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ABSTRACT 
The dynamical influence of turbulence within a molecular cloud is determined in part by the degree of cor- 

relation between the velocities of nearby gas elements; these are described by the velocity autocorrelation 
function (ACF). The ACF of observed spectral line centroid fluctuations is shown to reproduce effectively the 
actual ACF of turbulent gas motions within an interstellar cloud. This provides a framework for study of the 
large-scale velocity structure of the Taurus dark cloud complex as traced out by our 13CO J = l-»0 observa- 
tions of this region. 

The complex as a whole appears to be in virial equilibrium. Apart from large-scale correlations due to a 
systematic velocity progression along the central axis of the complex, we find no significant isotropic velocity 
correlations at smaller scales. Our sample spacing of 15' (0.6 pc at D = 140 pc) therefore serves as an upper 
limit to the apparent correlation length of turbulent motions within the Taurus molecular system. This result 
is discussed in the context of recent suggestions that widely observed correlations between molecular line 
widths and cloud sizes indicate the presence of a continuum of turbulent motions within the dense interstellar 
medium. 
Subject headings: interstellar: molecules — turbulence 

I. INTRODUCTION 

The existence of turbulence within molecular clouds may 
have dramatic structural and evolutionary consequences. 
Turbulent motions provide dynamical support against self- 
gravity, acting in addition to thermal and magnetic pressures 
(e.g., Chandrasekhar 1951; Sasao 1971), and the fact that tur- 
bulence always possesses one or more spatial coherence lengths 
(see below) implies that such support is intrinsically scale- 
dependent. This has potentially important ramifications for the 
support and fragmentation mechanisms which govern star for- 
mation within molecular clouds (Arny 1971 ; Hunter and Fleck 
1982; Roczyczka, Tscharnuter, and Yorke 1980; Fleck 1980). 
Indeed, the intrinsic nonpredictability associated with turbu- 
lent density and velocity fluctuations may render star forma- 
tion an inherently stochastic process if turbulence turns out to 
dominate the velocity fields of stellar birth sites; in some 
respects this would require a considerable shift in current theo- 
retical perspectives. Turbulent transport is highly efficient, 
entailing important potential consequences for the transport of 
both material and angular momentum within molecular clouds 
(e.g., Boland and de Jong 1982; Regev and Shaviv 1981). 
Finally, turbulence is fundamentally dissipative (e.g., Tennekes 
and Lumley 1972). If present at the supersonic levels usually 
suggested by molecular line observations, turbulence must play 
an exceedingly important role in the energetics of molecular 
clouds (e.g., Bash, Hausman, and Papaloizou 1981; Franco 
1983 ; Scalo and Pumphrey 1982). 

In order to determine fully the dynamical impact of turbu- 
lent motions within a physical system, one must have complete 
knowledge of either (1) both the density and velocity fields, so 
that one has a well-conditioned initial-value problem subject 
to appropriate boundary conditions (e.g., Eckmann 1981), or 
(2) the infinite set of rc-order correlation tensors which describe 
the self-coherence as well as the cross-coherence of the velocity 
and density fields. The first approach appears to be utterly 

impractical for the study of interstellar clouds; the second, 
while associated with a number of theoretical complications— 
generally termed the “closure problem” (e.g., Leslie 1973)— 
appears a much more promising avenue for observational 
exploration. 

It is reasonable that the dynamical influence of turbulent 
motions should depend to a large degree simply upon their 
magnitude and spatial correlation scale. Turbulence is never 
completely chaotic : at length scales described by a correlation 
length 2C, turbulent motions begin to become coherent and 
shed their seemingly chaotic behavior. Thus, the character and 
resulting physical impact of a turbulent velocity field will 
appear very different at scales much larger than, and much 
smaller than, Ac. Determining the correlation scale and ampli- 
tude of turbulent gas motions in the interstellar medium is 
therefore an observational problem of basic importance. 

In principle, the correlation length of a turbulent flow may 
be determined by observing how the average (rms) amplitude 
of turbulent motions varies with respect to region size. In par- 
ticular, if the interstellar medium is assumed to be uniformly 
pervaded by turbulence with correlation length Ac, then the 
amplitude of gas motions within a cloud of size L will be an 
increasing function of L, provided that L < Ac ; for clouds with 
L > Ac, the internal velocity field reaches a maximum ampli- 
tude and then becomes independent of L. Since the width, Ai;, 
of an optically thin molecular line is determined by the velocity 
distribution of the gas which forms the line, any variation of At; 
with L in an ensemble of clouds may reflect, albeit indirectly, 
the structure of the velocity field within the interstellar 
medium. This notion has been pursued by Larson (1981) and 
others, who determined that a correlation between At; and L 
apparently does exist for molecular clouds, and who have sug- 
gested that it may constitute evidence for a dissipationless 
cascade of turbulent motions in the interstellar medium (see 
below and § IVb). 
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This paper adopts a more direct approach to the investiga- 
tion of turbulence within molecular clouds. It is the second of 
two which apply autocorrelation techniques to the study of the 
large-scale structure of the Taurus dark clouds. The first 
(Kleiner and Dickman 1984, hereafter Paper I) studied the 
spatial structure of column density fluctuations within the 
complex and reported a correlation between condensations 
which may represent a fossil Jeans wavelength frozen into the 
Taurus clouds. In this work, we use the autocorrelation func- 
tion of 13CO J = 1 -» 0 spectral line centroid velocity fluctua- 
tions to trace the properties of turbulence within the complex. 
We begin by describing how correlation measures can be used 
to characterize a turbulent velocity field (§ II), relegating meth- 
odological details to a companion paper (Dickman and 
Kleiner 1985, hereafter Paper III). We then review the observa- 
tional data which underlie the present study, and we describe 
the derived velocity correlations on both large and small 
spatial scales (§ III). Results are discussed in § IV. Although we 
detect a systematic variation of velocities along the central 
portions of the Taurus complex, we resolve no significant iso- 
tropic correlations of centroid velocity fluctuations on smaller 
scales. Thus, the 15' sample spacing of our observations, which 
corresponds to a scale 0.6 pc (at an assumed distance 
D = 140 pc; Elias 1978) provides an upper limit to the appar- 
ent correlation length of turbulence within the Taurus clouds. 

We discuss this result critically in the context of suggestions 
that the widely observed correlations between molecular cloud 
line widths and sizes may stem from the presence of a 
“cascade” of turbulent motions in the dense interstellar 
medium. We note that a model of this type entails a high 
degree of correlation for gas motions within individual molecu- 
lar clouds, correlations which should be easily exposed by the 
centroid velocity techniques developed in the present paper. 
While the size and internal velocity dispersion which we deter- 
mine for the Taurus system are in fact consistent with several 
previously determined size-line-width correlations for molecu- 
lar clouds, our failure to resolve velocity correlations on scales 
larger than our 15' sample spacing indicates that a cascade 
model of turbulence is inapplicable to the Taurus dark cloud 
complex. The assumptions which underlie the cascade model 
may themselves need reconsideration. 

II. CHARACTERIZATION OF TURBULENCE 

a) The Autocorrelation Function 
If inertial forces in a fluid flow become much larger than 

viscous forces, turbulence may set in; the flow acquires a 
chaotic and unpredictable aspect (e.g., Landau and Lifshitz 
1959). However, turbulent motions are usually not completely 
random, and motions at nearby points may be correlated with 
one another to some degree. As a result, statistical measures 
are frequently useful for describing turbulence. Fundamental 
among these are the velocity autocovariance tensor c0(t), and 
its normalized form, the autocorrelation tensor Q/t).1 Both 
describe the mean degree of correlation between velocity fluc- 
tuations at points spaced by the vector separation, or lag, t. If 
the velocity field within a molecular cloud is homogeneous (or 
spatially stationary), that is, if its statistical properties are not a 

1 The subscripts i, j range over the Cartesian coordinates x, y, z. For 
example, vx(r) denotes the component of the velocity field parallel to the x-axis 
at position r = xx + yÿ + zz, and cxx{x) measures correlations between the 
velocity components vx(r) and ^(r') for points r and r' and separated by t. 

function of position, then the velocity autocovariance tensor is 
defined as 

Ciji?) = <[>;M - + t) - • (1) 

(Subscripted angle brackets surrounding a quantity denote the 
average value of that quantity taken over the subscripted vari- 
able.) Note that c^t) is defined in terms of the fluctuations of 
Vi(r) and Vj(r) about their mean values, rather than in terms of 
the values of v^r) and p/r) themselves. By the definition given in 
equation (1), ci7(t) = cfj( —t). The autocorrelation tensor 

C0<t) = co<t)/ci7(0) (2) 

is a normalized [i.e., Co(0) = 1] form of c0-(t). 
The autocovariance tensor is a basic descriptive tool in 

studies of turbulent flow. For example, in an incompressible 
fluid the Reynolds stress tensor, pcl7(0), describes the influence 
of velocity fluctuations on the mean flow (Tennekes and 
Lumley 1972), and the tensor’s trace measures the turbulent 
energy density of the fluid. This paper will deal almost exclu- 
sively with Czz(t), the longitudinal autocorrelation function 
(ACF) of line-of-sight velocity fluctuations, and unless other- 
wise indicated, Czz(t) will simply be written C(t). Similarly, the 
line-of-sight component of gas motions at r, vz(r) = vz(x, y, z), 
will be written v(x, y, z). 

The mean distance over which the relative degree of coher- 
ence between gas motions falls to e -1 is referred to as a correla- 
tion length, Àc; a turbulent fluid may possess more than one 
such scale. Over spatial extents much larger than its greatest 
correlation length, a turbulent velocity field will appear fully 
random; on scales much smaller than the smallest Àc, statistical 
fluctuations essentially vanish. 

b) ACF of Centroid Velocity Fluctuations 
Positional fluctuations in the velocity centroids of spectral 

lines can be used as a probe of turbulent gas motions within 
interstellar clouds. This was pointed out some 30 years ago by 
Kampé de Fériet (1955), and has since been applied by Münch 
(1958), Kaplan and Klimishin (1964), Baker (1973), and Chièze 
and Lazareff (1980), among others (see Dickman 1985 for a 
review). To illustrate the method, we assume a slablike cloud 
and adopt coordinates such that the x-y plane coincides with 
the cloud face; the ¿-axis is assumed to lie along the line of 
sight away from the observer. The line-of-sight component of 
gas motions at a position r = xx + yÿ + zz within the cloud is 
denoted as v(r), and the intensity of an emission line observed 
from a position (x, y) on the cloud face at frequency v is 
expressed in terms of Ta(u; x, y), the line’s antenna temperature 
at a spectrometer velocity u. If v0 is the rest frequency of the 
observed transition, then u is defined as the Doppler- 
equivalent velocity offset : 

The constant u0 depends upon the origin of the velocity scale, 
and is most conveniently chosen so that u = 0 corresponds to 
the mean velocity of the observed cloud. The centroid velocity 
of the spectral line profile is defined by 

vc(x, y) y)udu 

S-xTa(u; x, y)du ' (4) 

Once an ensemble of line centroids has been obtained by 
mapping the cloud, the ACF of centroid velocity fluctuations 
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can be calculated : 

where 

r. _ <tU%, y)Vç(x\ /))x,v ^ ) / 2/ \\ ’ <v;(x, y)}Xfy 

t' = (x' — x)x + (/ — y)y . 

(5a) 

(5b) 

Note that in equation (5a) and all following discussion, u0 in 
equation (3) has been chosen so that 

<vc(x, y)>x,y = 0 . (5c) 

The ACF in equation (5a) possesses the symmetry 
C'( —x') = C'(t'); its argument is the vector lag t', which rep- 
resents a directed separation between data points on the face of 
the cloud. It is extremely important to maintain this vectorial, 
two-dimensional approach as long as possible : any molecular 
cloud may contain systematic (and therefore anisotropic) gas 
motions, and even isotropic turbulence may appear aniso- 
tropic on spatial scales which are a significant fraction of the 
cloud size. 

We show in Paper III that for optically thin emission from a 
homogeneous cloud, t>c(x, y) is simply the average value of gas 
velocities along the line of sight through (x, y): 

vc(x, y) = <v(x, y, z)>z . (6) 

The effect of this averaging is to reduce the observed magni- 
tude of any velocity fluctuations in the gas. However, the auto- 
correlation function of equation (5a) is the ratio of the 
magnitude of velocity fluctuations correlated over lag t to the 
magnitude of the fluctuations at zero lag. Since both magni- 
tudes are reduced by averaging through the cloud, the centroid 
velocity ACF may still be a useful estimator of the velocity 
ACF describing the three-dimensional gas motions within a 
molecular cloud. 

The analysis described in Paper III indicates that for iso- 
tropic turbulence this is indeed the case. C'(x') is shown to be a 
weighted average of the true velocity ACF, C(t), over all pos- 
sible lags between points on each of two lines of sight separated 
by t'. For a cloud of depth L, 

C'(t') = 
^[1 - (z/L)]C((z2 + z'2)V2)dz 

ioCl - (z/L)-]C(z)dz 
(III-33)2 

The presence of the triangular weighting function [1 — (z/L)], 
and the fact that C(t) will generally be a decreasing function of 
lag (Lumley 1971), ensure that spacings near t' contribute most 
heavily to the average value. Although C(t) is usually not 
reproduced exactly, C'(x') will generally preserve the essential 
features of C(x). To illustrate, Figures la-lc show plots of C(t) 
and evaluated from equation (HI-33) for three model 
autocorrelation functions, 

C^t) = e-z/Xc , 

C2(x) = 1 - l(e - l)/e](Tßc)
2^ , 

1 
C3(x) = 

1 + (e - 1)(tMc)
2 

(7) 

(8) 

(9) 

In each plot the solid curve presents the exact autocorrelation 
function, and the dashed curves illustrate the corresponding 
centroid velocity ACFs which would be observed from clouds 

2 All equations with numbers prefixed by III are taken from Paper III. 

0.1,1.0, and 10 correlation lengths deep. The broken horizontal 
line in each figure represents a relative degree of correlation 
among fluctuations of e “1 ; the intersections of this line and the 
autocorrelation functions therefore define both the true and 
the apparent correlation lengths for each example. 

The calculations shown in Figure 1 indicate that, as the 
depth of the cloud increases, so does the apparent degree of 
correlation among fluctuations. A correlation length deter- 
mined from observation of an interstellar cloud may there- 
fore overestimate the actual length scale of turbulent motions 
within the source. However, calculations for very deep clouds 
(L > 1032c) show that even in the worst cases, the apparent 
correlation length is no more than twice the true Àc. 

c) Statistical Measures 

Several statistics may be used to characterize the amplitude 
of the fluctuating velocity field in a turbulent medium, and it is 
important to distinguish clearly among them. In the case of 
optically thin emission from a homogeneous cloud, the shape 
of a molecular line profile is determined by the distribution of 
gas velocities along the line of sight. In order to relate observ- 
able molecular line parameters to the magnitude of gas 
motions within a molecular cloud, it is convenient to separate 
the distribution of gas velocities within a cloud into two com- 
ponents: (1) of, the mean square fluctuation of gas velocities 
along individual lines of sight, with respect to the average gas 
velocity along each line of sight : 

= (M*-) - {v(r)}z]
2yr ; (10a) 

and (2) of, the mean square variation of the line-of-sight 
average velocities : 

*c2= <[<^)>z - (^W),]2)^. (10b) 
In Paper III we show how these two measures can be related to 
the variance of observed centroid velocity fluctuations as well 
as to the mean line width of an ensemble of molecular line 
observations. Our results can be summarized as follows. We 
have already noted that for optically thin radiation from a 
homogeneous source, the centroid velocity of a line profile 
observed at position (x, y) on the cloud face is equal to the 
mean gas velocity along the line of sight: vc(x, y) = (v(r)yz. If 
the origin of the velocity scale of the observations is chosen to 
coincide with the mean velocity of the cloud, then 

a? = <vt(x, y)>x,y ■ (11) 

In addition, the line’s internal squared velocity dispersion may 
be written 

af(x, y) = 
J-ocTaia; x, y)[u - vc(x, y ft2 du 

x, y)du 
(12) 

It is easily shown (Paper III) that the measure of, defined in 
equation (10a) in terms of the magnitude of gas motions within 
a cloud, is also equal to the mean internal squared velocity 
dispersion of the line profiles from the cloud : 

<7.? = <fff(X> y)>x,y ■ (13) 
The dispersion, oh is easily related to the more conventional 

full width at half-maximum (FWHM) if the line profiles at 
(x, y) are assumed to be Gaussian in shape : 

(AvFWHMyXty = (8 In 2)1/2<7i- . (14) 
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Fig. lb 

Fig. 1.—{a-c) Comparison of autocorrelation functions (ACFs) of velocity fluctuations in model molecular clouds [C(t) in solid curves], with the ACFs of 
spectral line centroid velocity fluctuations [_C'(t') in dashed curves]. Each figure shows C'(t') for clouds 0.1,1.0, and 10.0 correlation lengths deep. The horizontal axis 
represents lag t' on the face of the cloud in units of the correlation length Ac, while the vertical scale indicates the relative degree of correlation. The broken horizontal 
line is drawn across each figure at e~i. The intersections of this line with the solid and dashed curves define the actual and apparent correlation lengths of the 
turbulent gas motions in the models. As the cloud depth increases, the curves C(t') move upward and outward from C(t), and the apparent correlation length 
increases. These figures were obtained by evaluating eq. (III-33) for the sample ACFs given by eqs. (7)-{9) in § lib. 

Together of and of determine an additional measure, of, the 
total or parent variance of gas velocities : 

^ = <Wr) - <t;W)J2),, (III-16) 

for which it is easily shown that 

a2
p = <7? + ^ . (Ill-19) 

III. OBSERVATIONS AND DATA ANALYSIS 

The data for this paper consist of ~1200 spectra in the 
J = 1-0 transition of 13CO, taken at 15' spacing and covering 
the central 8° x 14° region of the Taurus complex. The obser- 
vations, centered at a = 4h30m, 3= +27° (/„ ~ 175°, bn ~ 
— 15°), encompass the areas of contiguous heavy obscuration 

visible on the Palomar Sky Survey plates which are cataloged 
by Lynds (1962) as cloud association 169. The observations 
were made during 1982 June with the 14 m antenna of the Five 
College Radio Astronomy Observatory,3 in New Salem, Mas- 
sachusetts. We adopt a distance to the complex of D = 140 pc 
(Elias 1978), so that the ~50" angular resolution of the 
antenna corresponds to a projected spot size of ~0.03 pc; our 
15' map spacing corresponds to a separation of ~0.6 pc 
between data points. Use of a 256 channel x 100 kHz filter 

3 The FCRAO is operated with support from the National Science Foun- 
dation under grant AST 82-12252 and with permission of the Metropolitan 
District Commission of the Commonwealth of Massachusetts. 
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bank yielded a velocity resolution of 0.27 km s ^ Further 
details of the observations are reported in Paper I. 

a) Statistical Measures for the Data 
We denote the velocity assigned to the center of spectrom- 

eter channel i by Ui, and the antenna temperature in that 
channel due to emission from point (x, y) on the cloud as 
7](x, y). The centroid velocity of the spectral line from 
(x, y) is calculated as 

vc(x, y) = 
£fLit<¡7Xx, y) 

y) ' 
(15) 

The range of N velocity channels used to calculate centroid 
velocities (which we term the velocity window) need not 
include all channels available in the spectrometer. Indeed, as 
discussed in Paper III, smaller windows tend to minimize the 
effects of instrumental noise. If the window is too small, 
however, real data representing gas motions at velocities far 
from the mean may be inadvertently discarded. In choosing a 
window for the Taurus data, we were guided by an ensemble 
spectral profile consisting of the average of all individual 
spectra. If the observed molecular emission is not heavily 
saturated—as expected for 13CO—the ensemble envelope 
reproduces well the distribution of gas velocities within the 
complex. 

The average profile was reasonably well described by a 
Gaussian distribution of the form exp [—(w — «0)2/(2cr2)], with 
u0 = 6.4 km s_ 1 and o = 0.99 km s“1. A natural choice for a 
velocity window would thus have been one 6 cr ~ 6 km s-1 

wide. However, a secondary emission component in the line 
profiles was noted around 4 km s_1. This component was 
clearly distinct from the bulk of the emission originating from 
the Taurus complex; therefore, a narrower window, 5.2 km s"1 

wide, was chosen in order to exclude this extraneous emission. 
Within this window the dispersion of centroid velocities was 

found to be a' = 1.02 km s-1. Some fraction of a'c represents 
spurious velocity fluctuations induced by instrumental noise. 
As discussed in Paper III, the magnitude of these fluctuations, 
<jn, depends upon the size of the velocity window, the magni- 

tude of instrumental noise, and the intensity of the observed 
molecular emission. Both numerical simulations and evalu- 
ation of equation (III-67) lead to the result (jn æ 0.57 km s-1. 
Since noise-induced fluctuations are random and independent 
of the true centroid velocities, the dispersion of centroid veloc- 
ities, corrected for noise, is 

Gc = (v'c2 — °n)112 = 0-84 km s-1 . (16) 

Let us next consider the dispersion obtained from calcu- 
lating the ensemble-averaged line width, (^(x, y))x,y (§ II). For 
a discretely sampled spectral line equation (III-20) becomes 

2/ , y)[u¡ - Vc(x, y)Ÿ (17) 

The factor [u — vc(x, y)]2 which appears in the numerator of 
equation (17) makes this manner of calculating of(x, y) very 
sensitive to noise in 7](x, y). Numerical simulations indicate 
that for our data ^(x, y) may be estimated more reliably from 
the line’s full width at half-intensity : 

(j^x, y) » U=i7i(x, y)àu 
(27t)1/2Tpeak 

(18) 

Here Su is the velocity resolution of the spectrometer, Tpeak is 
the maximum antenna temperature across the line profile, and 
a Gaussian line profile has been assumed. While uncertainties 
result from the application of equation (18) because line pro- 
files are often not Gaussian and because spectrometer 
resolution limitations made the determination of Tpeak impre- 
cise, for data with only moderate signal-to-noise ratio this 
approximation is less sensitive to instrumental noise than is 
equation (17). Accordingly, we have used it to determine (jh 

and we find that <7; = 0.48 km s_1. The parent dispersion of 
gas motions within the Taurus complex is thus <72 = of 
+ af = 0.97 km s-1. By comparison, ap can also be inferred 

from the ensemble average of the individual profiles, and, as 
noted already, this value is a = 0.99 km s_1. The very small 
discrepancy between the two determinations is within the 
uncertainties expected for the instrumental noise correction 
and with our use of the approximation (18) for <7,-. 
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b) Autocorrelation of the Data 

The mean cloud velocity, (vc(x, y)}Xfy was first subtracted 
from each calculated centroid, and two-dimensional autocor- 
relation functions of the resulting fluctuation map were com- 
puted by Fourier transforming the data power spectrum using 
standard fast transform routines (e.g., Brenner 1976). When 
considering velocity correlations in a molecular cloud of finite 
extent, it is important to distinguish between correlations 
appearing at small and at large lags. Results at separations 
small compared with the size of the cloud are formed from the 
average of a relatively large number of data pairs. These results 
are statistically the most reliable and probe well the intrinsic 
nature of the velocity field: the number of sample pairs is large 
enough that only statistically significant correlations remain in 
the ACF. 

The ACF is also sensitive to structure in gas motions at large 
scales. However, since the number of data pairs which can be 
formed at large lags is limited, the ACF cannot distinguish 
between physically significant systematic motions and anistro- 
pic, large-scale statistical fluctuations. Therefore, although the 
ACF is a useful indicator for the presence of systematic 
motions within a molecular cloud, the physical importance of 
correlations seen at large lags must be evaluated independently 
of their presence in a correlation function. 

In Paper I several different estimators for the autocorrela- 
tion function of a finite data set were described. In this work we 
have chosen to employ a biased autocorrelation estimator (cf. 
Paper I); although it underestimates the magnitude of correla- 
tions at large lags (where any ACF is noisiest), it is statistically 
the most trustworthy. The resulting autocorrelation function 
for the Taurus complex is plotted in Figure 2. Contours indi- 
cate the degree of correlation as a function of the vector lag t 
(measured from the origin t = 0, marked by a small cross), and 
range from —0.15 to 0.65 in steps of 0.05. Dashed contours 
indicate negative correlations. The symmetry of the plot with 
respect to inversion through t = 0—common to all ACFs—is 
evident. 

The ACF presented in Figure 2 has been renormalized after 
smoothing to have a value of unity at zero lag (although con- 
tours between 0.65 and 1.00 are not plotted). The width of the 
peak at zero lag has been exaggerated by the smoothing 
process. The smoothing routine used (which is applied to all 
the correlation surfaces and maps presented in this series of 
papers in order to improve their legibility) is essentially a low- 
pass filter; thus, information describing small-scale fluctua- 
tions in the data is discarded or suppressed, and the presence of 
large-scale, systematic variations is emphasized. 

c) Structure at Large Lags 
The extended correlations seen in Figure 2 along the north- 

south axis, and the corresponding anticorrelations perpendicu- 
lar to that direction, indicate the presence of a systematic 
velocity component, with the pattern of positive and negative 
correlations suggesting a gradient ; motions along the gradient 
vary most rapidly and soon decorrelate, while those perpen- 
dicular to the gradient remain unchanged. Indeed, examination 
of the map of centroid fluctuations reveals a shift across the 
central core of the complex, with lower (recession) velocities 
seen toward center and southwest, and higher velocities toward 
the northwest. It should be noted, however, that the two con- 
densations east of Heiles 2 (at around a = 4h54m, <5 = + 26° ; cf. 
Fig. 1 in Paper I) do not share this velocity trend. Therefore, it 

Fig. 2.—The two-dimensional, biased autocorrelation function of ^CO 
J = 1 —> 0 spectral line centroid velocity fluctuations for the Taurus dark 
clouds. Contours display the relative degree of correlation of the (smoothed) 
ACF as a function of vector offset from the origin (marked by a small cross), 
and range from —0.15 to 0.40 in steps of 0.05. Lags in declination run verti- 
cally, and those in right ascension horizontally. The horizontal scale marker in 
the lower right-hand corner of the figure is Io long. Thus, for example, contour 
values along the vertical line through the origin describe the degree of correla- 
tion between pairs of observations with the same right ascension, i.e., t' point- 
ing due north or south. The pattern of correlations extending north and south, 
and the anticorrelations running east-west, suggest the presence of a velocity 
gradient in the inner parts of the cloud complex. 

is unsurprising that we were unable to find a statistically sig- 
nificant least-squares fit to a model velocity gradient across the 
data set : a gradient which fits the velocity shift across the core 
of the complex would not be able to reproduce the centroid 
velocities of the easternmost condensations. 

Centroid velocities, however, may not in any case be the best 
tracers of mass motions within an inhomogeneous cloud. In 
Paper III we derive a general expression for the velocity cen- 
troid of an optically thin line profile when the gas velocity, 
excitation temperature, and absorption coefficient all vary 
along the line formation path : 

' jo v(r)Tx(r)ic0(r)dz 
Vc(X’y)~ iLoTx(r)K0(r)dz ' 

(III-13) 

When Tx and k0 are both constant everywhere, equation (6) is 
obtained. More generally, if Tx(r) alone is constant, then since 
K0(r) is proportional to the gas density, p(r) : 

vc(x, y) = jo v(r)p(r)dz 
jo P(r)dz 

(19) 

Thus, in a uniformly excited but inhomogeneous cloud, the 
density weighting of the velocity field in the numerator of 
expression (19) is strongly suppressed by the column density 
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term which occurs in the denominator. In order to consider 
mass motions more directly, therefore, we may examine the 
quantity Q] 7](x, y)ôü]vc(x, y) alone. The bracketed term is 
simply the integrated 13CO antenna temperature, which for 
optically thin emission is proportional to H2 column density 
(Dickman 1978). Thus, Q] 7](x, y)ôü]vc(x, y) is, in a sense, a 
tracer of momentum rather than velocity fluctuations. We find 
that velocity shifts across the cloud core are more conspicuous 
when viewed in a map of this parameter. 

As an additional means of tracing mass motions within the 
Taurus complex, we consider maps of 13CO emission integrat- 
ed over narrow velocity intervals. As the centers of these inter- 
vals range from lower to higher velocities, the regions of 
maximum emission from the core shift from the southeast to 
the northwest, as shown in Figure 3. This corresponds to a 
velocity shift of ~ 3 km s- ^ from 5 to 8 km s_ 1 with respect to 
the local standard of rest, over a projected distance of 12 pc. 
Note that the outermost portions of the complex, which are 
traced by the lowest contours of the maps in Figure 3, do not 
participate in the velocity progression, suggesting that they do 
not share the core’s apparent rotation. The structure of the 
core and the dynamical consequences of the velocity shift seen 
across it will be discussed further in § IV. 

d) Structure at Small Lags 

Figure 2 suggests that at lags < 3 pc the correlation structure 
of the Taurus velocity field is approximately isotropic. In 
Figure 4a we discard entirely the angular content of the corre- 
lation function and plot values of C'fV) versus |t'| for 
0 < |t'| < 7.2 pc. (The dashed line in the figure is discussed 
below.) Two corrections to this raw ACF should be considered 
before any conclusions are drawn about its shape at small lags. 
First, radiometer noise in the data causes random centroid 
velocity fluctuations which reduce the apparent magnitude of 
any correlations in the data (Paper III). If C*(r') denotes the 
ACF of centroid velocity fluctuations which would be observed 
in the absence of instrumental noise, the degradation of the 
observed ACF at nonzero lags is given by 

CV) 
C*(t') 

t'^0. (III-41) 

Here (t'c
2 is the observed variance of centroid velocity fluctua- 

tions (including those induced by noise), while a2 is the magni- 
tude of noise-induced fluctuations alone. In § Ilia we noted 
that a' = 1.02 km s~1 and <Tn = 0.57 km s_1, so that the cor- 
rection factor is C*(t')/C'(t') = 1.45. 

The second correction to the autocorrelation function 
shown in Figure 4a is geometrical. As discussed in Paper I, the 
orientation of the Taurus complex with respect to the plane of 
the sky may require distances measured along the major axis of 
the complex to be adjusted for foreshortening. The resulting 
correction is of the form [1 + cos 0/cos 0], where 6 is the 
inclination of the major axis of the complex with respect to the 
plane of the sky and 0 is the angle between r and the major 
axis. As in Paper I, we adopt a value 9 = 60° in calculating this 
correction. Figure 4b is the AGF of Figure 4a after correction 
for instrumental noise and foreshortening. 

The fact that the number of data pairs at a given lag is 
limited in a finite data set may introduce statistical noise into 
the ACF ; random fluctuations within the data may not have 
the opportunity to average out to a negligible value. To investi- 

DICKMAN 

Fig. 3.—Integrated 13CO J= 1—>0 antenna temperature over each of 
three (overlapping) velocity intervals. The limits of integration for each veloc- 
ity interval (in km s'1) are given in the lower left-hand side of each panel. 
Right ascension increases to the left, declination toward the top, and the center 
of each diagram (marked by a small cross) is at a = 4h30m, ô = +27.0 (1950). 
The scale marker in the upper left-hand corner is Io long (2.4 pc at 
Z) = 140 pc). The shift of regions of peak emission along the core of the 
complex with increasing velocity is clearly visible. This systematic progression 
is consistent with the large-scale correlation structure seen in Fig. 2, and may 
indicate the presence of rotation in the interior regions of the Taurus system. 
Note, however, that the outermost portions of the complex, traced by the 
lowest contours of integrated antenna temperature, do not appear to share this 
motion (§ III). 
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Fig. 4a 

Fig. 4.—Plots of C'(t'), the unsmoothed, biased centroid velocity AGF for 0 < t' < 1.2 pc. Angular information has been discarded in order to investigate the 
isotropic behavior of velocity correlations at small lags. The dashed curve is the best least-squares fit of 1 — olx'p to the data. Although the data and the fitted curve 
suggest the presence of some velocity correlation at small lags, no scale length for them is resolved at the e -1 level, {a) Raw velocity ACF. {b) ACF after correcting for 
the effects of radiometer noise and geometrical foreshortening, (c) Comparison ACF of a completely uncorrelated velocity field having the same spatial sampling as 
the observational data for this paper. The field was generated by replacing the centroid velocity observed at each location in the Taurus complex with a random 
variable chosen from a normally distributed sample. 
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gate the effect of the finite and somewhat irregular extent of the 
Taurus data set, we calculated the ACF of a completely uncor- 
related model velocity field having the same spatial distribu- 
tion as our data. (The model was constructed by setting the 
centroid velocity at each position observed in Taurus equal to 
a random value chosen from a Gaussian distribution.) The 
resulting autocorrelation function is plotted in Figure 4c and 
shows that for the 0-7 pc lags under consideration here, the 
size of our data set does not introduce significant noise; the 
ACF drops very rapidly at nonzero lags. 

Comparison of Figures 4a and 4b with Figure 4c suggests 
the presence of some degree of velocity correlation at small 
lags. In neither case, however, is it obvious that the associated 
correlation length has been resolved. To further explore the 
structure of the flow at small separations, and to interpolate 
the ACF across the e-1 line (thus determining the value of the 
correlation length), we fit model autocorrelation functions to 
the points shown in Figures 4a and 4b. Although attempts to fit 
Gaussian and parabolic model AFCs were unsuccessful, we 
were able to fit the data with a model power-law function of 
the form 1 — azß (shown by the dashed curves in Figs. 4a and 
4b). While this suggests the probable existence of velocity cor- 
relations at small lags in the data, correlation lengths obtained 
in the fits were so much smaller than the sample spacing that 
we cannot attribute any physical significance to them. We 
therefore conclude that although there is evidence for correla- 
tions between gas motions at small scales within the Taurus 
complex, their characteristic length remains unresolved in the 
present data. An upper limit to the correlation length of turbu- 
lence within the Taurus molecular cloud complex is therefore 
the sample spacing of 0.6 pc (assuming a distance to the 
complex of D = 140 pc). In a subsequent paper (Kleiner and 
Dickman 1985) we analyze the velocity field of the TMC-1 

region of the Taurus clouds using data sampled at much 
smaller (T) spacings, and we resolve correlation structure at 
scales consistent with the present upper limit. 

Asa final matter, the presence of large-scale motions, such as 
those described in § IIIc, may affect the shape of an autocorrel- 
ation function at small lags. Hence, if correlations are observed 
within a source at small lags—in contrast to the present case— 
one is obliged to determine whether they reflect intrinsic, 
small-scale velocity structure, or whether they are merely an 
artifact of the systematic motions. In general, one may deal 
with the presence of systematic variations in the data (often 
termed “trends” or “nonstationary” components) by explic- 
itly identifying and removing them by least-squares fitting, or 
by using a digital high-pass filter to suppress them (cf. § II, 
Paper I). 

IV. DISCUSSION 

a) Core Velocity Gradient and Virial Equilibrium of Complex 

Centroid velocities observed along the core of the Taurus 
complex vary from ~ 5 to 8 km s “1 over a projected distance 
of 12 pc, a gradient of 0.25 km s_1 pc-1. If interpreted as a 
rotation, these values correspond to an angular velocity 
co = 8.1 x 10“15 s-1, in a sense retrograde to Galactic circular 
motion. The rotation axis points toward the northeast inclined 
at ~250 to the disk of the Galaxy. Viewed in integrated 
13CO emission (cf. Fig. 1 of Paper I), the main component of 
the core is a fragmented lane, less dense toward the middle 
than at the edges. Its appearance suggests a bar or a thick torus 
seen edge-on, rather than a disk or coincidentally aligned con- 
densations. The lane stretches from the dark cloud B14 (which 
includes Heiles 2 and TMC-1) in the southeast, to the B7 
complex in the northwest (Barnard 1927). The main com- 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
85

A
pJ

. 
. .

29
5.

 .
46

6K
 

TAURUS MOLECULAR COMPLEX 475 No. 2, 1985 

ponent is paralleled by a second, less massive, filament to the 
south, running from B18 (the site of TMC-2) to B208. 
Together, they resemble a pair of aligned filaments or frag- 
ments of a squat, hollow cylinder. 

If the centroid velocity shift along the core is taken as evi- 
dence of rotation, assessment of the virial equilibrium of the 
complex must include the rotational energy of the core as well 
as the kinetic energy of random gas motions. We use Mt to 
denote the total mass of the complex, and Mr to indicate the 
mass taking part in the apparently ordered rotation of the core. 
The maps of integrated 13CO emission and centroid velocity 
variations suggest that Mr ~ 0.5Mr Twice the rotational 
energy of the core is 2KEr = Ico2, where the moment of inertia 
of the core is / = ocgMrS

2. S denotes the half-extent of the core 
along its major axis (~6 pc), while ag, 1/12 < < 1/2, 
depends on the distribution of mass within the core (e.g., ocg = 
1/12 if the core is a bar of gas, or ag = 1/2 if the core is a disk). 
Two geometrical effects will make 2KEr inferred from observed 
values of S and co a lower limit to the actual rotational kinetic 
energy of the core. If the plane of rotation of the core is not 
seen edge-on, co will be underestimated; and if the core is not 
parallel to the plane of the sky, the observed value of S will be a 
lower limit to the actual size of the core. We estimate that 

2KEr = ccg Mr S
2co2 > <xg(2.5 x 1047)(Mr/Mi) ergs . (20) 

Is the core gravitationally bound? If ve is the equatorial 
velocity of the core (ve ~ 1.5 km s"1), then the mass of the core 
must exceed Mr > (Sv2)/G in order to balance centrifugal and 
gravitational forces. The sense of the inequality is set by the 
uncertainties in S and of the core geometry and requires Mr > 
3100 M0. Since Mr ~ 0.5Mt, and Mt ~ 6000 M0 (cf. Paper I), 
the core thus appears to be marginally bound. 

In order to evaluate the overall virial stability of the 
complex, we shall adopt as a criterion the condition 2KE 
+ Wg = 0, where KE and Wg are respectively the kinetic and 

gravitational potential energies of the complex. This implicitly 
requires that, excluding the systematic motion of the core, the 
kinetic energy of the cloud system be due to random, i.e., turb- 
ulent, gas motions; this appears reasonable, since the presence 
of ordered systematic collapse, expansion, or oscillation of the 
molecular complex solely along the line of sight—the only 
other dynamical possibilities consistent with the absence of a 
resolved correlation signature in our data—would be an 
extraordinary coincidence, particularly given the somewhat 
irregular geometry of the clouds involved. 

The irregular geometry of the Taurus clouds complicates 
determination of their binding energy. Although the extended, 
filamentary structure of the complex suggests that it be 
modeled as a section of an infinite cylinder, there is no obvious 
choice for the radius Rt, describing the transverse extent of the 
clouds. In Paper I we avoided this issue by reversing the ques- 
tion : assuming a cylindrical, homogeneous cloud supported by 
internal gas motions, we derived a corresponding equilibrium 
radius, Re. Inspection of the 13CO emission map then indi- 
cated that Re fell between the radii of the dense inner core of 
the complex and that of the more diffuse surrounding gas. We 
concluded that the observed dimensions, mass, and magnitude 
of gas motions within the Taurus clouds were consistent with a 
state of virial equilibrium. A more precise estimate of the 
stability of the complex, however, requires a specific value 
for Rt. 

Our determination of Rt attempts to account for the inho- 
mogeneous structure of the clouds. We take Rt as the rms 

transverse extent of the complex weighted by the 13 CO column 
density at (x, y), A(x, y): 

2 (N{x, y)R2(x, y))Xty 
R' - <«<*, y»„ ' (21) 

Here, R(x, y) is the perpendicular distance from (x, y) to the 
major axis of the complex. The major axis, in turn, is deter- 
mined by the requirement that £ N(x, y)R2(x, y) be a 
minimum. Under these conditions, we find that Rt = 4.0 pc. 
The gravitational potential energy of a section of an infinite 
cylinder is Wg = —(^)(GMf/Rt). The mass of the complex 
inferred from integrated 13CO emission (Paper I) is 5700 M0, 
and we find 

ffgrav = -®(GMf/Rt) * 4.7 X 1047 ergs . (22) 

The kinetic energy of random gas motions within the 
complex is 

2KE turb p(3o2)dV Ä (3.3 x 1047)(1 - Mr/Mt) ergs . (23) 

(The factor 3 in the integrand enters because <j3 measures the 
variance of gas motions only along the [one-dimensional] line 
of sight, and we assume that the gas motions are isotropic.) The 
rotational kinetic energy of the core, calculated above, is 

2KErot = 0LgMrS
2œ2 > ocg(2.5 x 1041)(Mr/Mt) ergs , (24a) 

1/12 < ocg < 1/2 , (24b) 

so that equations (22)-(24b) indicate that 2KEturb + 2KErot ~ 
— lTgrav, regardless of the value of Mr. Given the uncertainties 
introduced by the irregular structure of the complex, no better 
agreement between 2KE and — Wg can be expected, and it thus 
appears that the Taurus clouds are in virial equilibrium on 
scales larger than 0.6 pc. 

b) Small-Scale Correlation Structure and Turbulence in 
the Interstellar Medium 

We concluded in § IIIc that apart from the apparent rota- 
tion exhibited by its core, the Taurus complex possesses gas 
motions which are essentially uncorrelated on scales larger 
than 0.6 pc. We now discuss this result in the context of recent 
studies which have attempted to draw conclusions regarding 
the characteristics of turbulence in the dense interstellar 
medium by correlating molecular cloud sizes (L) with internal 
velocity dispersions (Av). Let us first summarize the results of 
these studies. 

In 1981, Larson assembled published values of At; and L for 
some 60 molecular clouds having sizes in the range 
0.5 < L < 60 pc, and found a reasonably good correlation in 
the data of the form At; oc I?, with ß — 0.38. This result was 
consistent with an earlier compilation (Larson 1979), which 
also included dispersion velocities and sizes for atomic gas 
clouds, and for which a similar relation with ß ~ ^ was deter- 
mined for length scales ranging to nearly 1 kpc. From observa- 
tions of a dozen isolated dark globules, Leung, Kutner, and 
Mead (1982) found a similar power law, but with an index 
ß = 0.48. Myers (1983) reported a similar index, ß = 0.50, 
based upon observations of 43 small dark clouds. The scatter 
in all of these studies is appreciable, and the index ß therefore 
not particularly well established ; in part, this is clearly attribut- 
able to difficulties in determining reliable cloud distances, but, 
as suggested by Leung, Kutner, and Mead, it may also reflect a 
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diversity in source conditions such as kinetic temperature. In 
any case, using the total velocity dispersion measured for the 
Taurus complex (0.99 km s_1), along with the region size 
(2R ~ 8 pc) inferred above, leads to a Av/L ratio for this large 
molecular system consistent with the compilations of both 
Larson (1979) and Leung, Kutner, and Mead (1982). 

Although the specific slope of the Av-L relation is somewhat 
uncertain, the existence of a general velocity-size correlation 
for molecular clouds hardly appears to be in doubt. Unfor- 
tunately, its meaning is far less clear. Larson (1981) has argued 
that the existence of a widespread, scale-invariant correlation 
of this sort may indicate that gas velocities in the dense inter- 
stellar medium stem from a common hierarchy of turbulent 
motions. In making this suggestion, Larson emphasized that 
the power-law index of 0.38 for his sample is close to the value 
of ^ which might be expected to characterize an incompress- 
ible, dissipationless turbulent cascade. Models of such cas- 
cades, which are sometimes termed “ inertial range ” 
turbulence, were first introduced theoretically in 1941 by Kol- 
mogorov and by Obukhov (see Friedlander and Topper 1961). 
They have the property that energy is presumed to enter the 
flow at an “outer” scale, 20, and to be dissipated solely by 
molecular viscosity at much smaller dimensions, specified by 
an “ inner ” scale, /l*. The cascade is assumed to be character- 
ized by a unique energy transfer rate, 6, per unit mass, which is 
set by the rate at which kinetic energy can be dissipated at the 
scale Ai. If the flow is incompressible and if there are no sources 
or sinks of energy between the outer and inner scales, one 
expects the dissipation rate for turbulent motions on interme- 
diate scales /, ~v3(l)/l, to be independent of / and equal to e. 
This leads to the prediction v oc /1/3, a result generally known 
as the Kolmogorov “ one-third ” law. 

Let us calculate the typical width of a spectral line formed in 
a turbulent medium obeying the one-third law. A somewhat 
more rigorous treatment of the Kolmogorov-Obukhov model 
yields the approximate velocity autocorrelation function (e.g., 
Panchev 1971): 

C(t) = 1 Ai < T < A0 . (25) 

The numerical constant in the square brackets has a value of 
0.96. In Paper III we demonstrate that the velocity dispersion 
of an optically thin molecular line, averaged over a homoge- 
neous plane-parallel cloud line-of-sight depth L, is related to 
the autocorrelation function of the velocity field by 

(jf oc 1 ^— (2/L) 
*L 

[1 - (z/L)] C(z)dz . 
Jo 

(III-25) 

Substituting equation (25) and integrating then yields the 
average full width at half-intensity, 

Ai; = (8 In 2)1/2<7I. - (const)(L/20)1/3 . (26) 

Thus, to the extent that velocity dispersion-size correlations 
for molecular clouds can be characterized by an index indistin- 
guishable from the observational data may be deemed con- 
sistent with the presence of Kolmogorov turbulence within the 
sources studied. Note further that if the observed molecular 
cloud size-line-width relation is taken as evidence that inertial 
range turbulence does pervade the dense interstellar medium, 
the outer scale of the turbulent cascade must be larger than the 
size of the largest cloud believed to obey the one-third law. 
Since Av ce tf appears to hold for molecular cloud sizes up to 

L > 60 pc (Larson 1981), the existence of a universal turbulent 
cascade therefore requires a correlation length at least some 
tens of parsecs in magnitude. 

This condition cannot be easily reconciled with the present 
study’s failure to resolve centroid velocity correlations in the 
Taurus clouds. Equation (25) implies that the correlation 
length of velocity fluctuations in the Kolmogorov model is 
Ak = 0.472o. This high degree of correlation results from the 
assumption that e is constant throughout the range At < A < A0 

and is a distinctive signature of a dissipationless turbulent 
cascade. Figure lb illustrates the centroid velocity autocorrela- 
tion function which would be determined for a cloud contain- 
ing gas motions with a Kolmogorov spectrum. It demonstrates 
that the correlation length seen from such a cloud is ~ AK and 
is therefore also a significant fraction of A0. Thus, if turbulence 
in the Taurus complex indeed follows a one-third law, pro- 
nounced isotropic velocity correlations should have been 
detected in our data; in actuality, we find only the barest hint 
of them (§ llld). One might, of course, argue that for some 
reason the Taurus dark clouds do not share the more general 
pattern of turbulence presumed to give rise to the observed 
velocity-size correlation for molecular clouds. However, we 
have already pointed out above that the size and internal 
velocity dispersion of the Taurus complex are in fact entirely 
consistent with the general correlation trends noted by Larson 
(1981) or by Leung, Kutner, and Mead (1982). 

The failure of the Kolmogorov-Obukhov model to ade- 
quately describe the internal motions of the Taurus complex— 
or, for that matter, any other molecular cloud (e.g., Scalo 
1984)—is not altogether surprising. Even with its highly 
restrictive postulates (incompressibility and neglect of self- 
gravity, for example), the Kolmogorov-Obukhov model 
cannot be derived in a self-consistent fashion from the equa- 
tions of hydrodynamics. It is not without utility: for example, 
(subsonic) turbulent motions within the Earth’s atmosphere 
appear to follow the one-third velocity law as predicted by the 
model (Mavrokoukoulakis, Ho, and Cole 1978; Tatarskii 
1961). Even in this case, however, where compressibility effects 
are largely unimportant, velocity correlations at three or more 
points in the atmosphere do not match the model’s predictions, 
necessitating the introduction of “ intermittency ” corrections 
to the theory (cf. Frisch Sulem and Nelkin 1978; Ferrini, 
Marchesoni, and Vulpiani 1982). Further, the model’s concep- 
tual foundation—a one-way cascade of energy to smaller 
scales—ignores the fundamentally three-dimensional character 
of turbulence (e.g., Kraichnan and Montgomery 1980), as well 
as the likelihood that energy injection in the interstellar 
medium occurs on multiple length scales (Fleck 1985). The 
applicability of the Kolmogorov-Obukhov theory to the super- 
sonic and highly compressible interstellar medium must there- 
fore be considered a priori suspect (Dickman 1985). 

It is occasionally suggested that the operation of the virial 
theorem may underlie the widespread velocity-size correlations 
seen in molecular clouds. In our view this is a somewhat mis- 
leading issue. Neglecting geometrical factors of order unity and 
the influence of magnetic fields, virial balance does require that 
the total velocity width of spectral line emission from a molec- 
ular cloud be related to the object’s mass by Ai;2 ~ GM/L ~ 
Gpl}, where M and p are the cloud mass and mean density. 
However, this will be true irrespective of the nature of the gas 
motions which cause the spectral broadening (it holds true, for 
example, in a radially collapsing, as well as in a static, cloud 
[e.g., Penzias 1975]). Thus, a strong correlation between 
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molecular cloud size and velocity dispersion can be 
“ explained ” by the virial theorem only if by an explanation 
one means postulating a widespread, essentially scale-free 
mechanism governing the relationship between cloud size and 
density. One is left with a second global correlation to explain, 
one which is arguably no less fundamental than the original. 

We are unable to propose a plausible origin for the line- 
width-size correlations which have been discussed above. 
Regardless of their physical origin, however, it should be 
emphasized that the general utility of line-width-cloud size 
variations as a probe of turbulence in the interstellar medium 
ultimately rests upon the premise that gas motions within all 
molecular clouds are part of a single, homogeneous velocity 
field which uniformly pervades the Galaxy. This assumption 
appears very difficult to justify given the diversity of physical 
conditions exhibited by molecular clouds, and in view of the 
fact that in the picture above such clouds must themselves be 
considered as density enhancements in a more global medium 
to which molecular observations are completely insensitive. As 
a consequence, we strongly advocate the use of the correlation 
techniques discussed in §§ II and III as more complete and less 
ambiguous investigative tools for the study of turbulence in 
interstellar clouds. 

V. SUMMARY AND CONCLUSIONS 

The presence of turbulence within molecular clouds may 
have profound consequences for the structure and evolution of 
these objects. The dynamical effects of a fluctuating velocity 
field within an interstellar cloud are determined largely by the 
degree of correlation possessed by the gas motions. This aspect 
of turbulence is described by the autocorrelation function (ACF) 
of the velocity fluctuations, 

_ (v(r)v(r + t))^ 
W <v(r)v(r)>r * 

We have demonstrated that if an optically thin spectral line 
is used to map an interstellar cloud, the ACF of the positional 
centroid velocity fluctuations exhibited by the spectra will 
reproduce reasonably well the actual velocity ACF describing 
turbulence within the cloud (§ II). This is possible because the 
centroid velocity ACF at an observed lag t' is a weighted 
average of the true velocity ACF, taken over all lags t between 
pairs of points on each of two lines of sight through the cloud 
separated by t', and the weighting function of this average 
emphasizes values of t near t'. Models indicate that for clouds 
many correlation lengths deep, the correlation length deter- 

mined from a centroid velocity ACF will be somewhat larger 
than the true value. Even in the worst-case models, however, 
the discrepancy did not exceed a factor of 2, and in all cases the 
centroid ACF preserved the basic shape of the true, underlying 
model velocity correlation function (§ II). 

Correlation techniques were applied to some 1200 13CO 
spectra taken at 15' spacing (0.6 pc at D = 140 pc) across the 
Taurus dark cloud complex. The centroid velocity ACF 
suggests the presence of a systematic shear across the in- 
terior of the complex. This motion can be identified in the 
raw data as a progression of centroid velocities along the 
core of the complex, corresponding in magnitude to a 
gradient of Av/Ax ~ 0.25 km s-1 pc-1. This may represent 
rotation of the core or simply may be a chance anisotropy of 
gas motions on the largest scales sampled by the observations 
(§ IIIc). In either case, we conclude that the Taurus complex 
appears to be in virial equilibrium (§ I Va). 

Apart from this large-scale, systematic motion, the velocity 
field revealed by our analysis appears to be essentially iso- 
tropic, and shows no significant degree of correlation on 
smaller scales (§ Hid). The sample spacing of 0.6 pc therefore 
becomes an upper limit to the apparent correlation length of 
turbulent motions within the Taurus complex. 

We have discussed this result critically in the context of 
recent suggestions that widely observed correlations between 
molecular cloud line widths and sizes may stem from the pre- 
sence of a “ cascade ” of turbulent motions in the dense inter- 
stellar medium (§ IVh). We note that a model of this type 
necessarily entails a high degree of correlation for gas motions 
within individual molecular clouds, correlations which should 
be easily exposed by the centroid velocity techniques devel- 
oped in the present paper. While the size and internal velocity 
dispersion which we determine for the Taurus system are in 
fact consistent with several previously determined size-line- 
width correlations for molecular clouds, our failure to resolve 
velocity correlations on scales larger than our 15' sample 
spacing indicates that a cascade model of turbulence is inap- 
plicable to the Taurus dark cloud complex. The assumptions 
which underlie the cascade model may themselves need recon- 
sideration. 
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ABSTRACT 
This paper presents a unified exposition of methods which permit the quantitative study of turbulent 

motions within interstellar clouds; it is a companion to the accompanying work on the velocity field of the 
Taurus molecular cloud complex. The basic method discussed here—which is at least some 30 years old— 
involves mapping a source in an optically thin spectral line, and studying the spatial correlation properties of 
the resulting velocity centroid map. 

We first establish the relationship between the centroid of an optically thin spectral transition and the 
average velocity of gas along the line formation path. We then show how the correlation length and amplitude 
of turbulence in a source are reflected in the statistical behavior of spectral line centroids. Some useful general 
relations, which basically stem from simple dimensional arguments, are noted in this context. Finally, we also 
consider the impact of data noise on derived velocity field parameters, and describe methods for assessing its 
magnitude and correcting for its influence. 
Subject headings : interstellar : molecules — turbulence 

I. INTRODUCTION 

This paper presents a unified exposition of methods which 
permit the quantitative study of turbulent motions within 
interstellar clouds. It forms a companion to our study of the 
large-scale velocity structure of the Taurus dark cloud complex 
(Kleiner and Dickman 1985a, hereafter Paper II) and to our 
subsequent work on turbulence in Heiles’s Cloud 2 (Kleiner 
1985; Kleiner and Dickman 1985fr, hereafter Paper IV). 

The notion that mapping spectral lines in a turbulent 
medium can provide quantitative information concerning the 
correlation structure of the turbulence is at least 30 years old 
(Kampé de Fériet 1955). The period since has seen occasional 
application of these ideas to the interstellar medium by, for 
example, Münch (1958), Kaplan and Klimishin (1964), Baker 
(1976), and Chièze and Lazareff (1980), among others. 
However, to our knowledge there has been no unified presen- 
tation of the concepts which underlie these studies. This is 
unfortunate for a number of reasons. While the theoretical 
principles involved in the present work are straightforward, the 
simplifications necessary to yield a tractable analysis scheme 
are not minor; critical scrutiny of the assumptions made in 
doing so will be necessary for future refinements of method. 
Second, for reasons discussed in detail elsewhere (Kleiner and 
Dickman 1984,1985fr; Dickman 1985; Kleiner 1985), our work 
utilizes autocorrelation, rather than structural, measures to 
characterize observational data; this is in sharp contrast to the 
studies cited above. Finally, our primary concern is to place the 
study of turbulence in molecular clouds firmly in the observa- 
tional arena. Thus, in addition to the inevitable theoretical 
accommodations noted above, one must also be prepared to 
deal with the complications introduced by noisy data. To our 
knowledge, this has not yet been done. 

The analysis presented here is by no means exhaustive, and a 
basic familiarity with correlation measures and their physical 
relevance to the interstellar medium is presumed on the part of 
the reader (see references in Kleiner 1985; Kleiner and 
Dickman 1984, 1985a; Scalo 1984; reviews by Scalo 1985 and 

Dickman 1985). The paper is organized into two sections. The 
first establishes the relationship between the velocity centroid 
of an optically thin spectral line in a homogeneous source and 
the underlying velocity field. It then shows how the correlation 
length and amplitude of turbulence in the source are reflected 
in the statistical behavior of the spectral centroids ; some useful 
general relationships which follow from dimensional argu- 
ments are pointed out. The concluding section of the paper 
considers the degradation produced by instrumental noise in 
estimates of velocity autocorrelation functions, and describes 
methods for gauging its magnitude and correcting for its 
influence. 

II. ANALYSIS OF VELOCITY FLUCTUATIONS 

a) Magnitude of Velocity Fluctuations 

Let v(x, y, z) denote the line-of-sight velocity component of 
gas motions at a position (x, y, z) within a homogeneous, 
plane-parallel cloud of depth L. Define the vectors r and r' as 

r = xx + yy + zz , (la) 

r' = x'x + y'y + z'z , (lb) 

where the unit vectors are taken such that the x-y plane coin- 
cides with the face of the cloud, and z lies along the line of sight 
away from the observer. We shall express the specific intensity 
of a spectral line above the adjacent continuum at frequency v 
as an antenna temperature at velocity offset u; hence, if v0 is the 
rest frequency of the transition, then u is the velocity corre- 
sponding to a Doppler shift (v0 — v) : 

The constant u0 defines the origin of the observer’s velocity 
scale. 

In what follows we shall ignore background sources of radi- 
ation, and shall work in the Rayleigh-Jeans approximation; 
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this entails no loss of generality. Letting Ta(u; x, y) denote the 
normally emergent emission at velocity u from position (x, y) 
on the face of the model cloud, and letting Tx(r) denote the 
excitation temperature of the emitting gas at r, the solution of 
the equation of radiative transfer may then be written 

pi(u;x,y,L) 
Ta(u; x, y) = I 7» e^dtiuir) . (3) 

The quantity t(u; r) = t{u; x, y, z) is the optical depth at 
Doppler velocity u and position (x, y), measured from the rear 
of the cloud to z. It is related to the absorption coefficient of the 
gas by 

t(u; ^ J K0(r')(l>[u; u(f')]i/z' . (4) 

Here K0(r) is the integrated absorption coefficient, which 
depends only upon the excitation conditions of the emitting 
gas at r, and r>(r)] is the local line profile function, which is 
a function of u (the velocity equivalent of the radiation fre- 
quency in the observer’s rest frame) and v(r), the line-of-sight 
gas velocity at r. 

The line-profile function obeys the normalization 

v(ry]du = 1 , (5) 

where the integration is performed over the spectral line in 
question. This integration is usually defined in the frequency 
domain over the range (0, oo), but upon transforming to the 
velocity variable n, and utilizing the fact that 0 is a strongly 
peaked function, it is permissible to extend the integration over 
u to the range (—oo, oo). We shall assume that 0[w; r(r)] is 
symmetric about n = 0 in the rest frame of the gas at r, and that 
the Doppler shift is the only process which couples the inferred 
velocity u with the line-of-sight component of the gas motions. 
In that case, 

<£[>; fM] = <M> - fM] • (6) 

For optically thin emission, t(u; x, y, L) <4 1, and equation 
(3) becomes simply 

Ta(u; x, >’) = Tx(r)K0(r)4>[u - v(r)]dz . (7) 

The centroid velocity of the molecular line profile observed at 
position (x, y) on the cloud face is defined as 

vc(x, y) = 
J Ta(u \ x, y)udu 
J Ta(u; x, y)du 

(8) 

Again, the integrations are carried out over the spectral profile, 
and can be extended to the range ( — oo, oo). From equation (7), 
the denominator of this expression is 

f TJu; x, y)du = Í Tx(r)K0(r)dz 
J-oo JO 

0[w — i;(r)]dw . (9) 

Changing the velocity variable to g = n — v(r\ and using the 
normalization in equation (5), result in 

Ta(u; x, y)du = Tx(r)K0(r)dz (t>(q)dq 

Tx(r)K0(r)dz . (10) 

Similarly, the numerator of equation (8) may be written as 

Ta(u\ x, y)udu = 
ro 

The inner integral can be expanded : 

fL f° 
o Tx(r)K0(r)dz [q + v{ry](j)(q)dq . (11) 

f 
Lq + v(rft4>(q)dq = v(r) <j){q)dq + q4>(q)dq. (12) 

By reference to equation (5), the first term on the right-hand 
side is seen to be simply r>(r), and the second vanishes because 
of the symmetry of 0(g). Thus, the velocity centroid of an opti- 
cally thin spectral line is 

vc(x, y) = 
$ov(r)Tx(r)K0(r)dz 

jo Tx(r)K0(r)dz 
(13) 

Within a homogeneous cloud, K0(r) and Tx(r) are constant, and 
vc(x, y) therefore becomes the mean gas velocity along the line 
of sight through (x, y) : 

vc(x, y) = (V^) 
*L 

v(r)dz = (v(r)}z , 
o 

(14) 

where angle brackets denote an average over the subscripted 
variable. 

Homogeneity is obviously an unrealistic assumption to 
apply to all but the most diffuse and undifferentiated interstel- 
lar clouds. However, the product Txk0 appears in both the 
numerator and the denominator of equation (13). Hence, to 
lowest order, departures from homogeneity will leave equation 
(14), and the results which follow hereafter, essentially 
unchanged. 

The mean value of t>c(x, y) is also the mean velocity of gas 
within the molecular cloud : 

<vc(x, y))x,y = «v(r))zyx_y = (v(r)yx y z = <t>> . (15) 

We shall assume through the remainder of this work that the 
origin of the velocity scale in equation (2) has been chosen so 
that u = 0 corresponds to <t;>. This will simplify the notation 
somewhat in the manipulations which follow. 

b) Velocity Dispersions 
Three statistical measures which characterize the gas 

motions within a molecular cloud may now be introduced. 
These are the parent, internal, and centroid velocity dispersions, 
(Tp, di, and crc, respectively. With the simplifying assumption 
that <z;> = 0, these are defined by the relations 

a2
p = (v2(r))r , (16) 

cr2 = <<[>M - <v(r)>J2>z>x¡y , (17) 

tfc = <[<v(r)>J2>x,y . (18) 

The parent dispersion measures the total magnitude of 
velocity fluctuations within a molecular cloud. It is most easily 
estimated from a set of observations by forming the collective 
spectral profile of the data (see Paper II, for example). By 
contrast, the internal dispersion characterizes the rms magni- 
tude of gas motions along individual lines of sight with respect 
to the average velocities along those directions; cr^ is thus essen- 
tially a characteristic width for the individual spectra which 
comprise the data set. The last quantity, of, is simply the 
ensemble variance of these line-of-sight average velocities. The 
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three measures are not independent; from equations (17) and 
(18), 

^ = ^ + (Tc
2. (19) 

The quantities af and of can both be derived from a set of 
spectral line observations. The velocity dispersion of a line 
profile at (x, y) is 

2/ v _ f TJu; x, y)[u - vjx, ytfdu 
<r‘ X’ ^ J TJu; x, y)du 

Substituting the solution (7) of the optically thin, homogeneous 
transport equation into equation (20) then leads directly to 
equation (17), provided that one makes the obvious identifica- 
tion 

= 0?(x, y))*,. (21a) 

Trivial application of equations (14) and (15) yields 

a2
c = <{v2

c(x, y))Xiy . (21b) 

Thus of can be calculated directly from a set of observational 
data. However, it can also be expressed theoretically in terms 
of the two-point autocorrelation function of the source velocity 
field, provided that the latter is assumed to be isotropic. This 
therefore provides a direct link between the spectral line map of 
an interstellar cloud and the simplest statistical measure of tur- 
bulence within the object. In order to derive this relationship, 
one substitutes the definition of vc(x, y) given by equation (14) 
into equation (21b): 

<Tc2(*> y))*,, = <"c> = WL2) v{r)dz ̂ v(r')dz'^ (22) 

Since the average is performed over x and y coordinates, while 
the integration is carried out over z, the integration and 
averaging operations may be interchanged. Thus, 

<^2> = (1/L2) <v(r)v(r')}Xjydzdz' . (23) 

The integrand, however, is simply a2C(|z — z'|), where C is the 
longitudinal autocorrelation function of the velocity field (see 
Paper II). Because C is even under an exchange of z and z', a 
simple change of variable (e.g., Chandrasekhar and Münch 
1952; Tatarskii 1961) allows equation (23) to be expressed as 

^ = (2a2/L) j [1 - (z/L)]C(z)rfz . (24) 

Since o2
p can be estimated from the same observational data 

which yield the value of oc (cf. above and Paper II), equation 
(24) provides a basic link between the longitudinal ACT of the 
source velocity field and two simple statistical measures which 
characterize the spectral line map of the cloud. An alternative 
form of this relation is provided by using equation (19): 

a2 = a2
pl\ - {(2/L) jjl - (z/L)]C(z)dz}] . (25) 

If the depth of an interstellar cloud appreciably exceeds its 
largest turbulent correlation scale—which we will denote 
Àc—one can make a rough estimate of the latter quantity from 
a set of observations without explicit recourse to the velocity 
correlation function. Consider a set of N independent observa- 
tions of a random variable v. Very simple statistical arguments 
demonstrate that the variance of the mean value of v averaged 

over N observations is related to the variance of v itself by 

«V>2> = <v2y/N . (26) 

If v is considered to be the line-of-sight velocity field, the 
number of independent samples along a particular sight line is 
roughly the number of correlation lengths there, N ~ (L/Àr). 
Thus, a2 - cr2(2c/L). Defining h = (öf/<72), equation (19) indi- 
cates that (XCIL) ~ (l/7i + 1). If one estimates the cloud depth L 
by any of several strategies, one can therefore obtain Xc from 
the ratio of dispersions given above. It may be worthwhile to 
emphasize that Xc is defined above by the criterion that it 
correspond to the distance over which the velocity field decor- 
relates completely. As a result, kc is likely to be several times 
larger than the more conventionally used turbulent correlation 
length (the scale over which correlations relax to a level e_1 

their maximum value). 

c) ACT of Centroid Velocity Fluctuations 

In this section we examine the relationship between the 
autocorrelation function (ACF) of spectral line centroid veloc- 
ity fluctuations and the velocity ACF which characterizes the 
turbulent medium. For simplicity we assume that any system- 
atic motions discernible in the data have been removed by 
filtering or by other suitable methods (see Paper II; Kleiner 
1985), and that the remaining motions are isotropic. The veloc- 
ity covariance and correlation functions therefore depend only 
on |t'|, and since c'(-t') = c'{t'), we shall denote the argument 
of these functions simply as t'. The autocovariance function of 
the centroid velocity fluctuations is defined as 

c'(t') = <vc(x, y)vc(x', y')')x<y . (27) 

Here (x, y) and (x', /) denote pairs of points separated by t', 

t'2 = (x - x')2 +(y- y’)2, (28) 

and it is assumed that the velocity scale of the observations has 
been adjusted so that <^c(x, y))x>J, = <^> = 0. 

The corresponding autocorrelation function is given by 

C'(t') = c'(t')/c'(0) . (29) 

We note that c'(0) is simply the variance of the centroid veloc- 
ity fluctuations : 

c'(0) = (v2(x, y))Xiy = a2 . (30) 

For optically thin emission lines (cf. eq. [14]), 

vc(x, y) = WL) v(r)dz , 

so that 

c'(T') = (1/L2) v(x, y, z)dz j v(x\ y\ zf)dzf ) . (31) 
x,y 

Inverting the order in which the integration and the average 
are performed, 

c'(t') = (1/L2) 
í 

<f(x, y, z)v(x\ ÿ, zf)yXiydzdz' . (32) 

The integrand is the longitudinal autocovariance of the gas 
motions within the cloud; referring to equation (28), it may be 
written c{[t'2 + (z — z')2]1/2}. As in the derivation of equation 
(24), the symmetry of C(t) under inversion may be exploited to 
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simplify the double integral. Using equation (29), 

r( ,, = io[l - (2/L)]C[(t'2 + z2)l,2]dz 
Jo[l - (z/L)]C(z)dz 

(33) 

The observed correlation function at lag t' is therefore a 
triangle-weighted average of C(t), formed with t running over 
all possible spacings between points on each of two sight lines 
spaced by t'. This weighting tends to emphasize values of C(t) 
for which t ~ t', and since C(t) is generally a decreasing func- 
tion of t (Lumley 1970), one thus expects C(z') to be a reliable 
estimator of the true velocity ACF. This is illustrated explicitly 
in Paper II, where equation (33) is evaluated for several differ- 
ent forms of C(t). 

III. EFFECT OF INSTRUMENTAL NOISE 

a) Degradation of the ACF 
Instrumental noise induces spurious variations in the calcu- 

lated centroid velocities of molecular line profiles. These fluc- 
tuations are spatially random and reduce the apparent 
magnitude of any correlations present in the data. To explore 
how this occurs and how it may be compensated for, let us 
denote by vc(x, y) and vf(x, y) centroid velocities observed at 
(x, y) in the presence and absence of radiometer noise, respec- 
tively. If the noise-induced error in determining the centroid 
velocity is denoted by ôvc(x, y), then clearly 

vc(x, y) = v*(x, y) + ôvc(x, y) . (34) 

One expects the velocity fluctuations induced by instrumental 
noise to be spatially uncorrelated with zero mean. Denoting 
their variance by <t^, we then have 

(ôvc(x, y)}X'y = 0 , (35a) 
for 

(Ôvc(x, y)ôvc(x\ ÿ)}X' y = <7* [(x - x')2 + (y - y')2 = 0] 

= 0 [(x - x')2 + (y - y')2 / 0] . 
(35b) 

The autocovariance of the centroid velocity fluctuations is 
defined (eq. [27] above ; Paper II) : 

c'(t') = <vc(x, y)vc(x’, ÿ))Xiy , (36a) 
where 

t'2 = (x - x')2 + (y - y')2 • (36b) 

Substituting equation (34) yields 

c'(t') = <Oc(x, y) + ôvc(x, y)][yc(x', >-') + ôvc(x’, . 

(36c) 

Using equations (36a) and (36c), we thus find that at nonzero 
lags the value of the autocovariance function remains 
unchanged by the noise, i.e., 

cXt') = c*(t')> t'^0, (37a) 

where we have used c*(t') to denote the noise-free centroid 
velocity autocovariance function. At zero lag, however, 

CX0) = c*(0) + <t2 = cr*2 + <72 , (37b) 

where of2 is the noise-free variance of centroid velocity fluc- 
tuations. The observed autocorrelation function is 

C'(T) = c'(T)/c'(0) . (38) 

Equations (37a) and (37b) thus imply a reduction in the appar- 
ent magnitude of correlations at nonzero lags given by 

CV) 
C*(t') 

t'0 , (39) 

where C*(r') is the noise-free centroid velocity ACF. 
The quantity of2 cannot be measured directly. However, 

vc(x, y) and <5i;c(x, y) are mutually independent variables; hence 
we may put 

a*2 = a2 - a2 . (40) 

Substituting equation (40) in equation (39) and rearranging 
finally yield 

t' ^ 0 . (41) 

By simple rescaling, equation (41) enables one to correct an 
autocorrelation function calculated from noisy data. However, 
in order to do so, one must estimate the impact which radi- 
ometer fluctuations have upon the velocity centroid estimation 
process, i.e., one must determine on. We consider this point 
next. 

b) Estimation of on 

In spectral line observations, radiometer noise is usually 
characterized by the variance of the antenna temperature fluc- 
tuations which occur in each spectrometer channel. The mean 
error associated with measuring the velocity centroid of a noisy 
line must depend upon the amplitude of these fluctuations, as 
well as upon a number of additional factors. These include the 
intensity and width of the line itself, the resolution of the spec- 
trometer, as well as the way in which the line is centered with 
respect to the spectrometer (important only when the emission 
or absorption features under study are only a few resolution 
elements wide). For example, the stronger a line, the less signifi- 
cant the effect of receiver noise. In this section we consider 
three independent methods for estimating the rms uncertainty 
of velocity centroids in a noisy data set. 

In principle, on may be calculated directly from the probabil- 
ity density function of ôvc. To determine this function, we first 
decompose the antenna temperature measured in a filter-bank 
channel i into the true antenna temperature due to emission 
from the cloud, and a noise component. [Since the following 
discussion deals with a single spectral line, specifying coordi- 
nates (x, y) is unnecessary and is omitted for clarity.] Retaining 
the convention that starred quantities are those which would 
be observed in the absence of noise, we write this as 

Tlx, y) = Tf(x, y) + <57](x, y) . (42) 

The temperature fluctuations (57] are assumed to have a Gauss- 
ian distribution, with zero mean, dispersion ôTa, and to be 
uncorrelated across different spectrometer channels : 

<(57]> = 0 (43a) 
and 

<<57]<57}> = 0 if i j 

= 0T2
a if i =j . (43b) 

The centroid velocity of a spectral line observed in the presence 
of instrumental noise is 

T, U Tf + U <57] 
(44) 
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where is the velocity assigned to the center of spectrometer 
channel i. The summation in this and following equations 
ranges over channels 1 through N. This defines the velocity 
range (or window) over which centroids are calculated. In order 
to simplify the following work, we shall assume that the chosen 
velocity window is centered upon, and symmetric about, vf, the 
noise-free centroid velocity : 

y t?u- 
v*=YPn=0 (45) 

and 

I «,■ = o . (46) 

Under these conditions, the noise-induced error in a centroid 
velocity determination becomes 

ôvc E Tf + X ^ ' 
(47) 

The problem thus becomes one of calculating (Sv^) = . 
We note that the sum of Gaussian random variables, as well as 
the product and sum of a constant and a Gaussian random 
variable, all retain Gaussian distributions. Hence, the centroid 
fluctuations induced by noise are a quotient of two Gaussian 
random variables. With the specific choice of velocity scale 
given by equation (45), these variables are uncorrelated and 
therefore independent : 

<£ <57]u£ ÔTj) = X Z UiiôTtôTj) = ÔTÎ Z «i = 0 . (48) 
i j i 

Now /z(Z), the probability density of a random variable 
Z = X/Y, where X and Y are themselves random variables, 
can be written (Papoulis 1965) 

fz(Z) = 
I 

Yfxr(ZY, Y)dY - 0 YfXy(ZY, Y)dY , (49) 
J — 00 

where/xr(X, Y) is the probability of finding a joint occurrence 
of X and Y. If X and Y are independent and Gaussian, their 
joint density is simply (Papoulis 1965) 

fxy(X, Y) = (InOyOy)-1 

x exp 
(x — <x»2 (7- <y»21 

24 24 J’ 1 j 

where ox, {X}, and aY, <T> are the standard deviations and 
means of X and 7, respectively. If we put (cf. eq. [47]) 

X = YJÔTiui, (51) 

Y = YJTt + ZôTi, (52) 

ôvc = Z = X/Y , (53) 

the first and second moments of X and Y can be calculated 
with the aid of equations (43a) and (43b): 

<X>=0, (54) 

4 = <X2> - <X>2 = ÔT2 X uf , (55) 

<y> =X Tf , (56) 

a2 = {Y2}-\Y}2 = ÔT2 . (57) 

We note that the size of the velocity window enters the calcu- 
lation of only through equation (55). 

Once the density fz (Z) is calculated from equation (49), the 

magnitude of the noise-induced fluctuations in the calculated 
centroid velocities is 

<r2n=<T2
z=\ Z2fz(Z)dZ . (58) 

J- oo 
Although equations (49-(58) provide the basis for an exact 

determination of a2, their evaluation rapidly becomes exceed- 
ingly cumbersome. A more serviceable and physically trans- 
parent approach to the calculation of noise effects is achieved 
by considering the estimation of o2 as a problem in the propa- 
gation of errors. Retaining the notation and velocity scale 
above, the variance of Z can be approximated in terms of the 
variances of X and Y (e.g., Bevington 1969): 

_2 V2 „2 GX XQ CTy 
V2 ' V4 ' 1 0 1 0 

(59) 

In this equation, X0 and Y0 are the mean values of X and 7, 

Xo = <X> = <ZTf«i> = 0, (60) 

Yo = <Y) = <Zn + lôT/>=YTi, (61) 
and, as above, 

ex = àT2 Z w? ’ 
i = 1 

(55) 

where N is the number of channels within the velocity window. 
For iV odd (as required by the assumption of a velocity window 
symmetric about u = 0) the sum in equation (55) may be re- 
written as 

N M 
Z uf = 2<5u2 Z (i — i)2 > M = (lV-l)/2, (62) 

1 = 1 ; = i 

where ôu denotes the velocity width of a spectrometer channel. 
Expanding the sum and substituting in equation (59) yields 

4 = ÔT2ôu2(4M3 - M)/6(£ Ti)2 , M = (N — l)/2 . (63) 

In order to show more clearly the dependence of <j2 upon 
typical observed line parameters, we neglect the term linear in 
M and take N & N — 1, so that now 

and 

N 
14 

öu2N3 

12 
(64) 

ôu2N3ÔT 

12(1 74 ' 

Except for a factor ôu, the sum in the denominator of equation 
(65) is the integrated intensity of the mean line profile. If the 
shape of a typical spectral profile is assumed to be Gaussian, 
this sum may be expressed in terms of AvFWHM and Tpeak, the 
full width at half-maximum and the peak intensity of the 
profile, respectively : 

(Z Ti)2 
71 

4 In 2 

T2 Av2 1 peak ¿^FWHM 
ÔU2 (66) 

Then equation (65) becomes 

2¥ iry 
* peak/ 3* A?; 

ôu Y 
Aiv 

N3ôu2 . (67) 

The variance of centroid fluctuations thus depends sensitively 
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on the size of the velocity window used to analyze the data 
(~iV3). Therefore, in calculating centroid velocities from a set 
of observed spectra, it is advisable to choose a velocity window 
just large enough to include the data. An obvious choice, for 
example, might be a window 6ap wide, where o2

p is the full 
variance of gas motions within the cloud under observation 
(see eqs. [15]-[17] in § II; a discussion of some practical prob- 
lems in implementing this strategy is given in Paper II). 

It should be borne in mind that, despite its transparency, the 
result above is approximate. For the analysis given in both 
Paper II and Paper IV, we have found it most useful to deter- 
mine cl by statistical simulations. One simply performs a 
numerical experiment in which a synthetic filter bank is filled 
with a model line profile. For each of many trials, the apparent 
centroid velocity is calculated before and after the addition of 
Gaussian noise appropriate to the data set to each filter-bank 
channel. The rms value of the change in centroid velocities 
induced by the addition of the noise is then taken as an. The 
parameters of the Gaussian test line profile should be set by the 
average intensity and width of one’s observed profiles. It is also 
important to allow the placement of the model spectral line 
peak to vary within the model filter bank, although, as noted 

above, the resultant error amplitude will depend strongly upon 
this placement only when one is dealing with spectra relatively 
narrow compared with the spectrometer channel width. For 
example, in dealing with the 13CO spectra which form the basis 
of the velocity analyses given in Papers II and IV, spectra 
typically ~4 channels across at half-power, this was not found 
to be a significant source of uncertainty in our estimates for an. 
As a final matter, it should be noted that because an depends 
upon one’s estimate for the noise-free width of a typical spec- 
tral line (which we have denoted <7*), one must generally iterate 
a numerical simulation for an, continually refining one’s esti- 
mate for of. Referring again to our work on 13CO in the 
Taurus complex, it was found that a few iterations quickly 
produced estimates satisfying the self-consistency requirement 
that = erf2 + or^. 
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