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ABSTRACT 
We have repeated the determination of (p(M) for galaxies in the Revised Shapley-Ames Catalog using Virgo- 

centric perturbation fields of different strength to counter criticism that past calculations of the luminosity 
functions for galaxies of various Hubble types and van den Bergh luminosity classes are significantly in error 
as a result of neglect of this local velocity perturbation. Differential luminosity functions are given for 18 dif- 
ferent Hubble types and luminosity classes for perturbation models with infall velocities of our Galaxy to 
Virgo of vWc = 0 (the null model for comparison), 220, and 440 km s_1. The results, presented both by (%, 
Mß)-diagrams and by diagrams of the luminosity functions themselves show (1) that the change of shape of the 
upper envelope to the (pH, Mß)-distributions is negligible compared with the null case, even for the extreme 
model with vWc = 440 km s-1, and (2) the luminosity functions do not become significantly tighter in the per- 
turbed models as the perturbation strengthens. The conclusion is that any realistic perturbation of the local 
velocity field does not introduce large enough errors in the calculation of (p(M) to change the earlier result 
that a very large dispersion exists in within any given Hubble type and/or luminosity class. 
Subject headings: galaxies: clustering — galaxies: photometry — galaxies: redshifts — luminosity function 

I. INTRODUCTION 
With the completion of the Revised Shapely-Ames Catalog 

(RSA, Sandage and Tammann 1981) with its known incom- 
pleteness as a function of apparent magnitude (Sandage, 
Tammann, and Yahil 1979, hereafter STY), it became possible 
to study the luminosity function of the RSA galaxies as a func- 
tion of the van den Bergh luminosity class. The most unex- 
pected result of the analysis (Tammann, Yahil, and Sandage 
1979, hereafter TYS) was that the differential luminosity func- 
tion (p(M)—even for galaxies within a narrow luminosity 
class—was quite broad, and that every luminosity class over- 
lapped the luminosity functions of all other luminosity classes 
no matter how late the class (see Figs. 1, 3, and 4 of TYS). As a 
consequence of the large dispersion in M within each individ- 
ual function, there is necessarily a strong correlation between 
the mean absolute magnitude of any subset of the RSA galaxies 
and their distances ; the more distant galaxies have a brighter 
mean luminosity than the nearer ones in any sample taken 
from a catalog limited at its faint end by an apparent magni- 
tude cutoff, as is the RSA at B ^ 13.2. The effect is, of course, 
the Malmquist bias. It is shown directly in plots of individual 
Mß-values versus redshift, such as Figures 1-4 of STY, and in 
Monte Carlo simulations made by Spaenhauer at Basel to 
specifically illustrate the effect in a pedagogical demonstration 
given elsewhere (Tammann and Sandage 1982). 

The severity of the effect for the RSA galaxies has been 
somewhat questioned in two recent papers, one by Kennicutt 
(1982) and the other by de Vaucouleurs (1983). Kennicutt sug- 

1 Visiting Associate, Mount Wilson and Las Campanas Observatories. 

gests that the broadness of the individual (p(M) functions is not 
so great as in TYS if the calculation of (p(M) takes into account 
the velocity perturbation on the ideal Hubble flow caused by 
the Virgo overdensity, an effect claimed by TYS to be small 
enough to be neglected. For the same reason as Kennicutt, de 
Vaucouleurs states that the variation of MB with redshift given 
in Figures 1-4 of STY is smaller than shown, and therefore, 
that the Mqlmquist bias for the RSA galaxies within any given 
Hubble type and van den Bergh luminosity class is not so 
severe, justifying, in part, his compressed distance scale, based 
on his A-index. 

The physics of the problem is that the perturbation causes 
an extra velocity component in addition to the general expan- 
sion value, sometimes adding, sometimes subtracting from the 
ideal Hubble flow, causing distances and hence absolute mag- 
nitudes calculated from the redshift alone to have a component 
of error. The size of the error depends on the size of the velocity 
perturbation, measured, for example, by the infall velocity of 
our Galaxy toward Virgo. Kennicutt calculated the distances 
of a subset of the RSA galaxies using a high infall velocity of 
300 km s- ^ He claimed a major effect on the luminosity func- 
tions of spirals of different luminosity classes. De Vaucouleurs 
pointed out that the error in the Mß-values (calculated from 
the redshift) is correlated with the perturbations on the red- 
shifts themselves in such a way as to affect the upper envelope 
of the STY diagrams in their Figures 1-4. 

Because TYS believed that the effects of the velocity pertur- 
bations due to Virgo were so small, we doubted these separate 
results of Kennicutt and de Vaucouleurs, and have analyzed 
the problem anew using a new catalog of the velocity pertur- 
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bâtions due to Virgo, calculated for each galaxy in the RSA for 
different adopted infall velocities by one of us (Kraan- 
Korteweg 1984). The results of this analysis are given in this 
paper. The problem is easiest to visualize from a study of the 
(Mb, log t>)-diagram, and we discuss the effect of various velo- 
city perturbations on the upper envelope of this plot in the next 
section. This leads into the discussion of the effect of these 
velocity perturbations on the individual luminosity functions 
in § III. Our conclusion is that even in the unrealistically severe 
case of an infall velocity of vYc = 440 km s_1, the individual 
luminosity functions are still very broad, the Malmquist bias is 
essentially as severe as claimed by TYS, and de Vaucouleurs’s 
A-index, upon which his distance scale beyond the Local 
Group is based, must necessarily have a large dispersion in 
absolute magnitude. 

II. EFFECT OF THE VELOCITY PERTURBATION ON THE 
CALCULATION OF ABSOLUTE MAGNITUDES 

a) Method of Calculation 

The effect of the overdensity of the Virgo complex on the 
local velocity field is calculated here using the Virgocentric 
model first introduced by Silk (1974) and applied to data by 
Peebles (1976). The essence of the method is to consider mass 
shells concentric with the Virgo center that expand away from 
the center, each suffering a different deceleration due to the 
mass inside each particular shell. Because the density increases 
toward the cluster center, the shells closest to the center show 
the largest deceleration. Each shell is a miniature Friedmann 
universe whose motion is governed by the normal Friedmann 
R(t) equation for the unfolding of the scale factor in time, but 
the nonuniform distribution of the matter requires each shell to 
be treated as its own universe. The time dependence of the 
motion of each shell can be followed, and the view of the 
instantaneous velocity field from any non-Virgocentric posi- 
tion of the perturbed velocity field can be reconstructed. Such a 
view from the position of our Galaxy at 22 Mpc from the 
cluster center is neatly summarized in a diagram first made by 
Tonry (1980). A version of the diagram for the very large infall 
velocity of 400 km s-1 is shown by Tonry and Davis (1981). A 
Tonry diagram for an infall of 220 km s-1, calculated by U. 
Kaeser at Basel, has been shown by Sandage and Tammann 
(1983a). Comparison of these two diagrams shows the sensi- 
tivity of the velocity perturbation to the size of the infall velo- 
city. 

We model the problem by assuming an underlying noiseless 
Hubble expansion field upon which an idealized Virgocentric 
velocity perturbation is superposed. The perturbing excess 
mass at the Virgo Cluster is assumed to be spherically sym- 
metric and to decrease with Virgocentric distance d as d~2. 
Observational evidence for these assumptions is given in Yahil, 
Tammann, and Sandage (1980, hereafter YTS). 

The total observed radial velocity of any given galaxy is its 
Hubble (cosmological) velocity %, plus the perturbed com- 
ponent vg, plus any random radial velocity pnoise of the particu- 
lar galaxy. The perturbation due to Virgo is the velocity vector 
pointed toward the Local Group of the Virgocentric infall 
velocity of any given galaxy. Clearly 

^obs = % + ^ + ^noise • (1) 

By vobs we mean the velocity which an observer at the centroid 
of the Local Group would measure. 

One can now write an exact solution for the idealized radial 
velocity in the noiseless case as 

^model = % + L 

hu x — (hu — hi) cos 0 — (x — cos 9)[hu — /i^x)] 
= ^Virgo ^ 7 

= l^VirgolCOS 6 
K(x) 

. . 
(cos 6 — x) . (2) 

This is equation (6) of Schechter (1980) with the misprint in the 
denominator corrected. The definition of the h functions is also 
given there. A full explanation is in Kraan-Korteweg (1984). 

The distance x of a galaxy is in units of the Virgo distance 
(i.e., x = r/rvirgo), 6 is the angle between the galaxy and the 
Virgo Cluster center, and iVirgo is the observed mean velocity of 
the Virgo Cluster reduced to the centroid of the Local Group. 
Equation (2) has been used to calculate x for every RSA galaxy 
(Kraan-Korteweg 1984) for various values of the Virgo density 
contrast. 

Before discussing the normalization of equation (2) which is 
necessary to calculate x, it is useful to consider the linear 
approximation of equation (2) given by Schechter (1980): 

^model = ÍVirgo* “ »VefcOS 9 ~ x) 
x [1 — (x2 — 2x cos 9 + l)“1] , (3) 

where vWc is the infall velocity of our Galaxy toward Virgo. 
This is the approximation used by Kennicutt to derive his 
values. It is accurate enough for all regions not too close to the 
Virgo Cluster, so that any differences between our conclusions 
and his cannot be due to the different equations used to 
derive x. 

The calculation of x from equation (2) or (3) is not quite 
straightforward. First, the transcendental equations cannot be 
solved directly for x. The solution is found by a nonlinear 
optimization method to be explained. Second, the term 
^modei = vu + v

g ^ not observed velocity known to the 
astronomer, except in the absence of any random noise com- 
ponent. Hence, when i;obs from observational data is used in 
equation (2) in place of tfmodei to find x, any noise is propagated 
as an error in x. The effect is not severe for field galaxies if t;noise 
is smaller than ~ 100 km s_1, as we believe (Sandage and 
Tammann 1983a) but would be serious for the extremely large 
value of ~350 km s_1 advocated by Davis and his collabo- 
rators (Davis, Geller, and Huchra 1978; Geller and Davis 
1978). Discussion of why such a large random noise seems 
improbable is given elsewhere (Sandage and Tammann 1984). 

The distances of any galaxy can be evaluated with equation 
(2) as soon as the nonlinear model for the Virgocentric flow is 
fixed. This is done by adopting three parameters : (a) the varia- 
tion of the density excess with Virgocentric distance 
Wd) cc d 2], (b) the density ratio of the sphere around the 
Virgo center with our Galaxy at its periphery to the back- 
ground (pi/pu = 3.8 and 3.0 for vYc = 220 and 440 km s-1, 
respectively), and (c) the mean observed velocity vYirgo and our 
own infall velocity vYc, which essentially determines the 
Hubble parameter ratios hjfy = (vWc + ^virgoV^virgo = 1-23 and 
1.46, respectively. With the known density run p(d), the ratios 
pl/pu and hu/hh the nonlinear flow model is defined. 

Since every galaxy in this model has its own assigned mass 
shell with its corresponding miniature Friedmann universe, the 
Hubble parameter hg and the density parameter Qg will differ 
for every galaxy. This is the reason why, in the nonlinear case, 
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the infall velocity vg of any galaxy is not proportional to the 
density alone; hence a third parameter which is the back- 
ground density pu is necessary to define the model. 

Relative distances x can now be calculated from equation (2) 
by a nonlinear optimization method. This is done in practice 
by determining pg(x), the average density in a sphere around 
Virgo with the considered galaxy at its periphery, and then 
hg{x), which is the corresponding Hubble parameter. As soon 
as the distance to the Virgo Cluster is specified, the x-values 
can be transformed into true distances by r = xrVirgo. 

In passing, it is clear that the unperturbed (Hubble) velocity 
which would have been observed in the absence of any velocity 
perturbation is given by 

t’H = *(t’virgo + I’Ve) = HxrVlTS¡0 (4) 

for any assumed value of the Hubble constant and Virgo dis- 
tance. 

The relative distances x and the actual distances r of the 
RSA galaxies used here have been from the catalog of these 
quantities previously mentioned (Kraan-Korteweg 1984), 
based on vYirgo = 967 km s-1 (Kraan-Korteweg 1981), rvirgo = 
21.7 Mpc, corresponding to (m — M)° = 31.67, and three 
values of vyc: 0, 220, and 440 km s-1. These infall velocities 
almost certainly bracket the true situation. The best experi- 
mental data now favor yVc ^ 200 km s_1 (Sandage and 
Tammann 1983a, 1983b, 1984; Dressier 1984). Values as high 
as 400 km s “1 are almost certainly excluded by the best current 
data. The adopted distance to Virgo is consistent with the 
value found in previous papers in the distance scale series 
(Sandage and Tammann 1982 [Paper VIII], and references 
therein). It is now supported by the expansion parallax of the 
supernova SN 1979c in NGC 4321 (Branch et al. 1981; 
Panagia et al. 1980) and also by an analysis of the infrared 
Tully-Fisher relation (Sandage and Tammann 1983b). 

We stress that the main conclusion of this paper on the effect 
of t;vc on the shape of (p(M) depends only on the choice of the 
three observational parameters p(d), pjph vWc, which define the 
infall model, and is independent of the distance scale. Only 
where we want to illustrate the results with realistic values of 
the absolute magnitudes and therefore linear distances does the 
choice of the absolute distance to Virgo, and hence the value of 
the Hubble constant, become necessary. However, once we 
choose the scale, a technical point is important in understand- 
ing the resulting absolute magnitudes in the three infall models. 
Once we adopt fixed parameters for the models we have no 
freedom as regards the global value of the Hubble constant. Its 
value is formally different for each of the infall models if we 
keep the distance to Virgo fixed. This is because the cosmo- 
logical velocity of the Virgo Cluster [i.e., i;(Hubble) in our 
previous notation] is different for the three infall models. 
Keeping the observed Virgo mean velocity to be 967 km s-1 

gives the unperturbed Hubble cosmological velocity to be 967, 
1187, and 1407 km s_1, respectively, for infalls of 0, 220, and 
440 km s"1, which, with rvirgo = 21.7 Mpc, give the three 
values of H0 to be 45, 55, and 65 km s-1 Mpc-1, respectively, 
as the global value for the Hubble constant. Consequently, the 
absolute magnitudes for the same galaxy, calculated from 

r = vyirgo{x/H0) = Vh/H0 , (5) 

will differ for the three infall models. This is essentially only a 
technical problem and does not mean that the actual zero 
point of the absolute magnitude system changes with the infall 
model. There is only one true value of the global Hubble con- 

stant, of the infall velocity, and of the cosmological recession 
velocity of the Virgo Cluster. We return to this point later 
when we compare the actual luminosity functions computed 
with the three assumptions concerning the infall velocity. 

b) The (v, M)-Diagram: Selection of the RSA Subsamples 
A useful diagram that shows at a glance the distribution of 

absolute magnitude at any distance is the plot of absolute 
luminosity as ordinate versus redshift (or distance) as abscissa. 
Such diagrams for radio galaxies and quasars using only the 
radio-bright sources of the 3CR Cambridge survey (Sandage 
1972, Fig. 7) showed the extreme effect of the Malmquist bias 
there. The absolute luminosity of these very brightest of the 
radio sources in apparent flux appeared to increase in absolute 
luminosity as the square of the distance. The effect is due 
entirely to observational bias in the 3CR catalog, which cuts 
off at the very bright flux limit of 9 Jy, a situation analogous 
with the Shapley-Ames optical sample of galaxies. 

The (v, M)-diagram is also particularly useful in calculating 
the luminosity function almost by inspection. Within each par- 
ticular interval of A log v, the vertical distribution of points 
gives the (p(M) function in the shell centered at the midpoint of 
the velocity interval. This <p(M) can be connected with the 
xp(M) in adjacent bins by a multiplicative factor that is merely 
the ratio of the volume elements. For a homogeneous distribu- 
tion in space, the complete luminosity function can be built up 
by piecing together such segments, each normalized to the 
volume of its neighbor by multiplying by dex 3À log vH. The 
procedure is strictly correct, of course, only if the galaxies are 
distributed uniformly in space so that the ratio of the numbers 
in adjacent shells of uniformly spaced A log v is equal to the 
ratio of the volumes of the shells. But, in practice, even this 
assumption of a uniform distribution is not necessary if we 
merely assume that the shape of <p(M) is the same from shell to 
shell, because we can shift each (p(M) of a given shell onto that 
of any adjacent shell by an empirically determined vertical 
amount (which would be the ratio of the volumes in a homoge- 
neous distribution) so as to give continuity in the resulting 
composite <p(M). Because of our restriction of the final sub- 
sample gf RSA galaxies to those away from the most serious 
place of the inhomogeneous distribution of galaxies near 
Virgo, as discussed below, we have, in fact, used only the simple 
volume scaling, neglecting any small inhomogeneity in the 
regions away from the Virgo complex. Justification for this 
point of procedure is given implicitly in the distribution maps 
discussed by YST. 

Our first problem, i.e., the question of the stated objection of 
de Vaucouleurs (1983), reduces now to testing how much the 
(v, M)-diagrams differ from only another as the infall velocity is 
varied. We have divided the entire RSA sample into 18 sub- 
samples, according to Hubble type and then to van den Bergh 
luminosity classes within each type, similar to the divisions 
made by TYS in their Tables 1 and 2. In the beginning, the 
justification for these binnings was that if, within any given 
Hubble type and vdB luminosity class, the absolute magni- 
tudes had only a small dispersion, then this fact will be evident 
in the derived (p(M) for that particular subset of galaxies. This 
was the initial result of van den Bergh (1960). It is also the 
stringent requirement that must be met by real galaxies if an 
index, A, formed by adding a number representing Hubble type 
to a number that codes vdB luminosity class (de Vaucouleurs 
1979), is tightly correlated with absolute magnitude. Therefore, 
the present calculations can also be used to decide if the 
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TABLE 1 
Different Bins of RSA Galaxies Considered 

in This Paper 

Bin 

Morph. Type Lum. Class 10Ab 

Sa, Sab 

Sb 

Sbc, Sc 

Sbc-Sm, Im 

Sa-Sm, Im 

E, E/SO 

SO/E, SO, amorph. 

E-SO, amorph. 

all 

I-I.7 
1.8- II.2 

II. 3-III.0 

1-1.7 
1.8- II.1 

II.2-II.7 
11.8- III.0 

III.2-III.5 

I-I.7 
I.8-II.1 

II.2-II.7 
11.8- III.1 

III. 2-III. 5 
I-III.5 

90 

48 5 
20 6 

7 7.5 

91 
93 
63 
33 

151 
118 

68 
49 

7 
393 

89 

99 

188 

7.5 
8.5 
9.5 

10.5 

12.5 

9 
10 
11 
12 

1 The number of galaxies in each bin. 
5 The approximate A-index of de Vaucouleurs. 

A-index measures luminosity by testing the broadness of the 
(p(M) functions at a given A-index. An earlier test that showed 
that within the Virgo Cluster itself A has a large dispersion 
(Tammann and Sandage 1982) is, then, now available using 
field galaxies as well. 

The definition of the 18 subsamples is presented in Table 1. 
For two reasons the contents of individual bins, which are 
exactly the same as in TYS, will differ slightly. First, new type 
classification for 236 galaxies, prepared by Sandage (1982), 
were incorporated into the sample. Second, the area within a 
cone around the Virgo Cluster center, M87, with an opening 
angle of 0 — 24?5 was excluded. The reason for this exclusion 
can be visualized from the Tonry diagram in Tonry and Davis 
(1981): within this cone solutions for the distances x of equa- 
tion (2) can be triple-valued for the infall model with rVc = 440 

km s-1. For this reason no galaxy within 6 = 24?5 from M87 
was included in any of the three infall models. Of course, for 
vYc = 220 km s “1 the angle within which triple solutions are 
expected is smaller—0 = 16?5 (cf. Sandage and Tammann 
1983a), and for the null case of zero infall the velocities of 
galaxies within a radius of only 6° of M87 are no distance 
indicators. But to show best the changes in the (v, M)-diagrams 
and the changes in the luminosity functions which are due 
solely to the effect of the corrections for the Virgocentric 
motion, it is, of course, best to work with the same sample size 
for all three infall models; hence the same galaxies are excluded 
in all three cases. 

Furthermore, to be consistent with TYS, RSA galaxies with 
|h| < 30° were not included in the 18 bins because of the 
stronger discrimination of faint galaxies at low galactic lati- 
tudes and, moreover, because the completeness function of the 
RSA given in STY (which will be applied to the data later) is 
valid only for galaxies with | b | > 30°. 

Together with the 18 bins themselves, Table 1 lists the total 
number of RSA galaxies that fulfill the conditions of | b | > 30° 
and 0M8 7 > 24?5, and an estimate of the de Vaucouleurs A- 
index, defined as (L + T)/10. The definitions of L and T are 
taken from the RC2 (de Vaucouleurs, de Vaucouleurs, and 
Corwin 1976). 

c) Differences in the (v, M)-Diagrams for the 
Three Infall Models 

To fix the ideas, we show in Figure la the (vH, M2)-diagram 
for the complete sample of E plus SO galaxies for the null infall 
case to compare with the similar diagram in Figures 1, 2, and 3 
of STY. Shown also is the upper envelope line from Figure 3 of 
that reference, and the lower cutoff due to the apparent magni- 
tude limit of the Shapley-Ames at mB % 13.2. The upper 
envelope line in Figure la here has been adjusted from the 
envelope line in Figure 3 of STY because the effective Hubble 
constant is required to be 45 with the present assumptions, 
compared with 50 in STY (see § lib). The adoption of this 
Hubble constant for zero infall results in a shift of 0.23 mag 
upward in luminosity and 0.05 to the left in log %. The 
envelope line is shown in both panels to assess the sensitivity of 
the plots to the infall effects. 

Figure lb is the (%, M^)-diagram for the same galaxy types 
as in Figure la, but for the extreme infall velocity of 440 km 
s-1. The abscissa in this panel is the cosmological velocity vH 
(i.e., corrected for infall) calculated as x (v^Tgo + i;Vc) = ^obs 
+ vg, with vg as defined in equation (1). The envelope line is the 

a) vvc = 0 km sec-' b) vvc = 440 km sec1 

E-SO, 10 
n = 188 

Fig. 1.—(a) The variation of the absolute magnitude with the ideal Hubble flow velocity vH in the null perturbation model, i.e., where the infall velocity to 
Virgo is assumed to be zero. The sample is for Hubble types E and SO from the RSA. Galaxies within 24?5 radius of M87 are excluded. The upper envelope line 
computed by STY and adapted to the formal value of H0 = 45 km s_ 1 Mpc-1 is shown, (b) Same as Fig. la for the infall model with vXc = 440 km s~ L The upper 
envelope line is 0.8 mag fainter than in Fig. la because of the difference in the effective Hubble constant (see text). 
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same as in Figure la but displaced upward by 0.8 mag to 
account for the technical difference in the Hubble constant; H0 
is 45 km s-1 Mpc-1 in Figure la and 65 km s -1 Mpc-1 in 
Figure lb. It is clear that the distribution of points in both 
panels of Figure 1 and also the fit of the envelope line to both 
plots are so similar as to be almost indistinguishable. Although 
there are slight differences that will become more apparent in 
the next section when the luminosity function is discussed, it is 
clear that the objection raised by de Vaucouleurs that the 
shape of the upper envelope is crucially affected by a pertur- 
bation in the velocity field is not correct. 

The same conclusion is reached from all the other (vH, 
Mß)-diagrams plotted for each of the remaining bins (see Table 
1). A few representative examples are given in Figures 2-4. 

In* Figures 2 and 3 the unperturbed model (zero infall) is 
panel a, and the 440 km s-1 infall case is panel b. No plots of 
the intermediate case of 220 km s ~1 infall are shown as they 
are always bracketed by the two extreme models. Figure 2 
shows all the spiral classes of all luminosity classes lumped 
together. Here the sample size is largest, but the range of 
Hubble types and vdB luminosity classes is also largest ; never- 
theless, the spread in absolute luminosities above the mB limit 
line is only slightly larger than in Figure 1. Note also that the 
spread is slightly reduced in Figure 3, which shows only Sa and 
Sab galaxies. 

Finally, in Figure 4 we show representative plots of the Sbc 
to Sc section of the Hubble sequence broken into four pro- 
gressively fainter luminosity classes. Figure 4a shows the plots 
for the unperturbed (i.e., the ideal Hubble flow) model; Figure 
4b for the 440 km s -1 infall case. Both are similar to Figure 1 of 
TYS, which shows the large overlap in absolute magnitude 
between different luminosity classes within a given Hubble 

type. Comparison of panels a and b here shows that this 
overlap cannot be reduced by appeal to the properties of any 
reasonable model of the velocity perturbation. Kennicutt also 
states that the overlap remains in his analysis as well. 

In closing this section we note that the centroid of the absol- 
ute magnitude distribution does indeed move fainter in these 
diagrams as the luminosity class becomes later, ranging from 
<Mß> ^ —21.5 for luminosity class I-I.7 to <M^) ä —20.0 for 
class II.8-III in Figure 4a (a little fainter in Fig. 4b), in much 
the way given by van den Bergh (1982, his Table III), but it 
must be kept in mind that this procedure does not calibrate the 
absolute magnitudes of the luminosity classes, but merely gives 
<Mß> for the highly biased sample of the RSA, which is severe- 
ly apparent magnitude limited. We see only the tip of the 
iceberg of the true MB distribution in the (vH, M£)-plots. 
Samples to fainter apparent magnitude limits would extend the 
distributions to fainter absolute magnitudes, as evidenced by 
the fact that in Figures 1-4 each distribution abuts the lower 
limit line at mB ^ 13.2. It must be strongly emphasized that the 
dispersions listed by van den Bergh in his cited table are the 
apparent dispersions of the observed distributions in diagrams 
such as Figures 1-4 and have nothing to say about the disper- 
sion of the true luminosity functions, a problem discussed in 
the first two papers of the STY, YTS series, and also implicit in 
the discussion of the luminosity functions in the next section. 
The true functions are even broader than implied by the appar- 
ent dispersions. 

III. THE EFFECT OF VELOCITY PERTURBATIONS 
ON CALCULATED LUMINOSITY FUNCTIONS 

We now approach Kennicutt’s suggestion .that the true 
luminosity function of galaxies of a given luminosity class is 

Q) Vvc = 0 km sec*’ b) vvc = 44-0 km sec 

So, Sob 
n * 90 

Fig. 3.—(a) Same as Figs, la and 2a for Hubble types Sa and Sab. (b) Same as Fig. 3a for the vVc = 440 km s 1 infall model. 
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a) vvc = 0 km sec-1 
t1) Vvc = sec 

Sbc, Sc 1-1.7 
n = 91 

Sbc, Sc 1.8-11.1 
n = 93 

Sbc, Sc II.2-11.7 
n = 63 

Sbc, Sc II.8-M.0 
n = 33 

Fig. 4.—The {vH, Mj)-diagram for Sbc plus Sc galaxies for four different luminosity class intervals: (a) for the zero infall model and (b) for thei;Vc = 440 km s 
infall model. Compare this diagram with Fig. 1 of TVS. 

narrower than calculated by TYS. If true, especially for Scl 
galaxies, then one of the first attempts to extend the distance 
scale to redshifts > 10,000 km s_1 made by Sandage and 
Tammann in their Papers IV, V, and VI (1974, 1975a, b) would 
have found a modern justification. However, for reasons men- 
tioned earlier his result was unexpected, leading to the present 
recalculation. 

We have determined the luminosity functions for the 18 
groups of Table 1 for all three infall models. The method can be 
understood from the discussion in § lib and the inspection of 
the (pH, M2)-diagrams: within each vertical strip with the 
width A log vH = 0.2 a segment of the luminosity function is 
obtained which can be tacked onto the next more distant strip 
by multiplication with the volume ratio, in this case 3.98 = dex 
0.6. Analogously, this procedure is realized differentially by 
assigning a weight to each galaxy according to the volume it is 
found in. A specific galaxy naturally will get a different volume 
weight w(F) in each infall model. 

However, the procedure is not yet correct in this simple form 

because the RSA is not a complete catalog to its stated magni- 
tude limit of B & 13.2 but becomes progressively more incom- 
plete as this limit is approached. We have applied corrections 
to the counted numbers of galaxies by multiplying each galaxy 
of apparent magnitude m with its proper weight w(m) =/(ra)_ \ 
where f(m) describes the completeness function of the RSA. 
The function f(m) is known in explicit form (STY, Fig. 6). A 
galaxy with m = 12.0 mag, i.e., a magnitude where the RSA is 
essentially complete such that /(12.0) = 1, obtains the weight 1 ; 
a galaxy with m = 13.2 mag, however, carries the weight 11.1 
because /(13.2) = 0.09. All RSA galaxies fainter than 13.2 mag 
were given zero weight. 

This incompleteness factor on the apparent magnitudes of 
RSA galaxies affects most of the luminosity functions. It 
results, for instance, for SII and fainter galaxies, as well as for 
early-type galaxies, in an enhancement of the faint end of (p(M), 
whereas for Sa, Sab galaxies the bright end is enhanced. Ken- 
nicutt did not apply this correction. 

The luminosity functions were calculated with magnitudes 
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corrected for galactic absorption but not for internal absorp- 
tion. Corrections for internal absorption demand stronger 
incompleteness functions, and because the Hubble type partly 
determines the amount of the correction, the incompleteness 
functions would become bin-dependent as well. 

An inspection of the mean internal absorption {A1} per 
magnitude interval does not produce a systematic increase or 
decrease with absolute magnitude for any of the 15 concerned 
bins. The luminosity functions based on magnitudes corrected 
only for galactic absorption, Mg, can therefore be transformed 
into luminosity functions based on magnitudes corrected for 
internal absorption too, Mg'1, through a shift of the mean 
internal absorption correction {A1} of the considered sub- 
sample. 

A representative set of differential luminosity functions is 
shown in Figures 5a-5d for Sbc, Sc spirals with a range of 
luminosity class of I-III. The Kennicutt falloff effect at faint 
magnitudes is not seen. Consider Figure 5a, for luminosity 
class I-I.7. For the i;Vc = 0 km s_1 model, (p(Mg) appears to 
decrease fainter than Mg = —20.5, albeit the numbers in the 
faintest three bins are very small. This decrease at the faint end 
agrees with the earlier result of TYS (their Fig. 3) for the spirals 
of type I to I-II. Note in Figure 5a that the decrease is not as 
obvious for the vWc = 440 km s "1 case. 

The same conclusion follows from Figure 5b, for the lumin- 
osity class I.8-II.1. A maximum is reached that is half a magni- 

E. E/SO 

tude fainter than for the luminosity class I-I.7, but the 
dispersion is very broad for all three models. 

The magnitude range from vYc = 0 km s_ 1 to either i;Vc = 
220 or 440 km s-1 tightens in Figures 5a and 5h, but the 
sharpness of (p(Mg) never improves as drastically as was 
expected from Kennicutt’s paper. Only 0.5-1 mag is gained. 

Inspection of Figures 5c and 5d shows no improvement of 
the luminosity function at all from vyc = 0 to 440 km s-1. The 
conclusion of TYS in their Figure 3 that no maximum in (p(Mg) 
is reached to the limit of our data at Mg = —18 for luminosity 
classes later than II is confirmed.2 

In all these diagrams there is a shift in the absolute magni- 
tudes between the three models. This is, however, artificial, due 
entirely to the change in the effective Hubble constant for the 
reason explained in § II. 

Figures 6 and 7 show the similar situation for Hubble types 
E + E/S0 and SO + S0/E. Two features of Figures 6 and 7 are 
noteworthy. (1) There is a strong difference in (p(Mg) between E 
and SO galaxies. There are many more faint SO’s than faint E’s 

2 We do not mean to imply by these results that there is no maximum to 
(p{M) for spirals, but only (1) that this maximum is not yet reached at MB « 
— 18.5, and (2) that this conclusion is independent of any realistic Virgo per- 
turbation strength. We know, in fact, from data on a complete sample of 
spirals in the Virgo core itself that no spirals exist there fainter than B = 16.7 
(Mb = —15), and that <p(M) does have a very broad maximum centered at 
Mb = —18, fully consistent with the results in Fig. 5. 

SO/E. SO. 10 
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32 KRAAN-KORTEWEG, SANDAGE, AND TAMMANN 

in the RSA sample, and the brightest E galaxies are brighter 
than the brightest SO’s by about a magnitude. The same result 
was found previously in the Virgo Cluster sample itself (Kraan- 
Korteweg 1981), and by TYS in their analysis of the vYc = 0 km 
s-1 calculation of the RSA sample. (2) A gap may exist in the 
SO <p(Mß) near Mg = —18.5, appearing in all three models, but 
the numbers are small. 

IV. SUMMARY AND CONSEQUENCES 

Absolute magnitudes and the luminosity functions there- 
from have been computed for all RSA galaxies from their red- 
shifts using three self-consistent velocity perturbation models 
characterized by assumed local Virgo infall velocities of vYc = 
0, 220, and 440 km s _ 1. The results for different subsets of RSA 
galaxies, shown in the (%, Mß)-diagram, are insensitive to the 
value of i?Vc, contrary to an earlier suggestion by de Vaucou- 
leurs (1983). 

The luminosity function of spirals of a given van den Bergh 
luminosity class remains broad in all three infall models. Only 
(p(Mg) for ScI-ScII galaxies turns over for magnitudes fainter 
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than Mg æ —19, but even for them (p(Mg) is broad. All lumin- 
osity functions of later luminosity classes continue to rise to the 
limit of our data on the faint end at Mg æ —18. The result 
weakens earlier hopes that luminosity classes are reliable dis- 
tance indicators (van den Bergh 1960; Paper IV; Kennicutt 
1982). The broadness of the individual <p(M) functions in the 
narrowly restricted bins of Hubble type and luminosity class 
also shows that de Vaucouleurs’s “luminosity index” A has a 
wide dispersion, which is sometimes artificially masked by a 
bright catalog limit in apparent magnitude. The broadness of 
the individual luminosity functions means that the mean 
Mß-value of A even for a narrowly restricted galaxy type 
becomes fainter as the apparent magnitude limit of any given 
sample is made fainter, which is, of course, the Malmquist bias. 
The effect is seen directly in the behavior of A for Virgo Cluster 
spirals as one samples deeper and deeper into the cluster 
luminosity function (Tammann and Sandage 1982). 

The purpose of the present paper is to show that these con- 
clusions do not depend on the velocity perturbations of the 
RSA sample for any reasonable values of vYc and hence are 
independent of the Virgo complex perturbation. 
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