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ABSTRACT 
We study the equilibrium configurations of magnetized, supersonic jets that are confined by a slowly vary- 

ing external pressure. We concentrate on magnetic-pressure-dominated jets, in which the mean field satisfies 
the force-free equation \ x B = fiB. If the jets are somewhat dissipative, then ju will be constant across the jet 
and will change only slowly along the jet. In jets with a high magnetic Reynolds number, the global topologi- 
cal properties of the field lines will be preserved while the jet settles to a minimum-energy configuration. In 
particular, the magnetic helicity (which is a measure of the twist and knottedness of the field lines) should be 
an approximately conserved quantity. Under these conditions, the minimum-energy solution of the field equa- 
tion is in general a linear superposition of only two modes : an axisymmetric mode which accounts for the net 
flux and axial current in the jet, and a helical mode which varies along the jet with a wavelength À & 5R 
(where R is the jet’s radius). The nonaxisymmetric mode becomes energetically^favorable when the external 
pressure drops below a certain critical value, given by 2.7 x \03K4x¥~6 (where K is the magnetic helicity per 
unit length, and ¥ is the magnetic flux). This behavior has been observed, under analogous conditions, in 
laboratory experiments on reversed-field pinches, and it appears to be a general property of dynamical systems 
in which a dissipation mechanism acts selectively on different integrals of motion (in this case, magnetic energy 
and helicity). 

This model is applied to the interpretation of the total and the polarized emission from resolved jets 
observed at a large angle to the axis. (An application to unresolved jets observed at a small angle to the axis 
is considered in the companion paper on BL Lacertae objects.) The model can account for the various non- 
axisymmetric features of extended jets like NGC 6251, including the oblique orientations of projected mag- 
netic field vectors and of Faraday rotation-measure gradients with respect to the jet axis, and the apparent 
transverse oscillations of the ridge line which do not involve the outer isophotes. The model also explains the 
observed oscillations of the FWHM and of the degree of polarization along the jet as well as the general 
appearance of emission knots. We point out a number of specific observational predictions that follow from 
this interpretation. In addition, we briefly explore the possibility that the magnetic energy which must be dissi- 
pated during the expansion of a force-free jet to maintain a minimal field configuration is the main source of 
energy for the observed synchrotron emission. 
Subject headings: galaxies : jets — hydromagnetics — polarization — radiation mechanisms 

I. INTRODUCTION 

The possible influence of embedded magnetic fields on the dynamical evolution of extragalactic radio jets has been recognized 
already in early models of these sources. Blandford and Rees (1974) noted that, in a nonrelativistic, supersonic jet which convects a 
“ frozen-in ” magnetic field, the magnetic pressure associated with the transverse field component would scale with the jet radius R as 
R~2, slower than either the longitudinal field pressure (ocR-4) or (in a nonisothermal jet) the thermal pressure (ocR-2r, where F is 
the adiabatic index). They therefore inferred that, in jets where R increases to a sufficiently large value, the transverse dynamics of the 
flow may become dominated by magnetic stresses even if it were previously controlled by thermal effects. The establishment of a 
predominantly transverse field configuration sufficiently far out along the jet, which was predicted by this argument, has subse- 
quently been inferred from polarization measurements in a number of jets associated with low-luminosity radio galaxies (e.g., Bridle 
and Perley 1984), and has motivated a closer examination of the dynamical role of the magnetic field. One effect which has been 
examined in this connection in some detail is the possible magnetic self-confinement of the jet (Chan and Henriksen 1980; Bicknell 
and Henriksen 1980; Bridle, Chan, and Henriksen 1981). In this picture, if the jet carries a net current (as originally proposed by 
Benford 1978), then the hoop stresses exerted by the associated toroidal field will eventually cause a divergent flow to recollimate. 
Under adiabatic conditions, the subsequent compression will raise the thermal pressure in the jet to a point where the contraction is 
reversed. The radius of the jet will thus oscillate with an amplitude that depends on the internal Alfvén Mach number and on the 
external pressure run. This model has been applied to the interpretation of the observed oscillations of the FWHM in several radio 
jets (e.g., Bridle et ai 1980). 

The Chan and Henriksen (1980) model of magnetically induced oscillations is based on the assumption that after the magnetic 
stresses become dynamically important, they remain in approximate equipartition with the thermal pressure in the jet. It is clear, 
however, that if radiative losses can prevent the thermal pressure from rising too rapidly when the jet is compressed, or if the jet 
carries very little net current in the first place, then the ratio of the magnetic pressure to the thermal pressure will continue to grow. 
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(It is even conceivable that in some jets this ratio is already greater than unity at the origin of the outflow.) Under these conditions, 
the convected magnetic field lines may be expected to rearrange themselves and approach a force-free configuration, with the current 
density V x being nearly everywhere parallel to the magnetic field B (e.g., Rees, Begelman, and Blandford 1981). Such a 
configuration will be different from the axisymmetric, self-similar field structure considered in the Chan and Henriksen (1980) model 
(see also Blandford and Payne 1982). In particular, it need not be axisymmetric. There is now evidence from high-resolution 
polarization maps of jets such as NGC 6251 (Perley, Bridle, and Willis 1984) for the repeated occurrence of oblique projected field 
orientations along the jet which cannot be explained with axisymmetric models. In the latter source, other observed features are also 
nonaxisymmetric, including the projected directions of the Faraday rotation-measure (RM) gradients across the jet, and the lateral 
oscillations of the intensity ridge line. The most plausible mechanism which has previously been suggested for causing such 
oscillations is the helical (m = 1) mode of the Kelvin-Helmholtz instability. However, for the relatively high Mach number and 
external-to-internal density ratio inferred for this jet, the wavelength of this mode should be much larger than the jet radius (e.g., 
Ferrari, Trussoni, and Zaninetti 1983), whereas the lateral oscillations (as well as the variations in the projected field directions and 
in the RM gradients) are found to occur on a scale of only a few times the apparent diameter of the jet. 

In this paper we study the force-free equilibria of magnetic-pressure-dominated, supersonic jets which are confined by a slowly 
varying external pressure. We demonstrate that, if the jets possess an internal dissipation mechanism, then the lowest-energy 
magnetic field configuration will in general be a superposition of two modes, one axisymmetric and one helical (of wavelength 
2 5R). We show that the nonaxisymmetric mode dominates when either the net magnetic flux in the jet is small or the external 
pressure is low, and that the synchrotron emission then exhibits the nonaxisymmetric features that are observed in jets like NGC 
6251. We are thus able to account for these phenomena in a natural way as a consequence of the equilibrium structure of the jet, 
without having to invoke any instabilities. 

In our discussion of the equilibrium properties of magnetized jets, we are guided, to a large extent, by the results of laboratory 
experiments on the so-called diffuse, reversed-field pinches and by their theoretical interpretations. Such experiments generally 
consist of establishing an axial field in a stationary plasma column by means of external coils, and then passing a current in the 
plasma which creates a toroidal field. After an initially turbulent and dissipative phase, it is often observed that the plasma settles 
into a quiescent, stable state which is characterized by a reversed axial field in the outer regions of the column. It has also been 
reported that, if the ratio of the induced current to the applied axial field is sufficiently large, then the relaxed field configuration is 
nonaxisymmetric (e.g., Bodin and Newton 1980). The original interpretation of these observations in terms of force-free fields was 
given by Taylor (1974, 1975), who pointed out that both the field reversal and the break of axial symmetry in the final equilibrium 
state may be attributed to the conservation of magnetic helicity in the plasma. The concept of magnetic helicity (the volume integral 
of the dot product of the magnetic vector potential and the magnetic field) has since been central to the theory of reversed-field 
pinches, and it remains a key concept also in our application. Although magnetic helicity is an approximately conserved quantity 
in highly conducting flows (see Appendix A), the possible consequences of this fact in jets have not yet been discussed in the literature. 

The plan of this paper is as follows : In § II we apply a variational principle to derive the general form of the force-free field 
configuration in the jet and discuss its dependence on the various relevant parameters. In § III we first calculate the total and the 
polarized synchrotron intensities for several representative magnetic field geometries, and then we use the results to interpret 
various aspects of resolved jets (such as NGC 6251) observed at a large angle to the axis. (The emission from unresolved jets 
observed at a small angle to the axis is considered in the companion paper [Königl and Choudhuri 1985].) We summarize our 
conclusions in § IV. 

II. FORCE-FREE EQUILIBRIA 

a) The Magnetic Field Equation 
Consider a magnetic-pressure-dominated jet of velocity Vj and density pj which is confined laterally by the pressure of a highly 

conducting external medium of density pe. We suppose that the magnitude of the “frozen-in” magnetic field B everywhere satisfies 
B2 < 4npjVj2, so that the jet is super-Alfvénic (Alfvén Mach number MA > 1), and we assume that the flow is also supersonic with 
respect to the ambient medium (Mach number Me> 1). Associated with the magnetic field is a vector potential A satisfying 
V x/Í = Æ, and one can define the magnetic/le/idiy of the jet by 

K ^ 11- ^ 'BdVj • (1) 

where Vj denotes the comoving volume of the jet. For a volume bounded by a magnetic surface, one can show quite generally that K 
is a measure of the twist and knottedness of the enclosed magnetic field lines (Berger and Field 1984; see also Moffatt 1978). The 
helicity is thus a topological property of the field lines and, hence, must be conserved if the jet is a perfect conductor which convects 
the field in a continuous manner. We demonstrate this fact formally in Appendix A. Since the jet will, in general, have a variable 
cross section, we find it more convenient to consider the helicity per unit length (which we denote by K) rather than the total helicity 
K. As discussed in Appendix A, this quantity will be constant along the jet if the flow is super-Alfvénic and if, as we shall henceforth 
assume, the velocity Vj and the rate of injection of magnetic helicity at the origin of the jet are effectively constant. 

The conservation of helicity constitutes a topological constraint which determines the equilibrium structure of the magnetic field 
in the rest frame of the jet. This structure can be derived from a variational principle, which consists of minimizing the specific 
magnetic energy in the jet, 

(2) 
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(where is the comoving volume per unit length), subject to the constraint K = const. As was first shown by Woltjer (1958), this 
procedure leads to a solution of the form 

\ x B = fiB, (3) 

where fi is locally a constant. This is a special case of the force-free solution. The general form of the force-free solution, which 
corresponds to jn in equation (3) being any function of the coordinates that satisfies B - V/¿ = 0, can be derived from the same 
variational principle by considering a perfectly conducting plasma which contains an arbitrary collection of closed magnetic field 
lines and magnetic surfaces. In this case, the magnetic helicity is conserved separately for each volume element bounded by field 
lines, so the variational procedure implies that fi must be constant on each one of these loops or surfaces ; however, the value of the 
constant may vary from one field line to another. The derivation of equation (3) is thus seen to involve the assumption that the 
boundary of the jet is effectively the only magnetic surface which needs to be considered in the variational process, or, equivalently, 
that each magnetic field line in the jet may for this purpose be regarded as following a volume-filling path. This situation might arise 
if the plasma in the jet were not perfectly conducting. In this view (Taylor 1974, 1975; Rusbridge 1977; Jacobson and Moses 1984), 
small departures from perfect conductivity lead to local breaking and reconnection of field lines throughout the volume of the 
plasma which destroy the topological properties of individual field lines but preserve the global invariant given by equation (1). The 
dissipation of magnetic energy which necessarily accompanies all such changes in the field topology is consistent with the decrease 
in W that is envisioned in the variational principle. In fact, one may give a physical description of the processes postulated in the 
derivation of equation (3) in terms of magnetohydrodynamic (MHD) turbulence. This was pointed out by Montgomery, Turner, and 
Vahala (1978), who noted that in three-dimensional MHD turbulence, energy cascades to lower spectral scales where it may be 
dissipated, whereas magnetic helicity cascades to larger scales where dissipation is relatively slow. Using this approach, Turner 
(1983a, b) has constructed a statistical model of a magnetized fluid in which equation (3) describes the structure of the mean field in 
the plasma. 

We have belabored the physical interpretation of equation (3) to strengthen the argument in favor of its applicability to 
extragalactic jets. In particular, we note that these jets are generally believed to have rather high Reynolds numbers (e.g., Henriksen, 
Bridle, and Chan 1982), so that they may well be turbulent. We wish to stress, however, that the reasons for expecting a force-free 
solution with a constant ß are quite general and are not tied to the specific mechanism through which this state is attained. 
Essentially, what is required is some efficient mode of dissipation which would allow the jet to approach its minimum-energy 
configuration. As noted in § I, the adiabatic expansion of the jet tends to lower its thermal pressure pj relative to the magnetic 
pressure B2/Sn, and if radiative cooling can prevent any magnetic pinch stresses that may be present from increasing pj to the 
equipartition value, then the jet should eventually become force free. This is simply a consequence of the hydrostatic balance 
condition, Vp,- = (V x Z?) x B/4n, in the jet. (Note, however, that even though the thermal pressure gradients are expected to become 
negligibly small, pj itself could remain finite.) In addition, it can be shown explicitly that, in the presence of dissipation, the only 
time-independent, force-free configuration is the one with p = const, (see Jette 1970). Thus, one can argue directly that equation (3) 
should describe the steady-state topology of a magnetized, imperfectly conducting jet. In § Illfr, we briefly consider the question of 
whether the observed synchroton emission from radio jets can account for the energy dissipated in the field-redistribution process. 
Here we merely postulate that an efficient dissipation mechanism does exist and proceed to examine the consequences. 

b) Solution of the Field Equation 
The general solution of equation (3) in cylindrical coordinates can be written as a series of the form Z? — Bmk bm\r, 6, z), where 

m is a nonnegative integer, and where the individual modes bmk depend on 6 and z through the phase function </> = (m6 + kz) 
(Chandrasekhar and Kendall 1957; Barberio-Corsetti 1973). The explicit expressions for the modes generally involve a linear 
combination of the Bessel functions Jm and the Neumann functions Nm ; however, when the domain of the solution includes the axis 
r = 0 (as in the case of a filled jet), these expressions simplify to 

br
mk = - ■ 

h m 
°e 

(F2 

(F2 

[kJm'(y) + y JJ) 

1 F r „ x r / x 
-yYTj |^Jm (>') + y JJy) 

sin (j) , 

COS (j) , 

bz
mk = Jm(y) COS (j) , (4) 

where y = (p2 — k2)i/2r, and where the prime denotes differentiation with respect to the argument. 
The boundary condition that must be satisfied by this solution in the case of a perfectly conducting external medium is that the 

normal component of B vanish. (In the case of a resistive jet confined by a good conductor, the surface current density must also 
vanish, so the field cannot remain force-free at the boundary.) If the jet surface is a cylinder of radius R, then the condition on the 
normal component of B becomes Br(R) = 0. This condition is automatically satisfied by the m = 0, /c = 0 mode, but for all other 
modes it leads to an eigenvalue equation which relates ^ to m and k. In this geometry, the m = 0, /c = 0 mode is also the only one 
which accounts for a net axial flux (or, equivalently, a net axial current) in the plasma. 

In § lia we noted that equation (3) can be derived from a variational principle in which the specific magnetic energy W is 
minimized subject to the constraint that the specificjnagnetic helicity K remain constant. It does not follow, however, that in any 
given field arrangement with a prescribed value of K, all modes contribute equally to W. Taylor (1974, 1975) first pointed out the 
rather surprising fact that, in a cylindrical geometry, the most general minimum-energy configuration which satisfies the boundary 
condition consists of only the m = 0 and m = 1 modes, and of no other mode! Taylor derived this result in connection with his 
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interpretation of diffuse pinch discharges in cylindrical plasma columns bounded by perfectly conducting, rigid walls (see § I). It may 
thus appear at first sight unlikely that a similar result would apply to astrophysical jets which are not confined by a rigid boundary, 
but rather by the pressure of an external medium (i.e., the boundary is free). Taking, for example, the m = 1 mode, it is seen from 
equation (4) that its contribution to the pressure at r = R oscillates between the peak value and zero on going halfway around the 
boundary (at constant z), or half a wavelength along the boundary (at constant 6). For a free boundary under static conditions, this 
behavior would cause large distortions away from cylindrical geometry. 

In spite of these apparent caveats, it turns out that, for a magnetically dominated jet confined by a uniform or slowly varying 
external pressure and satisfying MA, Me $> 1, the approximation of an effectively rigid, cylindrical boundary is justified. The slow 
variation of the pressure ensures that the mean jet radius R remains nearly constant over a length scale much larger than R. In fact, 
for a confined jet, dR/dz < 1/MA, so the cylindrical approximation should be adequate as long as MA > 1. The requirement Me 1, 
on the other hand, guarantees that the deviations from the mean radius remain small. This can be seen by considering the ripples AR 
induced at the surface of the jet by the periodic pressure variations of the m > 0, /c > 0 modes of equation (4), and by analyzing either 
the response of the external medium to the passage of these ripples or the force-balance condition in the rest frame of the jet. By 
either method, one finds AR/R < 1/Me (see Appendix B). Physically, this result reflects the fact that the relative supersonic motion 
endows the ambient medium with an effective rigidity which inhibits large variations in R even though the boundary of the jet is free. 
This conclusion is valid regardless of whether rj = pj/pe is greater than or less than unity, although for rç < 1 the jet could be 
effectively rigid (Me $> 1) and yet have a relatively low value of MA which would allow it to adjust rapidly to any variations in the 
external pressure. (A jet with rj < 1 is also less susceptible to Kelvin-Helmhotz instabilities; e.g., Ferrari, Trussoni, and Zaninetti 
1983.) 

When the above conditions are satisfied, one may approximate any given portion of the jet where pe æ const, by a cylinder of 
mean radius R. This radius can be calculated from equation (4) by equating pe with the mean magnetic pressure (the value of 
[Bd

2 + Bz
2]/87t averaged over 6) at r = R. To the extent that the surface ripples AR can be neglected (Me > 1), the boundary 

condition is again Br{R) & 0, and Taylor’s conclusions regarding the lowest energy field configuration should apply. We now 
demonstrate this result explicitly in the context of a pressure-confined jet. 

c) The Minimum-Energy State 

We wish to determine the lowest energy configuration of a cylindrical, Vj = const, jet as a function of the magnetic helicity per unit 
length K, the net axial flux T1, and the external pressure pe. Starting from equation (2) and using the identity 
B • \ x A = A • \ x B \ • A x B as well as equation (3) and Stokes’s theorem, we can express the magnetic energy per unit 
length in terms of K by 

If 
87C Je; 

W = nK + — A x B ■ dLj = nK + S , (5) 

where E, denotes the jet’s surface area per unit length (cf. Reiman 1980). If one employs the Chandrasekhar-Kendall representation 
(eq. [4]), then only the m = 0, /c = 0 mode contributes to the surface integral. This mode is given by 

Br° = 0 , Be° = B0 JiipR), Bz° = B0 J0(pR) (6) 

(see Fig. 1), and is also the only one which contributes to the net axial flux, 

2nB0 R2 

pR 
J.ipR). (7) 

(Henceforth, we suppress the /c-dependence in the amplitudes bmk. For the m = 0 mode, the requirement that the field be divergence 
free implies that k must also be zero.) If A is defined so that Ad(R) = 'V/lnR and AZ(R) = 0 (see Appendix A), then it is straightfor- 
ward to verify that, in equation (5), 

and 

5 = 
W fiR J0{ßR) 
_4n) R2 JiinR)’ 

P _ /^Yl + JiV?)] - 2J0(^)J1(/|R)1 
0 W AVR) J' 

As long as only the m = 0 mode is present, the radius R is given from the pressure-balance condition by 

(8) 

(9) 

R = Jo2W 
1/4 

(10) 

It is clear from equations (9) and (10) that the combinations F0 = K0 R/'F2 and G0 = peR
4/x¥2 define two dimensionless quantities 

which are functions of pR alone. One can eliminate R between F0 and G0 by defining the function H0(pR) = pe
x¥6/K0

4 = G0/F0
4, 

which can then be used to calculate pR for the given values of K0, ¥, and pe. After obtaining pR, one can derive the values of R, S, 
and W0 by a successive application of equations (10), (8), and (5). 
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Fig. 1.—Schematic representation of the magnetic field configuration in the m = 0 and m = 1 modes. In each case, the upper diagram shows a cross section 
normal to the jet axis, while the lower diagram gives a side view of the jet. The arrows indicate the directions of the local magnetic field vectors, whereas the dashed 
curves trace the loci of neutral points (i.e., points where Br = B0 = 0) in successive cross sections. The m = 0 field configuration is axisymmetric, with the axial 
component Bz decreasing away from the axis and possibly changing sign near the boundary. The m = 1 field configuration is helical (wavelength 2 ^ 5R), and 
corresponds to two oppositely directed flux tubes (one of which is stippled in the illustration) that are wrapped around each other. In this case, Bz vanishes on the 
axis. 

A similar procedure can be used to calculate R and W when both the m = 0 and the m = 1 modes are present. Using the identity 
Ji'(y) = Jo(y) — ■/1( vl v. and defining the amplitude-ratio e by ß1 = eB0, we rewrite the m = 1 field components in the form 

ß,1 = 

v = 

eBp 
(H2 - k2)112 

tBp 
(H2 - k2)112 

[u0(y) + ^ J i (y) 

y 
k) JAy) 

sin (9 + kz), 

cos (6 -h kz) , 

BZ
1 = eBoJ^y) cos (9 + kz) , (11) 

where again y = (fi2 — k2)1,2r (see Fig. 1). In order to calculate the contribution of this mode to the magnetic helicity, we must take 
account of the boundary condition Br(R) = 0, which implies 

where Y = [(/¿R)2 — (/cR)2]1/2. The result is 

kRJ0(Y) + 
- kR\ 

\liR + kRj 

1/2 
JÁY) = 0 , (12) 

- €2 nR(l2{(fiR)2ll + (fcß)2] - (ßR)(kR)}(^R + kR)2 - (ßR - kR)2JJ0
2(Y) + (ßR - kR)2) 

Kí-r{s¿) ^ ŸÏJ7ÜÏR) (13) 

(see Appendix C). The total helicity per unit length is now given by the sum of equations (9) and (13), X = R0 + In accordance 
with the discusssion in § lib, we calculate the contribution of the m = 1 mode to the boundary pressure by averaging [(B/)2 

+ (Bz
1)2]2/87t over 9. The pressure-balance condition then implies 

R = i(/^)2 

{inPe \4nJ 
i + 

jy^xK) y 

JArR) 2 

(ßR + kR)2 (kR)2Y2 \ J0
2(Y) 

+ 
(ßR - kR)2J JAuR) 

1/4 
(14) 

which generalizes equation (10). We can similarly generalize the functions F0, G0, and H0 by writing, in obvious notation, 
KR/V2 = F0(nR) + €2F1(ßR, kR); pe RA/V2 = G0(pR) + €2G1(fiR, kR); and by defining H(pR, kR, e) ee pe V6/K4. H can be reduced 
to a function of e alone with the help of equation (12). Since we are interested in the lowest energy state, we only need to consider the 
minimum value of pR for which a solution of equation (12) exists (see Reiman 1980). This is found by a numerical calculation to be 

corresponding to 
(pR)min = 3.n, 

(kR)min = 1.25 . 

(15a) 

(15b) 
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Substituting these values into the defining relation for H, we obtain a quadratic equation for e2, with the value of H as a parameter. 
This equation yields positive solutions (corresponding to real values of e) provided that H is smaller than a certain critical value 
given by 

Hc = (if) = 17 x 103 • (16) 

If this condition is fulfilled, one can use the computed value of e2 in equation (14) to find R, andjhen, finally, to obtain W. 
We have used these procedures to calculate IT as a function of pe for given values of K and x¥. We display the result in a 

dimensionless form in Figure 2 by plotting IT^2/^2 versus log H. It is seen from this figure that, for sufficiently large values of pe, 
only the m = 0 mode {dashed curve) exists. Along the m = 0 curve, pR increases with decreasing external pressure, reaching the value 
(juR)min (eq- [15a]) at H = Hc (eq. [16]). At that point, the mixed-mode state {solid curve) branches off. The specific value of pe at 
which the bifurcation occurs depends on the magnitude of the conserved quantities ^ and K : it is higher the lower the value of ¥ 
and the higher the value of X. Along the (m = 0) + (m = 1) curve, the value of pR remains fixed at 3.11, whereas e increases with 
decreasing pe. It is evident from Figure 2 that, beyond the bifurcation point, the mixed-mode curve lies below the m = 0 curve. We 
have thus recovered Taylor’s (1974, 1975) result (see also Reiman 1980) that, for values of pR in excess of 3.11, the mixed-mode 
configuration is energetically the favorable state. It is also easy to verify that all other modes have higher energies than the m = 0 
mode, so that they need not be considered in this comparison. This follows from the fact that the condition Br{R) = 0 for these 
modes is satisfied only for values of pR that exceed the asymptotic value of pR on the m = 0 curve, given by the first zero of the 
function Ji (see eqs. [8] and [9]). 

So far we have considered only “static” equilibria: Given the values of pe, 
lF, and X, we have calculated the lowest-energy field 

configuration and the corresponding value of R. However, if the gas in the jet is able to maintain a minimal force-free configuration 
(with constant X and 'F) as it moves out, then one may interpret Figure 2 also as describing the dynamical evolution of the 
equilibrium state with distance along the jet. As is evident from this figure, the energy per unit length in the jet must in this case 
continuously decrease as the gas flows into regions of lower external pressure. One mechanism by which the gas loses energy is the 
pedVj work that it does on the external medium. When only the m = 0 mode is present, one can readily verify from equations (5) and 
(8H10) that this work is exactly in the amount that is required for remaining in the minimum-energy state. In the case of the 
mixed-mode state, however, the pedVjwoxk is insufficient for maintaining the minimal field configuration, so energy must be 
dissipated at a rate per unit length of Pm = —[{dW/dR) + InRpJv^dR/dz). Using^equations (5), (8), (9), (13), and (15), we obtain 
{dW/dR) = —(IT + S)/R. Substituting for pe from equation (14), we then find that Pm depends only on the m = 1 field component 
and is given by 

Pm = 3.3 x lO-3^2.,* —. (17) 

Although the pressure pe is the independent physical parameter which varies along the jet, it is in general only the radius R which 
is directly measurable. In considering the observational implications of this model, it is thus more convenient to treat R as the 
independent variable. This is done in Figure 3, where we display the evolution of pR, €, and pe in the minimum-energy state for fixed 

Fig. 2 Fig. 3 
Fig. 2.—The magnetic energy per unit length, W (normalized by K2/'¥2), as a function of the external pressure pe (normalized by K^/'i'6) for fixed values of K (the 

magnetic helicity per unit length) and 'F (the magnetic flux). The dashed and solid curves denote the pure m = 0 and the mixed-mode states, respectively. The letter c 
on the abscissa marks the bifurcation point (eq. [16]) where the mixed-mode curve branches off. 

Fig. 3.—The variation of pR (where p is the constant in the force-free field equation), e (the ratio of the m — 0 and the m = 1 field amplitudes), and pe (the 
boundary pressure) with radius R for the minimum-energy state at fixed specific helicity K and flux ^F. The dashed and solid portions of the curves correspond, 
respectively, to the pure m = 0 and the (m = 0) + (m = 1) field configurations. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
85

A
pJ

. 
. .

28
9.

 .
17

3K
 

No. 1, 1985 FORCE-FREE EQUILIBRIA OF MAGNETIZED JETS 179 

values of K and VF. This figure shows explicitly the increase of fiR in the pure m = 0 state, and of e in the mixed-mode state, with 
decreasing pe and increasing R. An upper limit on the rate of increase of pR with R is given by the small-R limit, pR ce R (cf. eq. [9]), 
whereas a lower limit on the variation of e is given by the large-R limit, € oc R1/2 (cf. eq. [13]). The evolution of pe with R reflects the 
behavior of the magnetic field amplitudes. In the limit e 1 when the m = 0 mode dominates, B scales roughly as R~ 2, as prescribed 
by the flux-conservation condition (eq. [7]). On the other hand, when e 1 and the m = 1 mode dominates, the helicity- 
conservation condition (eq. [13]) implies B oc R3/2. We note that the radial scaling of B in the 6^1 limit is intermediate between the 
variations obtained by applying the flux-conservation condition separately to the longitudinal and to the transverse field com- 
ponents (see § I). This illustrates the fact that, if the jet is to remain in a minimum-energy state as well as conserve helicity during its 
expansion (see preceding paragraph), then the different field components cannot evolve independently. 

d) Nonaxisymmetric Equilibria 
The remarkable fact demonstrated by Figure 2 is that, for certain values of the external pressure and of the conserved parameters 

in the jet, the equilibrium configuration is likely to be nonaxisymmetric. This figure indicates, moreover, that even if the field 
convected by the outflowing gas initially has an axisymmetric structure, it may become nonaxisymmetric further out along the jet. 
In fact, as we noted in § lie, if the field can continuously adjust to maintain a minimum-energy configuration while conserving 
helicity, then its behavior as the gas moves to regions of lower pe may be inferred by tracing the descent of the m = 0 curve in this 
figure toward the bifurcation point (pR = 3.11). At that point, if the jet is dissipative, the field will switch over to the mixed-mode 
state. The m = 0 mode, however, is unstable to an m = 1 perturbation even within the framework of ideal MHD, albeit only for 
pR > 3.18 (Voslamber and Callebaut 1962). In the statistical model considered by Turner (1983a, b\ one can associate the transition 
to a nonaxisymmetric configuration with the narrowing of the fluctuation spectrum about the mean m = 0 state down to a single 
m = 1 mode when the bifurcation point is approached. The fact that the nonaxisymmetric state contains no contributions from 
modes higher than m = 1 gives rise to its characteristic wavelength, À % 5R (eq. [15b]), which depends only on the value of the local 
radius but not on the amplitude of the nonaxisymmetric component. 

The appearance of a nonaxisymmetric equilibrium is related to the fact that the system possesses more than one integral of 
motion (in this case, magnetic helicity and energy), and that these integrals exhibit selective decay (in this case, energy can be 
dissipated while helicity remains approximately conserved). This type of symmetry breaking is not unique to MHD and, in fact, 
occurs in other classical dynamical systems where these general conditions are fulfilled. Perhaps the most familiar example can be 
found in the theory of the equilibrium configurations of rotating fluid masses (e.g., Chandrasekhar 1969). In this case, if one 
considers the minimum-energy shape of a uniformly rotating, incompressible mass of fluid, one finds that for small angular velocities 
it is axisymmetric (a Maclaurin spheroid), but that as the angular velocity (and correspondingly the ellipticity e) increases, a 
bifurcation point is reached (at e = 0.81) where nonaxisymmetric configurations (Jacobi ellipsoids) become energetically favorable. 
The similarity with the MHD case is made all the more striking by the fact that, even in the absence of dissipation, the 
axisymmetric configurations become dynamically unstable somewhat beyond the bifurcation point (at e = 0.95). Here the integrals 
of motion are the angular momentum and the energy, and it is again the energy which is assumed to decay more rapidly. The 
preferentially dissipated quantity need not, however, be the energy. This is exemplified by two-dimensional Navier-Stokes turbu- 
lence, where energy cascades to longer wavelengths and is approximately conserved, whereas enstrophy (the volume integral of the 
vorticity squared) cascades to shorter wavelengths and is dissipated ; this behavior again gives rise to nonaxisymmetric equilibria, a 
fact which has found applications in the study of oceans and planetary atmospheres (see Kraichnan and Montgomery 1980 for a 
review). 

In view of the preceding examples, it seems reasonable to expect that nonaxisymmetric magnetic configurations would appear 
even in systems where the field had not relaxed to a force-free state, as long as the magnetic helicity remained conserved relative to 
the energy. Incomplete relaxation may occur if the system is only weakly dissipative, so that other global parameters in addition to 
the helicity are approximately conserved on the time scale of interest (Bhattacharjee, Dewar, and Monticello 1980). An alternative 
possibility (Turner and Christiansen 1981) is that, although the plasma is resistive, turbulent fluctuations lead to a continuous 
regeneration of the magnetic field (cf. De Young 1980). The hypothesis of incomplete relaxation was originally advanced to account 
for a number of observed features in reversed-field pinches which were inconsistent with the predictions of the force-free model. We 
recall from our discussion in § I, however, that pinch discharges also exhibit nonaxisymmetric configurations, which supports the 
conclusion that such behavior is not contingent on the field being force free. Although astrophysical jets may well be incompletely 
relaxed, this need not have a major effect on the basic structure of the magnetic field (cf. Turner and Christiansen 1981), and hence 
we continue to consider in the remainder of this paper only the simple, force-free model. 

III. EMISSION PROPERTIES OF FORGE-FREE JETS 

a) Calculation of the Stokes Parameters 
As an application of our model, we consider in this section the expected distribution of the total and the polarized intensities from 

nonrelativistic, synchrotron-emitting jets with force-free magnetic field configurations. We assume that the emission is optically thin 
and that the jets are observed at large angles to their axes and are fully resolved. Since we are mainly interested in the effect of the 
magnetic field structure on the emission pattern, we model the spatial distribution N of the radiating particles very crudely by a 
Gaussian in the radial coordinate r, N(r) = N0e~Kr2/R2, where /c <0 corresponds to a nearly uniform distribution and k > 1 
represents strong concentration near the axis. We further suppose that, at each point, the emitting particles have an isotropic 
pitch-angle distribution and a power-law energy distribution corresponding to a spectral index a. Under these conditions, the total 
intensity received along a line of sight ex> through the jet is given by 

/(/, z') = C N(B/ + £z 
2)(1 +a)/2dx' , (18) 
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where ey/ and ez> are two orthogonal directions in the plane normal to the line of sight, and where the factor C incorporates all the 
constants in the problem (including the frequency of observation). 

The polarized emission from the jet is best calculated with the help of the Stokes parameters Q and U (e.g., Gardner and Whiteoak 
1966). In terms of these parameters, the degree of linear polarization is given by 

P(y\ Jst +;j2 
(19a) 

whereas the position angle of the projected mean electric field vector is 

Q and U are given, respectively, by 

z, , „ 1 

£(.y, z ) = z tan 

and 

Q(ÿ, z') = c N(By.2 + Bz.2)(1 +c‘)l2p cos 2y_ dx' , 

(19b) 

(20a) 

v{y\ z') = c N(By
2 + ßz.2)a +a)/2p sin 2y dx', 

where p is the intrinsic degree of polarization and where 

If the magnetic field is locally uniform, then p is given by 

3a + 3 
P “ 3a + 5 

(20b) 

(20c) 

(21) 

however, in a turbulent plasma the degree of polarization could be substantially lower because of the random fluctuations about the 
mean field. We have not included in equation (20c) a term proportional to the rotation measure to the point of emission, which 
would have taken account of possible depolarization in the jet (e.g., Cioffi and Jones 1980). This omission is justified in the case of 
extended jets, where depolarization effects are generally small (see § III6). 

Figures 4—6 illustrate some of the results of our calculations. In these figures we have set a = tc = 1, but the results are 
qualitatively similar for 0.5 < a < 1 (the characteristic range of extended jets) and for 0 < k < 2. In Figure 4a we plot the 

Fig. 4.—The total-intensity contours (a) and projected magnetic field vectors (b) for a cylindrical, force-free jet with e = 5 that is observed at an angle <5 = 90° to 
the axis. The synchrotron emissivity was calculated for a = k: = 1 (see text for notation). In Fig. 4a, the contours represent f,..., | of the maximum intensity in the 
jet. In Fig. 4b, the length of each line segment is proportional to the magnitude of the local polarized intensity. The extent of the jet in these plots corresponds to one 
wavelength of the m = 1 mode. 
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total-intensity contours for a mixture of the m = 0 and m = 1 modes (eqs. [6] and [11] with € = 5) in a jet observed at a right angle 
to the axis. Figure 4b shows the projected magnetic field vectors in this jet as they would have been inferred from polarization 
measurements after correcting for possible Faraday rotation effects along the line of sight to the jet. In this figure, the projected 
magnetic field vectors are represented by lines whose lengths are proportional to the polarized intensity P x I (see eq. [19a]), and 
whose orientations are obtained by adding 90° to the position angle ¿ of the mean electric field (eq. [19b]). Figure 5 gives similar 
plots for a pure m = 1 field in a jet observed at an angle Ô = 70° to the axis. In Figure 6 we display the variation of the total intensity 
I and of the degree of polarization P along the ridge line of the jet (defined as the locus of the peak intensity points along the jet) for 
the parameters of Figure 5. (The corresponding plots for the parameters of Fig. 4 are similar.) We now consider the implications of 
these results to the interpretation of resolved radio jets. 

b) Application to NGC 625] 
NGC 6251 is one of the best-studied examples of an extended, well-collimated jet. Recently, a high-resolution, multifrequency 

radio study by Perley, Bridle, and Willis (1984, hereafter PBW) has provided detailed information on the properties of the total and 
the polarized emission from this source. We have therefore chosen to concentrate on this jet in discussing the various observed 
features which can be interpreted by our model. Many of these features, however, have also been detected in other extended radio 
sources. We now list the main emission properties to which the results of § Ilia may be relevant; for a fuller description of the 
observations, we refer the reader to PBW or to the review article by Bridle and Perley (1984). 

Fic. 6—The variation of the total intensity / (normalized by its peak value) and of the degree of polarization P along the ridge line of the jet for the model 
considered in Fig. 5. The apparent distance za along the jet is measured in units of Àa, the projected wavelength of the m = 1 mode. 
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i) T ransverse Oscillations of the Ridge Line 
Small oscillations of the ridge line about a mean position angle were found to occur at various locations along the jet (Fig. 7 in 

PBW). In the inner jet (at angular distances of 20"-40" from the origin), these oscillations have a dominant wavelength of ~9", 
whereas in the outer jet (between 120" and 240"), the characteristic wavelength is ~31". In the latter range, it has been determined 
that the oscillations result from changes in the symmetry of the transverse intensity profiles and do not involve the lower-intensity, 
outer radio contours. (The transverse resolution in the inner jet was not good enough to permit a similar determination there.) 
Beyond ~240", the jet is dominated by a long-wavelength (~ 143") oscillation which involves both the outer isophotes and the ridge 
line. As was discussed by PBW, the 143" oscillation could be attributed either to a helical Kelvin-Helmholtz instability or to a 
precession of the central source, but neither one of these mechanisms is likely to account for the shorter-wavelength oscillations. In 
particular, for the relatively high Mach numbers (M ~ 10) and the low internal-to-external density ratios (rç < 1) estimated for this 
jet by PBW, the wavelength of the fastest-growing helical Kelvin-Helmholtz mode is predicted to be much larger than the radius jR 
of the jet (cf. Ferrari, Trussoni, and Zaninetti 1983). In contrast, the actual oscillation wavelengths in the inner and outer regions of 
the jet are only ~4.7Æ and ~ 5.6R, respectively (where R is estimated as one-half the average FWHM in the given region). 

The appearance of transverse oscillations is, however, a natural consequence of the presence of an m = 1 mode in the equilibrium 
configuration of a force-free jet. The oscillations in this case can arise in one of two ways, illustrated in Figures 4a and 5a, 
respectively. The first possibility (Fig. 4a) corresponds to the magnetic field containing comparable contributions from the m = 0 
and m = 1 modes (i.e., e ~ 1). To understand the origin of this effect, assume that the jet is seen at a right angle to its axis, and 
consider the plane containing both the axis and the line of sight to the observer. It is clear from equation (11) and Figure 1 that, for 
any given point in the jet on one side of this plane, there exists a point on the other side of the plane (obtained by reflection through 
the axis) such that the field components Bg1 and at the two points are equal in magnitude but opposite in sign. On the other 
hand, the components Bd° and Bz° (eq. [6]) have the same magnitude and the same sign at both points. Thus, the contributions from 
the two modes will add with opposite signs on the two sides of the midplane, resulting in a higher net field on one side and a shift of 
the ridge line away from the axis. Because of the phase dependence of the m = 1 mode, the ridge line will oscillate from one side of 
the axis to the other with the wavelength À & 5Roî this mode. This value of À is in close agreement with the average values inferred 
for the short-wavelength oscillations in both the inner and the outer regions of the NGC 6251 jet. (Note that the FWHM increases 
only by a factor ~ 5 between these two regions [Fig. 10 in PBW], so that if e were of order unity in the inner jet, it would remain so 
also in the outer jet; cf. Fig. 3.) As can be seen from Figure 4a, this effect does not involve the outer intensity contours, again in 
agreement with the observations. This, however, is mainly a result of the fact that Bz° vanishes at r = 0.17R (cf. eqs. [6] and [15a]), 
and hence would not apply if the emission from the vicinity of the boundary were too weak to be detected. (The latter situation 
might arise if the radiating-particle distribution N were highly concentrated near the axis [k ^>1].) 

The above mechanism applies also to jets seen at an angle <5 < 90°, so long as e remains of order unity. When ô =£ 90°, there is, 
however, another effect which comes into play and which could lead to apparent transverse oscillations of the ridge line even in jets 
with e P i (see Fig. 5a). This second possibility of producing oscillations arises from the magnetic field geometry in the m = 1 mode, 
which is essentially that of two twisted, oppositely directed flux tubes wrapped around each other (see Fig. 1). When this configu- 
ration is viewed at an oblique angle (<5 < 90°), it gives rise to an apparent transverse oscillation of the peak magnitude of the 
magnetic field component normal to the line of sight and, hence, to an oscillation of the synchrotron-emission ridge line (see eq. 
[18]). In this case, however, the ridge line does not cross the jet axis, and the oscillation wavelength corresponds to a distance of only 
2/2 along the jet (the apparent wavelength is further reduced by a factor of cos (5). The pure m = 1 effect is therefore distinguishable, 
in principle, from the mixed-mode mechanism. In the case of the NGC 6251 jet, it is the mixed-mode interpretation which seems to 
be favored by the observations. However, because of the scatter in the individual data points for the FWHM (Figs. 10 and 11 in 
PBW) and the apparent discrepancy between them and the measured isophotal widths (§ Wd in PBW), and also because of the 
ambiguity in the position of the center line of the jet, one cannot yet rule out the possibility that the oscillations are produced by a 
pure m = 1 mode. In either case, however, one can conclude that the inclination angle Ô is not smaller than ~tan-1 (4K/2) % 40°, for 
otherwise the line of sight would penetrate more than ~ 2/2 along the jet, and the effects discussed above would be washed out. 
Furthermore, from either one of these interpretations it follows that, after the intensity profiles in the inner jet of this source are fully 
resolved with a high dynamical range, it should again be found that the transverse oscillations involve mainly the inner isophotes. 

ii) Oscillations of the Jefs Width and the Appearance of Emission Knots 
As in most other extended jets, the radio maps of NGC 6251 show a knotty substructure (Fig. 3 in PBW). This substructure 

manifests itself in the form of oscillations of the total intensity along the ridge line of the jet, which appear to anticorrelate with 
oscillations of the FWHM (Fig. 10 in PBW). Both of these features may be attributed to the pinching (m = 0) Kelvin-Helmholtz 
instability (e.g., Hardee 1982; Cohn 1983). This interpretation is consistent with the measured wavelengths of these two types of 
oscillation and with their apparent anticorrelation, but, as has already been emphasized by PBW, it does not explain why they occur 
on the same scale as the transverse oscillations of the ridge line. All these effects, however, can be given a unified interpretation in the 
context of our equilibrium model. As can be seen from Figures 4a and 5a, the transverse oscillations calculated from this model are 
accompanied by oscillations of the isophotal width. The latter, in turn, are anticorrelated with the oscillations of the peak intensity 
along the jet which trace the distribution of bright emission knots (see Fig. 6). We emphasize that, in contrast to the previous 
interpretation, in this picture the changes in the measured width and the appearance of emission knots are simply by-products of the 
magnetic field structure in the jet and do not involve any compression of the flow. As in the case of the transverse oscillations, these 
effects are washed out when the inclination angle becomes small ((5 < 40°). We note that the oscillations of the isophotal width in our 
model are reflected also in the behavior of the FWHM, so long as the latter is a well-defined quantity. The FWHM is not well 
defined when Ô & 90°, e > 1, and k < l, since in that case some of the transverse intensity profiles are double-peaked. However, in 
light of our earlier discussion, this combination of parameters is not expected to occur in regions which exhibit measurable 
transverse oscillations of the ridge line. 
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iii) Projected Magnetic Field Configuration 
One of the most striking results of the polarization measurements in NGC 6251 is the systematic appearance of projected 

magnetic field vectors that are oblique with respect to the jet’s axis and that, in a number of locations, show an oscillatory variation 
in orientation with distance along the jet (Figs. 22 and 23 in PBW). This behavior is readily accounted for in our model (see Figs. 4b 
and 5b), where it is a direct consequence of the nonaxisymmetric structure of the field (§ lid). In fact, the ability to account for 
oblique magnetic field configurations is a distinguishing property of this model, since axisymmetric models can only give rise to 
projected field vectors that point either along or at a right angle to the axis. Our model, however, may also account for other aspects 
of the inferred magnetic field distribution. In particular, it is possible to attribute the transition from a predominantly parallel to a 
predominantly perpendicular projected field along the axis of the jet that is observed in NGC 6251 (as well as in most other jets 
associated with a relatively weak central source) to the increase of 6 with decreasing external pressure for fixed ¥ and K (see Fig. 3). 
This is a consequence of the fact that the ratio Bd°/Bz

0 is small, whereas the ratio Be
1/Bz

1 is large, in the region r R where most of 
the observed emission from the projected center of the jet originates (see eqs. [6] and [11]). We find that a significant perpendicular 
component appears in our model for e of the order of a few (the precise value depending on the concentration parameter k and the 
inclination angle (5), but that the projected field may still be nearly parallel to the axis even when the contribution from the m = 1 
mode is already large enough to cause apparent transverse oscillations and a knotty substructure. (These latter features can thus be 
accounted for even when they occur in regions where the observed field is still predominantly parallel, as in the inner jet of NGC 
6251.) The fact that, in our model, the m = 1 mode is responsible for both the departure of the field geometry from axisymmetry and 
the appearance of knots provides a natural explanation of the observed tendency of oblique-field regions to be associated with 
bright emission knots. (See § Vila in PBW for an alternative interpretation in terms of oblique shocks.) Furthermore, since for large 
inclination angles the main contribution to the synchrotron emission from the edges of the jet comes from the z-component of the 
magnetic field (as Br(R) = 0, and Be(R) lies approximately along the line of sight), it follows that the observed persistence of a 
parallel-field configuration at the periphery of the jet, even in regions where the field near the center is predominantly transverse, can 
be accounted for without having to invoke surface shear (cf. Baan 1980). This feature, in fact, is a general property of helical field 
models (Laing 1981). We note, however, that the simple, force-free configurations that we have calculated do not reproduce the 
extended regions of predominantly transverse fields that are detected near the axis of the outer jet in NGC 6251 as well as in a 
number of other jets (see Bridle and Perley 1984). Possible explanations of this behavior could be that only a fraction of the emitting 
volume in these jets is magnetic-pressure dominated, or else that these jets are incompletely relaxed (see § lid). 

iv) Oscillations of the Degree of Polarization 
Another parameter which was found to display periodic oscillations along the ridge line of the jet is the degree of linear 

polarization (Fig. 16 in PBW). As is seen from Figure 6, this feature, too, is predicted by our model. In this figure, the maxima of P 
are correlated with the minima of the total intensity /. In addition, our calculations indicate that the degree of polarization in this 
model is generally higher near the edges of the jet than at the center. Both of these properties are in agreement with the 
observational findings in the inner jet and in some portions of the outer jet of NGC 6251 (see Figs. 10,15, and 16 in PBW). However, 
there are also some regions in the outer jet where the opposite behavior is found, namely, the peak value of P on the ridge line 
coincides with the local maximum of /, or else P is larger at the center than near the edges. One possible explanation of this complex 
behavior is the presence of a fluctuating magnetic field component in the jet. The presence of such a component is also indicated by 
the need to reconcile the relatively high values of P that are predicted in this model (see Fig. 6) with the significantly lower values 
that are actually measured (see § Vile in PBW). The most likely origin of such a fluctuating field is internal turbulence which, as we 
pointed out in § lia, may already be an ingredient of the general equilibrium model. 

v) Distribution of the Faraday Rotation Measure 
The Faraday rotation-measure distribution in the inner jet is characterized by strong gradients both along and across the jet 

(Figs. 20, 21, and 27 in PBW). These gradients most likely arise from changes in the line-of-sight component of the local magnetic 
field (see § Vllb in PBW) and, therefore, can be regarded as another direct manifestation of a nonaxisymmetric field distribution. It 
was found that reversals in the sign of the RM gradient along the jet, and the strongest RM gradients across the jet, both occur on a 
scale along the jet which is of the order of the scale of the aforementioned transverse oscillations of the ridge line (as well as of the 
oscillations of / and P along the ridge line). It is thus plausible to attribute the RM gradients to the same general field distribution 
which gives rise to the apparent oscillations of the total and the polarized intensities. However, as was pointed out by PBW (and as 
we verified explicitly with our model), it is unlikely that much of the Faraday rotation originates in the emitting material itself, since 
in that case one would expect to detect substantial depolarization effects, whereas the observed degree of polarization is nearly 
independent of frequency. PBW interpreted the data as pointing to a magnetized sheath around the jet, and they noted that the 
external magnetic loops could help confine the outflow if the jet carried a net axial current. This possibility is consistent with the 
identification of the sheath with a “cocoon” of jet material that is being continuously supplied at the head of the jet (cf. Achterberg, 
Blandford, and Goldreich 1983). In that case, the external field configuration might again correspond to the minimum-energy state 
of a magnetically dominated plasma with a conserved magnetic helicity. Thus, the field outside the jet might also be force free, and if 
the “cocoon” material moved supersonically with respect to the confining ambient medium (which should be the case for highly 
supersonic, relatively low-density jets; see Norman et al. 1982), then the approximation of locally cylindrical boundaries would 
continue to apply (see Appendix B). Under these conditions, it may, in principle, be possible to generalize the solution presented in 
§ lie to include both the jet and the sheath. However, since there are now two boundary conditions to be satisfied (Br = 0 at the 
boundary of the jet and at the surface of the sheath), and since the Chandrasekhar-Kendall modes in the sheath contain both Bessel 
and Neumann functions (cf. eq. [4]), this problem is formally much more involved and we do not pursue it further here. 

In the model that we have presented, it is possible to interpret the various nonaxisymmetric and oscillatory features that are 
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detected in NGC 6251 in terms of the m = 1 mode alone. It is, however, also possible that the m = 0 mode still contributes 
substantially to the field, and we suggested that this could in principle be tested observationally by an analysis of the transverse 
oscillations of the ridge line. If the m = 0 contribution were large, then one would be faced with the usual problem of a magnetic flux 
much larger than what could reasonably be expected to exist near the origin of the jet (e.g., Rees, Begelman, and Blandford 1981). 
One possible resolution of this problem could be that the jet undergoes more than one subsonic-to-supersonic nozzle transition on 
the way out from the galactic nucleus, and that each such step in the cascade involves substantial entrainment of mass and magnetic 
flux from the surrounding medium (e.g., Henriksen, Bridle, and Chan 1982). Even in the latter interpretation, however, the inferred 
field strength in the supersonic portions of the jet is required for self-consistency to be low enough for the Alfvén speed to remain 
smaller than the velocity of the jet. In the case of NGC 6251, we may obtain a lower limit on the Alfvén speed in the extended jet by 
combining the equipartition field Beq (Table 2 in PBW) with the upper limit on the thermal electron density ne inferred from the 
depolarization measurements (§ Vile in PBW). For the inner jet (£eq ä 3 x 10“5 gauss, ne < 4 x 10“ 3 cm-3), this yields an Alfvén 
speed >9 x 107 cm s-1, which is about an order of magnitude smaller than the estimated lower limit on the jet velocity (§ VII/in 
PBW). Although these estimates are rather uncertain, they nevertheless appear to be consistent with the presence of a nonnegligible 
m = 0 component in the large-scale outflow from this source. 

Finally, we consider the question of whether the observed synchrotron emission from this jet could represent the energy that is 
being dissipated in the process of maintaining the lowest-enerjy magnetic field configuration. To be specific, we assume that the field 
everywhere obeys equation (3), and that the values of'F and K are constant along the jet. As we discussed in § lie, no energy needs to 
be dissipated under these circumstances so long as the field is in the pure m = 0 state, a conclusion which is consistent with the fact 
that nonaxisymmetric phenomena are detected throughout the entire length of the observed (large-scale) jet. For the mixed-mode 
state, we found that energy must be dissipated at a rate per unit length given by equation (17). We may obtain a lower limit on the 
mean value of this power in the inner (< 120") jet by substituting for Bi the average equipartition value, Beq ^ 20 microgauss, and 
estimating the mean values of R(^3 x 1021 cm) and dR/dz(&0.05) from the FWHM data (Table 2 in PBW). Together with the 
lower limit on Vj given by PBW (^8 x 108 cm s_1), these estimates yield Pm x 2 x 1017 ergs s-1 cm-1. This value is comparable to 
the mean radio luminosity per unit length measured in this region (Fig. 13 in PBW), which supports the hypothesis that the 
dissipated magnetic energy is carried away by nonthermal radiation. The radio luminosity, however, is again just a lower limit on 
the total synchrotron power emitted in the jet. It is, therefore, conceivable that, while Pm and the synchrotron luminosity per unit 
length may indeed be comparable, their actual values are substantially higher than the lower limits estimated above. If this is in fact 
the case, then the evolution of the radio luminosity per unit length along the jet need not be correlated with that ofPm. This could 
resolve the apparent discrepancy between the relatively slow decrease of the mean radio luminosity along the inner jet (Fig. 13 in 
PBW) and the much faster decline expected on the basis of equation (17). 

The possibility that synchrotron radiation is the main dissipation mechanism in jets has previously been suggested in the context 
of turbulent jet models. One plausible scenario (e.g., Henriksen, Bridle, and Chan 1982; Bicknell and Melrose 1982) is that the 
dissipation is mediated by MHD waves which accelerate the synchrotron-radiating particles by the Fermi process. In those models, 
the source of energy for the turbulence was assumed to be the relative motion between the jet and the confining external medium 
which gave rise to a Kelvin-Helmholtz instability. As we noted in § lia, the equilibrium model considered in this paper has a natural 
interpretation in terms of MHD turbulence, and this may well be maintained by shear. However, in view of the discussion in the 
preceding paragraph (and the experience from reversed-field pinch experiments; see § I), it is conceivable that the main source of 
power for the turbulence is the magnetic energy liberated in the internal field-redistribution process. (We note in this connection that 
the longitudinal field components in the jet would tend to stabilize the Kelvin-Helmholtz modes for MA not much greater than 1; 
e.g., Ferrari, Trussoni, and Zaninetti 1983.) It is worth pointing out, though, that the conversion of magnetic energy into synchro- 
tron radiation need not necessarily be mediated by turbulence. An alternative possibility is that the radiating particles are 
accelerated directly by the DC electric fields induced during magnetic field reconnection. One mechanism that is likely to play an 
important role in this process is the resistive tearing-mode instability, which is also believed to contribute to efficient particle 
acceleration in solar flares (e.g., Heyvaerts 1981). The possible relevance of this instability to energy dissipation in force-free jets is 
indicated by the fact that the m = 0 field component becomes unstable to resistive tearing precisely at the branching point 
(fiR = 3.11) of the mixed-mode state (Gibson and Whiteman 1968). The continued expansion of the jet beyond that point (as a result 
of the decline in the external pressure) would, in the absence of dissipation, increase /aR above 3.11 (see Fig. 3) and thereby trigger the 
instability. The subsequent development of the instability could then conceivably restore the field to the minimum-energy configu- 
ration. 

IV. CONCLUSIONS 

In this paper we have presented a new model of magnetized, supersonic jets. We considered jets which are magnetic-pressure 
dominated, and which are therefore likely to settle into a force-free configuration (V x B = fiB). We argued that the magnetic helicity 
(eq. [1] and Appendix A), which is a measure of the topological linkage of the field lines, is a key parameter which can play a central 
role in determining the magnetic field structure in such jets. This parameter is an integral of motion for a perfectly conducting jet, 
and it should also remain approximately conserved in a dissipative jet with a high magntic Reynolds number. This property can be 
formulated as a variational principle (§ lia) and implies that the coefficient g in the magnetic field equation is locally a constant. 

In considering the solutions of the field equation, we noted that the supersonic relative motion endows the ambient medium with 
an effective rigidity which limits the size of surface ripples (Appendix B). The boundary nevertheless remains free, in the sense that 
the mean radius R is determined by the magnitude of the confining external pressure. We showed that, under these conditions, the 
minimum-energy magnetic field configuration is, in general, a superposition of only two modes (Fig. 1): an axisymmetric (m = 0) 
mode (eq. [6]) which carries the net flux and axial current in the jet, and a helical (m = 1) mode (eq. [11]) of wavelength 2 æ 5R. For 
given values of the conserved flux and helicity, only the m = 0 mode is present at high external pressures (Fig. 2). As the confining 
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pressure decreases, both R and ¡nR increase (Fig. 3) until, when /¿R reaches 3.11, the m = 1 mode becomes energetically favorable. 
Beyond the bifurcation point (eq. [16]), lower values of external pressure correspond to higher values of e, the m = 1 to m = 0 
amplitude ratio, but the value of fiR remains fixed. For given values of magnetic helicity and external pressure, e is larger the smaller 
the flux carried in the jet. In contrast to the axisymmetric, self-similar solutions considered for thermal-pressure-dominated jets 
(Chan and Henriksen 1980), the minimum-energy, force-free configurations considered in this paper are, in general, neither axisym- 
metric (except in the limit € <^ 1) nor self-similar (except in the limit e 1). We pointed out (§ I) that nonaxisymmetric field 
configurations of this type have been observed in laboratory experiments on reversed-field pinches under conditions that are 
basically analogous to those that we have postulated for extragalactic jets. We also noted (§ lid) that the appearance of minimum- 
energy states that are nonaxisymmetric seems to be a general property of dynamical systems with more than one integral of motion 
(in this case, magnetic energy and helicity) which decay at different rates. 

We applied our model to the interpretation of the total and the polarized synchrotron emission properties of resolved jets that are 
observed at a large angle to the axis (§ III). We found that it can account in a natural and unifying way for many of the key features 
of extended jets like NGC 6251, including the transverse oscillations of the ridge line (Figs. 4a and 5a), the oscillations of the jet’s 
width and the appearance of emission knots, the oblique orientations of the projected magnetic field vectors with respect to the jet 
axis (Figs. 4b and 5b), the oscillations of the degree of linear polarization along the ridge line (Fig. 6), and the distribution of the 
Faraday rotation measure. All of these periodic phenomena are attributed in this model to the basic oscillation of the m = 1 mode 
and have a wavelength along the jet of either 2 or 2/2. The model predicts that the apparent transverse oscillations should involve 
mainly the inner isophotes of the jet (which is in contrast with the behavior expected in the Kelvin-Helmholtz interpretation), and 
that the oscillations of the total intensity and of the degree of linear polarization along the ridge line should be anticorrelated. The 
model also implies a method of testing whether an apparently nonaxisymmetric jet carries a substantial amount of flux (which 
would correspond to € being of order unity). For, if that were the case, then the transverse oscillations of the ridge line would be 
symmetric about the center line of the jet (as defined by the outer isophotes) and would occur at roughly twice the wavelength of the 
intensity oscillations along the ridge line. By contrast, if the amount of flux were small (corresponding to € > 1), then the transverse 
oscillations would occur only on one side of the axis, and their wavelength would be comparable to that of the intensity oscillations. 
The resolution of this question may have important implications for the origin of large-scale jets (§ Illb). Despite the apparent 
successes of this model, we emphasize that it nevertheless is not in complete agreement with the observations. In particular, it does 
not in its present form reproduce the extended regions of predominantly transverse fields that are observed near the axis of a number 
of jets at large distances from the origin. This discrepancy could conceivably be attributed to the fact that these jets have not entirely 
settled into the minimum-energy, force-free configuration. 

We have briefly explored the possibility that synchrotron radiation is the main dissipation mechanism which enables the magnetic 
fields in the jet to achieve the minimum-energy configuration. In particular, we considered whether the observed synchrotron 
emission could represent the magnetic energy that had to be dissipated during the expansion of a force-free jet to keep it in the 
lowest energy state. We found that the amount of energy dissipated in this fashion depends on the amplitude of the m = 1 mode (eq. 
[17]) and that it vanishes for 6 = 0, since the work done against the external pressure is then exactly in the amount of the required 
energy loss. In the case of the NGC 6251 jet, it turned out that the lower limit on the mean dissipation rate estimated on the basis of 
this model is comparable to the observed radio luminosity. This led us to speculate that, at least in some jets, the energy dissipated in 
the field-redistribution process might be the main source of energy for the synchrotron emission. One could then attribute the gaps 
in radio emission that are observed near the origins of certain extended jets to the fact that the ambient pressure in those regions is 
relatively high, so that e % 0 (see Fig. 3) and the dissipation is negligible. According to this interpretation, all observable force-free 
jets are necessarily nonaxisymmetric. (It is, however, conceivable that the absence of magnetic energy dissipation in the gaps is 
mainly the result of a relatively high thermal-to-magnetic pressure ratio in the innermost regions of the jet.) In addition, we pointed 
out the possible role of the resistive tearing-mode instability in the field-reconnection and particle-acceleration processes, and 
commented on its likely importance also in solar flares. In fact, there appears to be a basic similarity between the energy dissipation 
mechanisms envisioned in this model and those which are thought to operate in solar flares (and, more generally, in the heating of 
the solar corona). In both instances, it is the release of magnetic energy stored in twisted and braided magnetic field lines which is the 
immediate source of power for the emitted radiation, and in both cases the minimum accessible energy state may correspond to a 
force-free field with a constant // (see Norman and Heyvaerts 1983). This suggests that studies of the magnetic activity in the solar 
corona could provide useful clues for a more detailed model of magnetic energy dissipation in jets. 

We gratefully acknowledge valuable conversations with R. Blandford, G. Lake, and E. Parker. We also thank A. Bridle, G. Field, 
R. Henriksen, C. McKee, R. Perley, L. Turner, and P. Vandervoort for helpful comments, and B. Fryxell for assistance with the 
numerical computations. This research was supported in part by NASA grant NGL 14-001-001. 

APPENDIX A 

CONSERVATION OF MAGNETIC HELICITY 

In discussing the conservation of the magnetic helicity K (eq. [1]) in the jet, it is convenient to assume that the jet forms a closed 
loop, or, equivalently, that the two ends of the jet can be identified. This identification is based on the hypothesis that the conditions 
at the origin of the jet—particularly the rates of injection of mass and magnetic helicity—are time invariant, and it enables us to 
avoid having to include source and sink terms for the flow. The boundary of the jet is defined by the outermost streamlines of the 
flow, and it is assumed to constitute a magnetic surface (i.e., Bs • s = 0, where Bs is the surface magnetic field and s is the local normal 
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to the boundary). We further suppose that both the jet material and the external medium which confines it can be treated as perfect 
conductors. If the jet can be approximated by a cylinder of radius R, these conditions imply 

Br(R) = 0 , Ae(R) = 
2nR ’ AZ(R) = o, (Al) 

where A is the vector potential and 'F is the net axial flux in the jet. The radius R is determined by the value of the external pressure 
pe (see § lib). We can imagine a hypothetical homogeneous jet which is confined by a uniform pressure, so that the value of R is 
constant. Under these conditions, it is meaningful to define the helicity per unit length K and treat it as a constant of the flow. If the 
pressure pe is allowed to vary to a new (uniform) value, then there will be a corresponding change in the radius R, but the total 
magnetic helicity K (and hence also K) will be conserved. This conclusion follows directly from the assumption of perfect conductivi- 
ty and the condition Bs • s = 0, and it is independent of the choice of gauge for A (e.g., Moffatt 1978, pp. 44—45). If we now substitute 
for the Eulerian (temporal) variations of pe and R in the hypothetical jet the Lagrangian (convective) variations experienced by a 
real, super-Alfvénic jet, then it is clear that the conclusion regarding the conservation of K will not change. As an illustration of the 
generality of this result, consider the magnetic helicity of a fluid element that is confined between two transverse cross sections of a 
cylindrical, thermal-pressure-dominated jet. The jet is assumed to flow supersonically, so the length L of the element remains 
constant even though its radius R may change. We suppose that the longitudinal and the transverse field components in the jet 
evolve according to the flux-freezing constraints (see § I) while maintaining an axisymmetric, radially self-similar configuration. 
Specifically, 

8° n/ x *o 
T0 = eM ¥ 

(A2) 

where u = r/R, and where B0 and R0 are constants (cf. Bicknell and Henriksen 1980). The corresponding vector-potential com- 
ponents which satisfy the boundary conditions (A 1) are 

Ae = — Í u'Z(u')du', Az = B0R0 
R « Jo U 

Q(u')du' ®(u')du' 

Hence, the total magnetic helicity of this element is 

WL r r few f“ K =■ 
o l w Jo 

u'Z{u')du' + Z(u) 
(%u f1 Ij 
I 0(w')(iw' — ®(u')duf >udu 

which is manifestly a constant, independent of R. 

(A3) 

(A4) 

APPENDIX B 

A LIMIT ON THE SURFACE RIPPLES IN A SUPERSONIC JET 

We wish to substantiate the claim, made in § lib, that the magnitude AR of the ripples on the surface of a supersonic jet with mean 
radius R and Mach number (with respect to the external medium) Me 1 does not exceed ~ R/Me. These ripples will form as a 
result of the periodic pressure variations ^induced by the m > 0, /c > 0 modes of equation (4) that contribute to the total magnetic 
field at the surface. As long as AR R, the pressure associated with any one such mode varies on the surface essentially as cos2 

(m6 + kz), with a wavelength X of at most a few times R (2 ä 5R for the m = 1 mode). The largest possible contribution to AR from 
the given mode can be estimated by assuming that it contributes most of the magnetic pressure at the boundary, so that its pressure 
amplitude is of the order of the external pressure pe. The surface ripples induced by this mode travel through the ambient medium 
with the speed of the jet. To accommodate the passage of these ripples, the ambient gas can move sideways at most with its own 
speed of sound vse ^ (pe/pe)1/2. The maximum amplitude of the ripples is thus given by equating AR/vse with the transit time of each 
ripple, X/vj < R/vj. Larger-amplitude ripples will induce shocks in the ambient gas and will be damped, hence AR < R/Me. Another 
way of stating this result is that supersonically moving ripples can protrude into the ambient medium at most at the Mach angle 
sin-1 (1/Me) % 1/Me. This behavior has been observed in numerical simulations of the nonlinear behavior of a supersonic Kelvin- 
Helmholtz instability (e.g., Tajima and Leboeuf 1980). 

We can check the self-consistency of this result by considering the same situation in the rest frame of the jet. In this frame, the 
excess pressure associated with the given mode induces at the boundary a force (per unit volume) of magnitude ~ pe/AR, which must 
be balanced by the centrifugal force per unit volume ~(peVj2AR/X2) > (peVj2AR/R2) that is exerted by the external gas as it moves 
around the ripple. This implies AR < R/Me, in accordance with the previous derivation. 
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APPENDIX C 

EVALUATION OF K, 

By constructing the vector potential corresponding to the m = 1 field components (eq. [11]) and imposing the boundary 
conditions given by equation (Al), one can readily verify that (A x B)r\r = R = 0, so that A x B • dLj = 0 (see eq. [5]). Hence, 

^ = " ^ = r- 
¡1 oTlfi 

'R rin 
m1) 

o Jo 
+ (Bß1)2 + {Bz

l)2~\rdQdr . 

Integrating over 8 and rearranging, we obtain 

e2Bn
2R3 

K1 = ^ {KtiRf + (kRŸV, + Y2I2 - (liR - kR)2I3 + 2(ßR - kR)2U} , 
8(nR)Y 

where 

Y = [(nR)2 - (kR)2y12 
h = Jo\y)ydy, i2 = Ji2(y)ydy, Jo(y)Ji(y)dy, and /4 = 

T JAy) 

/i and 12 are the standard Bessel-function integrals (e.g., Gradshteyn and Ryzhik 1965, p. 634): 

A = y C-VOO + VW], 

-Joi{Y) + JAY)_uÆhm 

Using the identities Jo{y) = — Ji(y) and J¿(y) = J0(y) — J Ay)/y>we also readily evaluate 

and 

U = til-J0
2(Y)-J2(YK. 

Substituting the results (C3HC6) into equation (C2), and eliminating J ¡(Y) by means of equation (12) and B0 by means of equation 
(7), we finally obtain the expression given by equation (13). 

(Cl) 

(C2) 

dy . 

(C3) 

(C4) 

(C5) 

(C6) 
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