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ABSTRACT 

The structure function of rotation measures of extragalactic sources and birefringence in interstellar scintil- 
lations are used to investigate variations in the interstellar magnetic field on length scales of ~ 0.01-100 pc 
and ^lO11 cm, respectively. Model structure functions are derived for the case of a power-law power spec- 
trum of irregularities in the quantity (ne B\ and an estimate for the structure function is computed for several 
regions of the sky using data on extragalactic sources. The results indicate an outer angular scale for rotation 
measure (RM) variations of <5° (a linear scale of ~9-90 pc at a distance of ~ 0.1-1 kpc). There is also 
evidence for RM variations on angular scales as small as T, but we cannot determine whether these are intrin- 
sic to the source or caused by the interstellar medium. The effect of a random, Faraday-active medium on the 
diffraction of radio waves is derived, and an upper limit to the variations in on a length scale of ^lO11 

cm is obtained from available observations. 
Subject heading: interstellar: magnetic fields 

I. INTRODUCTION 

The galactic magnetic field can be viewed as the super- 
position of a large-scale, systematic component and a random 
component of roughly equal strength. From studies of the 
polarization of starlight (e.g., Mathewson and Ford 1970) and 
the Faraday rotation of linearly polarized radiation from radio 
sources (e.g., Simard-Normandin and Kronberg 1980; Sofue 
and Fujimoto 1983; Vallée and Bignell 1983) the strength and 
structure of the large scale ( > 100 pc) fields have been obtained. 
However, little is known about the variations in the random 
component on length scales <100 pc. Theoretical discussions 
of power-law spectra for magnetohydrodynamic turbulence in 
the interstellar medium can be found in papers by Mclvor 
(1911a, b) and Ruzmaikin and Shukurov (1982). Mclvor con- 
cludes that an inertial range of weak magnetohydrodynamic 
turbulence extends from scales of ~10 pc down to ~0.1- 
0.0006 pc depending upon the local medium, ranging from 
“clouds” (T = 102 K; nH = 10 cm-3; filling factor ~3%) to a 
warm intercloud medium (T = 104 K; nH = 10-21 cm-3; 
filling factor ~25%-50%). Ruzmaikin and Shukurov discuss 
turbulent dynamo regeneration of the galactic magnetic field 
and an inertial magnetohydrodynamic turbulent range of 
length scales ~ 100 pc down to ~0.1 pc in dense clouds and to 
^ 0.03 pc in the intercloud medium. 

We present two techniques for probing the small-scale varia- 
tions in the interstellar magnetic field. The first, a structure 
function approach to the study of Faraday rotation data, is 
useful on linear scales of L6 ~ 0.01-100 pc (for angular scales 
of 1-10° and path lengths ~0.1-1 kpc), while the second, using 
observations of the interstellar scintillations (ISS) of pulsars, 
yields information for length scales < 1 pc. In both cases, we 
have made a first attempt to use the technique on available 
data. 

1 Astronomy Department, Cornell University, and the National 
Astronomy and Ionosphere Center. 

2 Department of Physics and Astronomy, University of Iowa. 

The Faraday rotation of the position angle \j/ of linearly 
polarized radiation with wavelength 2, is given by 

ip -il/0 = RM 22 , (1) 

where ij/0 is the initial angle and the line-of-sight rotation 
measure is 

RM = 0.81 j* dl rce£|| rad m“2 (2) 

for path length L(pc), electron density ne (cm-3), and 
(microgauss), the magnetic field component parallel to the line 
of sight. Clearly, RM determinations do not yield measure- 
ments of B alone, unless more information is available, as for 
pulsars, where the dispersion measure, DM = ¡ dl ne, provides a 
measure of the average electron density along the line of sight. 
Even in the pulsar case, variations in B along the line of sight 
are presently beyond observation. Both of our methods deal 
exclusively with the composite quantity ß = neB. We leave for 
the future the difficult problem of separating variations in ß 
into variations in ne and B. 

In § II we present theoretical and empirical structure func- 
tions for the rotation measure. Birefringence in pulsar scintil- 
lations is discussed in § III. 

II. VARIATIONS IN ß ON LENGTH SCALES > 1 PARSEC 

a) The Rotation Measure Structure Function 
To learn about variations in ß on small angular and linear 

scales, it is necessary to compare the rotation measures (RMs) 
of pairs of linearly polarized radio sources. Previous authors 
have estimated the autocorrelation function of RM (Nissen 
and Thielheim 1975; Simard-Normandin and Kronberg 1980) 
and the autocovariance of the sign of RM (Michel and Yahil 
1973; Simard-Normandin and Kronberg 1980) to quantify sta- 
tistical variations of the galactic magnetic field. Such quantities 
yield results heavily influenced by large-scale, large magnitude 
fields and have demonstrated correlations over angular scales 
of ~ 30°. Other studies utilizing rotation measures, such as that 
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VARIATIONS IN GALACTIC MAGNETIC FIELD 127 

of Jokipii and Lerche (1969), obtain a correlation length for the 
galactic magnetic field of ^ 100-200 pc. 

We examine the structure function of RM as a means toward 
gaining quantitative knowledge about variations on smaller 
scales and of presumably smaller magnitude. The structure 
function is estimated from (carets denote estimates from data 
as distinguished from ensemble averages) 

k(S0) = NiSOy1 X [RM (0j) - RM (0fc)]
2 , (3) 

j,k 

where the sum is over the N(06) sources whose angular separa- 
tion 16j — 0k\ is within a bin centered on Ô6. The structure 
function is useful for studying stochastic processes which have 
power spectra that are power law in form (e.g., clock noise, 
Rutman 1978), which magnetic field and electron density fluc- 
tuations in the Galaxy may have. To first order, it removes any 
constant contribution to RM, so, at least over small areas of 
the sky, the structure function can probe small scale fluctua- 
tions in RM. For an integral path length through the Galaxy of 
1 kpc, the structure function for <50 ~ Io is sensitive to varia- 
tions on linear scales < 10 pc. In the following we work out the 
ensemble-average structure function for geometries relevant to 
the study of the Galaxy and for the case of a power-law wave- 
number spectrum for /k We also consider errors for the estima- 
tor, k(ô6). 

b) Model Structure Functions for the Rotation Measure 
Consider the following geometry : an observer located at the 

origin of a rectangular coordinate system obtains RMs along 
two lines of sight separated by angle SO and of path lengths L 
and L' through a random medium (Fig. 1). The random 
medium is described by a field ß = neB, a function of position r 
with components ßt such that 

ßM = <ßi> + ößi(r) , (4) 

i) <<Wr)> = 0 ; 
ii) Rß(r) EE <<%(r0)<%(r0 + r)> = + r)> 

for any i J = 1,2, 3, and where Rß is a function of | r | ; 
iii) (Sßiirjößfro + r)> = 0 for any i^j . 

These relations follow from the assumption that ößi is a 
zero-mean, homogeneous, and isotropic random process. The 
solenoidal nature of öß requires the additional property 

f <ößi(r0)Sßj(r0 + ?)} <<W»o)<W»-0 + »•)> = 0 , (7) 

where repeated indices are summed over, but our analysis does 
not require explicit use of this relation. The dependence of Rß(r) 
upon I r I alone (isotropy) will not in general be true for turbu- 
lence with a large mean field, but the random field for the 
general interstellar medium appears to be at least as large as 
the mean field so the homogeneity and isotropy conditions 
should be appropriate. 

For a given orientation of the transverse vector p (Fig. 1) we 
have 

Kß(00) = dz'dz"Rß(0, 0, z' — z") + (1/cos2 SO) 

L' cos <50 

J dz'dz"Rß(0, [z' z"] tan SO, z' — z") 

~2 odZ' 

L' cos <50 
dz”Rß{0, z" tan <50, z'- z") 

+ [(L — L cos S0)ßz
DC — L sin S0(p • 0DC)]2 , 

where </?,) = ß®0 is the ensemble-average mean ßt and is inde- 
pendent of position, and <5/?f is the spatially fluctuating com- 
ponent of the field; <5ft is taken to be a statistically 
homogeneous and isotropic random variable with zero mean. 
Consequently, the structure function of the path integral, RM, 

Krm(M) = <[RM (0) - RM (0 + <50)]2> (5) 

can be calculated as 
krm(0Q) — Crm2kp(00) ? (6) 

where CRM = e3/2nm2c4' and Kß(S0) can be computed using 

(8) 

where we have left unspecified the path length L for the line of 
sight in the SO direction. For a plane-parallel volume with 
thickness L in the z direction, L = L/cos SO. Throughout the 
rest of the paper we will assume L = L. 

Several regimes can be delineated for the structure function. 
Clearly /cRM(0) = 0 and for small <50 (where “small” is defined 
as L<50 smallest length scale of Sßß the structure function is 
square law: krm oc (<50)2. For large SO, defined as LS0 > largest 
length scale of Sßh the structure function is constant in SO if 

Fig. 1.—Geometry for structure function calculation. Two lines of sight of length L and £ separated by angle Ô0. The lines lie in a plane defined by the unit 
vectors p and z, where p is perpendicular to z. 
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128 SIMONETTI, CORDES, AND SPANGLER Vol. 284 

ôO LA medium with a single scale size yields, in the limit of 
an infinitesimally small scale size, 

KrmO^) — 
j^ÖRM2 (1 !> <50 > Wß/L) 

(Ô6 < Wß/L) (9) 

where <7RM
2 = 2LCRM

2Gß2Wß, aß
2 = {öß2}, and Wß is the cor- 

relation length. If the correlation length is not small compared 
to L, then k;rm(<50) is slowly varying for large Ô6 rather than 
being constant as for the case of equation (9). Realistic media 
probably contain a distribution of scale sizes for which the 
regime (smallest scale size) LôO < (largest scale size) is of 
interest. We now turn our attention to the case of a power-law 
distribution of irregularity scales. 

c) Structure Function for a Power-Law Wavenumber Spectrum 
for ößi 

Power-law wavenumber spectra appear to describe electron- 
density fluctuations in the solar wind (see Jokipii 1973 for a 
review) and in the interstellar medium (Armstrong, Cordes, 
and Rickett 1981; Wolszczan, Bartel, and Sieber 1981). Here 
we consider a similar spectrum as a possible model for fluctua- 
tions in /f = (ne B). 

The correlation function (ößz{r0)ößz(r0 + r)> has a power 
spectrum P(q) defined according to 

<ßßÄro)ößz(r0 + »•)> = J P(q) exp ( — iq • r), (10) 

P(q) = J dh(ößz{r0)ößz(r0 + »•)> exp (iq • »•) . (11) 

Assuming a wavenumber spectrum of the form P{q) oc 
exp ( —<22/4i2)/[1 + (g2/<?o2)]a/2, where q0 and q1 are, respec- 
tively, lower and upper wavenumber cutoffs (q0 < qf), we 
derive an expression for k(ô0) which is dependent upon the 
exponent a of the spectrum. 

Defining p = (a/2) — 1 and splitting k into a statistical com- 
ponent,'F, and a geometric component, 

Kß(00) = ¥(<50) + L2[(l - cos 00)ßz
DC - sin <50(p • /SDC)]2 , 

(12) 

to lowest order in <50, we find for l/q1 L sin 39 l/q0, and 
L > (largest scale of ößz): 

¥(<50)=/-C 

2C 
r(i -p) i~2ß 

L(1 +^2/1+1 
(Lq0)2^ôe)2\ 0 < p < 1 , 

In 
Lq0 <50 

(Lq0)2(06)2 , p=l, (13) 

a result related to those for power-law models of clock noise 
(e.g., Rutman 1978, p. 1070). 

For L sin <50 1/q^ ¥(<50) ~ (öQ)2 is independent of a, while 
for L sin <50 > l/q0i ¥(<50)—► constant, and geometric effects 
involving the systematic field should dominate the behavior of 
the structure function. 

d) Estimation of the RM Structure Function; Relative 
Contribution of the Statistical and Geometric Components 

Extragalactic sources, because of their large numbers, dis- 
tribution over the entire sky, and finite sizes, are well suited to 
this program. Given sufficient resolution of extended radio 
sources and sufficient numbers of sources, a wide range of 
scales can be investigated. Clearly, as implied in the last 
section, the key observable for a medium consisting of stochas- 
tic variations in ne B is the behavior of the structure function in 
various S9 regimes. In application, errors in the estimator k(ô9) 
are due to small-number statistics per <50 bin and geometric 
effects related to the finite size of the region. 

The estimator /c(<50) (eq. [3]) utilizes all pairs with any orien- 
tation on the sky (direction of unit vector p in Fig. 1). For a 
sufficiently uniform distribution of pair-orientations, the esti- 
mate should be compared with a model structure function 
obtained from equation (8) by averaging with respect to the 
angle between p and the component of ßDC perpendicular to 
the z-axis (magnitude ß^0). This consideration changes only 
the expression for the geometric component, and the model 
structure function is 

Kß(06) = ¥(¿0) + L2 (1 - cos <50)2(ßz
DC)2 + (ß iDC)2] • 

(16) 

Clearly, if we are to properly understand any observational 
results, we must be able to distinguish between the purely sta- 
tistical and purely geometric components of the structure func- 
tion. Given the unsystematic variations in RM within any 
limited region of sky as in the RM map of Simard-Normandin 
and Kronberg (1980), it seems reasonable to assume the 
observed variance in RM, C7RM

2, for any limited region is 
dominated by the statistical ensemble variance, CRM

2£, defined 
for one line of sight (eq. [14]). If such is the case, then we can 
use 

with moments 

RM/Crm = + <%) (17) 

U-L-{Lq0)2m2 , fi>l, 
6 p — 1 

where 

dz'dz"Rß(Q, 0, z' — z") 
-L poo 

dz' dz"Rp(0, 0, z") (14) 
0 J — oo 

is the ensemble variance in RM/Crm measured along the z-axis. 
Thus, where we can ignore a high wavenumber cutoff, ¿h, in 

the power spectrum (i.e., L sin <50 > lAh), we have 

<RM>/Crm = Lßz
DC (18) 

L 

C = |j dz'dz"Rß(0, 0, z' - z") « (trm
2/Crm

2 (19) 

0 

to estimate from observations the relative contributions of the 
statistical and “ DC ’’ field terms of the structure function. 

For L sin <50 ^ (correlation length of ößz) the first three 
terms (the statistical component) in equation (8) are minimized 
and are roughly 

¥(<50) - 
(se f-2, 

.m2 > 

2 < a < 4 , 
a > 4, (15) 2L(1 - cos Ô6) 00 dz"Rß(0, 0, z") * m2<r2JC2

RM 
J- 00 

(20) 
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TABLE 1 
Selected Regions of the Rotation-Measure Sky 

Region ln Range(°) b11 Range(°) Sources <RM> (rad m 2) o-RM 

1   70—> 110 — 45—> 5 23a -82 90 
NGP   ... >60 52a -5.5 22 
3  180—>220 10—► 50 33a 17 55 

a In region 1 a source with RM = —558 rad m~2, in the NGP a source with 
RM = 872 rad m-2, and in region 3 a source with RM = —304 rad m-2 were 
ignored here and in further analysis, since it is probable that their extreme RMs are 
due to intrinsic properties of these sources. 

129 

for small ÔQ. Of the geometric component, the term quadratic 
inßz

DCis 

L2(l — cos ö6)2(ßz
DC)2 (<50)4 <RM>2 

Observations suggest 

(21) 

<trm><RM>, (22) 

so we neglect this quadratic ßz
DC term in comparison with the 

first three when <50 <0. The same conclusion is not valid for 
the remaining “ DC ” field unless we observe along the system- 
atic field. 

e) Large Angular Scales : <50 > 2° 
We present, in this section, an analysis for several limited 

regions of the sky using RM data from the catalog of Simard- 
Normandin, Kronberg, and Button (1981). The regions are: (1) 
the central portion of region A of Simard-Normandin and 
Kronberg (1980), (2) the North Galactic Pole (NGP), and (3) a 
region near the galactic plane (see Table 1). The RM distribu- 

3 

tion for these regions (Fig. 2) suggests we are looking along a 
systematic “DC” field in region 1, while the “turbulent” field 
of regions 1 and 3 may be greater than for the NGP (judging 
from the widths of the histograms). 

Within each region £(<50) is calculated using each possible 
pair (baseline) and weighting each pair by the reciprocal of its 
measurement error. This weighting scheme was chosen to 
allow better determined measurements their due influence, but 
to remove complete control from any minority. The results 
(Fig. 3) are not especially dependent upon the selected binning. 
Error bars ( ± 1 sigma) were calculated from the second and 
fourth powers of all RM differences and from the number of 
sources Ns that contribute to a given bin of k(ô6) and using the 
same weighting scheme; errors are roughly ajk ~ Ns~

1/2. The 
flat structure function for the NGP is consistent with rotation 
measures being independent from source to source, as expected 
if the main contribution to RM is intrinsic to the source. Alter- 
natively, such independence could arise if the outer scale of 
magnetic turbulence were much smaller than the typical dis- 
tance between lines of sight, LÔ6 ~ 10-100 pc. Region 3 has a 
structure function of larger amplitude than for the NGP but, 
although consistent with a zero slope, shows some hints of 
structure. Only the structure function for region 1 shows any 
similarity to the theoretical structure functions for power-law 
models, with a slope of roughly 2g & 1. The result for region 1 

log Sô(degrees) 
Fig. 3 

Fig. 2.—RM histograms for the regions listed in Table 1 
Fig. 3.—The structure function k(ôd) computed for the regions listed in Table 1 and for the double sources in Table 2. For regions 1, NGP, and 3, eight degree SO 

bin-widths are used in computing k{06), where each bin contains from 40 to 300 baselines, and the plotted results are means for each bin with ± 1 <7 error bars. The 
double source values are plotted as points without error bars. 
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does not seem to be dominated by just a few sources; by par- 
titioning the data (e.g., by excluding every fourth source) we get 
nearly the same result from different subsets of data. There may 
be some question as to whether our results for region 1 are of 
geometric origin (“ DC ” field terms in the structure function) 
or caused by the statistical variations described by equation 
(13) for a power-law spectrum. In this regard, the arguments of 
the last section apply since the systematic field in region 1 is 
roughly along the line of sight and therefore the “DC” field 
terms are probably unimportant. 

/) Extended Sources: 30" < SO < Io 

The structure function is evaluated here for a selection of 
double sources from the literature which meet the following 
criteria: (1) lobes or emission regions of interest are well 
separated, and (2) the depolarization rate [ = m(A2)/m(/l1), 
where m is the polarization percentage, À2 > for each emis- 
sion region is small (is close to unity). Fulfillment of the second 
requirement implies a small intrinsic rotation measure (e.g., 
Simard-Normandin and Kronberg 1980), thus allowing us to 
ignore considerations of RM variations within the source. The 
number of usable published observations is small, and the rele- 
vant values for a short list appear in Table 2. Without binning 
or averaging, these results are plotted, along with those of the 
last section, in Figure 3. 

g) Discussion 
From Figure 3 it is immediately apparent that the fluctua- 

tion amplitude is greater for regions 1 and 3 than for the NGP. 
One conclusion is that the Sun is not located in a region of high 
ß variations because observations in different directions evi- 
dently sample regions of differing turbulence. Variations in ß in 
the interstellar medium are not describable, at least on large 
angular scales of tens of degrees, by a homogeneous medium. 

At large SO, region 3 and the NGP show essentially flat 
structure functions implying an outer scale for these regions of 
<5°, or at 1 kpc distance, a linear scale <90 pc. Region 1, on 
the other hand, shows a definite increase of k(S0) with SO, of 
slope ~ 1. 

The data from isolated double sources, although limited, 
show a definite drop in the magnitude of fluctuations in com- 
parison with the structure for large SO. 

Taking all these data on face value, we find, for the range 
0?01 <S0< 5°, 

k(S0)~ soi l±0-6 

or, for the exponent of the power-law wavenumber spectrum 
for Sßz, 

a - 3.1 ±0.6 

TABLE 2 
Double Source Observations 

Source i"(°) bT) <500 ic(50) (rad2 m“4)“ Ref.b 

3C 166  193.1 8.3 0.006 <16 1 
3C 192  197.9 26.4 0.05 4 2 
3C 111  161.7 -8.8 0.06 100 3 
3C 223  188.4 48.7 0.07 <4 3 
3C 326  33.3 48.2 0.23 <25 4 
3C 236  190.1 54.0 0.58 25 5 

* The value given is the squared difference in RM between the two lobes 
of the double source. 

b References.—(1) Spangler and Bridle 1982. (2) Laing and Spangler 1984. 
(3) Högbom 1979. (4) Willis and Strom 1978. (5) Strom and Willis 1980. 

if the results are to be explained as due purely to statistical 
variations in ß. 

Recently, Brown and Chang (1983) have found a high degree 
of correlation between the line-of-sight average of | Æjl |, the 
field strength perpendicular to the line of sight (as probed by 
galactic synchrotron radiation) and the column density of 
neutral hydrogen. If, following Brown and Chang, we take this 
as evidence for a local correlation between | B \ and H i number 
density nH,, and further assume a correlation between ne and 
nHI (the free electrons are perhaps mainly located at edges of 
dense neutral clouds as discussed by McKee and Ostriker 
1977), then any information on the variation of nHl within the 
Galaxy is indicative of variations in\ß\. Crovisier and Dickey 
(1983) have demonstrated a power-law spatial power spectrum 
for the observed nHl sky brightness. Their Figures 13 and 15 
seem to indicate a large-scale cutoff* near ~ 3°. Both the exis- 
tence of a power law (extending down to ~ 1') and a large-scale 
cutoff are consistent with our earlier discussion and results. 

III. VARIATIONS IN ß ON LENGTH SCALES « 1 PARSEC 

a) Interstellar Scintillations of Pulsars 
Observations of extragalactic sources provide information 

on length scales > 1 pc. Much smaller length scales can be 
probed by looking for the effects of birefringence in pulsar 
scintillations. The observed intensity scintillations in time and 
frequency (Rickett 1977) are determined by electron density 
inhomogeneities in the interstellar medium. Due to the pre- 
sence of a magnetic field, the interstellar medium presents two 
slightly different refractive index structures to the two orthog- 
onal circular polarizations. Therefore, differences between the 
intensity patterns for the opposite circular polarizations may 
result if the accumulated line-of-sight phase difference between 
the two polarizations is significant. 

The length scales / probed by scintillation measurements are 
those comparable to the Fresnel scale, lF & (XL)112, and which 
also satisfy the condition for multipath propagation, l < L0scatt 
(L is the distance to the pulsar, 0scatt is the typical scattering 
angle). It is known that the electron-density fluctuations that 
cause ISS are consistent with a power-law wavenumber spec- 
trum, Pône(q) = C^q-*, with a < 4 (Armstrong and Rickett 
1981 ; Armstrong, Cordes, and Rickett 1981 ; Cordes, Weisberg, 
and Boriakoff 1983b). For such spectra, the Fresnel scale 
satisfies the multipath condition (Lovelace 1970), but the 
length scale dominating the ISS is typically an order of magni- 
tude smaller than lF at meter wavelengths. The biréfringent 
effects to be discussed will be dominated by scales dependent 
upon the spectrum of magnetic field fluctuations of sizes 
£0Scatt ^ Í ^ (dominant ISS scale). We will consider our results 
indicative of variations in ß at the Fresnel scale, lF « 1011,7 cm. 

b) Birefringence in Interstellar Scintillations 
The treatment of a random biréfringent medium parallels 

that for scintillations of a scalar wave field (e.g., Lee and Jokipii 
1975a). We consider an ensemble, where, for each realization, 
initially plane circularly polarized waves of frequency œ, 
moving along the z axis, enter, at z = 0, a random medium 
which is frozen in time. The biréfringent medium, described by 
ß(r) = ne(r)B(r), has a spatially fluctuating component öß 
assumed to be statistically homogeneous and isotropic. The 
observer is at coordinates (x = 0, y = 0, z). 

As shown in the Appendix, we express the electric field as 

ER,L(r, t) = uR'L(r) exp [i(kRtLz - coi)] > (23) 
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where kR L are ensemble-average wavenumbers, and work out 
the cross-covariance coefficient 

(24) 

In the Rayleigh (or strong scintillation) limit this fourth- 
moment (of the field) can be expressed as (dropping arguments 
and assuming </Ä> = </L> = 1), 

= I <«*«!*> I2 (25) 

(e.g., Lee 1976). The second-moment (uRuL*) is derived in the 
Appendix and yields 

r*L = exp(-<A<V>), (26) 
where 

Afiöß — Ûr — <I>l (27) 

is the difference, due to variations in ßz, in phase of the right- 
and left-hand fields, uR and uL, and whose mean-square is 

/4te£?^\^ z C00 

<A V> * TT — dz'Rß(°’ °’ z') 

under the assumption z > (correlation length of ößz). The 
result in equation (26) is derived in detail in the Appendix but 
can be understood quite simply by representing the fields uR L 

as phasors such that (uRuL*} = <aÄaL exp p(</>Ä — </>L)]>- In 

the strong scattering limit where <</>Ä
2> « ^1» the 

phases and amplitudes are uncorrelated, and the phases 
become Gaussian random variables. Finally, as discussed by 
Lee and Jokipii (1975a), the significant effect is a phase differ- 
ence only, and equation (26) follows straightforwardly from the 
characteristic function of a Gaussian random variable. 

c) Scintillation Observables 
Pulsar scintillations appear as intensity variations in fre- 

quency and time that have unity modulation index ( = rms 
intensity/mean intensity) at meter wavelengths. The character- 
istic frequency and time scales are usually easily distinguished 
from relevant scales for the intrinsic pulsar signal. Auto- and 
cross-covariance functions of dynamic spectra obtained in 
both circular polarizations have been calculated by Cordes, 
Weisberg, and Boriakoff (1983a). These are defined as 

CPP (Sv) = jl 1 [S> + <5v) - Sp¡][Sp,(v) - VIJ w,, 

(29) 

where p and p' label the polarization (R or L), the summation is 
over a set of (10 s) spectra with weights, wh determined by the 
time-varying pulsar intensity, and Spl = N_1 s

Pi(v) is the 

mean spectral power level. The autocovariance for R and L is 

ACVr(ôv) eee Crr(ôv) , 

ACVl(ôv) = CLL(ôv) , 

and the unnormalized cross-covariance is 

CCVäl(<5v) ee CRL(ôv) . 

Consequently, the normalized estimate for the cross-covariance 
function is 

rRL(ôv) = CCVRi.(<>v)/[ACVr(<5v)ACVl(<5v)] 1/2 . (32) 

(30) 

(31) 

Fig. 4.—The ACVÄ and ACVL for pulsar 1737 +13 are plotted on the right 
and left halves, respectively, of the top panel. The two lower panels show 
CCV*L and fRL. Zero lag corresponds to 430 MHz. 

The zero-lag value, fÄL(0), is an estimator for the theoretical 
quantity TRL of equation (24). As a practical consideration, we 
estimate the zero-lag value from non-zero-lag values because 
“zero-lag spikes” appear in the ACVs due to additive system 
noise. This procedure is discussed in greater detail by Cordes, 
Weisberg, and Boriakoff (1983b). 

d) Observational Results and Discussion 
Figure 4 displays representative ACVÄ, ACVL, CCVRL, and 

fRL for the pulsar 1737 + 13, a distant object (z = 1.8 kpc, 
Manchester and Taylor 1981) whose scintillation bandwidth 
and fade time are small enough to allow estimation of the 
correlation functions from an hour’s worth of data. These data 
imply an estimate for the normalized cross-covariance function 
at zero-lag of 

f*L(0) = 1.0 ± 0.002 

or a 3 <7 upper limit for [1 — f ÄL(0)] of 0.006. 
Using equation (26) and equation (28), we take the ampli- 

tude of variations in ößz at the Fresnel scale, /F, to be 

<««>■'• “ 157[' - r“«0Hw(45ôiüü)! 

x(é) (lö+) ' 1,0‘!m"- (33) 

For z = 1.8 kpc, /F = 6 x 1011 cm, and the observed 3 a upper 
limit, we find 

(ößz
2(6 x 1011 cm)>1/2 ^ 3.6 fiG cm-3 . 
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A variety of interpretations of this result are valid. However, 
given little information on correlations between ône and ÖB in 
the interstellar medium we prefer the following commentaries. 
(1) //the interstellar medium is spatially uniform with <ne) = 
0.03 cm-3 and ône = 0 is assumed, then <<5B2

2(6 x 1011 

cm)>1/2 < 120 /¿G. (2) If the fluctuations take place in regions 
of high ne along the line of sight, namely those with <ne> « 0.2 
cm-3 and filling factor/~ 0.1-0.2 (McKee and Ostriker 1977; 
Reynolds 1981; Rickett 1981), and assuming c)ne = 0, then 
(SBZ

2(6 x 1011 cm)>1/2 <18 fiG. (3) Of course, fluctuations in 
Sne alone are, with a uniform Rz, consistent with our upper 
limit for <^/z

2(6 x lO^ cm))172. 

IV. CONCLUSION 

We have presented two approaches to the investigation of 
the variations in the small-scale random component of the 
galactic magnetic field. 

The RM structure function technique can potentially allow 
the determination of the exponent of a power-law power spec- 
trum for variations in ß = (ne B% but good results depend upon 
the availability of many observations of suitable extended 
radio sources. Observations of double radio sources are espe- 
cially useful. We have undertaken such an observational 
program using the Very Large Array and are presently 
reducing data to appear in a future paper. 

We have determined a weak upper limit to the variations in 
ß on ISS length scales using observations of one pulsar. 
Clearly, from expression (33), a better limit can be obtained 
with observations at a lower frequency, and of a more distant 
pulsar. For example, given the same f ÄL(0) for pulsar 1737 + 13 
at an observing frequency v = 110 MHz, we would have 
(ößz

2y1/2 < 0.17 /¿G cm-3, on a scale length lF » 1.2 x 1012 

cm. If, in addition, the distance to the pulsar was 10 kpc, the 
upper limit would be <<5/z

2>1/2 < 0.03 fiG cm-3, on a scale 
length /F æ 3 x 1012 cm. Of course, observations of many more 
pulsars would enable us to sample fine-scale turbulence for 
various directions through the interstellar medium. Finally, we 
avoided the problem of separating variations in /Tinto the 
contributing fluctuations of ne and B because such a separation 
requires additional information. 

We thank Ira Wasserman for helpful discussions and Joel 
Weisberg and Val Boriakoff for providing scintillation data. 
This research was supported by the NAIC which is operated by 
Cornell University under contract with the National Science 
Foundation. This work was supported at the University of 
Iowa by NASA grant NAGW-386 and NSF grant AST 82- 
17714. 

APPENDIX 

BIREFRINGENCE IN INTERSTELLAR SCINTILLATIONS 

Here, using an approach based on the work of Lee and Jokipii (1975a, b), we present a detailed derivation of the scintillation 
results stated in § Illb. Consider the situation described in the first paragraph of that section, and note ne(r) = <ne> + Sne(r) and 
B(r) = <2?> + öB(r) are defined for the medium. 

The electric field of the wave is described by R and L circularly polarized components : 

ER,L(r> 0 — ®R,L(r)e ®r,l(z = 0) = 1 , 

where L satisfies the equation 

co 
V ®R,L.(r) + 2 €R,L(r)®R,L(r) — 0 

(Al) 

(A2) 

with dielectric constant eR L. For quasi-longitudinal propagation (a> > coB) 
2 

co 2 = 4ne2ne/m 
con 

E*,l * œ(œ ± <db cos 0) 
coB — e\B\/me , 

where 6 is the angle between B and the propagation vector of the wave. 
Defining an ensemble-average wave vector for the waves (k has only a z-component) with magnitude 

k,R £ — k + 2A/c , k = ™( 1 
2ne2 1 

<ne> , 
47T£3 1 

M = -T-2—2<ßz>, 

(A3) 

(A4) 

we let L(i*) = uRtL(r)eikR LZ, where uR L describes the deviation of the field from that of plane wave propagation in a uniform 
medium. 

As in Lee and Jokipii (1975a), these definitions and equation (A2) with the assumption of small angle scattering (0scatt 1) lead to 
the “ parabolic wave equation ” 

dz 

for the two polarizations, where V±
2 = d2/dx2 + d2ldy2 and 

2ikR>L + V±
2wä>l + (Ae + A^)uÄ^ — 0 

A = — 
47re2 

me 
àne , A» = 

4 TTC 3 1 
~ößz 

(A5) 

(A6) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
84

A
pJ

. 
. .

28
4.

 .
12

63
 

No. 1, 1984 VARIATIONS IN GALACTIC MAGNETIC FIELD 133 

As discussed in § Illfr, the necessary result is an expression for (uR(r)uL*(r)y. Consider the moment ^ j = (uR(pR, z, kR)uL*(pL, z, 
kL)} where pR L are vectors in the (x, y)-plane. Using equation (37) of Lee (1974), and equation (A5), we find to second order in Ak/k, 
the propagation equation for ^ x : 

^2 1,1 + 2^^ + 4 ~ ^ee(P)] ~ ~ ^ßß(p)li}^l,l 

+ Y2Aßß(°)rui+\^-iAee(0) + 2Aßßmrltl-^Aeß(0)rul=0, (A7) 

where p = pR- pL, Vp
2 = V1J?

2 = V±t
2, and 

Aee(p) = i i dz'<A
e(°)A4P> z')> , (A8) 

J — oo 

etc., for Aßß and Aeß. 
Following the lead of Lee and Jokipii (1975fr), the solution of this equation for Tl i can be thought of as a product of factors 

representing different physical effects. Substituting F 1]L(p, z, k, Ak) = röß(p = 0, z, k, Ak = 0)rrest(p, z, k, Ak) into equation (A7), we 
find 

and an equation for Frest, which, with the definition Frest = TR(p = 0, z, k, Ak)TD(p, z, /c, Ak), yields 

r* = exp OUO) + 2Aßßm - ^ Aeii(0)Jj 

(where this solution for TR ignores the term involving Vp
2), and finally, an equation for F^ (to first order in Ak/k), 

|rI> + |ívr» + ¿{M„(0) AJpn - [Aw(0) - Aßß(p)]}rD = 0 

(A9) 

(A10) 

(AH) 

rD and FR contain the effects of “diffraction” and “refraction,” respectively, and are discussed in more detail in Lee and Jokipii 
(1975/?): r()/j represents the effect of the varying Faraday structure of the medium. 

It can be demonstrated, using probable interstellar values for electron densities and magnetic fields, that F,, and Fj, are, for p = 0, 
unity to high accuracy. Therefore, 

(uR(r)uL*(r)) = rsß (A 12) 

or, using equations (A9), (A8), and (A6), 

<urul*} = exp dz'(ößz(0)SßÄ0, z')> ■ (A 13) 

As discussed in § 111/?, this result can be expressed as 

<Wr«l*> = exp (-KA«^2» 

using A(/)0ß = (j)R — (j)L, the accumulated phase difference between uR and uL, given by 

Aÿôp = k dz'ôpR 

where 

s 4ne3 1 ro 
°PRL 2 3 m e co 

is the fluctuating component of the difference between the refractive indexes for the two polarizations. 

(A 14) 

(A 15) 

(A 16) 
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