A SEARCH FOR DISTANT HALO RR LYRAE STARS

A. SAHA

Palomar Observatory, California Institute of Technology Received 1983 December 21; accepted 1984 February 29

ABSTRACT

The 48 inch (1.2 m) Schmidt telescope on Palomar mountain has been used to search for faint RR Lyrae stars in selected regions of the galactic halo. Results are presented here for three fields centered at $l = 180^{\circ}$, $b = 24^{\circ}$; $l = 180^{\circ}$, $b = 30^{\circ}$; and $l = 110^{\circ}$, $b = -30^{\circ}$. The faint limit for finding RR Lyrae stars is 19.5 mag in mean *B*, and the faintest RR Lyrae stars that were found are at galactocentric distances of over 40 kpc. The majority of the stars are 20-30 kpc from the galactic center and typically around 18 mag in *B*. Apart from a very few globular clusters, these are the most distant known probes of the outer halo.

Photoelectric photometry has been used to obtain accurate light curves and ephemerides for all the survey RR Lyrae stars. These data are necessary before spectroscopy of these objects can be performed and interpreted correctly.

The survey has also identified a large number of faint eclipsing stars, mainly of the W UMa type. It is very likely that many of these are halo objects, and spectroscopic studies to determine their abundances and kinematical affiliation are recommended.

Subject headings: galaxies: Milky Way — galaxies: stellar content — galaxies: structure — stars: RR Lyrae

I. INTRODUCTION

It is well known that RR Lyrae stars are very valuable probes of the galactic halo. They are readily detectable on the basis of their characteristic light variation and are perhaps the best calibrated distance indicators. They constitute a kinematically unbiased sample (provided that stars with different abundances within the halo do not belong to different kinematic groups), and it is possible to find large numbers of them out to very large distances. The kinematics of the brighter field RR Lyrae stars, many of which are members of the halo, have been studied by Woolley (1978). The Lick Astrograph survey (Kinman et al. 1982 and references therein) has identified faint RR Lyrae stars out to 25 kpc from the galactic center, and Butler et al. (1982 and references therein) have investigated the abundance distribution in the halo gleaned from the spectroscopy of these stars. It is only recently that it has become possible to measure radial velocities of these faint RR Lyrae stars with sufficient accuracy to study halo kinematics.

This work pushes the search for RR Lyrae stars to yet fainter magnitudes, and hence to regions even farther out in the halo. Use of the Palomar 48 inch (1.2 m) Schmidt telescope and of newer, more suitable photographic emulsions has made it possible to find RR Lyrae stars to as faint as 19.5 mag in mean *B*, or out to 50 kpc from the galactic center, which is twice the distance reached by the Lick Astrograph survey. Using these stars, we are able to probe the extent, abundance content, and kinematical properties (and hence the mass distribution) of the distant halo.

This paper describes the discovery and photometry of the RR Lyrae stars. Light curves and ephemerides of these objects are presented. Spectroscopic and spectrophotometric measurements have been made and analyzed, and the results from them and their bearing on the space distribution, chemical abundance gradients, and kinematics of the halo will be the subject of another paper.

II. OBSERVATIONS

The plates for the survey were taken with the 48 inch (1.2 m)Schmidt telescope on Palomar mountain. Kodak IIIa-J emulsion 14 × 14 inch (36 × 36 cm) plates were used with a Kodak Wratten 4 filter. This combination allows a bandpass from 4600 Å to 5400 Å, and corresponds to the "g" filter in the Thuan and Gunn (1976) photometric system. Since this passband is in a region where there are no significant night sky emission lines, and since the emulsion has fine grain and high contrast, very deep plates are possible with this combination. Each plate covers an area of approximately 6% × 6%. There is no vignetting within the central 12 inch (30 cm) diameter circle of the plate.

The plates were sensitized by baking them in forming gas at 65° C for 2 to 2.5 hours (depending on the batch). After exposure they were processed for 5 minutes in Kodak D-19 developer at 19°C. The time required for a sky-limited exposure is then about 2.5 hours, and when the seeing is 3" or better, stellar images to 22 mag can be detected.

For the purposes of the survey, a faint limit of 20 mag was considered adequate. Four separate 30 minute exposures of each field were taken on the same plate, and the telescope was moved about 12" between exposures. In this way, for every star in the field, there are four identical images on the plate arranged in a line. As long as the average spacing between objects in the field is not smaller than 0.5, there is no difficulty in identifying separate sets of four images that all belong to the same star. The time between successive exposures was typically 1.5-2 hours. It is possible to remove the plate-holder from the telescope and reinsert it without appreciable change in the positioning of the plate, provided the plate itself is not removed from the plate-holder. Thus while waiting for the 1.5-2 hours to elapse between successive exposures on the same plate, it was possible to take out the plate-holder, and expose plates of other fields by using different plate-holders for each plate. It

was possible, through this cycle, to obtain four-image plates for three different fields on the same night, thus making maximum use of the telescope.

1984ApJ...283..580S

This multiple-image technique emulates the methods described by Kinman (1972). Its advantage is in reducing the labor involved in manually comparing different exposures, as well as in cutting down the cost of plate material used by a factor of 4 (in this case). When a plate is scanned, the four images of each star are compared to check for variability. In scanning one plate, six pairs (four images taken two at a time) of images are compared, as opposed to one pair when two single image plates are blinked. Although the blink process is more efficient and easier to perform manually, this factor of 6 gain appreciably reduces the total labor performed.

Table 1 is the list of fields for which plates were taken.

III. DETECTION OF VARIABLE STARS

The plates described above were scanned by eye. The faint limit on the plates is approximately 20 mag. Due to the high contrast of IIIa-J emulsions, the images are saturated at about 16.5 mag. Small differences in magnitude are more easily recognized when the images are unsaturated. For brighter objects, where the images are saturated, brightness is judged by the size of the image rather than by the density, and so the sensitivity to a change in brightness is poorer. A change of 0.3 mag can be readily detected (by visual inspection) for objects between 16.5 mag and 19.5 mag, but for objects brighter than 16.5 mag, the change must be much larger before it can be detected with confidence. The discussions regarding completeness of the survey will be restricted to the magnitude interval 16.5-19.5 mag. Some variable objects were found at brighter magnitudes, and if so they were noted. At these bright magnitudes, only objects with appreciably higher amplitudes of light variation could be found, and the selection effects are very complicated.

Several plates of each field were scanned. Work has been completed for fields FII, FIII, and FIV (see Table 1). From the way the plates were taken and images compared, only objects whose brightnesses change over durations of a few hours would be detected. Thus only objects with periods of a day or smaller were expected. In each of the above fields about 30 variable stars were found, but it was not immediately known which were RR Lyrae stars, and which were other types of short-period variables. To be able to make this distinction, it is necessary to obtain light curves for the objects.

An obvious approach is to photoelectrically measure and define standard stars in each field, and then use these to calibrate iris photometer measurements made on the plate and thus measure magnitudes of the variable stars. However, severe

TABLE	1	

Positions of Field Centers

	GUIDE STAR CO (Plate	OORDINATES (1950) Center)	Gal Coori	ACTIC DINATES
Field Name	R.A.	Decl.	1	b
FI	6 ^h 57 ^m 24 ^s 1	37°11′59″	179°.7	17.7
FII	7 28 32.2	39 00 11	180.0	24.1
FII	7 58 24.9	40 17 06	180.2	30.0
FIV	23 56 15.9	32 06 13	110.2	-29.2
FV	9 48 50.7	-13 29 32	250.3	30.2
FVI	3 56 55.9	10 11 23	180.1	-31.0
FVII	8 31 43.7	41 54 34	179.5	36.4

difficulties were encountered in attempting such measurements. The Schmidt telescope makes images at f/2.5. Even slight errors in positioning the plates (due to defects in the plate-holder, inaccuracy in focusing, etc.) means that images in one part of the plate are focused slightly differently from those in another part of the same plate. Since the resulting image characteristics are quite different in different parts of the field, and since the plate response is of course nonlinear, the irisphotometry calibrations change from one section of the plate to another. Ironically, this effect is more pronounced on finer grain emulsions which resolve the change in image contours than on coarser grain emulsions that do not resolve this effect. The nonuniformity of the IIIa-J emulsion over the entire plate surface is another likely contributor to the calibration errors. Within the unvignetted region of the plate, only a region with a 2 inch (5 cm) radius can be calibrated, and a different set of standards is required for each such section of the plate.

Since the aim was to separate the RR Lyrae stars from the rest, it was realized that the periods and light-curve asymmetry can be obtained without reference to a bona fide magnitude scale. About 10 stars around each variable star were chosen so that their magnitudes span the range of variability of the object under study, and the brightness of the variable could be placed relative to these surrounding stars. These arbitrary "magnitude" measurements could then be used to derive periods using the technique of Lafler and Kinman (1965).

The pseudo-light curves so obtained do contain the period and asymmetry information. Light curves that showed asymmetry were immediately spotted as pulsating variables (all type *ab* RR Lyrae stars have asymmetric light curves), and were picked out for further study with photoelectric techniques. Those that showed two unequal "dips" and symmetric light curves were identified as eclipsing variables. It is not possible to distinguish between *c*-type RR Lyrae stars and eclipsing stars which have only one discernible eclipse (or two equal eclipses), except when the periods are too short or too long for them to be RR Lyrae stars. These ambiguous cases were also selected for further study.

IV. COMPLETENESS OF THE SAMPLE

In a survey of this kind, it is very important to pay close attention to selection effects and incompleteness. In the present case there are mainly three factors that produce incompleteness in the sample. They are discussed one by one.

First, there are limitations due to the dynamic range of the detector. As mentioned before, a change of 0.3 mag can be detected if the object lies in the magnitude interval 16.5-19.5 during at least one of the observed phases. This discussion will be restricted to objects that have amplitudes > 0.4 mag and lie, during some part of their light cycle, in the above stated magnitude interval. The amplitude criterion is sufficient to include RR Lyrae stars of all Bailey types.

The second factor will be called "detectability." The procedure followed in scanning the plates, as described in § III, effectively checks for objects that have changed in brightness over a few hours. Objects that have periods less than 90 minutes fall out of the scope of this discussion. An object which does not change by at least 0.3 mag during any 6 hour interval (or less) is also outside the domain of this discussion. Thus Cepheids and other relatively longer period variables are excluded, but RR Lyrae stars and many short-period binary stars fall within the purview of the following analysis. Although RR Lyrae stars have periods of up to 0.8 days, there is always a section of their light curve, particularly during the rapid rise to maximum light, which satisfies the last criterion. Similarly, objects with eclipses that are at least 0.3 mag deep and have durations shorter than 12 hours are included in this analysis. Without any loss of generality, we can, for the present discussion, assign the phase ϕ at which this criterion of rapid change of intensity is satisfied, to be equal to zero. If the first and last images on any given plate were taken at times t and t'respectively, then an object that passed through $\phi = 0$ between t and t' is expected to be "detectable" on that plate. There are periodicities associated with the plate observations: chiefly the night-to-night period of 1 day and the lunation period of 1 month. By working according to a predetermined schedule, some of the effects of these can be minimized. However, even the best laid plans are subject to the interference of weather conditions.

Finally, there are the human errors associated with the plate scanning itself. These are the hardest to describe objectively, but an a posteriori analysis is given below. From this analysis, it is possible to derive the "efficiency" of the scanning. The efficiency index η measures the fraction of objects that were detected on any given plate, as opposed to the number of "detectable" objects on that plate. It is estimated by crosscomparing the results of scanning several plates of the same field and the derivation is as follows.

Let N_i be the number of detectable objects on the *i*th plate of any field. Let n_i be the number of objects actually detected on that plate. Let β_{ii} be the scanning efficiency that will be derived for plate i by comparing against plate j of the same field. We then have:

$$n_i = \beta_{ii} N_i \,. \tag{1}$$

Let n_{ii} denote the number of objects detected on both plates *i* and j, and let $n_{i\bar{i}}$ denote the number of objects "detectable" on both plates, but found only on plate *i* and not on plate *j*. Thus:

$$n_{ij} = \beta_{ij} \beta_{ji} N_{ij} \,,$$

where N_{ii} is the number of objects that are detectable on both plates. Also,

$$n_{ij} = \beta_{ij}(1 - \beta_{ji})N_{ij} \tag{2a}$$

$$n_{ii} = \beta_{ii}(1 - \beta_{ii})N_{ii}$$
 (2b)

It follows that

$$\beta_{ij} = \frac{n_{ij}}{(n_{ji} + n_{ij})} \,. \tag{3}$$

The various plates of each field were compared after scanning to find the quantities n_{ii} and n_{ii} for all *i* and *j*, and the β_{ii} 's were calculated according to equation (3). The final adopted value η_i for the efficiency with which the *i*th plate was scanned was taken to be the weighted (by n_{ij}) average (over j) of β_{ij} :

$$\eta_i = \frac{\sum_j n_{ij} \beta_{ij}}{\sum_j n_{ij}}, \qquad (4)$$

where $i \neq j$. Table 2 shows the values of η_i 's that were found for the plates of the three different fields.

It was stated earlier than an object is considered to be "detectable" if it passes through phase $\phi = 0$ during the time spanned by the four exposures on that plate. Consider an object with period P which has $\phi = \phi_0$ at some fiducial time (before any plates were taken) t = 0. Consider a plate on which the first exposure was at time t_1 and the last exposure was at time t_2 . According to the stipulated criterion, the object is detectable on the plate if there exists some integer K, and some t such that for $t_1 < t < t_2$,

$$t = (K - \phi_0)P . \tag{5}$$

By testing if the criterion in equation (5) is satisfied, it can be determined if an object with period P and initial phase ϕ_0 is detectable on a given plate. For a given period P and initial phase ϕ_0 , define

$$\rho_i = \begin{cases} \eta_i & \text{if object is detectable} \\ 0.0 & \text{if not detectable} \end{cases}$$
(6)

The probability that this object is not detected on any of the Nplates is then given by

$$\bar{p}(P, \phi_0) = \prod_{i=1}^{N} (1 - \rho_i) , \qquad (7)$$

where $\bar{p}(P, \phi_0)$ is the probability of *not* finding an object with period P and initial phase ϕ_0 . By assuming that all values of ϕ_0 (between 0 and 1) are equally likely, the probability p(P) with

TABLE 2

		PLATES SCA	INNED	
Field	Plate No.	Julian Date of First Exposure	Julian Date of Last Exposure	Scanning Efficiency η
FII	1	2,444,258.697	2,444,258.870	0.71
	2	2,444,260.647	2,444,260.801	0.71
	3	2,444,261.782	2,444,261.887	0.77
	4	2,444,582.808	2,444,582.961	0.81
	5	2,444,583.911	2,444,583.935	0.81
	6	2,444,639.652	2,444,639.934	0.72
	7	2,444,992.646	2,444,992.949	0.74
FIII	1	2,444,639.681	2,444,639.959	0.84
	2	2,444,640.676	2,444,640.966	0.84
	3	2,444,947.830	2,444,948.035	0.77
FIV	1	2,444,582.613	2,444,582.779	0.70
	2	2,444,910.629	2,444,910.849	0.86
	3	2,445,200.752	2,445,200.979	0.65
	4	2,445,199.796	2,445,199.980	0.79

which an object with period P is detected on the N plate can be calculated as follows:

$$p(P) = \int_0^1 [1 - \bar{p}(P, \phi_0)] d\phi_0 .$$
 (8)

The calculations pertaining to equations (5) through (8) were performed numerically.

Figure 1a is a plot of p(P) versus P for a plate that spans 6 hours on one night, and where η has been taken to be 0.8. Figure 1b shows the improved probability of discovery when two such plates taken on adjacent nights are considered. Figure 1c is a plot of the same where plates from six consecutive nights are taken together. Note how the selection effects due to periodicity in the period range of the RR Lyrae stars is reduced as the number of nights is increased. Note also the difficulty of detecting variables with periods at or around onethird day, one-half day, two-thirds day, etc. Figure 2 illustrates the discovery probabilities for the plates that were actually examined. Results for each of the three fields studied are shown. These plots show more rapid variation with P because the plates were not taken on consecutive nights (because weather or seeing conditions would not permit). The larger the number of days that elapse between successive observations, the more "grassy" the plot appears.

This method of *a posteriori* analysis is a very realistic representation of selection effects arising from periodicity in the data.

V. COORDINATE MEASUREMENT

To ascertain the coordinates of the variables that were detected, X and Y positions of the objects were found using the comparator ("X-Y machine") at the offices of the Mount Wilson and Las Campanas Observatories. Position standards were chosen from the SAO catalog. Existing computer software was used to perform the necessary calculations. Coordinates accurate to about 2" were derived. The positions of all the stars for which photometric light curves have been obtained are listed in Table 3, and the corresponding finding charts are in Figure 3 (Plates 14, 15 and 16). Some of the stars in FII and FIII were originally discovered by Kinman *et al.* (1982). In Table 3, their nomenclature for these stars are shown within parentheses.

VI. PHOTOMETRY AND EPHEMERIDES OF RR LYRAE CANDIDATES

Photoelectric photometry of the variable stars that are listed in Table 3 was done with the SIT Vidicon direct camera at the Cassegrain focus of the 60 inch (1.5 m) telescope on Palomar

FIG. 1.—The diagrams show the probability of discovery (assuming a scanning efficiency of 0.8 for each plate) as a function of period. Fig. 1a shows the result of scanning a single plate where the four exposures span a total time interval of 6 hours on one night. Fig. 1b shows the result when two such plates from two consecutive nights (i.e., 24 hours apart) are scanned, and Fig. 1c shows the result of scanning six such plates taken on six consecutive nights.

FIG. 3.—Finding charts for the variable stars listed in Table 3. North is up, and East is to the left. The scale is approximately 13" per mm.

SAHA (see page 583)

$\ensuremath{\textcircled{}^\circ}$ American Astronomical Society • Provided by the NASA Astrophysics Data System

FIG. 3.—Continued

SAHA (see page 583)

1984ApJ...283..580S

FIG. 3.—Continued

SAHA (see page 583)

FIG. 2.—These plots show the probability of discovery as a function of period in the three fields that were scanned. The actual times of exposure have been used to estimate the probabilities according to the arguments given in § III.

mountain. The purpose was to obtain reliable light curves in B for the RR Lyrae stars. The light curves so obtained are then compatible with the available literature on other RR Lyrae stars, both in the field and in globular clusters. Also, light curves obtained from photoelectric photometry help to discriminate between W UMa stars and the *c*-type RR Lyrae stars, and all the doubtful cases could be tested in this way.

There are distinct advantages in using an area photometer over a one or two channel photometer when measuring faint stars. At 18th and 19th mag, sky subtraction must be done very accurately. If the object being measured has magnitude m, then the sky patch that is used for sky subtraction must not be contaminated by an object brighter than m + 5 if systematic errors are to be kept to within a few percent. This means that the observer must be able to see several magnitudes fainter than the object under study. Since crowding effects get progressively worse as one goes fainter, this problem merits greater attention at the faint magnitudes involved here. By the time an SIT camera picture is well enough exposed to get good photon statistics on the object, it is possible to detect objects several magnitudes fainter, so that they can be avoided when choosing a suitable sky patch. Second, with an area photometer it is possible to do "differential photometry," i.e., a star adjacent to the object of interest, which lies in the field of the camera (in this case a $3' \times 3'$ field), can be used as a comparison standard. The error in a single measurement of an object, when calibrated against a standard star in another part of the sky, is much larger than the error incurred in comparing two objects adjacent to each other which are measured simultaneously. Of course, the comparison object in the field has to be calibrated against a suitable standard to make the zero point adjustment, but here the average of several observations is taken, which decreases the random errors. For constructing light curves, where each individual observation is to be used as a data point, the scatter is considerably reduced by using such a technique. Further, at the time that the project was begun, there was no available TV viewer, so that acquiring the faint objects on an aperture of a conventional photometer was impossible, to say nothing of choosing an appropriate sky patch for sky subtraction.

The SIT tube of the camera has an S20 photocathode. However, the construction of the SIT camera precludes the use of liquid CuSO₄ cells, so the standard *B* filter described by Sandage and Smith (1963) could not be used. A modified *B* filter, using Schott BG38 as the red leak eliminating element, was specially constructed. The thicknesses of the other elements, namely Schott BG12 and GG385 were also altered to compensate for the response changes that the BG38 introduces within the passband. The filter employed has 1 mm BG12, 2 mm GG385, and 3 mm BG38.

Whenever possible, observations were made so that the comparison object for differential photometry was in the same

No. 2, 1984

TABLE 3 COORDINATES OF VARIABLE STARS

Object	α	δ				
Field II (Ep	och 1950.0)					
II V1	07 ^h 41 ^m 53 ^s 1	+ 40° 38' 05"				
II V3 (RR 40)	07 37 22.1	+ 39 25 51				
II V5	07 13 23.3	+ 38 38 56				
II V104 (RR 34)	07 28 28.5	+ 39 14 11				
II V303	07 28 06.5	+40 11 34				
II V401 (RR 45)	07 42 16.0	+40 29 51				
II V501 (RR 43)	07 41 23.7	+ 40 19 59				
II V504	07 22 45.5	+40 58 53				
II V2	07 31 04.4	+40 43 31				
II V4	07 23 44.7	+38 54 15				
II V6	07 26 48.0	+38 28 11				
II V208 (RR 38)	07 32 14.4	+ 39 22 07				
II V306	07 23 41.0	+ 36 44 51				
II V407	07 14 44.2	+40 3641 -				
II V502	07 37 06.0	+41 18 36				
II V601	07 22 33.1	+ 38 18 59				
Field III (E	poch 1950.0)	*				
III V101	08 00 13.1	+42 39 15				
III V103	07 56 25.0	+ 39 24 44				
III V202	07 50 41.0	+42 56 59				
III V204 (RR 50)	07 51 20.8	+ 39 02 15				
III V208	07 57 06.2	+40 47 42				
III V102	07 53 55.7	+43 20 34				
III V201 (RR 46)	07 47 02.1	+ 37 49 37				
III V203	07 46 08.4	-+41 50 32				
III V206	08 06 11.4	+42 42 23				
III V302	08 01 09.7	+42 37 34				
Field IV (Epoch 1950.0)						
IV V101	00 05 58.4	+ 29 08 58				
IV V104	23 53 12.2	+28 53 11				
IV V106	23 44 25.7	+29 34 23				
IV V108	00 04 23.5	+ 31 45 26				
IV V201	00 04 21.3	+31 11 17				
IV V401	00 03 33.0	+ 29 02 12				
IV V103	23 59 41.3	+29 47 55				
IV V105	23 42 06.2	+29 53 31				
IV V107	23 54 13.6	+ 31 23 40				
IV V122	00 08 04.0	+33 50 16				
IV V301	00 08 57.3	+ 30 34 42				

picture as the object. In the few cases where this was not possible, the closest feasible local comparison object was exposed either immediately before or after the object. The photometric standards of Thuan and Gunn (1976) were observed on the nights when photometric conditions were pristine, so that the local comparison standards (LCS) could be calibrated.

The pictures obtained in this way were reduced (using a program written by W. L. Sebok) to obtain instrumental magnitudes for the objects, the LCS and the photometric standards. Sky and object "apertures" were simulated in software, and the device response was assumed to be linear. Details regarding the reduction prescription that account for the peculiarities of this particular instrument are described in Saha (1983).

The magnitudes of the LCS were calibrated against the Thuan and Gunn (1976) standards. The atmospheric extinction was derived for each night using observations of the standard stars at different air masses. Color corrections were not applied, since an adequate number of observations in other colors was not possible. The error introduced by ignoring color corrections does not exceed 0.02 mag for the air masses at which observations were made. Once the brightness of the LCS were established, they were used to convert the magnitude differences between object and LCS to actual magnitudes for the object.

There remains the question of whether the device is truly linear as assumed in the reductions. This is particularly important since 9th and 10th mag standards were used to calibrate magnitudes as faint as 20. Some of the stars in and around the globular cluster M3, whose UBV magnitudes are known from Sandage (1970), were observed with the SIT camera. These test stars were chosen to as faint as 19.4 mag in B. Repeated observations were made to keep the internal random errors in the measurement of each star to within 0.03 mag. The mean values thus obtained agree with those given by Sandage (1970) within a standard deviation error of 0.06 mag and show no systematic difference. No trend that could indicate nonlinearity was found.

The results of the photometric measurements are shown in Table 4. The first column shows the mean time of exposure in heliocentric Julian dates (HJD), and the second column shows the B magnitude measured in the way described above. The last entry for each object which shows HJD = 0.0, gives the magnitude of the pertinent local comparison standard.

The observations obtained in the above manner were used to obtain periods and epochs for the variable stars. The method of Lafler and Kinman (1965) was used. In some cases it is very difficult to distinguish between the true period and an alias period because of the periodicity in the observations themselves. In such cases, the dispute could often be resolved by looking at the possible periods obtained from the iris photometry of the plates (as described in § III). Despite all the care and precaution, it is not possible to guarantee that spurious periods do not occur. Only what appear to be the most likely values ("best" periods), are quoted in Table 5. The first column of Table 5 lists the object name, the second column gives the best determination of its period, and the third column is the accuracy to which the "best" period was determined. The fourth column gives the normalized value of the discriminant Θ (after Lafler and Kinman 1965):

$$\Theta = \frac{\sum_{i=1}^{N} (m_i - m_{i+1})^2}{\sum_{i=1}^{N} (m_i - \bar{m})^2},$$

where m_i is the magnitude for the *i*th observation arranged in increasing order of phase for a given trial period, and \bar{m} is the mean of all the observed magnitudes. A lower value of Θ indicates a better determination of the light curve (smaller errors in photometry and/or better sampling in phase) and a greater likelihood that spurious periods have been eliminated. Although the exact interpretation of Θ as a light curve quality indicator is complicated and depends on the light curve shape itself, generally a value less than 0.30 is quite adequate. The fifth column gives the mean B magnitude $\langle B \rangle$. If the *i*th of N individual measurements of B for any object is denoted by B_i , $\langle B \rangle$ is given by:

$$\langle B \rangle = \log \sum_{i=1}^{N} 0.5(\phi_{i+1} - \phi_{i-1}) 10^{B_i},$$
 (9)

where ϕ_i is the phase of the *i*th observation in order of increasing ϕ , and where it is implied that $\phi_0 = \phi_N$ and $\phi_{N+1} = \phi_1$. Thus $\langle B \rangle$ is a flux-averaged magnitude. The sixth column of Table 5 gives the epoch (heliocentric Julian date) of phase zero. The last column indicates the type of variable star that the

TABLE 4 Sit Camera Data for Light Curves

dſH	B	ЦЛ	B	ULH	B	QſH	В	dſH	B.	dſH	B
II VI						II V5					
2444547.981	18.16	2444548.856	17.72	2444548.952	17.88	2444548.869	16.60	2444548.962	16.62	2444549.026	17.42
2444549.015	18.47	2444549.834	17.99	2444549.886	18.20	2444549.849	16.59	2444549.897	16.54	2444549.943	16.54
2444549.933	17.92	2444550.861	18.03	2444550.927	18.12	2444550.872	16.60	2444550.949	16.46	2444550.991	16.60
2444550.977	18.01	2444551.841	17.99	2444551.934	17.81	2444551.875	16.94	2444551.945	18.72	2444552.018	16.93
2444552.005	18.22	2444552.823	17.78	2444552.963	18.16	2444552.843	16.70	2444552.912	16.62	2444552.973	16.62
2444609.690	18.06	2444609.694	18.23	2444609.854	18.64	2444609.720	16.69	2444609.722	16.69	2444609.776	16.53
2444609.896	18.03	2444609.899	17.90	2444609.974	18.68	2444609.779	16.56	2444609.867	16.55	2444609.869	16.60
2444636.725	17.92	2444636.830	18.13	2444636.966	17.93	2444609.920	16.65	2444609.923	16.61	2444609.992	16.63
0.000	$15.84(\pm .03)$					2444636.847	16.61	2444636.746	16.61	2444636.978	16.59
						0.000	17.10(±.02)				
II V2											
2444547.983	18.25	2444548.861	17.95	2444548.954	18.33	11 V6					
2444549.020	17.92	2444549.841	18.43	2444549.888	18.33	2444548.870	18.29	2444636.745	18.19	2444636.847	17.79
2444549.936	18.07	2444550.865	18.12	2444550.930	18.62	2444636.979	17.82	2444609.720	18.31	2444609.724	18.16
2444550.980	18.11	2444551.848	18.78	2444551.937	18.14	2444609.777	18.42	2444609.867	17.24	2444609.921	17.57
2444552.008	18.21	2444552.833	17.83	2444552.904	18.67	2444609.927	17.58	2444609.991	17.89	2444552.850	18.15
2444552.967	17.99	2444609.694	18.53	2444609.769	18.32	2444552.915	18.36	2444552.973	17.29	2444551.880	17.32
2444609.858	18.54	2444609.902	18.14	2444609.906	18.05	2444551.945	17.59	2444552.018	17.86	2444550.873	17.84
2444609.977	18.92	2444609.981	18.88	2444636.728	18.76	2444550.950	18.17	2444550.995	18.16	2444549.852	18.22
2444636.732	18.98	2444636.834	18.36	2444636.839	18.37	2444549.897	18.30	2444549.943	18.29	2444548.963	18.29
2444636.970	18.32	0.000	16.11(±.02)			2444549.027	17.37	2444994.824	18.26	2444994.830	18.34
						2445322.757	17.49	2445322.761	17.44	2445355.912	18.40
II V3						2445355.920	18.34	2445355.929	18.06	2445355.934	17.78
2444547.986	15.03	2444549.021	14.83	2444549.843	15.03	2445355.939	17.70	2445355.947	17.61	2445355.952	17.48
2444549.891	15.03	2444549.938	15.17	2444550.866	14.83	2445355.962	17.36	2445355.967	17.34	2445355.971	17.17
2444550.937	15.02	2444550.986	15.00	2444551.852	13.93	2445355.975	17.21	2445355.980	17.30	0.000	$18.20(\pm .04)$
2444551.939	14.20	2444552.011	14.45	2444552.836	15.11						
2444552.907	14.93	2444609.701	14.30	2444609.772	14.61	II V104					
2444609.861	14.93	2444609.910	15.09	2444609.912	14.99	2445323.779	17.72	2445323.784	17.74	2445323.866	16.99
2444609.985	15.10	2444636.734	14.97	2444636.841	14.92	2445323.946	16.83	2445324.016	17.27	2445324.764	17.84
2444636.973	14.08			0.000	$16.28(\pm .03)$	2445324.944	17.59	2445324.991	16.47	2445325.019	16.51
						2445327.878	17.03	2445354.865	16.79	2445355.761	17.71
II V4					÷	2445355.803	17.60	2445355.857	17.66	2445355.892	17.49
2444548.866	11.11	244548.960	16.75	2444549.846	17.12	2445349.780	17.79	2445349.697	17.71	0.000	$16.88(\pm .02)$
2444549.894	16.96	2444549.940	16.63	2444550.869	17.19						
2444550.937	16.67	2444550.989	16.65	2444551.854	16.76	II V208					
2444551.942	16.79	2444552.015	16.67	2444552.839	16.66	2445323.791	16.91	2445323.872	17.15	2445323.950	17.34
2444552.909	16.91	2444552.971	16.78	2444609.718	16.80	2445324.021	17.34	2445324.767	16.67	2445324.949	17.03
2444609.774	17.64	2444609.865	16.66	2444609.914	17.08	2445324.992	17.19	2445325.024	17.28	2445327.887	17.41
2444609.917	17.11	2444609.990	16.84	2444636.845	17.17	2445328.053	17.06	2445349.679	16.55	2445349.688	16.50
2444636.739	16.62	2444636.977	17.11	2444636.743	16.62	2445349.704	16.58	2445349.783	16.94	2445354.872	17.27
0.000	15.76(土.03)					2445354.876	17.34	2445355.779	16.54	2445355.797	16.60
						2445355.799	16.61	2445355.862	16.79	2445355.896	17.13

\circ
∞
S
•
•
\sim
∞
\sim
•
•
. •
Ь
Q,
Ц
4
ω
σ

TABLE 4—Continued

S

18.51(土.03) 16.13 16.18 16.62 16.58 16.66 16.18 19.15 19.18 19.11 19.05 17.00 17.11 17.29 17.29 17.30 17.31 16.79 16.75 18.57 17.89 17.98 17.79 18.05 17.38 17.38 17.75 17.97 17.92 19.07 19.07 18.01 16.81 8.61 æ 2444961.833 2444962.033 2445026.750 2445026.830 2444994.629 2444994.931 2444962.966 2444961.739 2444961.978 2444994.857 2444995.734 2444963.032 2444994.955 2445027.692 2445028.835 2445349.738 2444961.838 2444913.011 2444995.921 2444995.777 2444995.971 2444912.934 2444960.817 2444962.764 2444962.982 2444995.809 2445322.866 2445323.064 2445323.906 2445325.032 2445355.769 0.000 2445324.771 2445355.870 Ul.H 16.78(土.04) $18.23(\pm .04)$ 16.82 16.59 16.15 16.17 16.68 18.18 18.80 19.23 19.04 17.77 18.44 18.20 16.73 17.26 16.92 16.74 18.10 17.82 18.09 17.98 18.07 16.85 16.76 18.03 18.15 17.76 16.59 16.22 19.18 18.15 10.01 19.21 17.00 16.91 р 2444962.962 2444994.770 2444995.829 2444961.746 2444995.727 0.000 2444961.758 2444961.988 2444995.752 0.000 2444960.843 2444995.633 2444912.965 2444961.891 2444961.983 2444962.976 2444995.925 2445026.794 2445027.658 2445028.782 2444994.839 2445323.863 2444960.851 2445026.721 2445349.717 2444912.930 2444960.717 2444962.903 2444994.626 2445322.996 2445354.897 2445355.774 2445322.801 2445324.030 2445324.997 2445355.984 HJD $16.48(\pm .01)$ 16.55 16.22 16.86 16.30 16.82 16.83 16.84 18.82 19.10 18.28 18.83 19.15 19.05 17.38 16.74 18.13 17.58 18.13 18.13 19.20 18.38 18.34 18.06 17.35 17.14 16.93 17.40 17.38 17.28 17.95 18.07 17.82 18.02 6.76 18.01 B 2444960.755 2444961.825 2444962.892 0.000 II V501 2444912.902 2444994.662 2444994.951 2444995.767 2444960.753 2445026.788 II V502 2444961.896 2444994.670 2444995.638 2445026.880 2445028.639 2445322.770 II V504 2444994.740 2445323.772 2444962.897 2444995.831 2445026.707 2445349.750 2444960.887 2444962.768 2444994.623 2444995.616 II V601 2445322.953 2445323.966 2445324.953 2445327.898 2444912.871 2444912.991 2444961.901 2444995.902 2445322.797 2445355.811 2445355.899 HJD 16.27(土.02) 17.88(±.03) 18.11(土.06) 16.27 15.82 15.78 15.66 16.39 15.69 17.79 16.09 17.83 17.79 17.80 15.77 17.95 17.64 16.53 18.25 18.21 18.22 17.76 18.42 17.80 18.18 18.15 17.44 18.16 17.64 16.89 17.84 17.68 ш 2444549.042 2444551.004 2444552.028 2444552.984 2444609.849 2444609.968 2444636.710 0.000 2444912.995 2444960.892 2444962.876 0.000 2444909.001 2444960.937 2444549.957 2444636.945 2444961.878 2444961.882 2444961.735 2444994.946 0.000 2444994.647 2444994.937 2444995.812 2444962.880 2444994.652 2444913.008 2444994.658 2444994.942 2444961.975 2444995.825 2445026.692 2444995.821 **U**(H 18.02(土.05) 15.86 15.66 15.66 16.29 15.80 16.46 16.16 17.12 17.77 15.75 17.89 17.68 17.06 17.83 16.79 16.41 17.84 16.83 17.17 18.20 18.17 16.84 17.14 18.34 17.75 18.10 17.69 17.84 17.74 17.73 17.73 18.39 ш 2444550.962 2444548.973 2444551.957 2444552.926 2444609.759 2444609.894 2444610.015 2444636.956 2444912.944 2444960.821 2444961.813 2444994.843 2444995.749 2444960.825 0.000 2444636.807 2444962.027 2444995.965 2444908.953 2444962.053 2444963.054 2444995.744 2444549.907 2444963.021 2444961.817 2444994.848 2444960.837 2444994.853 2444995.739 2444912.961 2444961.887 2444962.959 2445026.687 2445026.702 ЦIJ $16.55(\pm .02)$ 15.63 16.32 15.69 15.99 16.26 16.47 16.35 15.70 15.75 17.48 17.70 17.77 16.58 16.59 17.85 17.68 16.42 18.22 18.21 17.42 17.28 18.01 18.24 18.39 17.57 17.72 18.05 17.69 17.95 17.84 17.99 18.22 щ 0.000 2444548.885 2444551.888 2444549.868 2444550.884 2444552.863 2444609.758 2444609.890 2444609.970 2444636.818 II V306 2444912.879 2444960.727 2444961.726 2444961.966 2444962.948 2444994.753 2444995.620 2444995.909 2444908.886 2444961.969 2444962.953 2444994.758 II V407 2444636.697 2444960.734 2444961.730 2444912.893 2444960.740 2444962.885 II V303 II V401 2444995.624 2444995.915 2444994.763 2444995.630 2444995.917 2445026.698 2444961.821 ULH

© American Astronomical Society • Provided by the NASA Astrophysics Data System

587

ULH	В	dſH	В	ДſН	В	HJD	В	ſſН	В	ПЛ	в
III V101	-	-			c,	102 A 111	16 74	9444060 785	16.67	2444960.871	16.82
2445026.798	17.56	2445026.801	17.37	2445020.857	17.10	2444900.100	16 76	2444961.851	16.87	2444961.936	16.81
2445028.045	11.03	2445025.700	16.76	071201000	01.11	044069 MM	16.57	2444962.914	16.91	2444962.991	15.63
2445028.848	15.79	2445028.900	10.00	2440200.900 0445006 005	11.01	2444004 685	16.01	2444994.789	16.62	2444994.881	16.90
2445286.905	17.71	2445250.955	61.11 10.71	2440200.900	10.01	0001661117	16.98	2444995.653	16.02	2444995.713	16.40
2445/28/.0/23	10.43	2440201.010	11.24	000.1020112	71.11	1444005 840	16.80	2444095 940	16.90	2445026.643	16.74
2445287.923	16.65	2445287.976	16.40	2445288.020	10.33 17.03	2444990.049 0445006 675	15.40	2445026.678	15.43	2445026.681	15.41
2445322.786	17.16	2445322.872	17.23	2440322.999	11.03	C10.02001110	01.01	DISCOULD FOR	16.00	9445097 698	16.10
2445323.008	16.95	2445323.827	17.24	2445323.877	17.35	2445026.867	16.54	244502121020	10.25	070.12001110	11.10
2445323.914	17.41	2445323.974	16.64	2445323.976	16.63	2445027.639	15.70	2445027.642	15.54	2445021.055	19.41
9445394 959	15.82	2445325.002	16.14	0.000	$17.70(\pm .02)$	2445027.683	15.55	2445027.716	15.89	2445028.635	15.36
						2445028.658	15.58	2445355.833	15.87	2445355.855	16.17
						2445355.845	16.09	0.000	$16.17(\pm .01)$		
2445026.806	17.03	24450/26.808	17.09	2440020.000	11.10						
2445028.648	17.04	2445028.706	17.02	2445028.791	16.86	111 V 202				0111000 070	19 91
2445028.851	15.77	2445285.898	15.93	2445285.901	15.97	2445026.819	16.46	2445026.821	16.49	2445020.870	10.04
7445085 047	16.11	9445985 084	16.38	2445286.908	16.30	2445028.660	16.75	2445028.720	10.71	2445028.758	16.90
11.6.0070117	11.01	100'0070117	00.01		16 07	9445098 800	16 05	2445028.863	16.89	2445028.866	16.86
2445286.938	16.51	2445286.990	10.09	2445251.020	10.01	100 100 100 100	0.01	DALEOPE DET	16.05	0445985 056	16 88
2445287.884	16.54	2445287.926	16.76	2445287.978	16.88	2445285.925	17.10	106.0070442	10.30	000.0020112	00.01
2445288.023	16.96	2445322.805	16.92	2445322.875	16.99	2445285.988	16.34	2445285.999	16.12	2445280.912	16.01
0445309 064	16 93	2445314-015	16.93	2445323.829	17.03	2445286.941	16.93	2445286.993	16.94	2445287.028	16.93
0445903 000	16.07	9445393 018	17 00	2445323.981	15.92	2445287.897	16.46	2445287.937	16.60	2445287.987	16.71
000.0200110	10.01	011200000	15.04	9445395 000	16.95	2445288.026	16.80	2445322.888	16.15	2445322.890	16.15
2440323.900	10.00	716.1700117	LC.OT			9445399 014	15 00	2445322.916	16.02	2445322.919	16.04
0.000	10.09(±.01)					0115300000	16.25	0445393 096	16.58	2445323.931	17.02
						218.7700.000	10.01	00000	17 99(± 00)		
III V103						2445323.993	10.97	0.00	(70. I)ee. 11		
2444960.766	19.40	2444960.858	18.75	2444961.768	10.11						
2444961 844	18.06	2444961.931	18.78	2444961.993	19.16	III V203					
9444069 040	10.32	244962.986	19.29	2444962.909	18.90	2444960.777	18.53	2444960.866	18.65	2444961.780	18.32
010.2001112	10.32	044004 680	1012	2444004 784	19.31	2444961.856	18.52	2444961.941	18.55	2444962.005	18.55
600.0061442	10.00	0101001110	1015	9444005 648	10.35	2444962.046	18.56	2444962.920	17.67	2444962.996	18.04
2444994.8/8	00.81	016.1991140	01.01	01010001112	10.01	9444063 006	18 26	2444994.689	17.83	2444994.794	18.20
2444995.718	19.22	2444995./92	C7.61	010.0441112	10.61	000.0001112	10 50	9444004 078	18 40	2444995.657	18.66
2444995.933	18.31	2444995.985	18.72	2445026.732	18.50	2444994.880	16.00	016.1991.100	17 00	0444005 044	17 60
2445026.737	18.41	2445026.742	18.44	2445026.812	19.08	2444995.710	18.60	2444999.600	20.11	116.0661117	12.01
2445026 864	11.01	2445026.899	19.10	2445027.667	18.51	2444995.993	17.91	2445026.747	18.60	2445020.524	11.01
0445007 711	18.83	2445028 653	18.82	2445028.714	19.04	2445026.874	18.52	2445027.679	17.51	2445027.705	17.71
0115007 000	10.25	0445087 033	18.47	2445287-983	18.66	2445028.663	18.64	2445028.761	18.50	2445028.803	18.67
760.1070442	10.01	000 1070117	10.50	0445007 000	10.75	9445028 899	17.83	2445287.956	18.53	2445287.995	18.64
2445287.892	18.55	2445261.933	16.00	006.1070112	10.10	0445000 030	18.68	9445322 800	18.63	2445322.928	18.51
2445322.746	19.37	2445322.880	18.46	2445323.021	18.90	000.0020110	00.01	01120022000	17.00	9445393 890	17 96
2445323.850	18.49	2445323.856	18.54	2445323.886	18.73	2445323.033	14.11	2440020.010	LT 01	0445905 020	17 71
2445323.922	18.91	2445323.988	19.15	2445355.992	18.53	2445323.911	18.23	2440323.990	10.4/	000.0200112	11.11
2445356.011	18.76	0:00	18.61(土.02)			0.000	$17.94(\pm .01)$				

ДſН	B	ДſН	В	ULH	В	DIH	£	ШЛ	в	ДſН	B
						2445324.033	17.53	2445324.978	17.56	2445325.015	17.40
III V204						0.000	18.61(土.02)				
2444961.860	17.29	2444961.946	17.03	2444962.010	16.34	0					
2444962.925	17.27	2444963.002	17.37	2444994.694	16.86	III V302					
2444994.798	16.54	2444994.890	17.01	2444994.983	17.20	2444961.720	17.15	2444961.807	17.40	2444961.873	17.46
2444995.661	17.30	2444995.705	17.29	2444995.858	16.30	2444961.957	17.41	2444962.022	17.63	2444962.936	17.34
2444995.549	16.74	2445026.762	17.20	2445026.837	17.32	2444963.015	17.46	2444994.714	17.31	2444994.808	17.45
2445028.765	17.05	2445028.806	17.19	2445028.810	17.26	2444994.903	17.48	2444995.005	17.45	2444995.680	16.68
2445028.869	17.34	2445028.668	16.70	2445286.921	17.21	2444995.694	16.75	2444995.878	17.35	2444995.962	17.51
2445286.948	17.19	2445286.999	17.24	2445287.031	17.28	2445026.778	17.53	2445026.846	17.40	2445028.680	16.88
2445287.905	16.97	2445287.939	11.11	2445287.998	17.24	2445028.775	17.29	2445028.820	17.37	2445028.889	17.48
2445322.824	16.75	2445323.794	16.62	2445323.811	16.24	2445285.936	17.51	2445285.978	17.55	2445286.016	16.76
0.000	16.42(土.02)					2445286.955	17.46	2445286.975	17.47	2445287.014	17.53
						2445287.047	17.54	2445287.916	17.20	2445287.966	17.29
III V206						2445288.013	17.46	2445322.858	17.31	2445322.907	16.31
2444961.797	16.49	2444961.863	16.90	2444961.949	17.44	2445322.910	16.35	2445322.992	16.84	2445324.010	16.62
2445692.013	17.61	2444962.928	17.07	2444963.006	17.50	0.000	$18.24(\pm .02)$				
2444994.698	17.91	2444994.801	16.79	2444994.892	17.39						
2444994 994	17.82	2444994.701	17.76	2444995.664	17.79	IV V103					
2444995.702	17.83	2444995.865	16.94	2444995.952	17.39	2444856.681	16.72	2444856.684	16.67	2444856.758	16.79
2445026.765	17.08	2445026.840	17.47	2445028.671	17.84	2444856.833	16.63	2444856.887	16.59	2444856.944	16.70
2445028.768	16.50	2445028.812	16.80	2445028.873	17.23	2444856.989	16.26	2444857.726	16.15	2444857.760	16.25
2445285.916	17.83	2445285.920	17.70	2445285.961	17.80	2444857.840	16.50	2444857.899	16.54	2444857.956	16.61
2445286.010	17.74	2445286.944	17.71	2445286.914	17.68	2444858.007	16.75	2444858.897	15.93	2444853.945	15.97
2445287.003	17.83	2445287.037	17.64	2445287.901	17.41	2444858.995	16.09	2444883.689	16.81	2444883.741	16.72
2445287.949	17.61	2445288.003	17.73	2445322.827	16.65	2444883.849	16.73	2444883.959	16.15	2444883.964	15.96
2445322.912	17.21	2445322.978	17.42	2445323.039	17.70	2444884.660	16.14	2444912.630	16.60	2444912.697	16.38
2445323.799	17.78	2445323.891	16.78	2445323.935	10.71	2444912.765	15.84	2444912.795	15.97	2444912.813	16.02
2445324.000	17.40	0.000	$16.60(\pm .01)$			2444912.857	16.23	2444914.631	16.09	2444914.672	16.28
						2444914.703	16.35	2444960.670	16.31	2444960.680	16.41
III V208						2444960.696	16.47	-2444961.618	16.58	2444961.628	16.65
2444960.793	17.36	2444960.875	17.59	2444961.802	17.56	2444961.639	16.73	2444961.655	16.73	2444961.702	16.08
2444961.869	17.21	2444961.953	16.77	2444962.018	17.07	2444961.710	16.01	2445322.638	16.68	2445323.599	15.96
2444962.931	16.80	2444963.010	17.16	2444994.710	17.35	2445323.602	16.01	2445323.604	16.01	2445323.606	16.03
2444994.804	17.43	2444994.999	17.31	2444995.671	17.38	0.000	$17.90(\pm .02)$				
2444995.699	17.48	2444995.872	16.93	2444995.957	17.19						
2444996.005	17.67	2445026.772	17.40	2445026.843	17.33	IV V104					
2445026.889	16.88	2445028.673	17.51	2445028.773	16.94	2444856.692	17.46	2444856.760	18.01	2444856.891	18.32
2445028.814	16.81	2445285.930	16.98	2445285.967	17.08	2444856.948	18.42	2444857.695	17.25	2444857.903	18.40
2445286.005	17.34	2445286.927	17.23	2445287.007	17.50	2444857.960	18.47	2444883.750	18.27	2444883.746	18.16
2445287.042	17.30	2445287.911	17.39	2445287.960	17.41	2444884.693	17.84	2445285.639	17.36	2445285.642	17.36
2443288.008	17.04	2445288.038	16.85	2445322.833	17.29	2445285.732	17.68	2445285.799	18.05	2445285.841	18.14
2445322.893	16.82	2445322.980	17.01	2445322.988	10.71	2445286.633	18.10	2445286.686	17.36	2445286.753	17.74
2445323.047	17.36	2445323.801	17.01	2445323.894	16.94	2445287.708	17.44	2445287.756	17.53	2445287.801	17.74
2445323.938	10.71	2445324.003	17.48	2445324.006	17.48	2445287.825	17.76	2445288.614	18.47	2445349.641	18.33

© American Astronomical Society • Provided by the NASA Astrophysics Data System

1984ApJ...283..580S

TABLE 4-Continued

S
0
ω
S
•
•
∞
ω
N
· •
ь
័
7
FЦ
4
ω
σ
-

TABLE 4—Continued

U LH	В	HJD	В	ULH	В	QLH	В	dſH	В	ULH	В
0.000	17.35(土.02)										-
IV V105						IV V108 9444856 716	16 96	2444856 719	16.82	2444856.783	17 00
2444856.953	18.63	2444857.001	17.80	2444857.909	18.55	2444856.855	16.54	2444856.909	16.52	2444856.966	16.81
2444857.967	18.53	2444883.757	18.47	2444883.861	18.53	2444857.794	16.83	2444857.865	17.13	2444857.921	16.94
2444883.960	18.64	2444884.687	17.78	2445285.652	18.42	2444857.978	16.49	2444858.871	16.81	2444858.919	16.91
2445285.740	17.34	2445285.808	17.62	2445286.641	18.39	2444858.974	17.09	2444883.703	16.77	2444883.706	16.89
2445286.693	18.51	2445287.713	18.49	2445287.762	18.33	2444883.789	17.05	2444883.791	17.11	2444883.873	16.48
2445322.629	18.15	2445322.634	18.13	2445323.590	17.69	2444884.668	16.53	2444912.644	17.06	2444912.646	17.15
2445323.595	17.54	2445323.652	17.91	2445324.601	17.66	2444912.649	17.11	2444912.653	17.15	2444912.656	17.17
2445324.637	17.48	2445324.672	17.73	2445324.708	17.88	2444912.659	17.14	2444912.662	17.12	2444912.664	17.13
0.000	$15.96(\pm .02)$					2444912.668	17.11	2444912.671	17.08	2444912.673	17.14
	ļ					2444012.676	17 11	2444912.678	17.01	2444912.689	17.00
IV V106						9444019 717	16.60	2444012 720	16.66	2444912 792	16.60
2444856 710	17.55	2444856 772	16 27	9444856 848	16.67	9444019 796	16.56	9444019 739	16.56	9444019 737	16.50
DAAADEG DOT	17 10	DAAADEE DED	17 11	010,0001112	10.01	071/7161117	00.01	201.21010112	16 61	011101010	10.001
106.0004442	11.10	006.0001112	14.11	2444600.992	06.11	2444912.742	10.49	2444912.748	10.01	2444912.104	10.03
2444857.699	17.14	2444857.781	16.64	2444857.783	16.69	2444912.757	16.46	2444912.806	16.69	2444912.853	16.87
2444857.858	16.85	2444857.915	17.32	2444857.970	17.52	2444914.650	16.50	2444914.653	16.52	2444914.698	16.49
2444858.010	17.78	2444858.865	17.46	2444858.912	17.45	0.000	$16.26(\pm .01)$				
2444858.961	17.60	2444858.992	17.68	2444883.696	16.86						
2444883.700	16.81	2444883.776	17.26	2444883.864	17.68	IV V122					
5 2444883.947	17.80	2444884.663	16.77	2444884 723	17.33	9444856 703	15.53	2444856 869	15.36	2444856 923	15.37
9444884 797	17 30	9444019 636	17 74	0444019 630	17.57	0444056 076	16.10	0444056 070	16.07	0444057 004	15 24
002 0107770	17.40	00077161117	17.45	0101010000	10.11	2444850.9/0	10.10	2444600.979	10.01	2444601.064	10.04
7017716117	6L.11	001.2185552	01.11	711.7T64447	11.00	2444801.932	10.08	188.16044457	67.01	110.0001442	10.61
2444912.802	17.54	2444912.823	16.72	2444912.827	16.56	2444858.835	15.43	2444858.880	15.35	2444858.930	16.10
2444912.830	16.43	2444912.834	16.30	2444912.838	16.21	2444858.984	15.35	2444883.679	15.42	2444883.682	15.42
2444912.841	16.28	2444912.843	16.30	2444914.646	17.70	2444883.684	15.32	2444883.708	15.36	2444883.813	15.43
2444914.679	17.31	2444914.686	17.39	2444914.711	17.55	2444883.916	15.74	2444883.920	15.74	2444884.651	15.40
2444914.718	17.63	2444958.641	17.72	2444958.658	17.73	2444912.709	15.34	2444912.712	15.38	2444912.714	15.34
2445322.645	16.75	2445322.648	16.80	2445323.609	16.81	2444912.778	16.04	2444912.791	15.95	2444912.810	15.57
2445323.612	16.77	0.000	$17.31(\pm .03)$		-	2444912.866	15.43	2444914.616	15.53	2444914.618	15.55
					-	2444914.655	15.40	2444914.661	15.38	2444914.665	15.35
IV V107						2444914.666	15.36	2444914.668	15.39	2444914.700	15.46
2444856.714	18.08	2444856.780	18.09	2444856.851	18.07	2444914.721	15.87	2444914.725	16.01	2444914.727	15.95
2444856.905	18.08	2444856.962	18.14	2444857.917	18.14	2444914.730	16.05	2444914.732	15.98	2444914.734	16.04
2444857.974	17.86	2444858.970	17.94	2444858.988	18.02	2444914.736	16.01	2444962.626	15.38	2444962.634	15.37
2444883.780	18.04	2444883.784	18.11	2444883.869	18.13	2444962,637	15.36	2444962.641	15.34	2444962.644	15.29
2444883.952	17.92	2444884.671	17.62	2445285 658	17.97	9444069 651	15.20	2444958 616	15.33	2444958 627	15.37
9445985 744	18 16	9445985 813	17.49	9445986 654	17 06		16 74(T U2)				
0445086 607	1814	0115006 750	19.00	0445007 700	17.00	0000	(00. T) + 1.01				
160.0070112	10.11	501.0020FF2	10.00	071.1070442	06'JT						
2445287.767	17.95	2445287.806	18.09	2445322.619	17.47	IV V201					
2445322.622	17.47	2445323.659	17.37	2445323.661	17.36	2445285.623	17.40	2445285.627	17.42	2445285.719	17.52
2445323.664	17.21	2445323.667	17.26	2445323.684	17.28	2445285.722	17.32	2445285.779	16.69	2445285.826	16.13
2445323.690	17.35	2445323.703	17.27	2445323.705	17.26	2445286.614	17.39	2445286.617	17.31	2445286.679	17.03
0.000	18.21(土.03)					2445286.738	16.29	2445286.744	16.20	2445286.783	16.56

ШЛ	В	HJD	B	ЦЛD	B
2445287.702	16.52	2445287.742	16.89	2445287.793	17.12
2445287.815	17.19	2445288.603	16.36	2445288.606	16.42
2445288.649	16.78	2445322.607	17.29	2445322.613	17.22
2445322.732	17.42	2445323.656	17.41	2445324.626	17.51
2445324.639	17.50	2445324.672	16.91	2445324.678	16.58
2445324.713	16.03	2445324.717	15.97	0.000	16.77(土.02)
IV V301					
2445285.665	16.52	2445285.748	16.73	2445285.822	16.95
2445285.817	16.88	2445286.658	17.10	2445286.706	17.00
2445286.774	16.26	2445286.777	16.33	2445286.780	16.29
2445287.724	16.87	2445287.771	16.89	2445287.812	16.96
2445287.835	17.00	2445288.642	16.25	2445322.654	16.59
2445322.657	16.55	2445322.651	16.62	2445322.717	16.16
2445322.721	16.17	2445323.616	16.78	2445313.620	16.82
2445324.622	16.28	2445324.646	16.42	2445324.711	16.57
2445324.713	16.58	2445349.613	16.72	0.000	17.85(土.03)
IV V401					
2445285.631	16.89	2445285.636	16.92	2445285.727	17.08
2445285.788	16.42	2445285.792	16.19	2445285.795	16.01
2445285.830	15.55	2445286.621	16.86	2445286.625	16.92
2445286.683	16.89	2445286.749	16.25	2445286.792	15.56
2445286.704	17.15	2445287.704	17.15	2445287.747	15.39
2445287.749	15.42	2445287.751	15.45	2445287.797	15.91
2445287.820	16.15	2445288.609	16.96	2445288.691	15.42
2445322.663	16.82	2445322.670	16.87	2445322.725	16.70
2445323.622	16.81	2445323.624	16.91	2445323.696	16.44
2445323.711	15.83	2445323.714	15.79	2445323.716	15.69
2445324.608	16.99	2445324.640	16.80	2445324.690	15.71
2445324.699	15.71	2445349.603	16.82	2445349.646	15.54
2445349.650	15.56	2445349.658	15.67	0.000	$17.82(\pm .02)$

FIG. 4.—The light curves in B obtained with SIT Vidicon photometry are presented. Periods and mean magnitudes are quoted for each object. Two cycles are shown for the sake of clarity, so that each data point is plotted twice.

593

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

	I	AI	sL	E	3
ł	Ξp	HE	ME	RII	DES

Object	P(days)	$\Delta P(\text{days})$	Θ	$\langle B \rangle$	Epoch(HJD)	Туре
	0 119699	0.0000033	0.58	18.12	2 444 609 974	 F
II V1	0.1324162	0.0000033	0.24	18.28	2,444,000.074	Ē
II V2	0.620710	0.000052	0.47	14.61	2,444,636,973	RRah
II V4	0.340350	0.000009	0.67	16.89	2,444,609,774	E
II V5	0.5759	0.0008	1.11	16.77	2,444,551,945	Ē
II V6	0.5631099	0.0000014	0.11	17.93	2,445,355,971	$\overline{\mathbf{R}}\mathbf{R}\mathbf{a}\mathbf{b}$
II V104	0.553320	0.0000026	0.26	17.26	2,445,324,991	RR ab
II V208	0.55299	0.00007	0.19	17.02	2,445,349,688	RRab
II V303	0.267010	0.000006	0.47	15.88	2,444,609.758	E
II V306	0.49227	0.00014	0.33	17.32	2,444,995.909	RR ab
II V401	0.49662	0.00008	0.24	17.73	2,444,994.848	RRab
II V407	0.140146	0.0000023	0.32	17.89	2,444,961.736	?
II V501	0.282456	0.000053	0.24	16.47	2,444,961.740	RRc
II V 502	0.5031095	0.000001	0.17	18.74	2,445,026.722	RRab
II V504	0.304879	0.00002	0.24	17.01	2,444,960.717	RRc
II V601	0.54160	0.000015	0.42	17.80	2,445,324.771	RR ab
III V101	0.474526	0.000005	0.27	16.86	2,445,028.848	RRab
III V102	0.464796	0.000052	0.19	16.51	2,445,028.851	RRab
III V103	0.46647	0.00003	0.27	18.93	2,444,961.845	RRab
III V201	0.486080	0.000015	0.07	16.33	2,445,028.635	RRab
III V202	0.58538	0.000018	0.17	16.64	2,445,322.914	RRab
III V203	0.63533	0.00004	0.17	18.21	2,445,027.679	RRab
III V204	0.554944	0.00005	0.16	16.94	2,445,323,812	RRab
III V206	0.523248	0.000005	0.26	17.39	2,444,961.797	RRab
III V208	0.313887	0.000004	0.20	17.12	2,444,961.953	RR c
III V302	0.558502	0.000022	0.17	17.11	2,445,322.907	RRab
IV V103	0.612208	0.000020	0.14	16.40	2,444,912.765	RRab
IV V104	0.517510	0.000021	0.23	17.99	2,444,857.695	RRab
IV V105	0.539885	0.00004	0.23	18.05	2,445,285.741	RRab
IV V106	0.47918	0.00005	0.12	17.13	2,444,912.838	RRab
IV V107 ^a	0.573247	0.00002	0.11	17.81	2,445,323.665	RRab
IV V108	0.272611	0.00001	0.09	16.77	2,444,912.758	RR c
IV V122	0.1622245	0.000008	0.11	15.50	2,444,856.979	E
IV V201	0.457328	0.000016	0.15	16.96	2,445,324.713	RR ab
IV V301 ^a	0.619330	0.000030	0.203	16.68	2,445,322.717	RRab
IV V401	0.479850	0.000084	0.14	16.36	2,445,287.750	RRab

^a Period determined from plate material.

© American Astronomical Society • Provided by the NASA Astrophysics Data System

object was inferred to be. For eclipsing stars (E), phase is taken to be zero at minimum light, whereas for the RR Lyrae stars (R), phase zero is at maximum light, according to convention.

The light curves obtained from the photometry with the SIT camera are presented in Figure 4. For the RR Lyrae stars, the phase at maximum light has been set to zero. No attempt has been made to set the phase zero point for the eclipsing stars. In addition to furnishing reliable periods so that follow up spectroscopy can be done at the appropriate phase, the light curves in *B* make it possible to investigate these stars along the lines of Sandage, Katem, and Sandage (1981) and Sandage (1981*a*, *b*, 1982*a*, *b*), who have studied the absolute magnitudes and chemical compositions of RR Lyrae stars on the basis of the light curve morphology alone.

VII. THE ECLIPSING VARIABLES

It is worth a digression at this point to draw attention to the eclipsing variables that have been found. A few of these have been studied photoelectrically, and the results have been stated in Tables 3–5, although it has not been possible to look at the majority of them in any detail (there are twice as many of them

per field as RR Lyrae stars). The light curves and periods of the ones that have been studied here indicate that a large fraction of these are W UMa type contact binaries. Some of them are as faint as 18.5 mag and so are apparently several kpc from the disk and are probably halo objects. Mochnacki (1981a, b) has shown that absolute magnitudes of W UMa type stars can be derived to an accuracy of 0.3 mag without requiring a complete radial velocity curve. Spectroscopic observations at a few strategic phases allow the center of mass velocity to be determined. These are therefore potential probes of the galactic halo.

VIII. CONCLUDING REMARKS

The space density distribution of the RR Lyrae stars found in this survey, as well as their chemical composition and kinematics, will be discussed after the results of spectroscopy and spectrophotometry are presented in another paper.

The author thanks Dr. J. B. Oke for many invaluable discussions and is grateful to Palomar Observatory for financial support during the course of this project.

REFERENCES

 Butler, D., Kemper, E., Kraft, R. P., and Suntzeff, N. B. 1982, A.J., 87, 353.
 Sandage, A. 1981a, Ap. J. (Letters), 244, L23.

 Kinman, T. D., Mahaffey, C. T., and Wirtanen, C. A. 1982, A.J., 87, 314.
 1982a, Ap. J., 248, 161.

 Lafler, J., and Kinman, T. D. 1965, Ap. J. Suppl., 11, 216.
 1982a, Ap. J., 252, 553.

 Mochnacki, S. W. 1981a, Ap. J., 245, 650.
 1982b, Ap. J., 252, 574.

 Sandage, A. 1983, Ph.D. thesis, California Institute of Technology.
 Sandage, A., 1970, Ap. J., 162, 841.

A. SAHA: Kitt Peak National Observatory, P.O. Box 26732, Tucson, AZ 85726-6732.