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ABSTRACT 
Stellar rotation periods recently determined from short-term variations in Ca n H and K emission-line flux 

associated with starspot activity can be combined with both rotational spectral line broadening velocity mea- 
surements and independent measurements of stellar radii to give the inclination of the star’s rotation axis to 
the line of sight. Assuming that the limits of distribution of sunspots on the Sun apply similarly to solar-type 
stars, interferometric measurements of stellar radii in Ca n H and K flux may be performed to determine the 
clocklike, on-the-plane-of-the-sky orientation as well. Various stellar radius measuring techniques are dis- 
cussed, and photon limits on the measurability of this latter parameter are derived for Ca n H and K speckle 
interferometry. The accuracy with which one can determine the space orientation of stars is discussed in the 
context of existing data as well as photon limits. The importance of determining the space orientation of stars 
is then discussed, with emphasis on its important application to the present search for extrasolar planetary 
systems. 
Subject headings : Ca n emission — stars : rotation 

I. INTRODUCTION 

The space orientations of the rotation axes of single stars, with the exception of the Sun, have never been directly determined 
(Doyle, Wilcox, and Lorre 1983). However, spectroscopic variations with rotation period in Ap stars have allowed the determi- 
nation of the inclination to the line-of-sight component for the rotation axes of these stars (see Abt 1972). In addition, close binaries 
are expected, through tidal interaction, to have their rotation axes normal to their orbital plane, and in some eclipsing systems the 
spectrum can yield the direction of rotation. Close binaries, as well as spectroscopic binaries, can be modeled for stellar inclination 
to the line of sight implied from their orbital elements. Statistically, as in the study of star clusters, or in determining stellar 
spectral-type/rotational-velocity correlations, the average sine of the stellar inclination of the line of sight has been taken as tt/4 
(Allen 1976). 

Stellar rotational velocities (F) determined from Doppler broadened spectral lines are dependent on the inclination i to the line of 
sight, so that only V sin i is measured. 

In order to begin to find the space orientation of a star, one must first find a way to isolate the rotational-velocity component from 
the stellar inclination to the line of sight, as well as determine the clocklike, on-the-plane-of-the-sky orientation, which we will be 
identifying as the vector h. We have found that these components may be separable by looking at the stars in the Ca n H and K line 
emission associated with sunspot activity. 

IL Ca II H AND K FLUX AND STELLAR ORIENTATION 

Plage areas on the Sun, which cause Ca n H and K line emission in the usual broad absorption bands, have been shown to be 
associated with sunspot activity (e.g., Wilson 1968; Vaughan, Preston, and Wilson 1978; Wilson 1978; Vaughan and Preston 1980). 
Long-term variations, on the order of years, in the magnitudes of these emission lines have been used to follow late-type stellar 
sunspot or starspot cycles (Vaughan 1980; Wilson, Vaughan, and Mihalas 1981). Short-term variations, on the order of days, have 
been shown to yield the true rotation period (P) of the star (Vaughan 1981 ; Vaughan et al 1981 ; Bahúnas et al 1983; Hartmann et 
al 1983). The short-period variations are apparently due to the asymmetric distribution of the starspot regions on the western and 
eastern hemispheres alternately displayed toward the observer as the star rotates, thus causing the H and K emission to vary. 
Although other methods exist for the determination of the rotation periods of stars, this method is the most widely demonstrated at 
present. 

Once the rotation period P is known, it can be combined with the stellar radius r, determinable by several methods (Fracassini, 
Pasinetti, and Manzolini 1981), to give the star’s true rotational velocity: V = 2nr/P, assuming a spherical star, reasonable for slow, 
solar-type rotators. This velocity, divided into the projected Doppler velocity from spectral line broadening V sin i, then gives the 
true stellar rotation axis inclination i to the line of sight. Table 1 lists preliminary values of the inclination to the line of sight for a 
number of stars whose rotation periods have been determined by the Ca n H and K emission method. Many more stellar rotation 
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TABLE 1 
Derived Stellar Inclinations to the Line of Sight 

Star V sin i (km s 0 V (km s 0 i 

Sun  1.84 2 66°33' 
HD 2454   8 8 90° 
HD 22049    <3 4 <49° 
HD 25998   22 23 73° 
HD 26913   <6 7 <59° 
HD 154417   5.5 ± 0.7 7 52° 
HD 190406   3-5 4 49° - 90° 
HD 206860   10.2 ±1.1 11 68° 

Note.—Radius values are from the mass-radius relationship for dwarf 
stars of Harris, Strand, and Worley 1963. V sin i values for HD 22049 are 
from Vogt, Penrod, and Soderblom 1983; for the Sun, HD 154417, and HD 
206860, from Soderblom 1982; and for HD 2454, HD 25998, HD 26913, and 
HD 190406, from Kraft 1967. Ca h H and K periods as well as the above 
values are from Table 3 of Bahúnas et al. 1983. 

periods continue to be measured by this method, and advances in high-resolution spectroscopy may provide more accurate values of 
K sin i. 

The second component of axis tilt, the clocklike orientation h, must rely on some latitudinal asymmetry, and again the Ca n H 
and K emission associated with sunspot activity can be of use. As observed on the Sun, sunspot activity is confined to ecliptic 
latitudes of ±40° (see Allen 1976 and references therein). The H and K emission from plage areas associated with sunspot regions 
would thus be expected to be confined to a large equatorial belt, and a kind of solar “ sash ” or elliptical component does indeed 
characterize the Sun in this narrow wavelength region, as shown in Figure 1 (Plate 7 ). Measurements of solar-type stars in Ca n H 
and K emission at different angles should then give different radii, the longest being along the stellar equator. This would 
consequently give the stellar equator’s clocklike orientation on the plane of the sky. This confinement of Ca n H and K emission to 
equatorial regions may apply to other than solar-type stars as well, but the effect of greater magnetic field strengths as well as the 
relationship between normal solar-type starspots and coronal hole-type phenomena, which generally form around the polar 
regions, must be better understood. (An example of the latter type of phenomenon can be found in Vogt and Penrod 1983.) 

The first consideration in measuring this value might be to simply photograph the star simultaneously in visual and in H and K 
emission, then deconvolve the visual light point-spread function assuming a circular disk source. The H and K image similarly 
deconvolved should then be elliptical. However, with this approach the recorded stellar image, usually assumed to be Gaussian, 
would be at least two orders of magnitude larger than the original stellar size, and the deviations of the H and K image from 
circularity could very easily be hidden in the noise, so that a major and minor axis of an elliptical shape could not be accurately 
determined. 

A direct measurement of the radii of the star in Ca n H and K flux must, therefore, be done. This requires a short review of the 
available direct stellar measuring techniques to determine the method most appropriate for use in the very limited light available in 
Ca il H and K emission. 

III. TECHNIQUES FOR MEASURING STELLAR RADII 
The major techniques for directly determining stellar radii are lunar occultations, intensity interferometry, Michelson interferom- 

etry, and speckle interferometry. The lunar occultation technique (first outlined in Williams 1939; and Evans 1955) can theoretically 
determine a star’s finite angular extent by recording its disappearance time behind the Moon when it is occulted. In practice, one 
records a diffraction pattern due to the interception of the star’s light by the cutting edge of the Moon (e.g., Barnes and Evans 1976). 
The diffraction pattern’s measured deviation from a point source (smaller amplitudes) will give its finite extent. Occultation event 
times are of the order of milliseconds, and very fast photometers are required. The lunar occultation techniques would not appear to 
be practical at present for performing H and K stellar measurements, because of the very short event times and consequent lack of 
sufficient time to collect the photons required for a good determination. In addition, event times are scheduled by nature and not by 
the observer. 

Intensity interferometry (Hanbury Brown et al. 1967; Hanbury Brown 1968) relies on the intrinsic statistical fluctuations in the 
sampled photon flux by measuring its arrival time at two different receivers and then integrating the differences over a large period 
of time. Integration times can be as long as 50 hours or more, and the technique is generally limited to stars of magnitude 2.0 or 
brighter. This technique would not, therefore, be sensitive enough to measure the star’s radius in H and K flux alone. The authors of 
this method have suggested, however, that it could be used to measure oblateness of rapidly rotating early-type stars of sufficient 
brightness, a problem not unlike the one being investigated in this paper. 

Michelson interferometry, as first performed by Michelson and Pease (1921), used one telescope with four smaller mirrors, two 
located at opposite ends of a 20 foot (6 m) beam attached to the observing-cage end of the telescope. These two directed light from a 
star inward toward the other two small mirrors, which, in turn, directed it down to the telescope mirror, where the beams could 
interfere with each other. By varying the separation of the two mirrors and recording the separation at which the interference fringes 
disappeared, the angular extent of the star could be measured. The technique, however, would seem to be limited by a lack of 
observers practiced in the art of recognizing when the fringes indeed disappear, as well as being constrained by atmospheric 
turbulence. The 20 foot baseline is one-dimensional, and would appear to be approaching a visual ground-based limit for such a 
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PLATE 7 

Fig. 1. Picture of the Sun taken in Ca n K emission (3933.664 Á) showing the equatorial “ sash ” indicative of the Sun in this wavelength. (Photo courtesy of the 
Mount Wilson and Las Campanas Observatories, Carnegie Institution of Washington.) 

Doyle et al. {see page 308) 
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device without the interference fringes becoming largely imperceptible. However, such an interferometer in orbit would not share 
such baseline limitations and would be of great value in determining stellar radii. Some modifications of their concept show promise 
as well (e.g., Breckinridge 1972; Roddier and Roddier 1982). 

Speckle interferometry (Labeyrie 1970; Gezari, Labeyrie, and Stachnik 1972; Labeyrie et al. 1974), by far the most sensitive of the 
Earth-based techniques, has presently been performed on stars down to 16th magnitude. Extensions of the technique have included 
precise star mapping (Liu and Lohmann 1973), application to infrared wavelengths in one dimension (Howell, McCarthy, and Low 
1981), and image reconstruction (e.g., Nisenson and Stachnik 1979). Current work includes a differential speckle interferometry 
concept using narrow (less than 1 Â) bandpass filters (Beckers and Hege 1982), which may improve V sin i values of stellar rotation 
significantly. 

Speckle interferometry generally utilizes a single telescope to record a quick-exposure speckle pattern of photons which are the 
image of, for example here, a close binary system. The stars are theoretically resolvable but are convolved by atmospheric turbulent 
cells and the distribution pattern of the finite-aperture telescope. The assumption of theoretical resolution is usually made so that 
the specks that make up the speckle pattern do not further complicate the image by being as small as the Airy disk. Although the 
convoluted images of the two stars are superposed, the basic offset of each pattern (spatial frequency of separation of the two stars) 
remains. By taking the Fourier transform of the total speckle pattern, this frequency become evident, and the angular separation of 
the two stars is determined. Similarly, for single stars, the characteristic frequency would be the integrated finite extent of the star’s 
disk. Exposure times generally need to be less than 0.1 s to “ freeze ” the atmospheric cells producing the speckle pattern. By taking 
the Fourier transform of the speckle pattern, the spatial frequencies invert and small spatial frequencies due to the finite extent of the 
star become large interference rings, while the large convolution due to the atmospheric turbulent cells become specklike in the 
Fourier transform space image. The Fourier transformed speckle images can thus be superposed to build up the photon signal-to- 
noise ratio. This method, with slight modifications, will now be applied to the problem of measuring a star’s elliptical axes in Ca n H 
and K line emission. 

IV. Ca II H AND K EMISSION SPECKLE INTERFEROMETRY 

In this application, we will want to measure the axis direction on the plane of the sky of the elliptical component of a star in Ca n 
H and K emission. Since the intensity distribution curve of the Fourier transformed speckle image will flatten in higher orders as the 
source deviates from a point source, the ability to measure differences in Fourier transformed photon counts of these higher order 
maxima and minima is what is statistically required. The expected intensity distribution for an elliptical source in Fourier transform 
space would thus have elliptical intensity rings, but rotated 90° from the actual source orientation, as will be shown. The orientation 
of the semimajor and semiminor axes of this image and the accuracy with which they can be determined will be derived. Since 
photon flux in Ca n H and K emission is extremely limited, we will want to calculate the photon statistical limits for the resolution of 
these small object parameters (major and minor axes of a stellar image) through atmospheric turbulence. 

We start by defining a digital-image approach to the reduction and processing of the speckle pattern. The images of the speckle 
pattern will thus be made up of many individual picture elements (pixels). We define Giyj) to be the number of photons in one speck 
of the speckle image (its intensity or DN number). Each speck j is labeled by its position vector^-. We also assume that the angular 
size of the object (star) is much smaller than the angle subtended by the turbulent cell responsible for the proliferation of speckle 
images—certainly supported by observations. 

A complete speckle image will be made up of many individual specks, all of an object assumed to be within the theoretical 
resolution limit of the telescope, so that, as mentioned before, they are not as small as the Airy disk. 

Next, the resolution limit of the digital image is chosen to be of sufficient size that each speck in the speckle image is spread over 
A/j pixels. Consider first the one-dimensional problem. The total speckle image then consists of a data set that may be represented by 

{G/x„ + ^)} 

where yj is the vector center location of the speck, and is the pixel ordinate within an individual speck, so that 

xn = nA , 

where A is the length of a pixel (n of them constitute a speck length) and 

-Nj 
2 

< n < 

AT/as defined being the length of an individual speck. 
In processing a speckle image, either with a laser or digitally, the Fourier transform of the image is taken in order to separate the 

low-frequency components of the atmosphere from the high-frequency components of the stellar image. 
Let us consider, then, the Fourier transform, {G}, of the speckle image {G/x„ + y^}. Letting k be the wavenumber (2nß\ we have 

for the real component 

G(k) = £ Z cos k(x„ + yj)Gj{x„ + yj) = 2 Z G/x„ + y¡) cos ink A + kyj , (1) 
j n j n 

where 

Z Z + yj) = z Z (Go + *Gjn), (2) 
j n j n 
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the being the deviations from the mean intensity values recorded per pixel and G0 the mean number of photons per pixel, or 

N 
G0 = 

NjN/ (3) 

where N is the total number of photons in the speckle image, N¡ is the number of pixels per speck, as before, and Ns is the number of 
specks per speckle image. Substituting equation (2) in equation (1), we obtain 

G(/c) = G0 X Z cos (n/cA + + Z Z cos (n/cA +/c^) . 
jn j n 

From the first term in equation (4), we can write 

AÍ//2 JV//2 
! z 

- JV//2 -ÍV//2 

Using the series sum identity, (1 + z + z2 + • • • + z") = (1 - zn+1)/(l - z), the summation terms can be written 

-iN//2,fcA 1 - ei{N, + im _ sin [(1/2XÍV, + l)/cA] 

X COS (n/cA + ky’j) (eHkyi+'"kii) + e~i{kyJ+nkA)) = eikyi 2 einkA + e~ikyj 2 einkA 

Ni/2 
^ einkA _ e(~iN 

-Nj/2 1 -c1 ik 

(4) 

(5) 

(6) sin (l/2)fcA 

We notice now, that the terms in Y,, Y,- <)G(„ cos (n/cA + /< v() are all uncorrelated. Furthermore, the ôGJn are the results of 
counting errors, which, according to Poisson statistics, will have characteristic magnitude G¿/2. The uncorrelated sum can be 
thought of as a random walk with a total of Nj Ns steps having a characteristic net length of (N, Ns)

112. Therefore, the net 
uncertainty in the Fourier transformed quantities G(k) is just .V12. 

em = ^ z cos Icy, Si" [(1/2YU.1)tA] ± Nin . 
N,N, sin (l/2)kA (7) 

By a similar line of reasoning, the sum Y,j cos kyj involves uncorrelated terms for sufficiently large k, and the characteristic total 
magnitude is N¡12. Thus, 

G(k) 
N sin [(l/2)(JVf + l)kA] 

N,N1
S
12 sin (l/2)kA 

+ N112 . (8) 

Equation (8) describes the inversion of spatial scales which is the key to understanding the utility of Fourier transform space for 
mitigating the effects of turbulence (Fig. 2). The existence of many individual specks contributes to the graininess of the Fourier 
image; a single speck defines large-scale envelope structures. The appropriate pixel spacing in k-space (Fourier transform space), Ak, 
is related to the initial pixel image, Ax, by the relation 

where .:V(, is the total number of pixels. 

A/c« 
2n 
NpAx ’ (9) 

Configuration (x) space 

Fig. 2.—Simplified diagram of stellar Ca n H and K 

Fourier Transform (k) space 

speckle image transformation to Fourier transform space 
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So far we have been concerned with one-dimensional distributions. Since we are actually interested in two-dimensional images, 
we consider briefly the speckle image of a circular disk. Defining 

G(k) = X I eik ■ <*"+^Gj(xn + yj), (10) 
jn 

where xn and .v„ now denote two-dimensional pixel and speck coordinates, and introducing polar coordinates within each individual 
speck, we obtain 

N r° 
N,NS Jo 

2\uk ■ »+kr cos e)rdrde = ^ ———J^ka) ^ eik ' ^ , (11) 

or 

Gik) 
2na N 

NjNl12 JAka) ± N112 , (12) 

where a is the characteristic radius, and is the ordinary Bessel function of order 1. The argument leading to the uncertainty term 
N1/2 in equation (12) follows exactly the one-dimensional case. 

Since we are actually interested in finding the (Fourier transformed) principal axes of an elliptical distribution, we shall now define 
a measure of oblateness. If 

m ^21 [(tfy - (K)) ■ ñ]2Gl7 , (13) 
i j 

then it can be shown that H has near-stationary values when the unit vector h points in a small interval of directions near the 
oblateness axes. The quantity (K) is just the centroid of the total distribution : 

L L ^¡Gr, 
X; Xj Gij 

(14) 

where the vectors define the locations of the pixel centers in the Fourier transform domain. It is convenient to define the vector 
derivative quantity dH/dh, which is related to the gradient : 

m 
dh 

lim 
|n' —n| ->0 

H(h') - H{h) 
\h'-h\2 (»' -«). 

In terms of this quantity, the defining equation for the oblateness axes is given by 

(15) 

dH r, nix — = 0, 
ort! 

(16) 

i.e., near the direction defined by the unit vector hl the oblateness function H is stationary. Equation (16) reduces to the form 

X X (A.j ' «)" * Ay Gij = 0 , (17) 
Í J 

where 

= Kij - <K} . (18) 

Now the precision with which the true value of the oblateness axes, h, can be determined evidently depends upon the statistics of 
the quantities Gi;-. A first-order expansion of equation (17) in terms of error quantities is given by 

X X [(A,7 • Ôh)h X \ij GtJ + (Ay • h)ôh X Ay Gy + (Ay - «)« X Ay <5Gy] = 0 , (19) 
ij 

where ôh is perpendicular to h at the stationary point. Now it is easy to show, as a vector identity, 

(r • ôh)n x r -f- (r • h)Sh x r = kr2 \ôn \ . (20) 

Combining equations (19) and (20), we obtain the result 

, C-, I Xi X; (AÖ ■ n)k- hx Ay ¿Gy | 
|5"'  

(21) 

It can be concluded from the form of equation (21) that oblate distributions of large eccentricity will have small values of | <5/i |. This 
results from the fact that a circular distribution minimizes the denominator. In order to establish a useful bound, we shall, therefore, 
assume a circular form, which considerably simplifies evaluation. We note, however, that for a true circular distribution, the function 
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H(h) is independent of direction, h, and there is no favored axis of oblateness. Consider now 

II Avl2C.7 
1 

k2G0d
2k = 

2n 
m2 j 

2n V N 
AkAx) a NIN

l
s
12 , 

2n \2 N 

(Ak)2 

I, Kmax 

G0(k)k3dk 

J^kaj^dk 

AkAx) N¡ N'J2 k™*j2(k™*a) ’ 
(22) 

where we have used the Fourier transformed circular distribution described by equation (12). The numerator in equation (21) can be 
evaluated approximately as follows : 

11 (Ay • h)k • (« X Ay) <3 G y ANNP) 1/2 (23) 

where Np is the total number of pixels in either configuration or Fourier transform space. We have used the result here that 
SGij = N112 and the fact that the combination AkAx can be eliminated from equation (22) using the relation 

(AkAx)2 = ; (24) 

which defines the connection between the two-dimensional configuration and Fourier transform space increments in terms of the 
total number of independent discrete elements. Combining equations (21)-(24), we obtain finally 

l^| 
1 

d) 
(25) 

Recall that Nj is the number of pixels in a configuration space speck, N is the total number of photons, Np is the total number of 
configuration or Fourier domain pixels, and ATS is the number of specks. 

Equation (25) characterizes the quantum statistical limits of precision attainable in determining the elliptical axes of an oblate 
stellar object imaged on the plane of the sky, as seen through the turbulent atmosphere with a sufficiently large (i.e., image-resolving) 
telescope. It states, in effect, that once a telescope aperture is sufficiently large to resolve the stellar angular width, further increases in 
aperture size will not improve the oblateness axis resolution, since the total number of specks and the overall photon count will 
increase proportionately, thereby producing simple cancellation according to equation (25). Furthermore, overdefinition of the 
stellar images by allowing too many pixels per speck is also undesirable, since the distribution of a limited number of photons over 
too many sampling cells (pixels) leads to a statistical degradation in determining relatively simple features of the distribution, such as 
oblateness axes. On the other hand, accurate definition of an oblate axis h requires that the image be not too crude. 

Perhaps the best strategy for determining the stellar oblateness axes with precision is to simply take many separate short-time 
(10-3-10-2 s) exposures. Note that multiply exposing the same piece of film produces no net improvement in resolution, since Ns 
and N increase proportionately, thereby leading to a net cancellation in equation (25). If Ne is the number of exposures from which 
the oblateness axes are determined, then it can be expected that the error in ôn will be further reduced, and we obtain the relation 

l<s«l N,\ 
__Ns\ 
NNpNj 

1/2 
(26) 

We will now review the inaccuracies in the determination of the inclination to the line-of-sight component as a prelude to 
applying the above formula for the determination of the uncertainties in the plane-of-the-sky angle. 

V. PRECISION IN i AND h 

The determined inclination to the line of sight, being dependent on the sine function, becomes increasingly sensitive as values 
approach 90°, and faster stellar rotations, unfortunately uncharacteristic in solar-type stars, would provide greater accuracy. As an 
example, for a star with a measured V sin i of 5 km s"1 with an uncertainty of 1 km s" ^ and a true rotational velocity of 7 km s~ ^ 
the determination of i would be 45íío degrees. For an uncertainty of 1 km s_1 in the determination of the true velocity alone the 
inclination would be 45 degrees. Recent developments in high-resolution spectroscopy and other techniques (e.g., Campbell 
1983; Beckers and Hege 1982) can allow determinations of V sin i to sub-km s-1 values, which could allow a determination of i to 
better than 10°. 

Uncertainties in the true rotational velocity determination arise from errors in both the Ca n H and K period determination as 
well as the stellar radius value used. For the stars listed in Table 1, the error in the determination of the Ca n H and K rotational 
period is of the order of 2%, which for a “known” radius translates to an inaccuracy in the true velocity of around 0.1 km s'1. 
Further data being taken will reduce this still further. 

The stellar radius itself can be found by a variety of direct and indirect methods (see Fracassini, Pasinetti, and Manzolini 1981 and 
references therein). Stellar radius will vary with wavelength as well. In addition, one would ideally want a value of the stellar radius 
at the region in the stellar atmosphere responsible for the formation of the spectral lines used in the determination of the (V sin i) 
rotational broadening, although this is not usually specifiable. For the case of a Orionis (Betelgeuse), radius measurements in one 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
84

A
pJ

. 
. .

28
7.

 .
30

7D
 

No. 1, 1984 SPACE ORIENTATION OF STARS 313 

wavelength are given as accurate to within 1% (Lynds, Worden, and Harvey 1976), although the limb-darkening model will make a 
significant difference. Such an error in the determination of the radius alone translates to an uncertainty in the value of the “ true ” 
rotational velocity of about 0.1 km s" ^ It is therefore estimated that, with techniques presently available, the inclination to the line 
of sight of certain nearby stars could be determined to within 10° or better. 

One important ambiguity in the interpretation of the data should also be pointed out. Although ¿ specifies the inclination to the 
line of sight, it does not specify whether it is the northern pole (counterclockwise rotation) or the southern pole (clockwise rotation) 
of the star that is tilted toward the observer. Thus, there will be two possible values for the pointing direction of the pole along the 
line of sight, that is, two points, at 90° ± i. This would not, however, affect any of the immediate applications (to be discussed in 
§ VI). 

One would also expect the Ca n H and K emission available to vary not just with intrinsic starspot cycles but with inclination 
(from star to star) to the line of sight. Higher values of inclination would produce a more face-on view of the H and K emission and, 
by this effect, higher amplitudes in their variations. Pole-on views might be expected to diminish this emission greatly (in addition to 
showing no variability). Since the semiminor axis of the elliptical distribution of the star in H and K emission would foreshorten as 
the sine of the inclination to the line of sight, one could mention that the ratio of the semiminor to the semimajor axis might be an 
indicator of the actual inclination to the line of sight. However, aside from the decrease in the H and K emission available, 
measurement of the semiminor axis could be complicated by the fact that its angular extent is below the theoretical resolution limit. 
Also, the H and K emission region on the star is probably not uniform enough to measure an axis ratio dependably in this way. (One 
must remember that while the nonuniformities in the distribution of the Ca n H and K emission areas cause the rotational variations 
that allow the determination of the inclination to the line-of-sight component, it is these same nonuniformities that are the major 
sources of error in the determination of the major axis of the elliptically modeled “sash” region that gives the clocklike angle 
component on the plane of the sky.) In addition, a second-order effect would become important. 

Because of the wide distribution of the Ca n H and K emission plage areas expected on solar-type stars (middle stellar latitudes), 
the effect of sphericity of the star is negligible to first order, and we can indeed determine an elliptical fit for the distribution of the H 
and K emission. The lines of equilatitude on the star are actually curves, and this “smile” or “frown” orientation, while theoreti- 
cally being able to remove the dual axis ambiguity mentioned earlier, could also not be expected to be well enough defined to make 
any such determination possible. 

We will now want to calculate a numerical estimate of stellar brightness requirements for determination of the axis (/i) orientation 
or the plane of the sky. 

The number of photons available for the axis-orientation measurement of an Mth magnitude star can be expressed by the 
equation 

N ^Av QSAx iQ — q.4(m + 26) /27) 

Ns v EVN, 

where the Sun’s apparent magnitude is taken as —26, Av/v is the fractional line width of the filtered Ca n H and K light, Q is the 
quantum efficiency, S is the solar constant, vl is the aperture area of the telescope, i is the exposure time, and is the photon energy. 
Equations (26) and (27) can be combined to yield a threshold brightness requirement : 

M = 2.5 log10 
Av QSAt 

- 26 . (28) 

As a representative set of parameters, let us take Q = 0.2, S = 103 W m 2, t = 10 3 s, A/Ns = 2.5 x 10 4 m2, Ep = 2.5 eV, 
Av/v = 2 x 10-4, Nd = 106, Ne = 102, N; = 102, and ôn = 0.1 (about 6°). 

We obtain a threshold magnitude of M = 5. Of course, there is a great deal of uncertainty in what constitutes a reasonable set of 
parameters for an axis-orientation measurement. The set we have chosen is rather conservative. In particular, the number of pixels is 
determined by the grain size if the image is recorded on film, and Np could easily exceed the chosen value by one or two orders of 
magnitude. In addition, the number of exposures could be manageably increased by an order of magnitude. We conclude that these 
kinds of techniques can plausibly be extended substantially beyond this limit. 

VI. APPLICATIONS AND CONCLUSIONS 

There are many important applications for the determined space orientations of stars. The determination of stellar orientations in 
binary and multiple star systems as well as in clusters could have important consequences for theories on the formation and 
evolution of star systems. For example, determining the distribution of spin axes in stellar clusters would provide insight into 
angular momentum distribution in primordial clouds from which the stars formed and thus into the compression phenomenon 
which initiates gravitational collapse. 

Incidentally, timing any differences in the ingress and egress as well as the duration of an eclipse in an eclipsing binary system in 
visual and in Ca n H and K emission could provide information with which the stellar pole orientations could be compared with 
their orbital plane. This could be compared with an independent measurement from Ca n H and K speckle interferometry of the 
orientation component h on the plane of the sky. 

Of more immediate utility, however, would be the application of the determination of stellar space orientations to the search for 
extrasolar planetary systems. A number of important applications exist. As our solar system indicates, supported by both theories 
and preliminary observations, planetary bodies are expected to form in orbits in or near the star’s equatorial plane (e.g., Isaacman 
and Sagan 1977). Determining the star’s space orientation, then, would give the expected planetary plane. 
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Two methods proposed for finding extrasolar planets involve wobbling of the star due to the gravitational influence of the unseen 
(planetary) companion. A known inclination to the line of sight immediately tells the observer in which direction the star would be 
expected to wobble, and therefore which detection method to use : radial velocity variations or proper-motion wobbles (see Black 
1980 for a review). 

Another, the photometric method (Borucki and Summers 1983), would measure the luminosity drop in a star’s brightness due to 
the transit of a planetary body across the face of the star. Knowing the inclination of stars would allow differentiation of the stars 
inclined favorably for such a transit to occur in our line of sight. 

Determining the complete space orientation of a star could allow intrinsic stellar pulsation components to be separated from an 
external secondary body’s gravitational influence, and thereby the expected location of the secondary body in relation to the star 
could be formulated. Knowing the expected planetary orbital plane in conjunction with the gravitational influence of the external 
perturbing body thus highly constrains and thereby greatly enhances the possibility of detecting extrasolar planetary systems. 

We conclude, then, that with this method the space orientation of certain stars may be determinable to better than 10° for both 
components, thereby adding a new and very useful primary parameter to the known characteristics of stars. 
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Propulsion Laboratory for his unfailing support. Finally, we would like to thank Dr. Myron Smith for his very helpful refereeing of 
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Mount Wilson and Las Campanas Observatories. 

REFERENCES 
Abt, H. A. 1972, Ap. J., 175, 779. 
Allen, C. W. 1976, Astrophysical Quantities (3d ed.; London: Athlone), pp. 210, 

183. 
Bahúnas, S. L., et al. 1983, Ap. J., 275,752. 
Barnes, T. G., and Evans, D. S. 1976, M.N.R.A.S., 174,489. 
Beckers, J. M., and Hege, E. K. 1982, in I AU Colloquium 67, Instrumentation 

for Astronomy with Large Optical Telescopes, ed. C. M. Humphries 
(Dordrecht: Reidel), p. 199. 

Black, D. C. 1980, Space Sd. Ret;., 25, 35. 
Borucki, W. J., and Summers, A. L. 1983, preprint. 
Breckinridge, J. B. 1972, Appl. Optics, 11,2996. 
Campbell, B. 1983, Pub. A.S.P., 95,577. 
Doyle, L. R., Wilcox, T. J., and Lorre, J. J. 1983, Pub. A.S.P., 95,588. 
Evans, D. S. 1955, M.N.R.A.S., 115,467. 
Fracassini, M., Pasinetti, L. E., and Manzolini, F. 1981, Astr. Ap. Suppl, 45, 

145. 
Gezari, D. Y., Labeyrie, A., and Stachnik, R. V. 1972, Ap. J. (Letters), 173, LI. 
Hanbury Brown, R. 1968, Ann. Rev. Astr. Ap., 6,13. 
Hanbury Brown, R., Davis, J., Allen, L. R., and Rome, J. M. 1967, M.N.R.A.S., 

137,393. 
Harris, D. L., Strand, K. Aa., and Worley, C. E. 1963, in Stars and Stellar 

Systems, Vol. 3, Basic Astronomical Data, ed. K. Aa. Strand (Chicago: Uni- 
versity of Chicago Press), p. 273. 

Hartmann, L., Bahúnas, S. L., Noyes, R. W., and Duncan, D. K. 1983, Center 
for Astrophysics, Preprint No. 1818. 

Howell, R. R., McCarthy, D. W., and Low, F. J. 1981, Ap. J. (Letters), 251, L21. 
Isaacman, R., and Sagan, C. 1977, Icarus, 31, 510. 

Kraft, R. P. 1967, Ap. J., 150, 551. 
Labeyrie, A. 1970, Astr. Ap., 6, 85. 
Labeyrie, A., Bonneau, D., Stachnik, R. V., and Gezari, D. Y. 1974, Ap. J. 

(Letters), 194, L147. 
Liu, Y. C. C, and Lohmann, A. W. 1973, Optics Comm., 8,372. 
Lynds, C. R., Worden, S. P., and Harvey, J. W. 1976, Ap. J., 207,174. 
Michelson, A. A., and Pease, F. G. 1921, Ap. J., 53,249. 
Nisenson, P., and Stachnik, R. 1979, in I AU Colloquium 50, High Angular 

Resolution Stellar Interferometry, ed. J. Davis and W. J. Tango (Sydney: 
University of Sydney), p. 34. 

Roddier, F., and Roddier, C. 1982, in I AU Colloquium 67, Instrumentation for 
Astronomy with Large Optical Telescopes, ed. C. M. Humphries (Dordrecht: 
Reidel), p. 207. 

Soderblom, D. R. 1982, Ap. J., 263,239. 
Vaughan, A. H. 1980, Pub. A.S.P., 92, 392. 
 . 1981, Annual Report of the Mount Wilson and Las Campanas Observa- 

tories, 1980-1981, p. 599. 
Vaughan, A. H., Bahúnas, S. L., Middelkoop, F., Hartmann, L., Mihalas, D., 

Noyes, R. W., and Preston, G. W. 1981, Ap. J., 250,276. 
Vaughan, A. H., and Preston, G. W. 1980, Pub. A.S.P., 92, 385. 
Vaughan, A. H., Preston, G. W., and Wilson, O. C. 1978, Pub. A.S.P., 90,267. 
Vogt, S. S., and Penrod, G. D. 1983, Pub. A.S.P., 95, 565. 
Vogt, S. S., Penrod, G. D., and Soderblom, D. R. 1983, Ap. J., 269, 250. 
Williams, J. D. 1939, Ap. J., 89,467. 
Wilson, O. C. 1968, Ap. J., 153,221. 
 .1978, Ap. J., 226, 379. 
Wilson, O. C, Vaughan, A. H., and Mihalas, D. 1981, Sei. Am., 244,104. 

LauranceR. Doyle : 3543 Santa Carlotta, La Crescenta,CA 91214 

Jean J. Lorre and Thomas J. Wilcox: Research and Development Laboratories, 19450 Pacific Gateway Drive, Torrance, 
CA 90502 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 


	Record in ADS

