 
trated in the calculations of Winget (1981), who shows that the 
thermal time scale in the partial ionization driving zone 
exceeds 104 s by the time ZZ Ceti models have cooled 1300 K 
below the theoretical blue edge. Modes with periods corre- 
sponding to these long time scales, however, will not be driven 
to observable amplitudes because of energy leakage. 

Thus, the observed narrow width of the instability strip, as 
well as the rough upper limit (~ 1000 s) to period, promises to 
be comprehensible on the basis of these fairly straightforward 
considerations without appeal to the deus ex machina of poorly 
understood pulsation-convection interactions. A word of 
caution is necessary here because of the problem of observa- 
tional selection effects’ decreasing the chances of detection of 
periods much longer than 1000 s using conventional high- 
speed photometric observations. Problems detecting periods 
longer than 1000 s arise because this is roughly the time scale 
on which atmospheric transparency variations occur, and 
periods that long are a significant fraction of one night. The 
observed low-frequency limit needs to be firmly established—if 

Ando, H., and Osaki, Y. 1975, Pub. Astr. Soc. Japan, 27, 581. 
 . 1977, Pub. Astr. Soc. Japan, 29,221. 
Baker, N., and Kippenhahn, R. 1965, Ap. J., 142, 868. 
Cox, A. N. 1984, Nature, 311, 509. 
Cox, J. P. 1980, Theory of Stellar Pulsation (Princeton: Princeton University 

Press). 
Dolez, N., and Vauclair, G. 1981, Astr. Ap., 102, 375. 
Grauer, A. D., and Bond, H. E. 1984, Ap. J., 277,211. 
Kawaler, S. D., Hansen, C. J., and Winget, D. E. 1985, Ap. J., 295, 547. 
Koester, D., Weidemann, V., and Vauclair, G. 1983, Astr. Ap., 123, Lll. 
Ledoux, P., and Walraven, Th. 1958, in Handbuch der Physik, Vol. 51, ed. S. 

Flügge (Berlin : Springer Verlag), p. 353. 
Mihalas, B. W. 1984, Ap. J., 284, 299. 
Mihalas, B. W., and Toomre, J. 1981, J., 249, 349. 
 . 1982, Ap. J., 263,386. 
Oke, J. B., Weidemann, V., and Koester, D. 1984, Ap. J., 281, 276. 
Robinson, E. L. 1984, A.J., 89,1732. 
Saio, H., Winget, D. E., and Robinson, E. L. 1983, Ap. J., 265,982. 
Starrfield, S. G., Cox, A. N., Hodson, S. W., and Clancy, S. P. 1983a, Ap. J., 269, 

645. 

one exists at all—using extended coverage of individual objects 
from observing sites at different longitudes, as well as using 
filtered light, two-star, observations to reduce transparency 
variation effects still further; an interesting (and, perhaps, 
necessary) alternative would be to obtain extended observa- 
tions immune to transparency and sky brightness variation 
problems with the Hubble Space Telescope. 

For radial modes the situation is quite different. Here the 
leakage times are several orders of magnitude shorter than 
those for driving. Even with the uncertainties in our pro- 
cedures, this must be telling us that very short period (Pr < 1 s) 
radial modes should not be seen—and they are not; but 
periods of near 1 s are not seen, either. An attractive conjecture 
is that, even for the latter periods, running wave leakage might 
be crucial for their absence, but this must await further devel- 
opments. If true, we may speculate on the consequences. For 
example, would energy deposition in the atmosphere result in 
chromospheric heating and the generation of a “ tight ” (due to 
high gravities) corona? Such a restructuring of the atmosphere 
for some effective temperatures for some classes of white 
dwarfs might be observable in the UV with sensitive space 
instruments and might explain some of the problems in the 
matching of theoretical white dwarf atmospheres to observa- 
tion. 
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