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ABSTRACT 

We reconsider the general problem of acceleration by line locking in an optically thin medium. We present 
analytic solutions to the coupled equations of radiation transfer and matter motion. Using these solutions, we 
derive restrictions on the physical conditions of the accelerated matter. By applying these conditions to SS 433 
we find that if the absorbing ion is light (hydrogen or helium), the matter must be highly clumped, and the 
acceleration has to begin at ~1012 cm. Line-locking acceleration with a hydrogen-like heavy ion such as iron 
demands higher than solar ion abundance. 
Subject headings: radiative transfer — stars: individual 

I. INTRODUCTION 

Acceleration of material jets to relativistic velocities is a puzzling topic in relativistic astrophysics (e.g., Rees, Begelman, and 
Blandford 1981). Such jets have been observed in extragalactic radio sources and more recently also in the radio and X-ray 
emissions from the galactic object SS 433 (see, e.g., Seaquist et al. 1982, and references therein; also see, e.g., Margon ei al 1979, for a 
jet model for the optical regime.) The latter jets, in SS 433, display somewhat different features from the extragalactic ones, in that 
they are only mildly relativistic, with v « 0.3c, and maintain this velocity with a high precision, ôv/v < 1% (Margon 1981 ; Katz and 
Piran 1982). Milgrom (1979) noticed that the jet velocity of SS 433 is, as in some quasar absorption lines (Strittmatter and Williams 
1976), remarkably close to the velocity obtained by line locking the Lyman-a to the Lyman edge. In this article we consider, in 
general, the process of acceleration by absorption of radiation at a specific line and the line-locking mechanism. We then apply our 
findings in particular to SS 433 and discuss the possibility that the line-locking mechanism accelerates the jets there. 

An outgoing radiation field will exert a force that may overcome gravity. At the critical radiation field (the Eddington luminosity) 
the radiation force is balanced by gravity. The former clearly depends on the cross section of the interaction between the radiation 
and the matter, for which a lower limit is the Thomson cross section aT. If conditions in the matter are favorable and if a large 
fraction of the radiation field is concentrated in the appropriate frequency range, absorption may be more effective than scattering. 
While the cross section is larger, line absorption uses only a small fraction of the radiation spectrum. The crucial acceleration 
parameter for absorption of radiation at frequency v which is Doppler-shifted into the line is rjv = ihc2/v0 Fv(0) (Lucy and Solomon 
1970), where m is the mass flux per unit area, v0 the line frequency, and Fv(0) the initial (before absorption takes place) radiation flux 
at frequency v. If rjv is less than unity, acceleration takes place rapidly enough, and before the radiation at the frequency v0 is 
substantially depleted, radiation at a higher frequency i¡/v0 is redshifted to v0 and is absorbed (i¡/ is the redshift factor). As the 
acceleration proceeds, higher and higher frequencies are absorbed until the radiation intensity drops, and at a frequency v the 
acceleration condition is not satisfied any more. The final velocity corresponds to \¡/ = v/v0. When a distinctly sharp edge, like a 
Lyman edge, exists in the spectrum, the terminal velocity will correspond to the ratio of the edge frequency to the absorbed-line 
frequency. This is the line-locking mechanism. In SS 433 the observed velocity is close to the Lyman edge-Lyman-a line-locking 
velocity. 

SS 433 clearly constitutes a good observational motivation to consider line locking (Milgrom 1979; Shapiro, Milgrom, and Rees 
1981, 1983). However, there are other reasons to consider the general process of acceleration of matter by line absorption. Recently 
Piran (1982) has shown that acceleration by scattering in an optically thin plasma is ineffective. One needs a huge radiation flux, 
which cannot be supplied by common astrophysical sources. A way to accelerate with reduced fluxes is to turn from scattering to 
absorption and to increase the cross section by a few orders of magnitude. 

In this paper we indeed consider acceleration in an optically thin plasma. We obtain first an analytic solution for a planar 
configuration with a narrow absorption line and with a constant cross section. We find that when the critical acceleration condition 
is satisfied, the acceleration takes place with a typical acceleration length, la. We examine, next, a spherical radiation field, emerging 
from a central point source, with a r-2 falloff. In this case the radiation must be stronger than the critical Eddington luminosity, and 
a modified acceleration condition has to hold. For a special, not too restrictive, assumption of constant optical depth, we obtain an 
analytic solution. Other cases are solved numerically. We do not, however, calculate the thermodynamic state of the matter at any 
location in the jet or the exact cross section for absorption; such calculations, we believe, will not influence our results in any 
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fundamental way. The analytic and numerical results show that in spherical configurations the acceleration becomes rapidly 
ineffective as r increases, and practically stops at ~ 10R (where R is the starting radius). Thus if la (derived from planar consider- 
ations evaluated at R) is much larger than R, acceleration will cease at ~ 10R with a final velocity far below the line-locking one. 
Otherwise the line-locking velocity is achieved at r ~ R + (a few) x la. Usually the velocity is frozen-in beyond this point. However, 
if la <^ R and R is not much larger than a few rg (the gravitational radius of the central object), gravity can take over after the 
acceleration ceases and can again reduce the final velocity to below the line-locking value. 

Line locking imposes some strong constraints on the structure of the jets. These conditions are discussed in § III, and their 
application to SS 433 is discussed in § IV. Only with a high recombination rate can the large number of needed absorptions per ion 
be achieved. Thus we need a high local density. For a given absorption frequency v0, the radiation flux is limited by the blackbody 
limit. This, in turn, together with the acceleration condition, limits the average density from above. For low-Z ions (hydrogen and 
helium), this average density is much smaller than the high matter density needed for the high recombination rate. The jets must be 
highly clumped (n/ñ ~ 108) to droplets with typical sizes of 1-10 cm. For a given mass flux this gives a lower bound on the initial 
acceleration radius, R. In SS 433, R is large for both hydrogen (~ 1012 cm) and helium (~ 1011 cm). 

The iron Lyman-a line is an X-ray line, and its radiation intensity can be higher by a factor of 5 x 105 for the same number of 
photons. The average density increases by the same factor, while the matter density remains unchanged. With iron as the absorbing 
ion, clumping is not needed, and R can be as low as 5 x 107 cm. The low abundance of iron constitutes, however, a problem. Since 
the cross section for absorption has to be larger than the Thomson cross section (or else no line-locked final velocity will ensue), the 
matter must be iron enriched as compared with a cosmic mixture. 

II. LINE ABSORPTION ACCELERATION 

a) Plane-Parallel Geometry, without a Central Mass 
To get some insight into the problem, let us first consider the case of acceleration in plane-parallel geometry. We denote by z the 

length coordinate along the beam, with z = 0 denoting the location of the radiation source. Let the accelerating flux at frequency v 
be Fv(0) per unit area and unit frequency, and let m be the mass flux. In steady state m has a constant value throughout the 
0 < z < oo region. (We altogether avoid, at this stage, the question of the onset of the flow at z = 0.) 

As our example we consider acceleration by line absorption of hydrogen-like Lya; however, all the discussion in this section is 
applicable to other lines as well. Let the rest frequency of the hydrogenic Lya transition be v0, and let the absorption cross section 
for flux at v be <7V = (<t0/v0)A[(v — v0)/v0], where A(x) is the resonance line function, A(x)dx = 1. As usual, 

o ne2 Tie2 
: fltg = — fx^ , me me (2.1) 

where Ng is the fraction of the hydrogen-like ions in the ground state, x is the abundance, £ is the relative occupation of the ground 
state, m is the electron mass, and / is the oscillator strength, which is the effective number of electrons and, hence, is the same for all 
such atoms. 

When the velocity in the beam is i;(z) in the z-direction, the lines at the source, at z = 0, are shifted by 

and one can write down coupled equations for ij/ and the radiation flux at z, Fv(z), ignoring any stray radiation : 

(2.2) 

dFyjz) 
dz 

d\l/(z) 
dz 

rho0 2i¡/2 

Amuevo 1 - tp 
v\p 

FM 

g0 2i/>4 

Ampc
3v0 1 — \j/2 

# - V(A 
vo / 

FJz), 

where Amp is the average mass per atom in the beam, and mp is the proton mass. 
An immediate first integral of equations (2.3H2.4) is 

(2.3) 

(2.4) 

1 1 
i/í(z) me2 d\Fv(z) = 1 + - 

me 
d\Fv(0) . (2.5) 

Since the kinetic energy flux at z is 0.5(1 — tp)(tp 1 — 1), we see from equation (2.5) that the average acceleration efficiency up to z is 

-«A 
2 ’ 

(2.6) 

and it grows with decreasing ip (and increasing z). Also from equation (2.5) we see that the “used” fraction of the total flux is 
or'-i). 

To proceed further, we make two approximations. First we note that under a wide range of conditions, the resonance line width 
(3v{ = v0[{ x2/(x)i/x]1/2} satisfies 

<Sv<§ voir1 - 1), (2.7) 
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where ij/F is the final i¡/ for which line locking is achieved, and one may therefore replace A(x) by a Dirac ¿-function in the coupled 
equations (2.3)-(2.4), 

A(x)—> ¿(x) . (2.8) 

The second approximation we make is that the cross section is independent of z (in general, the cross section is a complicated 
function of the local conditions, and therefore of z). These approximations allow the immediate solution of equations (2.3)-(2.4): 

2\l/2 + In tA = ^ + I (2ih(j0)UAmpv0c\\n 
F me2 

1 VoF^-1 (0). 

Equation (2.9) determines a necessary condition for acceleration (Lucy and Solomon 1970): 
n2 

Vv = 
me 

Vo^v(0) 
< 1, 

(2.9) 

(2.10) 

for all v. Furthermore, one readily finds that the total optical depth tv for radiation at frequency v, coming solely from absorption at 
the point zv such that vi^(zv) = v0, is given by 

Also, 

2m<To iA3(zv)  
Ampcv0 [1 - iA2(zv)](#/áz)z = _-, ' 

= 1 -e“1'’ . 

From equation (2.11) we can estimate the typical acceleration length la to be of order 

<Amp v0c ln (1 - rjv)) 
2mo0 

(2.11) 

(2.12) 

(2.13) 

b) Spherical Symmetry with a Central Mass 
We now turn to examine a more realistic case, i.e., when the radiation source is a spherical surface of radius R, with a concentric 

spherical mass M. Let the beam be of circular cross section, subtending a solid angle ÔQ at the center, and let Lv(r) and M be the 
total radiation luminosity and mass flow inside that cone, both assumed to be homogeneously distributed across its cross section. 
Here, r is the radial coordinate along the cone, LV(R) is the source luminosity, and M is, again, assumed to be independent of r 
already at r = iL 

The Doppler factor ij/ must now be modified to also account for the gravitational redshift, so we define 

where 

The coupled equations (2.3)-(2.4) become now 

ÔQr 

and 

ÔQr 

We define rv be 

2GM 

2 dL^r) _ Map 
dr Ampcv0 (1 - rg/r)(\ - i¡/2) 

ir ^jh^)LÁr), 

#o 2iAo •A2 

and rjv by 

dr Am(,c
3v0 (1 - rg/r)

1/2(l - ij/2) 

VtAoW = vo , 

l-rnY
112 Me2 

JvAí'Jk^!>yÁr) + i snïk. 
\ Vo J 2 l-rg/rl- r' 

rjv = 
v0

LAr) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

The force of gravity comes in via the appropriate Eddington luminosity, defined as that luminosity for which di¡/0/dr = 0. We find, 
from equation (2.17), 

1 - rg\ 
1/2 Me2 _ /¿QGM Ampcvo\ 1 = Edd 

rv ) VoL*““ V c2 M<j0 ) 
(2.20) 
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Ty 
Fig. la Fig. lb 

Fig. 1.—A graphical solution of eq. (2.21). No solution exists for rçEdd ! {dashed line), while two solutions exist for rçEdd 2 {solid line). Only the smaller iv solution is 
physical. The dotted line is exp ( —iv), while the dashed and solid lines represent the right-hand side of eq. (2.21). The ordinate scale thus represents the numerical 
values of these functions, {b) rjEdd/riv vs. q. A solution exists above the critical line. For high ^-values, rjEdd/r}v is large, and the acceleration is wasteful. 

since, by our assumptions, it is independent of v. The necessary condition for acceleration is 

with the optical depth tv now given by 

= i_„ __^T 1 "v yjEdd ‘'V 5 

2(MAv SQ)g0 il/0(rv)il/2(rv) 
(1 - rg/rv)Ampcv0[l - iA2(rv)](#0/^Vv 

(2.21) 

(2.22) 

Equation (2.21) describes the process of climbing up the potential well. In Figure 1 we have plotted both sides of equation (2.21), 
i.e., the functions e~Xv and 1 - r¡v - Tv(r¡Jr¡Bdd), as functions of tv for some fixed r¡v ( = 0.4) and for two values of LBdd(rjEdd = 1 and 2.4). 
We must always have 0 < < 1 or else no solution for equation (2.21) exists at all; but the constraint on rjv is, really, more severe 
than that. The acceleration process operates at rv if LBdd is less than some critical values LBdd, i.e., only when 

LBdd < LBdd = e ~tvcLv(R) • 

where tvc is the positive root of the equation 

e~Xvc(l + tvc) =l-rjv. 

Translating equation (2.23) to obtain the upper limit of central mass for a given radiation field LV(R\ we find 

(2.23) 

(2.24) 

1 
M < M v = — e 

’ A 
3<7q 

0TVr 
4n 
ÔQ 

1/3 Vo LV(R) 
1.25 x 1038 ergs s 

, 2GM\112 

1 - ) Me c2rv ) 

= 3.64 x 107/x£ 
1 Un 

Aez\ôQ. 
l/3v0 LV(R) 

1.25 x 1036 ergs s ’I1-??) 

1/2 
(2.25) 

Whenever equation (2.25) is satisfied, there is always a value tv that satisfies equation (2.21). Indeed, there are two revalues (see 
Fig. 1), but the physical solution is the one for which 

rv < In (2.26) 

For the other solution, tv decreases as Lv decreases (r\x increases); that would mean that dij//dr increases with decreasing intensity 
of the accelerating radiation—which is unphysical unless d\l/0/dr > 0. Again, from equation (2.17), this could only happen (for tv > 0) 
if<A > 1, hence the motion is toward the center [>(r) < 0]. Thus, the root tv > In (rjEdd/rjv) corresponds to the consistency relation for 
the case of down-falling material—a case in which we shall not be interested here any more. 

Equations (2.16)-(2.17) are easily handled on a computer. However, again when tv ~ const = t, they can be solved analytically. 
Let 

riEdd/T 

Then, their solution is 

1 - rg/r iAo + 2#o i/<z 

1 - rg/R 2g + 1 

(2.27) 

(2.28) 
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Logio M-rg/R / 

Fig. 2.—ijj vs. log10 [(1 — rg/r)(l — rg/R)~l], for six different ^-values {q = 0.5, 1, 2, 5, 10, and 20). The acceleration with high g-values is rapid but demands an 
enormous radiation flux and is wasteful. 

The quantity tv will be roughly constant for all frequencies in question as long as we assume equation (2.8). From Figure 1 we see 
that, again, tv is insensitive to rjv as long as rjv is sufficiently far from the critical value. Hence equation (2.28) represents a good 
approximation for the variation of with r for such cases. For given rjv note that when M—► 0(g-> oo), we retrieve the plane-parallel 
geometry, and equation (2.28) becomes equation (2.9). When, on the other hand, q decreases (M grows), the consistency condition 
ceases to be satisfied as q becomes q < rjEdd/Tvc. At this point the assumptions leading to equation (2.28), i.e., those of a smooth jet, 
fail, as the absorbed photons have a harder time pushing the material to a new velocity, in which it could begin to absorb photons of 
higher frequency against the gravitational pull. The i^(r) function is displayed in Figure 2, using equations (2.28) and (2.14). Results of 
some numerical computations of v(r\ using equations (2.16) and (2.17), are shown in Figure 3. These computations are based on 
constant cr0, computed at r = R. 

Note, that a similar situation arises when <70 is decreased, M being constant. When cr0 varies throughout the accelerated jet (by 
varying rj, say; see Shapiro, Milgrom, and Rees 1981,1983), the jet may start flowing. 

The linearized local acceleration range at R is 

a - Q 
(2q + lb ' 

(2.29) 

Equation (2.28) and numerical results show that an acceleration process that‘begins at R becomes rapidly ineffective and practically 
stops at ~ 10R. Clearly, if la (derived from planar considerations evaluated at R) is much larger than R, acceleration will cease at 
~ 10R with a final velocity below the line-locking one. Otherwise the line-locking velocity is achieved at r æ R + (a few) x la. 

Fig. 3.—Numerical integration of the acceleration equations. The final velocity depends strongly on the initial radius R. For a small R, v reaches the line-locking 
velocity, vn, but gravity is strong enough to decrease to about vn/6. For intermediate R, = vn, and for large R, vn is never reached. 
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Usually the velocity is frozen-in beyond this point. However, if /fl R and R is not much larger than rg (the gravitational radius of 
the central object), gravity can take over after the acceleration ceases and can reduce the final velocity to below the line-locking 
value (see Fig. 3). 

III. PHYSICAL CONDITIONS IN THE BEAMS 

An essential condition for line locking is a high cross section for the line absorption. This cross section depends on the local 
conditions of the accelerated material, and it imposes strict constraints on them. In particular we shall show that the material in the 
beams must be highly clumped, with a local density within its “ droplets,” n, exceeding greatly the average density, ñ. 

The line cross section (t0/v0 depends on the number abundance of the specific ion, x, and on £, the relative occupation of the 
relevant electronic state. For maximal efficiency of the line locking, both x and £ should be high. Otherwise the line cross section is 
not large enough. In particular, the Thomson cross section should not take over the line cross section, as this will destroy the 
line-locking effect : 

^0 
Vo frT 

> 1 . 

For hydrogen-like ions with charge Z we have, for Lyman-a-type line locking, 

3 mee
4Z2 

V° “ I6n h3 = 2.8 x 1015Z2 s_1 . 

(3.1) 

(3.2) 

From equations (2.1) and (3.1)-(3.2) we obtain a condition on x and 

X(^ 1 

Zï>2nf 
~ 7 x 1(T8 (3.3) 

We can estimate the necessary density from the thermal equilibrium equations, subject to the constraint of equation (3.3). A 
simpler way (which leads to the same order of magnitude) of evaluating n emerges when we consider the energy budget in the 
line-locking mechanism. A typical ion absorbs the photons, accelerates, and shares the kinetic energy with the rest of the beam. To 
achieve relativistic velocity we must have 

mpc
2 4 mp 5 x 107 

2hv0x 3 mea
2Z2x Z2x 

(3.4) 

absorptions per ion. The quantity p is large since the Lyman-a photon has a meager amount of energy compared with the ion’s rest 
mass. 

The radiation flux can ionize an atom from the excited, line-locking, level at a rate which is not negligible compared with the 
stimulated emission of the line-locking photons. Because of the resulting high effective temperature of the driving radiation field, the 
stimulated emission is comparable to or larger than the spontaneous one. Hence we expect a fair probability of ionization per 
absorption. This ionization must be balanced by an adequate rate of recombination to prevent drainage of the ground state before 
the final velocity is achieved. The steady state recombination rate can be obtained by a solution of the thermal radiation—matter 
equilibrium equations (Pekarevich 1982). In all studied cases the needed recombination rate is comparable to the absorption rate. 
These p recombinations occur within the acceleration range of la (and with v ä c/3); therefore, 

A p < — = ; 3 x 10" 
0.28c 

laZ*n , (3.5) 

where t is the recombination time for the two-body recombination process, and aA is the recombination coefficient for T % 104 K. 
Combining equations (3.4)-(3.5) we obtain 

n > 
1.5 x 1030/ v ' 

la Z6x V0-28^ 
cm (3.6) 

We use, next, the acceleration constraint, equation (2.10), and the blackbody limit, Fv(0) < Bv(Tr) (Tr is the effective temperature 
of the radiation field, which cannot be much higher than the matter temperature T), to estimate la. The left-hand side of inequality 
(2.10) cannot be much smaller than 1. Otherwise the energy flux in the driving radiation field is much larger than the kinetic energy 
flux. The acceleration becomes wasteful, with even larger demands on the already drained power supply of the radiation field. We 
can therefore estimate R, the initial radius where the acceleration begins, as 

R ~ 6 x 1012 M 
10“9 M0 yr" 

1/2 

0.28c 

-1/2/ 

\10, Vo.i 

-1/2 
cm , (3.7) 

where b is between 1 and say, 100, and x = [exp (hv0/kTr) — 1] is ~ 1. We have seen in the previous section that the acceleration 
range la cannot be larger than R ; therefore, /a ä R ; and clearly, la /, the dimension of the shifted-line emitting region, or else a 
continuous range of Doppler shifts would have been observed. Hence R <^ /. For SS 433, equation (3.7) agrees with the observed 
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limit on the variability of the shifted lines, which sets the shifted-line emitting region to be less than a few light-hours, or / < 5 x 1014 

cm (Shaham 1981) (hence b 2500). Together with equations (3.6)-(3.7), la& R yields a lower limit on n: 

n > 5 x 101 M 
10"9 M0 yr -1 

-i/2/^_y/2/Ayi 

0.28c/ V10. \0AJ 
\1/2 

: ) Z~2x~1 cm" 

Next, we use the same acceleration constraint and the blackbody limit to estimate the average density n: 

5 x 107Z8i - , v0 Fv(0) ^ c/v n < z- < - 
pxÀlx 

Equations (3.8}-(3.9) yield a lower limit on the clumping factor: 

v 
0.28c X 1 cm 3 

- > L25 x 10lo(——5—— ; 
n \10 9 Me yr 1 ,10/ V 0.28c 

-3/2 

(3.8) 

(3.9) 

(3.10) 

This clumping factor is indeed large. Equation (3.10) is, however, based on the assumption that the factor b in equation (3.7) is not 
large. The constraint la < l < 5 x 1014 cm and equation (3.6) can be combined to obtain a comparable restrictive condition: 

r > 1.5 x 108 * 
n laZ*' 

The beam is thus broken up into droplets whose minimum size, d, can be determined by the optical depth, t : 

dn(^]=T . 

(3.11) 

(3.12) 

The optical depth is ~ 1, since with larger optical depth within the droplets, the acceleration becomes even more ineffective. Using 
equation (3.8), we obtain an estimate for d: 

d = 3 x 10“2t| 
M 

10 9 Mq yr' 

1/2 v 
10A0.28C 

-1/2 
A/2I 

V0.1 

-1/2 
Z4x 1 cm . (3.13) 

IV. APPLICATION TO SS 433 

The necessary physical conditions, discussed in § III, lead to three constraints (eqs. [3.3], [3.7], and [3.10]) on the operation of line 
locking in any astrophysical system. As an astrophysical example we discuss here the implications of these conditions for the 
operation of line locking as the accelerating mechanism in SS 433. As stressed in the Introduction we do not attempt to give a 
complete scenario; i.e., we do not ask the important questions of where is the accelerating radiation coming from and how is the 
collimation done. We consider three different configurations, employing hydrogen, helium, and iron as the absorbing ions. 

With the high cosmic abundance, x » 0.75, of hydrogen, it is easy to satisfy inequality (3.3), in a way that does not put a severe 
constraint on £. The occupation number ^ can be as small as 10“ 7. The clumping factor for hydrogen (inequalities [3.10]-[3.11]) is, 
however, alarmingly large, of the order 108 or higher. Indeed, even if this is approximately the Mach number squared (Shapiro, 
Milgrom, and Rees 1981, 1983), it is still not clear how such small droplets are kept together against their large transverse pressure 
gradient. For a spherical droplet not to disperse on millisecond time scales, this pressure gradient should be of the same order as the 
accelerating force due to the radiation pressure, so that the temperature of the surrounding medium should be of order 1012 K. But 
in the emission region, the temperature should already be ~ 104 K, so that thermal equilibrium should be established also on a short 
time scale. 

A more serious problem is posed by inequality (3.7). Physically the large total luminosity (about 1038 ergs s“1) at low tem- 
peratures (about 104 K) demands a large area and a large “ initial ” radius. We must remark that all currently proposed mechanisms 
for powering SS 433 are based on one accretion process or another and yield a much hotter spectrum at much smaller radii. If the 
radiation is produced at the surface of a neutron star, for example, a mechanism for converting X-rays to soft UV, at around 
lO^-lO12 cm, is needed. A decrease in x will make this problem simpler. Such a decrease means that the temperature of the 
radiation field is higher. Clearly, however, most of the power should not be at frequencies much higher than v0. The quantity x could 
thus be small only if most of the higher frequency part of a spectrum with a high Tr is somehow absorbed. Alternatively, we can 
consider other sources for the radiation beams. An early-type star has the right size and the right temperature, while a hot white 
dwarf can display the needed Lyman edge, but why should these produce radiation jets? A thick accretion disk can fit these 
constraints and produce collimated radiation, but its funnels should be some 106 gravitational radii long. 

The radiation emitted by the recombining electrons during the acceleration phase will be spread over the frequency range 
v^l + Zred) < v < vx(l + Zblue), where v* is a particular recombination frequency. With hydrogen, a large fraction of this radiation 
should appear in the continuum component of the visible spectrum. This component should vary in intensity, and in particular, it 
should have a maximum at vx whenever the frequency Doppler shifts are crossing. A careful analysis is now being performed to 
check if such phenomena appear in SS 433. 

Helium is an interesting second candidate. With x æ 0.25, for cosmic abundances, inequality (3.3) still poses only a minor 
restriction on With Z = 2, ¿ > 10“6 is sufficient. The increase in Z tends to ease somewhat all the problems associated with 
hydrogen. The clumping factor in inequality (3.10) is reduced by a factor of 1000, while the one according to inequality (3.11) is 
reduced by 16. It is, however, still very large, and the question how are the droplets held together is left unanswered. 
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The initial accelerating radius is now decreased by a factor of 16. Again, this is smaller than R (hydrogen), but it is still too large. 
The third difficulty posed for hydrogen, i.e., the absence of radiation in the range vx(l + Zred) < v < vx(l + Zblue) emitted by 
recombination during the acceleration phase, is no problem here: For helium this radiation will be in the UV. The presence of only 
neutral helium lines in the observed Doppler-shifted spectrum of SS 433 may support helium acceleration if the accelerating 
radiation is also the heat source of the emission regions, because at the final jet velocity, the Doppler-shifted accelerating radiation is 
below the Lyman-a threshold so that He n lines cannot be excited. The underlying compact star may then be a large (perhaps 
rotating very fast and breaking up centrifugally) He white dwarf, which can, again, display the needed Lyman edge. 

As a third candidate consider a heavy element. As an example we use iron, even though the observation of a y-ray line from SS 433 
(Lamb et al 1983) suggests that perhaps there are other anomalously abundant elements. With Z = 26, inequalities (3.7) and 
(3.10)-(3.11), which caused serious problems for both hydrogen and helium, are trivially satisfied. Here, R(iron) « 1.3 x 107 cm, 
much closer to a surface of a compact object, say a neutron star, and n & ñ, so clumping is not needed. For iron both the average 
density and the matter density have the reasonable value ~1 x 1015 cm-3. The iron scenario suggests a consistent picture. The 
accelerating radiation is emitted from a region close to the surface of an accreting neutron star. This, incidentally, justifies the slight 
deviation of the terminal velocity from the one predicted by the Lyman edge-Lyman-a line-locking frequency : The Lyman edge is 
simply gravitationally redshifted (Milgrom 1979). The acceleration begins, naturally, near the emitting region, and the final velocity 
is achieved within a short acceleration range, not too far from the neutron star. The hydrogen-like iron Lyman-a line is at 7.8 keV, 
just where one would expect the radiation from an accreting neutron star to be. 

The major difficulty with the iron scenario is with inequality (3.3). It becomes ^iron^isth ionized ground state > 4 x 10“5. With cosmic 
abundances, xiron æ 10"5, and £ ä 1 is needed. This cannot hold with the huge radiation flux exciting the ground state. Clearly a 
very large increase in the iron abundance could solve this difficulty. In the presence of a neutron star it is tempting to speculate that 
such an increase is possible if some of the jets’ material originates at the neutron star’s surface, but there is no evidence in optical 
spectra for any anomalous abundances of elements. 

Thus, none of these scenarios for SS 433 has any overwhelming support in the observations. The compact object may not even be 
a neutron star but a black hole (Leibovitz 1983). This paper only attempts to analyze in general terms the line-locking acceleration; 
detailed models have to await further observations. As things are now, although the value of the jet final velocity is remarkably close 
to the line-locked value, the details of the line-locking mechanism are still riddled with outstanding problems. 
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