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ABSTRACT 
We constructed over 100 models of a steady-state, spherically symmetric outflow of gas from a star of 1.4 

Mq with a pure helium envelope and a luminosity somewhat exceeding the Eddington limit. We used Newto- 
nian gravity and a nonrelativistic equation of motion but crudely allowed for the sphericity of the atmo- 
spheres of our models. Super-Eddington luminosities were made possible by the decrease of the 
electron-scattering opacity at the high temperature at which accreted helium burns on neutron stars. 

We explored a large region in the mass-loss rate (M)-energy-loss rate (È) diagram, and we found self- 
consistent models for 1.01 < È/LEdd < 1.11, and for 16.5 < log M < 19.5 (in grams per second). Outflow veloc- 
ities at infinity never exceeded 3% of the speed of light, and were usually much smaller. The kinetic energy 
flux never exceeded 10~3LEdd. 

Our models have photospheric radii much larger than neutron star radii, and they are faint in the X-ray 
region of the spectrum. These models may be relevant to some very strong and long X-ray bursts with precur- 
sors, with no X-ray emission detected between the precursor and the main burst. It is during that phase that 
the slightly super-Eddington luminosity may be responsible for a large radius expansion and a steady-state, 
radiation-driven wind. 
Subject headings: stars: interiors — stars: neutron — stars: winds — X-rays: bursts 

I. INTRODUCTION 

Mass loss from stars is a well-observed phenomenon, and 
various models have been proposed to explain it. Models of 
stationary spherically symmetric mass outflow are very 
popular. In a steady-state model the flow is subsonic at small 
radii and supersonic at infinity, passing through a critical point 
where the outflow velocity is equal to the speed of sound. 
Radiation pressure in lines may be the driving force for mass 
outflow from hot stars, while radiation pressure on dust grains 
may be important for cool supergiants (see Cassinelli 1979 for a 
review). In both cases, a large opacity above the critical point is 
responsible for the mass outflow. This large opacity occurs 
above the photosphere, and the critical point is at a small 
optical depth. These optically thin winds are powered by 
momentum transfer from radiation to gas, and the mass-loss 
rate M is limited : 

M< —, (1) 
vc 

where L is the luminosity, v is the outflow velocity, and c is the 
speed of light. Much higher mass-loss rates are possible when 
the critical point is at a large optical depth. In that case energy 
may be transferred from radiation to the gas flow, and the limit 
(1) may be multiplied by the optical depth at the critical point. 
Such conditions may be present in some novae and symbiotic 
stars (Meier 1982c, and references therein) and in some X-ray 
bursters (Kato 1983; Ebisuzaki, Hanawa, and Sugimoto 1983). 

In this paper we study mass outflow driven by radiation 
pressure, with a critical point located at large optical depth. 
Our models also require a larger continuum opacity above the 
critical point than in the deep stellar interior. Early attempts to 
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build similar models relied on a huge opacity maximum in the 
zones of partial hydrogen and helium ionization (Zytkow 1972, 
and references therein). Unfortunately, when the density is low, 
the opacity peak due to ionization almost vanishes, and radi- 
ation cannot be used efficiently to drive the mass outflow. 
Zytkow (1972, 1973) found that no models of this type were 
self-consistent because they had more mass above the critical 
point than below it. A steady-state outflow requires the 
opposite to be true. 

If the luminosity is super-Eddington, then electron scattering 
is the only opacity needed to drive the mass outflow. However, 
if Thomson scattering is used throughout the model, then ordi- 
nary stars cannot generate a radiation-driven wind. This is 
because the radiative flux from the deep interior is limited by 
the same value of the opacity as that used in the outermost 
zones, and it is not possible to obtain a super-Eddington radi- 
ative luminosity. On the other hand, nonstandard models with 
mass and energy injected with a freely chosen rate at some 
radius below a critical point can generate such winds (Meier 
1982a, h, c, and references therein). 

Recently, more conventional stellar models have been found 
to provide super-Eddington luminosity. These are models of 
strong X-ray bursts due to helium shell flashes on accreting 
neutron stars (Hanawa and Sugimoto 1982; Taam 1982; 
Wallace, Woosley, and Weaver 1982; Paczynski 1983). During 
the flash the maximum temperature in the nuclear burning 
region exceeds 109 K, and the electron-scattering opacity is 
reduced because of relativistic electron velocities. The corre- 
sponding Compton scattering opacity is well below the 
Thomson value (see Buchler and Yueh 1976 for opacity tables), 
and radiation may diffuse from the nuclear-burning region at a 
super-Eddington rate. This radiation flux pushes out the rela- 
tively cool surface layers, where the opacity cannot drop below 
the Thomson limit even if the density becomes very small. 
There is a distinct possibility here of establishing a steady-state 
stellar wind driven by super-Eddington luminosity with no ad 
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hoc injection of mass or energy somewhere below the critical 
point. In fact, a few such models were recently published by 
Ebisuzaki, Hanawa, and Sugimoto (1983) and by Kato (1983), 
and were also reported by Melia and Joss (1983). These models 
may be relevant to very long X-ray bursts with precursors, 
where observations indicate very large expansions of the 
photospheric radii of bursting neutron stars (Tawara et al 
1984; Lewin, Vacca, and Basinska 1984). 

The aim of this paper is to establish a region in the M — É 
plane (i.e., in the mass-loss rate-energy-flow rate plane) where 
models of steady-state stellar winds driven by the radiation 
pressure on free electrons are possible. We improve the treat- 
ment of the outer boundary condition, but we use Newtonian 
gravity, just as previous investigators have done. There are two 
reasons for this. We wanted to make our survey of the M-É 
plane as simple as possible, and we also wanted to keep our 
assumptions close to those of other studies, to simplify the 
comparison. There are many improvements to be made in our 
models before meaningful comparisons can be made, not only 
with other models but also with observations. However, we 
found the present model situation so confusing that we decided 
to clarify it somewhat before investing much more effort and 
time in truly state-of-the-art computations. We find a full range 
of simple but reasonable models, and we find a range of par- 
ameters, M and É, for which various physical effects should be 
treated more carefully. 

II. COMPUTATIONAL METHOD AND INPUT PHYSICS 

Throughout this paper we adopted Newtonian equations of 
motion as well as Newtonian gravity. For the equation of state 
we used a mixture of perfect, fully ionized, and nondegenerate 
gas with radiation. For simplicity >we considered pure helium 
only. The only nuclear reaction was 3a with the rate given by 
Fowler, Caughlan, and Zimmerman (1975). The only opacity 
was from electron scattering. It was calculated with a formula 

1 + 
4.5 x 108 K 

(2) 

(see Paczynski 1983), which approximates the tables of Buchler 
and Yueh (1976) with a 2% accuracy in the nondegenerate 
limit. All our models were dominated by radiation pressure. 
Electron degeneracy was negligible, and opacities other than 
electron scattering were very small. 

Models of radiatively driven winds with a critical point at a 
large optical depth have very diffuse photospheres with the 
density scale height approximately equal to the local radius. 
Therefore, the variation of radiation energy density with radius 
is due not only to diffusion through opaque matter, but also to 
geometrical dilution. Let us define an optical depth-like par- 
ameter t*: 

t* = Kpr , (3) 

where k is the opacity, p is the density, and r is the radius. At 
large optical depth the diffusion approximation is good, and 
we may calculate the radiation energy density, Ur, and its gra- 
dient as 

Ur = aT4 , 
dUr 

dr 
3KpFr 

c 
i* 1 (LTE) , (4) 

where Fr is the radiative energy flux, defined as 

Fr 
Lr 

4nr2 ’ 
(5) 

Lr is the luminosity at radius r, and all other symbols have their 
usual meaning. When the optical depth is small, the radius is 
large, and geometrical dilution is dominant, we may write 

Fr dUr Lr * , , . i- • x 
Ur = — ,  = , t* 1 (streaming radiation). 

c dr 2nr c 
(6) 

In general, we may need a gradual transition between equa- 
tions (4) and (6), and there is no simple and exact description of 
the radiation energy density and its gradient in this case. Fol- 
lowing Paczynski (1969), we approximate the gradient with a 
sum of the two limiting cases (4) and (6) to obtain 

dU, _ SfcpL, Lr _ IjcpL, / | 2 \ ^ 
dr Anr2c 2nr3c 4nr2c \ 3KprJ 

This new simple approximate equation has the correct asymp- 
totic limits for t* > 1 and for t* <1, but its accuracy in the 
transition region should be questioned. 

Mihalas (1978, p. 246, eq. [7-181]) gives a simple expression 
for the variation of the radiation energy density with radius in 
extended atmospheres where t* varies as a power of radius. 
According to Mihalas, 

U = 
4nr2c 

1 + 3t 
n — 1 
n + 1 

(8) 

According to Hummer and Rybicki (1971), differences between 
this analytical formula and their accurate numerical solutions 
are on the order of 5%-10% when 

t* = Kpr — our (” , « > 1 , a = const. (9) 

The optical depth t may be calculated as 

Kpdr' = 
ar -(n-l) 

n — l 
(10) 

Differentiating Ur, given by equation (8), with respect to r, we 
obtain our equation (7). Therefore, equation (7) should be rea- 
sonably accurate even in the transition region, where t* ^ 1, 
provided the relation (9) is satisfied. Of course, we do not know 
a priori how t* will vary with radius in a model of a stellar 
wind. Therefore, rather than equation (8), we use the differen- 
tial equation (7), since this can be integrated without knowing 
the global solution. It turns out that variations of t* with 
radius may be roughly approximated with a power law in our 
solutions (see Fig. 4 for the variation of Kpr with r), and so it is 
reasonable to use the equation (7) to calculate variations of 
radiation energy density. 

When electron scattering dominates, the radiation may be 
far from LTE even at moderately large optical depths, and it 
may be difficult to assign it any temperature, This is not very 
important for our models because the temperature, as opposed 
to the radiation energy density, is only needed to calculate the 
opacity and gas pressure. At temperatures below 108 K gas 
pressure is not very important in our models, while the opacity 
is almost exactly equal to the Thomson value and does not 
depend on temperature. By the time the temperature reaches 
108 K the optical depth is so large that LTE holds with high 
accuracy. Therefore, we use the temperature throughout our 
models as a variable directly related to the radiation energy 
density: aT4 = Ur. It should be remembered, however, that 
this temperature is just a convenient parameter to be used in 
our equations at low and moderate optical depths, and it has 
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its full physical significance only at large optical depths. Of 
course, the spectrum of radiation emerging from the photo- 
sphere may be considerably different from the Planck spectrum 
corresponding to any temperature (see London, Howard, and 
Taam 1984). 

Except for our treatment of temperature gradient at low 
optical depths we adopted the equations for a steady-state 
radiation driven wind in an almost identical form as that used 
by Zytkow (1972), Cassinelli and Castor (1973), and Kato 
(1983). Our fundamental equations are those of mass conserva- 
tion, energy conservation, equation of motion, and the one for 
temperature gradient : 

4nr2pv = M = const , 

/ v2 GM U + P\ 
H ) + Lr = Ê = const . 

dv GM 
v ~r ^ t~ dr r 

P 

1 dP^    
p dr 4nr2c 

KLr = 0 

(11a) 

(iib) 

(lie) 

dT= IkpW A 2 \ 
dr 16nr2caT3 \ ?>Kpr) * 

(lid) 

These are supplemented with additional algebraic relations for 
the equation of state and the opacity, 

Pe = ^PT’ P' = lT*’ U=l.5Pg + 3Pr, (12) 

where all the symbols have their usual meaning, p = 4/3 for 
pure fully ionized helium, and the opacity k is given with equa- 
tion (2). Notice that in all these equations we define Lr as the 
radiative luminosity in a frame comoving with the flow. The 
luminosity as seen by a stationary observer would be (1 + 2v/c) 
times larger (see Cassinelli and Castor 1973 for a detailed 
discussion). 

To start our outflow integrations from the outside we 
adopted the following procedure. First, we chose the global 
parameters, which defined the model: the total mass M, the 
mass-loss rate M, and the total energy outflow rate È. We 
guessed an outflow velocity at infinity, v^. We could then cal- 
culate the radiative luminosity as seen by a stationary observer 
at infinity : 

= £ - M . (13a) 

Then we calculated the radiative luminosity at large radii in 
the frame comoving with the wind according to a formula pro- 
vided by Cassinelli and Castor (1973): 

Lr = L^l + 2 ^) . (13b) 

In the region which is optically very thin Lr may be assumed to 
be constant, and if the gas pressure is ignored, then equation 
(11c) may be integrated to obtain 

v2 = vl + 
2GM KLr 

2nrc 
(13c) 

The density and “temperature” of the flow were calculated 
then as 

o = — , T = (-± T'25. 
4nr2v’ \4nr2caJ 

(13d) 

Since all the variables Lr, v, p, T had been defined, it was then 
possible to integrate the equations (11) inward, through the 
photosphere, toward the critical point. 

There are some additional limitations of our treatment. At 
very small optical depths and negligible gas pressure we still 
used our equation (6) to calculate the radiation energy density, 
and we adopted our equation (12) for the radiation pressure. In 
this approximation equation (11b) may be written as 

E = Ml-- 
GM 4Ui 

+ 
3p 

+ Lr 

(14) 

The last term in that equation, 4i;/3c, is not correct. According 
to Cassinelli and Castor (1973) it should be 2d/c. This term 
should allow for the difference between the luminosity as seen 
by an oberver comoving with the flow and the luminosity as 
seen by a stationary observer, because of a first-order Doppler 
effect. We use a correct formula (eq. [13b]) to start our integra- 
tions, but our integral equation (11b) has a somewhat incorrect 
formulation at very small optical depth. This is not a large 
error, since all our models had v/c < 1. However, it is one 
reason why our simplified equations cannot be used for models 
with a critical point located at small or moderate optical depth. 

Given the starting condition at a large, but finite radius, we 
can use the four basic equations (lla)-(lld), two differential 
and two algebraic, to integrate a model inward. We found it 
convenient to replace equation (11c) with the equivalent equa- 
tion for density gradient : 

GMp dPg\ dT KpLr 

dT )p dr 4nr2c 

(15) 

which was obtained combining equations (11a) and (11c). It 
shows explicitly the presence of a critical, i.e., sonic point, 
where the velocity of outflow is equal to the isothermal sound 
speed, and the denominator and numerator of equation (15) 
must vanish simultaneously. So, we finally used two differential 
equations, (lid) and (15), and two algebraic equations, (11a) 
and (11b). The radius was the independent variable, and 
density, temperature, velocity, and luminosity were the four 
fundamental variables to be found. We used auxiliary algebraic 
equations (12) and (2) to evaluate pressure, internal energy, and 
opacity. The integrations were carried inward until a diver- 
gence of numerical solutions indicated that we were approach- 
ing a critical (sonic) point. 

We also started integrations from the critical point in a stan- 
dard way, as described by Zytkow (1972) and Kato (1983), for 
example. For a given stellar mass, mass-loss rate, and energy- 
loss rate we needed one additional parameter, which we chose 
to be the critical radius, rc. We integrated outward and tried to 
match the solution with that carried inward from infinity. We 
had two ordinary differential equations, (11c) and (lid), and 
two adjustable parameters, rc and v^. This fitting procedure 
allowed us always to find just one set of adjustable parameters; 
i.e., we could obtain a unique solution for the given values of 
M, M, and È. Once the location of the critical point had been 
established by this fitting procedure, we integrated our equa- 
tions (llaHlld) from the critical point inward. This time we 
also integrated the nuclear luminosity from helium burning 
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through the 3a reaction. The integrations were stopped when 
one of the following conditions had been satisfied : 

1. The radiative luminosity dropped to zero as a result of 
helium burning. 

2. The radius decreased to the gravitational radius defined 
as rg = IGM/c2. 

3. The temperature increased above 5 x 109 K. 
The main possible application of our models is to neutron 

stars undergoing strong nuclear flashes in the accreted matter. 
It is likely that super-Eddington luminosities are reached in 
such objects when almost all the nuclear fuel has been burned. 
Therefore, our choice of pure helium matter and our calcu- 
lations of the helium-burning rate may seem to be not very 
relevant. However, we treat our nuclear-burning calculation 
only as a rough indication that our solutions are already deep 
into the interior of our model. Also, we expect that the results 
would be qualitatively the same for any other choice of chemi- 
cal composition, provided the models were chemically homo- 
geneous throughout the outflowing steady-state region. In fact, 
chemical homogeneity is a necessary condition for the validity 
of a steady-state approximation. The other important condi- 
tion is that there should be more mass below the critical point 
(but above the base of the accreted layer as approximated by 
the nuclear burning shell) than between the critical point and 
the photosphere. Of course, in a strictly steady-state model of 
the outflow the amount of matter above the photosphere is 
logarithmically infinite. However, the flow above the photo- 
sphere is highly supersonic and optically thin; therefore, it does 
not have much dynamical or thermal effect on the flow below 
the photosphere. For this reason we ignored matter above the 
photosphere for the mass balance used to verify the applicabil- 
ity of the steady-state assumption. Notice that while obtaining 
our models we were solving a two-point boundary value 
problem. One boundary condition (dynamical) had to be satis- 

fied at the critical point. The second boundary condition 
(thermal) had to be satisfied at the photosphhere, or at any 
small optical depth (see eq. [13d]). 

in. RESULTS 

All models were computed for a star with a mass M = 1.4 
M0, with a pure helium outflowing envelope. For such a star 
the Eddington luminosity is defined as 

AncGM ^ _ .o , M 
Lfhh =  = 2.50 x 1038 ergs s x 0.2(1 + X) 

= 65300 Lns x 
M 

(16) 

We parametrized our models with two integration constants: 
the mass-loss rate M measured in grams per second, and the 
total energy-loss rate È measured in units of the Eddington 
luminosity LEdd. 

We calculated a total of 140 models using the technique 
described in the previous section. They are shown in the M — È 
plane in Figure 1. The models we consider acceptable are indi- 
cated with filled circles, and they cover the area within the 
border drawn with a dashed line. Various segments of that line 
will be described below. The three models calculated by Kato 
(1983) are shown with large open circles. The analytical models 
of Meier (1982a, b, c) correspond to our solutions with adia- 
batic interiors and are in the large region with the borders 
schematically shown with a dotted line. The lower dotted line 
is where our models become adiabatic, and the upper dotted 
line is where the critical point becomes close to the gravita- 
tional radius. Meier’s models are outside our region of accept- 
ability because they all have more mass between the 
photosphere and the critical point than between the critical 

-.5 - 
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Fig. 1.—Position of our models on the M — È plane. The acceptable models are indicated by the filled circles and are enclosed by the dashed line. Various 
segments of that line are explained in Figs 2a, 2b, and 2c. The models for which Meier’s approximations are good are to the right of the dotted line. The squares are 
models with optically thin critical points. The crosses are models with Kpr at the critical point less than 10. The open triangles are points with the critical radius 
below the gravitational radius. The plusses are points with the critical radius less than 1.2 times the gravitational radius. The open circles are points with adiabatic 
solutions. The filled triangle is a point with the mass criterion for the steady-state approximation not satisfied. The large open circles with dots represent the models 
of Kato. 
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Fig. 2c 
Fig. 2.—(a) Lines of constant TsheI, and Tflow for models in the M —£ plane. 

The region of acceptable models is enclosed by the heavy solid line. The region 
where the mass criterion for steady-state flow is not satisfied is to the right of 
the heavy dashed line. The quantity Tshen is the ratio of the mass between the 
critical point and the nuclear-burning shell to the mass outflow rate M. The 
quantity Tflow is the ratio of the mass between the critical point and the photo- 
sphere to the mass outflow rate tii. The right-hand side of our acceptable 
region is determined by TsheU > 10Tflow. This implies that there must be over 10 
times more mass below the critical point that above it. {b) Variation of the 
radius of the photosphere and the inner radius of the nuclear-burning shell in 
units of the gravitational radius are shown for our models in the A^f — £ plane. 
The top of our acceptable region is determined by rshel, approaching 
the gravitational radius, (c) Variation of J<prcritical and v^/c for our models 
in the É — Ñ plane. The left-hand side of our acceptable region is set by 
^critical ^ 10- 

point and the base at which mass and energy are injected (see 
discussion). All models calculated by ¿ytkow (1972, 1973) had 
a total energy flux below the Eddington limit, so they were all 
beyond the boundary of Figure 1, somewhere to the right and 
down. 

Notice that all our models are above the Eddington limit, 
but not by much. It may seem that if the luminous flux flowing 

from below is strongly super-Eddington, then the solutions 
with a forced outflow should exist also above the limit of 1.11 
LEdd that we found with our models. However, above that limit 
our models were not self-consistent because they failed to reach 
a state appropriate for nuclear burning above the gravitational 
radius. If a neutron star has a higher energy-loss rate, the mass 
outflow must be nonstationary. 

We checked our models for self-consistency in many ways. 
We computed the amount of matter between the critical point 
and the photosphere and divided this by the mass-loss rate. A 
characteristic time thus obtained we call Tflow. The lines of 
constant Tflow are plotted in the M —Ê plane in Figure 2a. We 
also calculated the amount of mass below the critical point but 
above the nuclear burning shell. This, divided by the mass-loss 
rate, we call Tshell. The lines of constant ishell are also shown 
in Figure 2a. A steady-state outflow is not possible unless 
Tnow ^ Tsheii- The thick dashed line in Figure 2a corresponds to 
Tfiow = Tshell. Acceptable models are to the left of that line. 

Our models are unacceptable when either the photospheric 
radius rphot or the radius of the nuclear burning shell rshell 
becomes comparable to the gravitational radius rgrav = 
2GM/c2 because of our use of Newtonian gravity. This condi- 
tion restricts the domain of acceptable models at large energy- 
loss rates and large mass-loss rates, as Figure 2b shows. The 
inclusion of general relativity, although causing no fundamen- 
tal difficulty, may modify this boundary of acceptable models 
in the M — E plane. 

Our crude treatment of radiation transfer in the atmosphere 
of the wind models becomes unacceptable when the optical 
depth at the critical point is not large. The lines of constant 
optical depth parameter t* = Kprcrit at the critical point are 
shown in Figure 2c. We considered the models with t* < 10 
unacceptable. This defines the low mass-loss rate boundary of 
the region of reasonable models in the M — Ê plane. 

Our treatment of optically thin regions required the outflow 
velocity to be much smaller than the speed of light (see eq. [14] 
and the following comments). The lines of constant ratio vjc 
are shown in Figure 2c. This ratio is small for all acceptable 
models. However, at high energy-loss rates, where general rela- 
tivity has to be taken into account, v^/c = 0.03. When general 
relativity is included, it may turn out that will be large in the 
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Fig. 3 Fig. 4 
Fig. 3.—Variation of log Lr/47ir2aT4' vs. log t* for models with energy outflow rate È = 1.05 LEdd and the mass outflow of M = 4 x 1016, 9 x 1016, 2 x 1017, 

4 x 1017,9 x 1017,1.5 x 1018,2 x 1018,3 x 1018,4 x 1018,andl x 1019 g s_1. The location of photospheres is indicated with the dotted line. 
Fig. 4.—Variation of the optical depth parameter i* = tcpr with radius is shown for the same models as in Fig. 3. The crosses and circles represent the critical and 

photospheric radii, respectively. 

models with the highest energy loss-rates. In that case a proper 
treatment of special relativistic effects may be necessary, which 
may be difficult. 

It is not possible to present all the details for all the models, 
and there is no reason to do it, since our models are fairly 
crude. However, we believe it is useful to present details for 
some of the models, since this may help to develop some feeling 
for their properties. We will discuss a cross section of the 
models at a fixed value of È = 1.05 LEdd, i.e., the models with 
log (È/LEdd — 1) = —1.30 (see Fig. 1), in order to show how 
“ good ” models deteriorate at very low and at very high values 
of mass-loss rate. 

Our equations (6) and (7) are designed to provide a proper 
asymptotic variation of radiation energy density at large 
radii, where Ur = Lr/4nr2c. This is apparent in Figure 3. In 
the deep interior we use the diffusion approximation, and 
4nr2<jT4' > Lr. We define a photosphere of a model by a rela- 
tion 4nr2aT4 = Lr, indicated by the dotted line, just as it is 
done in a plane-parallel absorbing atmosphere. In all the sub- 
sequent figures the location of a photosphere is shown with a 
small open circle. The location of a critical (i.e., sonic) point will 
always be indicated with a cross. Also apparent in Figure 3 is 
how our models switch from being radiation pressure dominat- 
ed to being gas pressure dominated. 

Our treatment of regions with small or moderate optical 
depth is reasonable, provided the optical depth like parameter 
t* = Kpr varies as a power of radius. We find this to be a good 
approximation at high mass-loss rates, but a poor one at low 
mass-loss rates, as clearly seen in Figure 4. 

The variation of outflow velocity with radius is shown in 
Figure 5 for 10 models with mass-loss rates between 4 x 1016 

and 1019 g s“1. It is apparent that does not vary much, 
while the radius at the base of the models (the “shell” radius) 
varies considerably. This radius is rather large at low mass-loss 
rates and becomes as small as the gravitational radius at very 
large mass-loss rates, restricting the domain of acceptable 
models. The failure of our models at low mass-loss rates is 

demonstrated in this figure by the photosphere falling below 
the critical point. 

The variation of the temperature with radius in our models 
is shown in Figure 6. Notice that all the models have very high 
base temperatures, ~ 109 K or more, and therefore strongly 
reduced electron scattering opacity in their interiors. 

The variation of density with temperature within the models 
is shown in Figure 7. All models are radiation pressure domin- 
ated near the photosphere, but they split into two families 
below the critical point. At very large mass-loss rates, the 
models remain radiation pressure dominated all the way to 
their bases, and they are almost adiabatic in space, just like 
Meier’s (1982a, b, c) models. This nearly adiabatic behavior 

log r (cm) 

Fig. 5.—Variation of outflow velocity with radius for the same models as 
in Fig. 3. The symbols are the same. The dotted vertical line marks the gravita- 
tional radius. 
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Fig. 6 Fig. 7 
Fig. 6.—Variation of temperature with radius for the same models as in Fig. 3. The dotted vertical line marks the gravitational radius. 
Fig. 7.—Variation of temperature with density for the same models as in Fig. 3. The dashed lines connect the points where the integrations were halted because 

either the integrated radius became smaller than the gravitational radius, or the bottom of nuclear-burning shell has been reached. Along the dotted line radiation 
pressure equals gas pressure. Along the dash-dotted line the electron gas becomes degenerate. 

makes it impossible to store much mass below the critical 
point, and the models with the highest mass-loss rates only 
marginally satisfy the requirement that there should be more 
mass below the critical point than above it. This requirement is 
not satisfied by Meier’s models. It remains to be seen if the 
inclusion of general relativity will change this situation. At low 
mass-loss rates gas pressure becomes important in the deep 
interiors of the models, and much mass can be stored there. 
Also, all the low mass-loss rate models can be integrated all the 
way to the nuclear burning shell, where their luminosity drops 
to zero. Notice that the high mass-loss rate models were ter- 
minated when they reached their gravitational radii, as shown 
in Figure 7. 

All our models had slightly super-Eddington luminosity 
above their photospheres, and all of them were even more 
super-Eddington below their critical points. The variation of 
radiative luminosity with radius is shown for some models in 
Figure 8. A steep drop of Lr at small radii indicates the location 
of the helium-burning shell. We should point out that although 
the luminosity can become highly “super-Eddington” in the 
interiors as calculated using the Thomson opacity, below the 
critical point the luminosity always satisfied the relation 

47tcGM 

Ml + X) ’ 
(17) 

where Ke is given by equation (2). 
It is interesting to compare the variation with radius of dif- 

ferent energy fluxes: radiative (due to diffusion of radiation), 
advective (due to bulk outflow of matter), and kinetic (equal to 
Mv2/2). The total of these three and the —MGM/r term 
combine to a constant for a given model, the total energy-loss 
rate È. The variation of three different energy fluxes with radius 
is shown for three models: a good one, with a moderate mass- 
loss rate in Figure 9a, a marginal one with a somewhat higher 
mass-loss rate in Figure 9b, and a bad one, with too high a 
mass-loss rate in Figure 9c. Notice that the kinetic energy is 
never important in the energy balance, which is not surprising 

for models which are only slightly super-Eddington (see Meier 
1982a, h, c). Also notice that while the mass-loss rate increases, 
the contribution of advected energy flux increases. In the same 
sequence the importance of general relativity increases. The 
large advective energy flux, increasing with decreasing radius, 
makes steady-state outflow models unreasonable. This point 
will be discussed in the next section. 

Finally, Figure 10 shows the variation of many parameters 
of our models with the rate of mass loss. It is clear that at low 
mass outflow rates the models become very thin geometrically: 
the photosphere is very close to the nuclear-burning shell. At 
large mass outflow rates the radius of the nuclear-burning shell 
becomes comparable to the gravitational radius, and there is 

Fig. 8.—Variation of diffusive photon luminosity (in the frame comoving 
with matter) with radius is shown for models with the mass outflow rates 
M = 4 x 1016, 9 x 1016, 4 x 1017, 9 x 1017, 1.5 x 1018, and 1 x 1019 g s"1. 
The crosses mark the critical radii. The open circles mark the photospheres. 
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Fig. 9c 
Fig. 9.—{a) Variation of kinetic energy flux (Lk = Mv2/2), diffusive photon 

luminosity in the comoving frame (Lr), and advected luminosity (Lad = 
M[L/ + P]i/p) with radius for an acceptable model with the energy outflow 
rate È =1.05 LEdd and the mass outflow rate M = 1.5 x 1018 g s_1. Notice 
that kinetic energy flux is multiplied by a factor 104. The stellar mass is 1.4 
M0. {b) Variation of kinetic energy flux, diffusive photon luminosity, and 
advected luminosity with radius for another acceptable model with È = 1.05 
LEdd and M = 3 x 1018 g s~\ The stellar mass is 1.4 M0. (c) Variation of 
kinetic energy flux, diffusive photon luminosity, and advected luminosity with 
radius for an unacceptable model with Ê = 1.05 LEdd and M = 1 x 1019 g s-1. 
The stellar mass is 1.4 M0. 

too little matter below the critical point compared with the 
amount of matter between the critical point and the photo 
sphere, as indicated by the ratio of the two time scales: Tshell 
and iflow. 

IV. DISCUSSION 

In the previous section we presented our results in a large 
number of figures displaying the variation of many physical 
quantities within the models. We established the existence of a 
region in the parameter space, M —Ê, where our models are 
self-consistent. That region can be enlarged using more careful 
treatments as mentioned before. Within the Newtonian 

approximation our models are limited to only 1.11 of the 
Eddington luminosity. In all our models the kinetic energy flux 
of outflowing matter is below 10“3 of the Eddington lumin- 
osity, and the outflow velocities at infinity are only a small 
fraction of the speed of light. There is a practical consequence : 
our integration constant È is almost identical with the photon 
luminosity as seen by a stationary observer at a large distance 
from the star. 

It is convenient to express the mass-loss rates in units related 
to the Eddington luminosity. Let us define M* as 

M* = LEddc~2 4nGM 
0.2(1 + X)c ' 

(18) 

For our star of 1.4 M0 with no hydrogen we have 
M* = 4 x 1017 g s_1. The mass-loss rates we find with our 
models are between 3 x 1016 and 3 x 1019 g s-1, i.e., within a 

Fig. 10.—Variation of parameters with mass outflow rate M at constant 
energy outflow rate È = 1.05 LEdd. The quantity Tflow is the time scale of the 
flow in the envelope calculated by dividing the mass between the critical point 
and the photosphere by M. The quantity ishell is the time scale for the deple- 
tion of the mass below the critical point calculated from the mass below the 
critical point divided by M. 
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few orders of magnitude of M*. However, since outflow veloc- 
ities are relatively small, the momentum carried by our winds is 
usually smaller than the momentum carried with radiation. 

Almost all our models have photospheric radii much larger 
than the radii of neutron stars (see Fig. 2b). Therefore, their 
photospheric temperatures are too low to produce significant 
X-ray emission above a few keV, except for a few models with 
the highest luminosity and the lowest mass-loss rates. 

We have not specified what should be the radii of the under- 
lying stars for our wind models. We found that the radii at the 
base of the helium-burning shells covered a large range of 
values, from slightly larger than the gravitational radius, rg = 
IGM/c2, in the models with the highest luminosity, 1.11 LEdd, 
to very large radii in models with luminosities only slightly in 
excess of the Eddington limit, as shown in Figure 2b. This 
correlation between the shell radius and the model luminosity 
follows from the dependence of the electron scattering opacity 
on the temperature. Models may have a high luminosity, pro- 
vided the opacity is low in their interior, which requires the 
shell temperature to be very high, which in turn is possible if 
the shell is at a very high gravitational potential, i.e., at a very 
small radius. These are the models for which general relativity 
is important. Also, these are the models which are most inter- 
esting, because their shell radii are comparable to the radii of 
neutron stars. It is clear from Figure 2b that stars much larger 
than neutron stars cannot give rise to winds driven by signifi- 
cantly super-Eddington luminosity. 

The atmospheres of our wind models are all sufficiently cool 
that the electron scattering opacity there is practically con- 
stant, equal to the Thomson limit. Also, outflow velocities are 
almost constant above the photospheres (see Fig. 5). Therefore, 
the gas density falls off as r-2, and the optical depth parameter 
TEE/cprær-1. This implies that the atmospheres are very 
extended and cannot be approximated with plane-parallel 
models, as previously mentioned. Indeed, we found that within 
our photospheres, defined with a relation Lr = 47rr2crT4, the 
optical depth parameter was large, 3 < t* < 12 (see Fig. 3). In 
order to predict the emerging spectra, a much more sophisti- 
cated treatment of radiation transfer is required. We may say 
offhand that our models must have spectra different from 
blackbodies, because they have very extended, electron scat- 
tering atmospheres (see London, Howard, and Taam 1984). 

Another difficulty in finding self-consistent models with 
mass outflow shows up below their critical points. The models 
with large mass-loss rates have almost adiabatic interiors. This 
was noticed by Meier (1982a, b, c), and it is apparent in the 
structure of our models as displayed on the density— 
temperature plane (see Fig. 7): models with large M follow a 
straight line with a slope: d log T/d log p = j in the region 
dominated by radiation pressure. This implies that the 
envelope mass varies only logarithmically with radius, and it is 
difficult to store enough matter below the critical point to 
justify the assumption that mass outflow may be treated as a 
steady-state phenomenon. The adiabatic nature of these 
models implies that when the electron scattering opacity 
decreases in the deep interior, the diffusive luminosity 
increases, always staying very close to the critical value. The 
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specific entropy stays very high, as indicated by the very large 
ratio of radiation to gas pressure. It is not possible to generate 
so high a specific entropy with nuclear burning. Therefore, it is 
not possible to fit models with high rates of mass loss onto a 
reasonable stellar interior. The models with moderate rates of 
mass loss depart abruptly from the adiabatic relation (see Fig. 
7), and their structure is easier to match to a deep stellar inte- 
rior within which conventional nuclear reactions generate 
energy. Meier’s models assume that the deep interior of the 
wind is either adiabatic or radiation pressure dominated, and 
are, therefore, not appropriate for matching to a stellar inte- 
rior. If, as in Meier’s models, the flow is powered by mass and 
energy being injected at some radius, an adiabatic solution is 
appropriate, and having enough mass in the flow below the 
critical point is not a concern. Therefore, Meier’s models are in 
the region of the M — È plane where our type of models are not 
self-consistent (see Fig. 1). 

The existence of a well-defined region on the M — È plane 
where models with mass outflow are self-consistent indicates 
that it should be possible to fit some of them to the models of 
neutron stars with strong bursts due to helium shell flashes. Let 
us take as an example a model of a 1.4 M0 neutron star with a 
radius equal to 3r?, i.e., ~ 12.5 km. Our models have their shell 
radii equal to 3rg along a line shown in Figure 2b. Any wind 
model on that line may be geometrically attached to the 
neutron star. The specific entropy in the shell region varies 
along the line where rshell = 3rg, being low at the left of Figure 
2b where the mass-loss rate is low, and high at the right where 
the mass-loss rate is high. Nuclear burning may generate some 
value of the specific entropy, and this selects the appropriate 
model in the M — È plane. 

In this study we do not attempt to fit our wind models to 
models of X-ray bursters. It is clear from a preceding qualitat- 
ive discussion that such a fit should be possible for some 
models, but to make it quantitative it is necessary to include 
general relativity in the wind as well as in the nuclear-burning 
region. This fitting should be done in a future study. 

There seems to be no hope to fit our wind models to white 
dwarfs with nuclear burning shells. Figure 2b indicates that by 
the time the shell radii are as large as white dwarf radii, i.e., 
~ 103rgrav, the photospheric radii are likely to be very large, 
and we are in the domain of the models studied by Zytkow 
(1972). She found that none of those models could store enough 
matter below the critical point to give rise to a steady-state 
outflow. Of course, in all those models the temperature was too 
small to lower the electron scattering opacity in the deep inte- 
rior. Decrease of opacity below the critical point is a necessary 
condition for establishment of a steady-state outflow driven by 
radiation pressure. 
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