
19
85

A
pJ

. 
. .

28
9.

 . 
.5

8T
 

The Astrophysical Journal, 289:58-66,1985 February 1 
1985. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

AN ANALYSIS OF OBSERVATIONS OF THE STREAMING VELOCITIES 
IN THE BULGE OF M31 

P. Teuren,1 Edwin L. Turner,2 and M. Schwarzschild 
Princeton University Observatory 

Received 1983 September 27; accepted 1984 August 13 

ABSTRACT 
McElroy has recently provided an extensive set of radial velocity measurements for the stellar mean 

motions in the bulge of M31. These velocities show a surprisingly bumpy pattern. It is frequently postulated 
that the absorption clouds in the bulge are the cause of these observed velocity bumps. If this postulate is 
correct, further improvements of the velocity measurements will be futile and their use as a dynamical diag- 
nostic minimal. 

To test this pessimistic hypothesis, we have analyzed the effects of the observed dust clouds on the velocity 
observations. Fortunately the observed clouds cannot be the main cause of the bumps in the observed 
velocities 

Furthermore, a statistical analysis of the present velocity observations strongly suggests the existence of 
unidentified systematic errors which might explain the apparent bumps. 

We conclude that the stellar mean motions in the bulge of M31 would have to be observed with an accu- 
racy about twice as high as that of the present observations to be useful as a powerful tool for the study of 
the dynamics of this system and that even at this level of accuracy the existing clouds will not interfere with 
the dynamical interpretation of the observations. 
Subject headings: galaxies: individual — galaxies: internal motions — stars: stellar dynamics 

I. INTRODUCTION 

The stellar motions in the bulge of the Andromeda Nebula 
have received much attention ever since the pioneering work of 
Babcock (1939). Recent observations by Pellet (1976), Peterson 
(1978), Schechter and Gunn (1979), Richstone and Shectman 
(1980), and McElroy (1983) provide fairly definitive data 
regarding the stellar velocity dispersion, which turns out to be 
the dominant kinematic feature. However, they do not provide 
a clear picture of the stellar mean motions (observed radial 
velocities) in the bulge. The mean motions are small compared 
with the velocity dispersion and hence are a secondary kine- 
matic feature. Nevertheless, if clearly observable, they would be 
a powerful diagnostic tool for the stellar dynamics of the bulge. 

The most recent and most extensive set of stellar radial 
velocity observations in the bulge of M31, that of McElroy 
(1983), presents an unexpectedly bumpy and irregular picture 
of the mean velocities across the bulge. These velocity devi- 
ations have been suspected to be caused by absorption clouds, 
of which a fair number are known to exist throughout the 
bulge of M31 (Hodge 1980; Gallagher and Hunter 1981; Kent 
1983). A cloud will alter the observed velocity by reducing the 
contribution to the measured velocity from that segment of the 
line of sight located behind the cloud. Are the disturbing effects 
of the clouds sufficiently large to cause the irregularities in the 
observed velocities? To answer this question is the aim of this 
paper. 

The unfortunately lengthy analysis required to answer this 
simple question is detailed in §§ II-V. A quite independent 
statistical analysis of the velocity observations is described in 
§ VI. Its results corroborate those of the main analysis. 

This discussion is aimed solely at the bulge of M31, not at its 

1 On leave from the Kapteyn Laboratorium, Groningen University. 
2 Alfred P. Sloan Research Fellow. 

nucleus or at its disk. To minimize complications that might 
arise from the superposition of light from the disk onto the 
bulge light (McElroy 1983), only those velocity observations 
are here considered which refer to points in an elliptical area 
centered on the bulge with a semimajor axis of 2!5 and a semi- 
minor axis of 2!0. Similarly, to avoid interference by the light of 
the nucleus, observations within 0!5 of the center have been 
excluded. The area thus restricted is well covered by McElroy’s 
velocity observations. 

II. INTENSITY AND VELOCITY MODEL 

A model for the mean velocity as a function of position 
within the bulge of M31 is required to assess the effects of 
absorption clouds on the velocity observations. Since an 
observed velocity corresponds to an intensity-weighted inte- 
gration along the line of sight, the intensity of starlight emitted 
within the bulge also has to be modeled. The required models 
do not need to have high accuracy and have to cover reason- 
ably well only our restricted area. The perfection of a King or a 
de Vaucouleurs model is not required, nor does the velocity 
model need to have a detailed dynamical base. It is, however, of 
practical advantage if the models are of such simplicity that the 
required integrals can be carried out analytically. 

We adopt axisymmetric models both for the intensity and 
for the mean velocity. This is not to say that a triaxial figure 
and the corresponding dynamics might not be more correct for 
the bulge of M31 (Lindblad 1956; Stark 1977). But an axisym- 
metric model should suffice to bring out the irregularities here 
investigated. The effects of triaxiality are discussed briefly in § 
VII. 

For the inclination of the rotation axis to the line of sight we 
adopt i = 78° (Schmidt 1957; de Vaucouleurs 1958). This incli- 
nation was determined for the disk of M31 but will here be 
accepted for the bulge. For the position angle of the major axis 
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of the bulge over the extent of our restricted area we adopt 
P.A. = 50° (Lindblad 1956; Hodge and Kennicutt 1982; Kent 
1983). In contrast, the major axis of the disk lies at P.A. = 38°. 
Finally, we adopt for the observed axis ratio of the bulge in our 
restricted area the average value (c/a)obs = 0.80 (Kent 1983). 

For the intensity model we take the simple form 

where 

m 2 
x2 + y2 

(1) 

The core radius, a, and the intrinsic axis ratio, c/a, are to be 
derived by fitting the model to the photometric data. 

Let us denote the coordinates in the plane of the sky by ^ 
and (, with £ along the major axis of the bulge, and the coordi- 
nate along the line of sight by rj. These coordinates are related 
to those along the principal axes of the bulge by the usual 
transformation 

¿ = x , 

rj = y sin i + z cos i, 

The observed velocity at a given point in the sky will be the 
intensity-weighted velocity, integrated along the line of sight 
(McElroy 1983), 

0 = 
* + 00 

pdri, 
J — 00 

(8) 

where v within the integral denotes the radial velocity as a 
function of position along the line of sight. The simplicity of 
our model has the advantageous consequence that the integral 
in equation (8) can be expressed analytically, as is detailed in 
the Appendix. 

We still have to determine the two parameters in equation 
(7) for the velocity model, v0 and R0, by fitting the radial 
velocity derived from the model through equation (8) to the 
observed radial velocities (McElroy 1983) along or near the 
major axis. This fitting procedure is made easy by the fact that 
equation (8) together with equation (7) gives a maximum value, 
Kmx, for the observed radial velocity F(£, Ç) along the major 
axis, C = 0, at distances £ from the projected rotation axis that 
are larger than the turnover radius R0 and substantially larger 
than the core radius a. Here equation (8) becomes scale-free 
and tends toward a limit (see Appendix, eq. [A 15]). For our 
values one finds 

£ = —y cos i + z sin i . (2) Vmx = 0.6440í;o sin i . (9) 

The projected surface brightness can now be readily 
obtained by integration of equation (1) along the line of sight 
(see Appendix), 

where 

and 

rit, 0 = pdrj 

ßo 
(1 + m^J1/2 ’ 

ßo = npo\ - 
(sin2 i cos2 i 

\ a 

-1/2 

£2 

<bs = ^ + a 
Í2 

a2 cos2 i + c2 sin2 i 

(3) 

(4) 

(5) 

Hence the observed axis ratio will be (cf. Contopoulos 1956) 

(c/a)2
bs = cos2 i + (c/a)2 sin2 i . (6) 

Our adopted value for the observed axis ratio gives then, for 
the intrinsic axis ratio, c/a = 0.790. Note also that, according 
to equation (5), the surface brightness has the same core radius 
as the intensity model of equation (1). This core radius can be 
determined by fitting equation (3) to the observed brightness 
profile along the apparent major axis (Kent 1983, Table 2). 
This fit, limited to our restricted area of r = 0!5-2!5, yields 
a = 0!48. 

Next we adopt a simple velocity model. We take the mean 
streaming velocity inside the bulge to be purely rotational and 
constant on cylinders. For the rotation velocity, i;rot, as a func- 
tion of the distance from the axis, R, we accept the simplest 
possible form, namely, a linear rise out to a turnover radius, 
R0, and a constant value from there on out, i.e., 

Vrot = R{it) for R<Ro 

= v0 for R> R0 . (7) 

The numerical coefficient in this equation is substantially less 
than 1 because the integration along the line of sight gives 
appreciable weight to places away from the equatorial plane 
where the rotation velocity is tilted away from the line of sight. 

McElroy’s (1983) data for the outer portions of our restricted 
area near the major axis suggest Fmx ~ 40 km s-1. This gives, 
according to equation (9), v0 = 63.5 km s-1. Finally, 
McElroy’s data for points nearer to the projected rotation axis 
indicate a tolerable fit for R0/a = 2 ± 0.25, or R0 = 0!96. 

With all the parameters of our intensity and velocity models 
thus fixed, we can compute the radial velocity F(^, C) to be 
expected from the model at any point on the sky with the help 
of equation (8), or its detailed forms discussed in the Appendix. 
Such computations have been carried out for the 216 points in 
our restricted area for which McElroy (1983) gives observed 
velocities. The resulting residual velocities (observed minus 
model) are displayed in Figure 1. They have a surprisingly 
patchy appearance, with a fair fraction of them exceeding 15 
km s-1, a problem which has already been noted and 
addressed by McElroy. 

In the next three sections we will discuss the possibility that 
these residuals are caused by absorption clouds modifying the 
line-of-sight integrations. Our discussion will thus be an exten- 
sion of the initial discussion of this topic by McElroy (1983). 

III. EFFECT OF A CLOUD ON OBSERVED VELOCITY 

The integration along the line of sight which according to 
equation (8) gives the observed velocity has to be modified to 
study the effect of a cloud located on the line of sight. If we 
denote the position of the cloud by rjc and its optical depth by 
tc, equation (8) becomes 

e ,c j'1^ x pvdii + pvdi! 
e ,‘ j-,: pd>l + ]/: pdri 

(10) 

This equation takes properly into account the absorption effect 
of the cloud, but it does not include the scattering, or reflection, 
effect. The neglect of scattering will generally not cause a 
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Fig, 1.—Velocity residuals (observed minus model), in km s_1, in the bulge of M31. The coordinate marks are spaced V apart. Boxes indicate residuals which 
exceed 15 km s -1 and which have a sign designating deficiency in rotation velocity (see text). Letters A, B, and C give the locations of the clouds listed in Table 1. The 
circle has a radius of 2'. 

noticeable velocity error for a cloud located in the front section 
of the line of sight. But it may cause a somewhat larger error 
for a cloud in the rear section, since such a cloud will scatter 
additional light from the stars in front of it into the line of sight, 
and this scattered light will have a modified Doppler shift. 
Luckily such backward scattering is weak. We will proceed by 
using equation (10) as it stands, keeping in mind the possibility 
of errors for clouds located toward the back. 

The effect of a cloud on the observed velocity may best be 
brought out by defining the rotation excess 

av = vmA)-v(^0, (H) 

where Vc is determined from equation (10) including the cloud 
and V is determined from equation (8) for the same line of sight 
but without the cloud. The qualitative behavior of this rotation 
excess in its dependence on the location of the cloud can be 
understood as follows. 

Along a line of sight the rotational mean velocity will have a 
high component parallel to the line of sight in the middle 
section where the rotation direction comes closest to the line- 
of-sight direction. In contrast, the front and rear sections will 
contribute less to the observed radial velocity because in these 
sections the rotation direction is more nearly perpendicular to 
the line of sight. Accordingly a cloud located toward the rear 
will reduce the low-velocity contribution of the rear section 
and thus produce a positive rotation excess. This positive 
excess will appear in Figure 1 as a positive residual in the right 
half, where the rotation velocity is positive, and as a negative 
residual in the left half, where the rotation velocity is negative. 
In contrast, a cloud located toward the front will reduce not 
only the contribution of the rear section but also the high- 
velocity and high-intensity contribution of the middle section 

and thus produce a negative rotation excess, which appears in 
Figure 1 as a negative residual on the right and a positive 
residual on the left. On each line of sight there is a middle 
position at which a cloud produces zero rotation excess. 

The amount of rotation excess produced by a cloud depends 
on its opaqueness, particularly for clouds in forward positions. 
A very opaque cloud in a far forward location can have so 
large a negative rotation excess as to reduce the observed 
velocity to a small fraction of its cloudless value. But such a 
cloud would be photometrically outstanding, since it would 
greatly dim the surface brightness. Thus, to assess the possible 
effects of clouds on the observed velocities quantitatively, it is 
of great value to have photometric data in addition to the 
velocity data. Here we have the great advantage of having the 
recent photometry of Kent (1983) for the bulge of M31. 

To exploit the photometric data we have to introduce the 
effect of a cloud on the line of sight into equation (3) for the 
surface brightness. We may express the effect of the cloud by 
the magnitude difference between the surface brightness 
dimmed by the cloud and a corresponding cloudless surface 
brightness. Thus we get for the extinction 

Am = —2.5 log 
í-^pdri 

(12) 

Here we have again neglected scattering. For clouds in forward 
positions this again will probably not cause noticeable errors, 
but for clouds in backward positions it may. 

Equations (10), (11), and (12) permit us to compute the rota- 
tion excess and the extinction for .any cloud, specified by its 
location rjc and its optical thickness rc, at any point (£, £) in our 
restricted area in the bulge of M31. Figure 2 shows the results 
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0.0 0.5 1.0 1.5 

Fig. 2.—Rotation excess Av vs. extinction Am for clouds projected onto the 
apparent major axis (Ç = 0) at £ = 2'. The solid curves are labeled by values of 
the optical depth. The dotted curves are labeled by values of the line-of-sight 
coordinate rjc of the cloud in minutes of arc. The dashed curve gives the lower 
envelope. 

of such computations for a specific point on the major axis 
(C = 0) 2' from the center (£ = 2). Here the expected rotation 
excess, AV, has been plotted against the extinction, Am. Any 
one of the solid curves represents a sequence of clouds equal in 
optical depth but differing in their location,t/c, along the line of 
sight, low Am being caused by clouds toward the rear and 
higher Am by near-front clouds. Each such curve shows posi- 
tive AV for clouds in the rear section and negative AV for 
clouds in the front section. 

All the curves in Figure 2 fall within an area restrained by 
two envelopes. The upper envelope limits the positive A F and 
corresponds to totally opaque clouds located along the rear 
half of the line of sight. The lower envelope (dashed curve in 
Fig. 2) limits the negative A F and corresponds to a sequence of 
clouds varying in optical depth but all located on the front 
section of the line of sight. Our neglect of scattering will have 
little effect on the lower envelope but may have noticeably 
affected the upper envelope. 

If a cloud is located at the position (£ = 2, £ = 0) for which 
Figure 2 was computed, and if the extinction Am of the cloud is 
photometrically determined, then one can read from Figure 2 
both the positive and the negative extremes for AF, to be 
compared with the observed AF. It remains to extend these 
results derived from the model to other positions (£, £) in our 
restricted area of the bulge. 

Computations have been carried out for points farther out 
along the major axis (£ = 0). The resulting graphs turned out to 
be practically identical with Figure 2. This was to be expected, 

61 

because our model is nearly scale-free for large £. Even at £ = 1 
on the major axis the resulting graph does not differ noticeably 
from Figure 2. 

For points not located on the major axis, calculations have 
been carried out for several points, all at £ = 2 but with 
varying values of (/£. The results are shown in Figure 3, in 
terms of the two envelopes for each position. The curves for the 
lower envelopes show that the extreme negative rotation 
excesses are reached for C/£ ~ —2 as long as Am < 1. The 
curves for the upper envelopes show that the extreme positive 
rotation excesses are reached for ~ +2 and that the range 
of extinction over which positive rotation excesses occur 
extends to a maximum of Am = 0.97 for £/£—> oo. 

Further calculations for points off the major axis have 
shown that for practical purposes Figure 3 can be applied for 
all points with Ç > R0 ~ 1, again not surprising in view of the 
nearly scale-free character of our model at sufficiently large £. 
Finally, computations for points located nearer to the rotation 
axis, i.e., £ < 1, show that the resulting envelopes are practi- 
cally the same as those in Figure 3, except that now the scale 
for the rotation excess is reduced, with the reduction factor 
varying approximately linearly with £ from £ = 0 to £ = 1. 
This result might have been expected, since for £ < 1 the main 
contribution to the observed velocity comes from R < R0, 
where our model rotation curve, equation (7), is linear. 

Thus we end with the following recipe for deriving the 
extreme values of the rotation excess permitted by our model 
for a cloud which is located at ({, C) in our restricted area of the 
bulge of M31 and for which the extinction Am has been mea- 

0.0 0.5 1.0 1.5 

Fig. 3.—Upper envelopes {solid curves) and lower envelopes {dashed curves) 
in the Am-Av diagram for clouds projected onto various positions on the sky 
with £ = 2'. The curves are labeled with values of £/£. 

STREAMING VELOCITIES IN BULGE OF M31 
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sured. (1) Enter Figure 3 at the observed Am value. (2) Read the 
A F values from the upper and lower envelope curves labeled 
with the £/£ value corresponding to the cloud position. (3) 
Accept these values as extrema if <!; > 1. If £ < 1, multiply the 
values of À F by £ and then accept them as extrema. 

IV. PHOTOMETRY OF CLOUDS 

The preceding discussion makes it clear that tight limits on 
the velocity effects, AF, of absorption clouds can be established 
only if limits on their photometric effect, Am, can be obtained. 
This is particularly true for a cloud located in the front section 
of the line of sight, where it could significantly reduce the 
apparent rotation velocity if it were dark enough. 

Photometric data for the clouds in the bulge of M31 have 
recently been given by Gallagher and Hunter (1981) and by 
Kent (1983). Both studies give for the photometric effect of 
each cloud in the blue or green Am <0.1 mag. In neither case, 
however, is this value meant as a strict upper limit. Kent (1983) 
mentions the existence of a few darker clouds, while Gallagher 
and Hunter (1981) concentrate on clouds of rather small lateral 
extent, leaving open the possibility of somewhat larger clouds 
or cloud complexes with stronger photometric effects. 

The opportunity for deriving anew the photometric limit 
here required was afforded us by Dr. Kent, who kindly sent us 
the digital data from his two main CCD exposures, one in the 
green (4690 Â) and the other in the red (6500 Â). These expo- 
sures are centered on the nucleus of M31 and cover most of our 
restricted area. 

Each of these two intensity arrays reduced by averaging four 
by four pixels was fitted by the approximate model described in 
§ II, and digital maps for the magnitude residuals were pre- 
pared. The large-scale gradients in these maps which are 
caused by the imperfections of the model are sufficiently 
shallow to leave the stronger clouds quite outstanding. Follow- 
ing Kent’s precedent (1983, particularly his Fig. 1), a third 
digital map was prepared which shows the array of color 
indices—without any need for a model. As Kent had empha- 
sized, this map shows the stronger clouds very well indeed. 

Table 1 gives the photometric results for the three most 
outstanding clouds in our restricted area of the bulge of M31, 
again excluding the nuclear region within 0!5 from the center. 
The photometric data are estimated to have an uncertainty of 
about 0.02 mag, most of which is contributed by the uncer- 
tainty in the choice of the “ cloudless ” comparison regions. The 
color excesses listed in the last line were taken from the color 
map, which presumably gives somewhat more accurate results 
than could have been obtained by simply differencing Amg and 
Amr. 

Similar data, although more extensive in wavelength cover- 
age, have been obtained by Elmegreen (1980) for clouds in 
several other galaxies and have been analyzed by her in detail. 
This analysis includes two effects here relevant for clouds well 

TABLE 1 
Photometric Data for Three Clouds in the Bulge of M31 

Quantity Measured Cloud A Cloud B Cloud C 

E-W coordinate (arcmin). 
N-S coordinate (arcmin) . 
Amg (mag)     
Amr (mag)   
A(C.L) (mag)   

W 0.3 W 2.2 E 2.4 
N 1.3 N 0.6 N 0.6 

0.27 0.12 0.09 
0.14 0.08 0.06 
0.12 0.06 0.04 

embedded inside the stellar system. Such a cloud, first, will 
absorb and redden only that fraction of the starlight arising 
from behind it (an effect taken into account by the equations of 
§ III), and, second, it will scatter, without reddening, additional 
light into the line of sight from stars in front of it (an effect 
neglected in § III). Both effects decrease the observed absorp- 
tion, Amg, and the relative reddening, A(C.l.)/Amg, compared 
with an identical cloud positioned in front of all stars. Elme- 
green’s specific computations of these effects cannot be applied 
here because they refer to several cloud types all more opaque 
than the clouds here considered. Nevertheless, the data given in 
Table 1 can be discussed with due regard to these two effects, as 
follows. 

Of the three clouds listed in Table 1, cloud A is the darkest. 
It is No. 395 in the catalog of Hodge (1980) and has also been 
included in the study by Gallagher and Hunter (1981). It shows 
a relative reddening of A(C.I.)/Am9 = 0.4. The relative 
reddening of a separate cloud would be expected, from the 
compilation by Savage and Mathis (1979), to amount to 
1/2.9 = 0.34 for Kent’s wavelength bands. The apparent dis- 
crepancy is within the uncertainty of the present data, but 
makes it unlikely that the true relative reddening of this cloud 
is substantially less than the expected value. This then argues 
for a position of this cloud in front of most of the stars in the 
bulge. The same position is favored by the cloud’s apparent 
location northwest of the apparent major axis of the bulge, 
which places it toward the front side of the bulge if one assumes 
that it lies on or near the equatorial plane. Thus, following 
both lines of evidence, one may accept for this cloud a near- 
front position and accordingly take the data for it in Table 1 at 
their face value. We then conclude that for this cloud Am in the 
blue (where the radial velocities are measured) likely is not 
larger than 0.3 mag. 

Similar arguments hold for cloud B of Table 1. Its photo- 
metric effects are much weaker than those of cloud A, but its 
relative reddening is again strong, A(C.l.)/Amg = 0.5, though 
more uncertain. This again suggests a front position, which is 
also suggested by its apparent location at the front edge of the 
area here studied. Thus one may conclude for this cloud, as for 
cloud A, that the two complicating effects discussed earlier do 
not play a significant role, so that one can take the photometric 
values as they stand. Accordingly it appears likely that the Am 
in the blue for cloud B is about 0.15 mag. 

Cloud C, in spite of being one of the most outstanding 
clouds in the area of the bulge here investigated, is photo- 
metrically much weaker than cloud A. Nevertheless, it is 
clearly discernible on all three maps. Its apparent location at 
the rear edge of our restricted area suggests that its actual 
location, if it is near the equatorial plane, should be in the rear 
portion of the bulge. On the other hand, the small but distinct 
reddening effect, A(C.L), of this cloud does not permit a posi- 
tion too far back in the bulge. One can very roughly model this 
cloud by adopting for it a position such that two-thirds of the 
bulge stars along the line of sight lie in front of the cloud, by 
taking for it an optical depth of 1.0 in the green, and by 
assuming that the scattered light is approximately equal to 
20% of the light of the stars in front of the cloud. This rough 
model reproduces the observed value of Amg but gives for 
A(C.I.) only 0.02 mag, the minimum value necessary to make 
this cloud appear as outstanding as it is on the color map. 
Since in the analysis of § III the scattered light was neglected, it 
is here necessary to note the effective value of Amg which the 
cloud model would produce without the scattering. This value 
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turns out to be 0.25 mag, i.e., substantially larger than the value 
actually observed. In the blue range, relevant for the velocity 
measurements, one finds Am ~ 0.3, i.e., about the same value 
as for cloud A in spite of the substantially higher opacity of 
cloud C. 

The discussion of cloud C raises the question of whether 
there might be a number of clouds in the rear portion of the 
bulge of M31 located so that the light gained by scattering just 
about compensates for the light lost by absorption. If each such 
cloud furthermore is sufficiently opaque so as to transmit little 
reddened light, it might not be detected in either the Am or the 
A(C.I.) maps. But if such opaque clouds exist in the rear half of 
the bulge of M31, some similar clouds should also exist in the 
front half. These would be outstandingly observable but are 
absent. 

All together, then, we conclude that we may adopt, in con- 
nection with the analysis of § III, a value of 0.3 as an upper 
limit for Am for the clouds in the bulge of M31. 

V. RESULTS FOR CLOUD EFFECTS ON VELOCITIES 

Let us start with a qualitative argument. The three photo- 
metrically outstanding clouds discussed in § IV are marked in 
Figure 1 with their designations A, B, and C. The figure shows 
that the observed velocity residuals nearest to the three cloud 
locations are among the smaller ones of all the residuals. This 
lack of correlation already suggests that clouds are not the 
main cause for the velocity residuals. We should reemphasize 
that here we are concerned only with our restricted area. For 
some points outside our area McElroy has already pointed out 
cases of coincidence between clouds and large velocity 
residuals, but not in our restricted area. 

Let us now turn to the main quantitative argument. With the 
tight limit on the cloud extinction derived in § IV, namely, 
Am < 0.3 mag, we can now set a tight limit on the rotation 
excess A F produced by a cloud, regardless of its position. If we 
enter Figure 3 with the extinction limit, we find an extreme 
value for positive rotation excesses of 6 km s ~1 and an extreme 
value for negative rotation excesses of 2.3 km s-1. We should 
view the positive limit with caution, since it could be noticeably 
affected by our neglect of scattering. The true value might be 
higher. On the other hand, the negative limit should not be 
noticeably affected by this effect. Accordingly, we will concen- 
trate on this limit. 

The limit of 2.3 km s-1 for negative rotation excesses 
deduced from the model should be compared with those 
observed velocity residuals shown in Figure 1 which have signs 
corresponding to negative velocity excesses (negative in the 
right half and positive in the left half). There are 109 such 
residuals, out of a total of 216. Of these, 16 have values in 
excess of 15 km s-1. They are shown in boxes in Figure 1. 
These large observed velocity residuals with a sign correspond- 
ing to negative rotation excesses are the ones which violate the 
limit of 2.3 km s -1 deduced from the model by so large a factor 
that they could not plausibly be explained as mainly effects of 
clouds, even if a more elaborate and more carefully adjusted 
model were employed. Our model gives a limit of less than 6% 
of the maximum observed rotation velocity on the major axis, 
while the average absolute value of the 16 large residuals 
amounts to about 50% of this maximum. 

We should add a comment regarding the residuals opposite 
in sign to those just discussed. There are 20 residuals exceeding 
15 km s-1 with a sign corresponding to positive rotation 
excess. The contrast of these residuals to the corresponding 

model limit of 6 km s~1 is not so striking if one remembers that 
this limit is somewhat uncertain because of our neglect of scat- 
tering. But one may argue that if the residuals implying nega- 
tive rotation excesses are not caused by clouds, then the 
majority of the residuals of the opposite sign likely are not 
caused by clouds either. 

We conclude that the main cause for the observed velocity 
residuals in our restricted area in the bulge of M31 is nearly 
certainly not to be found in the effects of clouds. 

VI. STATISTICS OF VELOCITY RESIDUALS 

In § II above, a simple model for rotational streaming 
velocities was fitted to McElroy’s (1983) M31 velocity data. In 
this section we will examine the statistical properties of the 
velocity residuals generated by comparing the data with the 
model. Our object will be to distinguish random independent 
measuring errors, systematic velocity errors, and real depar- 
tures of the M31 velocity field from our model, all of which 
contribute to the residuals. We shall be particularly interested 
in spatially correlated, large-amplitude residuals which could 
be indicative of greater dynamical complexity. In the following 
analysis we shall restrict our attention to the velocity residuals 
in the circular annulus constrained by 0!5 < r < 2!0, giving a 
total of 186 measured points. This region is indicated by a 
dashed circle in Figure 1. 

As a first step we compare the residuals with McElroy’s 
(1983) velocity error estimates (which are based on a Fourier 
quotient analysis of his data) by examining the distribution of 
the ratio of residual to estimated error. If the residuals were 
entirely the result of random measuring errors which were 
accurately characterized by the error estimates, this distribu- 
tion would be a Gaussian with a mean of zero and a variance 
of unity. In fact, the variance is 1.56, and more than 6% of the 
residuals exceed the estimated 3 a level. This strongly suggests 
that either the real errors are ~ 50% greater than the estimated 
ones or the residuals are not entirely due to random measuring 
errors. 

In order to distinguish these two possibilities, we examine 
the correlation of neighboring velocity residuals, taking care to 
separate pairs of velocities measured along the same slit posi- 
tion angle (generally on the same spectrogram) from those with 
differing position angle. The former could be subject to 
common systematic errors, while the latter probably would not 
be. We define a correlation variable K to be the product of two 
velocity residuals and consider the X-distributions for various 
pairings of the McElroy velocity measurements. The distribu- 
tions are compared by their means and dispersions and by a 
Kolmogorov-Smirnov (hereafter KS) test (Lehmann 1975). The 
mean separation, s, between pairs of points and its dispersion 
are also calculated, in order to determine the approximate 
angular scale of any positional correlation in the residuals. 

Four X-distributions, including one control case, have been 
calculated and compared. For the control case we have paired 
each point with a point at a position angle 165° smaller than 
the chosen point but with the most nearly equal radial coordi- 
nate. In effect, this produces a distant (and hence presumably 
uncorrelated) velocity residual measured on a different spec- 
trogram but at approximately the same surface brightness as 
the chosen point. A 180° shift would have brought us back to 
the same spectrogram in many cases. Any X-distributions 
which are indistinguishable from this control, which we label 
case C, are considered uncorrelated. Our only internal check 
on the actual lack of correlation in case C is that its mean X 
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should be zero within the measuring errors. The second K- 
distribution, which we call case NR (near, radial), is generated 
by pairing each point with its nearest neighbor at the same 
position angle, which is generally its absolutely nearest neigh- 
bor on the residual map. A third K-distribution, called case A 
(azimuthal), is constructed by pairing each point with its 
nearest neighbor with a position angle 15° greater than its own. 
Finally, a fourth distribution, called case R (radial) is calcu- 
lated by again pairing each point with a point at the same 
position angle, but this time with the constraint that the point 
be as nearly as possible at the same angular distance as in case 
A; this means that we are correlating points at the same slit 
position with separations as large as those between slit posi- 
tions. 

Table 2 gives the results of our statistical analysis for each of 
these four cases. The first column gives a letter code specifying 
the particular pairing of residuals as described in the previous 
paragraph. The second and third columns give the mean (with 
its associated uncertainty) and dispersion of the angular 
separation 5 of the paired points, respectively. Columns (4) and 
(5) give the same statistics for the K-variable itself. Finally, 
column (6) gives the KS probability, that is, the probability 
that the particular K-distribution would be as different as it is 
from the case C distribution of K if it was in fact drawn from 
the same parent population. Small values of this last parameter 
are taken to indicate correlated velocity residuals. 

The results given in Table 2 are clear and reasonably easy to 
interpret. First of all, we note that the mean K-value in case C 
is consistent with zero, which supports our expectation that 
these widely separated residuals are uncorrelated. Second, case 
NR shows that adjoining velocity residuals at the same slit 
position angle are strongly correlated. This is no surprise, since 
such correlations are evident to the eye in Figured and indeed 
are clearly visible as bumps in the rotation curves plotted in 
McElroy’s (1983) original paper. Third, the results for case A 
show that there is no significant correlation of residuals from 
one slit position angle to the next. This could mean that the 
case NR correlations are due to systematic velocity errors, or it 
could be due to the increased angular scale of the pairings from 
case NR to case A. Finally, case R can be used to rule out this 
second possible explanation by showing that for constant posi- 
tion angle the correlations are only slightly reduced in signifi- 
cance for angular separations just as large as those between 
adjacent slit position angles (case A). In short, velocity 
residuals show correlations where they are typically due to 
measurements on the same spectrogram but not otherwise. 

Our conclusions from this analysis are that the velocity 
model presented in § II adequately reproduces all of the real 
features in the velocity field of M31’s nucleus to an accuracy of 
~10 km s-1, and that the deviations from this model in 
McElroy’s (1983) data (the bumps and asymmetries of his mea- 

TABLE 2 
Statistics of Velocity Residuals 

s (arcsec) K (km2 s-2) 

Case Mean3 Dispersion Mean3 Dispersion PKS 

C  136(4) 55 3.6(11) 147 1.0 
NR  10.8(0.1) 1.7 59(10) 143 <10~4 

A  19.3(0.5) 6.7 13(10) 134 0.7 
R...  19.1(0.5) 7.0 42(9) 125 10"4 

3 Uncertainties in parentheses. 

sured rotation curves) are probably due to small systematic 
measuring errors with amplitudes comparable to his (rather 
small) random errors. No real velocity bumps in the bulge of 
M31 are likely to have amplitudes much larger than 10 km s- ^ 
since, if they did, they should have been detected by McElroy. 

VII. SPECULATIONS ON THE DYNAMICS OF THE BULGE 

The negative results of the preceding sections bring up the 
questions of, first, what dynamical phenomena might exist in 
the bulge of M31 that could produce a more complicated 
velocity pattern than the simple one here modeled, and, 
second, what would be the required observational accuracy if 
these phenomena were to be investigated. We will discuss here, 
in a speculative manner, only one such phenomenon, namely, 
that caused by a triaxial rather than an axisymmetric figure for 
the bulge. 

Lindblad (1956) has suggested a triaxial figure to explain the 
12° tilt of the apparent major axis of the bulge to that of the 
disk. A further discussion of this possibility has been presented 
by Stark (1977). The internal dynamics of a triaxial stellar 
system depends critically on its figure rotation speed. Fast- 
rotating bars have been investigated with the help of N-body 
calculations (e.g., Miller and Smith 1979; Hohl and Zang 1979; 
Sellwood 1981). Slow-rotating triaxial figures have been inves- 
tigated by numerical procedures for the derivation of equi- 
librium models (Schwarzschild 1982). 

The bulge of M31 probably belongs to the slow figure rota- 
tion class because of its low net rotation. Accordingly we use 
Schwarzschild’s (1982, Figs. 8 and 9) models as a guide for the 
deviations of the velocity pattern in a triaxial figure from that 
of a simple axisymmetrical model. The numerical models indi- 
cate that in favorable cases the observable deviations may 
amount to 10% of the velocity dispersion but will in general be 
somewhat less. We conclude that triaxiality may cause diag- 
nostic effects in the observable velocities of the order of 10 km 
s_1. 

For the models referred to above, the velocity data are given 
only for viewing directions parallel to the long and interme- 
diate axes. But for streaming motions in a triaxial figure, when 
viewed from a direction not aligned with a principal axis, 
another perspective velocity distortion appears, namely the S- 
distortion along the apparent minor axis (cf. Miller and Smith 
1979, Fig. 10). The distortion is well known for gas motions in 
barred galaxies (e.g., Sancisi, Allen, and Sullivan 1979) and has 
recently been found by Kormendy (1983) for stellar motions in 
NGC 936, with a maximum value of about 20 km s-1. 
However, NGG 936 is a fast-rotating barred galaxy. Accord- 
ingly, in the bulge of M31 a much weaker S-distortion is 
expected. Thus the direct effects discussed above seem likely to 
be the main ones. 

What, then, is the accuracy required to uncover the effects of 
triaxiality by velocity measurements? We estimate that an 
accuracy corresponding to an rms error, including intrinsic 
and extrinsic sources, of ±5 km s_1 should suffice. The esti- 
mated effect of triaxiality is only twice as large as this rms 
value. But the triaxiality effect is of fairly large scale in the sky 
plane and might be established by combining measurements 
from various points. We recognize that this accuracy require- 
ment is very high. 

VIII. SUMMARY 

We have arrived at two conclusions. First, contrary to a 
common suspicion, the velocity residuals derived from 
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McElroy’s (1983) extensive radial velocity observations in the 
inner bulge of M31 are not likely to be caused by the effects of 
absorption clouds. Second, the statistics of the velocity 
residuals suggest that they are caused mainly by systematic 
observational errors that are not accessible to the objective 
internal error analysis. 

The accuracy of McElroy’s (1983) observations is indicated 
by the small rms error of the velocity residuals. If one considers 
only those observations within our restricted area (2[5 from the 
center on the major axis and 2' on the minor axis), this turns 
out to be ±11 km s-1, which amounts to only 3% of the 400 
km s -1 width (FWHM) of the absorption lines. Even this accu- 
racy does not suffice to address dynamical problems such as 
those mentioned in § VII. 

However, a substantially higher accuracy has been obtained 
by McElroy on those position angles (45°, 135°, 225°, and 315°) 
where he had 4 m spectra available. On these position angles, 
and with the further restriction to 0!5 < r < 1!5, where the 
surface brightness is high and fairly flat, one finds from the 
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velocity residual an rms error of ±6 km s_1. If data of this 
accuracy or a little higher were available for all 24 of 
McElroy’s position angles, even if only in the restricted range 
for r just mentioned, they might reveal dynamical effects such 
as those due to triaxiality, without any serious disturbances 
from the absorption clouds. 

We gratefully acknowledge essential help in this work as 
follows. P. Schechter pointed out the main problem to us. D. 
McElroy, in addition to sending us a preprint of his paper, 
provided us with much further information. S. Kent sent us a 
tape containing the data from his two main CCD exposures. 
W. Sebok transferred these data into our departmental com- 
puter system. One of us (P. T.) is supported by the Netherlands 
Organization for the Advancement of Pure Research (ZWO); 
this support included funds for travel to Princeton. This 
research was supported by NSF grants AST78-23796 and 
AST82-16717. 

STREAMING VELOCITIES IN BULGE OF M31 

APPENDIX 

The geometry is defined in Figure 4, in which (x, y, z) is the 
coordinate system in which the density is constant on similar 
ellipsoids, and (£, () are the projected sky coordinates, with rj 
along the line of sight. The inclination of the galaxy, i, is 
defined as the angle between the rotation axis, z, and the line of 
sight. Furthermore, ¿ is defined to lie along the (projected) 
major axis. The transformation is given by equation (2). In 
Figure 4 the integration path along the line of sight is drawn as 
the heavy line. 

Integrations along the line of sight, rj, turn out to be easier 
when we use the transformation 

/ = n~no = n~ 
Ç 

tan i ’ (Al) 

The line l is thus given in vector representation as 

lx\ I ^ 
h = \ y = I ^ s^n *— fcos 1 

\ z / \rj cos i + C sin i 
l sin i I. (A2) 
/ cos i + C/sin i ! 

To find the surface density according to equation (1), one 
needs 

1 + m2 = 1 + 
x2 + y2 

H—y = Ál2 ± Bl + C , 
c 

in which 

A + - 

z 

Fig. 4.—Coordinates and velocities in the bulge of M31: x, y, z are the 
principal axes of the bulge; Ç are the coordinates in the plane of the sky; rj or 
/ is the coordinate along the line of sight; v is the rotational velocity; and 
v cos (f) sin i is the velocity component along the line of sight. 

B 

C 

2Í 
c tan i 

~2 + ~1 ¿r <r smr 2+ 1 • i 
(A3) 

A contribution from ^ to l2 to the surface density at Q is 
thus given by 

f'2 dl 
1 JP + BI+C ■ ,M| 

This is a standard integral (e.g., Gradshteyn and Ryzhik 1965, 
No. 2.172). In the case of a cloudless path of integration with 
11 2 = ± oo, the integral yields 

0 = (4AC - B2)1'2 ’ 
(A5) 

which is given in equation (3). 
To find the contribution from /: to l2 to the velocity integral, 

equation (8), we need to multiply the integrand in expression 
(A4) by the radial velocity v(l). Since velocities transform also 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
85

A
pJ

. 
. .

28
9.

 . 
.5

8T
 

66 TEUREN, TURNER, AND SCHWARZSCHILD 

according to equation (2), we write, from Figure 4, 
V(l) = Vrot(R) Sin i C0S 0 

- [■.„(«) sin o + ,1 s¡na y,; . (A6a) 

But since 

^rotW = V0 

= (v0/R0)R 

we obtain 

v(l) = (v0 sin i) 

if R = (£2 + l2 sin2 i)1/2 > R0 

if R = (¿2 + l2 sin2 i)1/2 < R0 , 

(¿2 + l2 sin2 i)1/2 ’ 

= (^o sin i) , 

R> R0 

R < R0 . (A6b) 

Since, for R < R0, v(l) does not depend on /, this contribution 
to the integral (8) is of the same standard form as (A4): 

(Po v0 sin i) Ko Jh 

dl 
Al2 + B/ + C 

For R > R0 we write the contribution as 

Po v0- 
dl 

h ((X + ßl + Z2)^! + Z2)1/2 

(A7) 

(A8) 

with 

a = C/T , ß = B/A , = {2/sin2 Z 

This integral is also of “ standard ” form, according to Grad- 
shteyn and Ryzhik (1965, No. 2.252), and can be handled as 
follows: In the case /? # 0 we substitute 

/ = AA + BB 
t - 1 
i + 1 

where we define 

al — oc 
AA = 

ß 
BB = [(ai - «) + a^2] 2-11/2 

We finally arrive at 

2BB 

fÁ9i ,1/2 
|f + l\dt 

(1 (t2 + p)(i2 + 

(A9) 

(MO) 

with 

and 

P ~ fllf.1 » 9 = 02/01 

= (AA + BB)2 + /?(AA + BB) + a , 

f2 = (AA — BB)2 + ^(AA — BB) + a, 

= (AA + BB)2 + öj, 

g2 = (AA — BB)2 + a1 (All) 

Note that | í + 11 changes form at t = — 1. 
The integral (A 10) is split into two integrals of the form 

dt 

and 

(í2 + p)(í2 + q)1/2 

tdt 

(1 (Í2 + p)(t2 + q)112 ' 

(A12a) 

(A 12b) 

The first one is brought to standard form (Gradshteyn and 
Ryzhik 1965, No. 2.172) by substituting v = t/(t2 + q)112 : 

f 

dv 

jvi (9 - p)v2 + P ' 
For the second one, using u = (t2 + g)1/2, we obtain 

du 

ui w2 + (p - q) 

(A 13a) 

(A 13b) 

In the case ß = 0 (on the major axis) the integral (A8) is 
already of the form (A 12a). Specifically, the maximum rotation 
curve velocity along the major axis can be easily calculated : 

V = mx 
1 Çv0 sin i 

, Al2 + £2 (£2 + Z2 sin2 i) 2 ai/2 dl 
dl 

-oo AZ2 + i* 

(A 14) 

where we assumed { 1, and A is as defined in equation (A3). 
The integral on the left has to be transformed as in (A 12a), and 
both integrals are of standard form. We merely state the result: 

2 A1/2 Knx = K sin /) - (1 H- c2 tan2 i) 71 
tan 

1 
c tan i 

(A 15) 
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