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ABSTRACT 
Rapidly rotating fluid objects of a given mass can remain stable only up to a critical angular speed, beyond 

which they may undergo instabilities leading to disruption. A semi-Newtonian condition of rotational stability 
applied to the recently discovered millisecond pulsar PSR 1937 + 214 implies lower bounds on the mass and 
moment of inertia and an upper bound on the radius of the neutron star. These upper and lower bounds are 
dependent on the equation of state of high-density neutron matter. We construct critically rotating realistic 
neutron star models, using the prescription of Hartle and Thorne, for six representative equations of state. The 
lower bounds on mass are found to be substantially higher than previous estimates. Results for various equa- 
tions of state of neutron matter at high densities are compared with observational data for neutron star 
masses. 
Subject headings: dense matter — equation of state — pulsars — stars: neutron — stars: rotation 

I. INTRODUCTION 

Backer et al. (1982) have recently reported the discovery of a 
pulsar (PSR 1937 + 214) with an extremely short period of 
1.5577 milliseconds. The period is approximately 20 times 
shorter than that of the Crab pulsar, the fastest rotating pulsar 
known until now. The characteristics of the radio pulses of 
PSR 1937 + 214 reinforce the central dogma of pulsar 
physics—namely, a pulsar is a rotating neutron star—but the 
origin of such a neutron star in a canonical hot supernova 
explosion has been questioned. In particular, several theoreti- 
cal suggestions have been made regarding the possible genesis 
of a new class of pulsars (Radhakrishnan and Srinivasan 1982; 
Alpar et al. 1982; Fabian et al. 1983; Henrichs and van den 
Heuvel 1983) as well as characteristic of such a fast-rotating 
object (Arons 1983; Ray and Chitre 1983). The extremely rapid 
rotation rate of PSR 1937 + 214 poses the problem as to 
whether such a rapidly rotating neutron star can be stable 
against breakup under centrifugal forces. In this paper we 
investigate the implications of the short period of the milli- 
second pulsar in relation to the properties of a stafr/e rotating 
neutron star. Our results are obtained through numerical cal- 
culations involving realistic equations of state and using the 
prescription of Hartle and Thorne (1968), and are valid for 
strong gravitational fields but in the limit of uniform, slow 
rotation (slow compared with the critical speed for centrifugal 
breakup). The stability requirement for this pulsar allows us to 
obtain lower limits on the neutron star’s mass and moment of 
inertia and also upper limits on the radius and the extent of the 
solid outer crust. These limits depend on the equation of state 
of neutron star matter. We have chosen a representative set of 
equations of state to calculate these bounds. From the existing 
observational data (Joss and Rappaport 1984) on neutron star 
masses, the bounds can, in turn, place interesting restrictions 
on the equation of state for matter at high densities. A prelimi- 
nary summary of this work has appeared elsewhere (Datta and 
Ray 1983). 

Until now, the lightest possible neutron star mass has been 
taken to be ~0.1 M0. This is because masses less than 0.15 
Me are bound less tightly than white dwarfs with the same 
number of baryons and are even unbound relative to the same 
matter dispersed as a dilute gas of helium. Therefore, to make 
an extremely light neutron star, net positive work must be done 
by the surrounding matter, which must still have enough 
energy to escape and leave behind only the loosely bound light 
star. No neutron star formation scenario is known that would 
leave behind remnants as light as 0.15 M©. On the other hand, 
application of the rotational stability criterion as discussed 
below raises the lower limit to about 0.8 M0 for certain realis- 
tic equations of state. 

The moment of inertia (I) is an important quantity for esti- 
mating the energy loss rate from a pulsar once its period deriv- 
ative (P) is known. Earlier estimates of / (Ruderman 1972) 
spanned a wide range (7 x 1043 g cm2 < / < 7 x 1044 g cm2), 
largely because of the uncertainty in the equation of state at 
high densities. This uncertainty has recently been considerably 
reduced, in part because of a better understanding of nuclear 
matter calculations and also because certain important nuclear 
matter parameters (such as the incompressibility, see Friedman 
and Pandharipande 1981) have been experimentally deter- 
mined. With improved equations of state, the application of the 
rotational stability requirement narrows down considerably 
the possible range of the moment of inertia from the limits 
quoted above. 

It is well known that the condition of hydrostatic equi- 
librium and stability with respect to radial perturbations pre- 
dicts an upper limit of mass and moment of inertia that are 
dependent on the equation of state. A substantial rotation of 
the star (comparable to its critical breakup speed) induces 
spherical and quadrupole deformations and changes these 
limits. Though these limits for nonrotating neutron star mass 
and moment of inertia are available in the literature, the corre- 
sponding limits incorporating the effects of substantial rotation 
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have not been investigated before this work for the six equa- 
tions of state used here. 

In constructing rotating neutron star models we follow the 
general relativistic formalism of Hartle and Thorne (1968) in 
the limit of slow rotation. In § II, we describe the conditions 
under which a rotating fluid star would be stable with respect 
to rotational instabilities, and we apply these in the context of 
the millisecond pulsar. Section III outlines the (numerical) con- 
struction of rotating neutron star models on the verge of a 
secular instability (valid for homogeneous and uniformly rotat- 
ing stars in Newtonian gravity). Section IV describes the high- 
density equations of state used in the computations and also 
the manner in which these have been extended to subnuclear 
densities. Results and discussion are presented in § V. 

II. ROTATIONAL INSTABILITY IN A FLUID STAR 

In general, the gravitational binding energy in a neutron star 
is the dominant factor in determining its structure. For a fast 
pulsar such as PSR 1937 + 214, the rotational energy can also 
be an appreciable fraction of the total energy of the system. In 
comparison, the elastic energy stored in the solid crust is much 
smaller. Hence, rotational instabilities in a fluid star are impor- 
tant restrictions relevant to rapidly rotating neutron stars such 
as the millisecond pulsar. 

In Newtonian gravity, self-gravitating fluid bodies in 
uniform rotation are described by Maclaurin spheroids and 
Jacobi ellipsoids. The former are axially symmetric configu- 
rations of uniform-density rapidly rotating fluid, while the 
latter are nonaxisymmetric, having surfaces of constant press- 
ure that are ellipsoids with all three axes unequal. 

Bodenheimer and Ostriker (1973) have shown in connection 
with rotating white dwarfs that even in the case of differentially 
rotating, inviscid polytropes (i.e., compressible fluids), the con- 
structed models with a specified angular momentum distribu- 
tion closely resemble the Maclaurin sequence. With specified 
total mass, angular momentum, and the angular momentum 
distribution, the constructed sequence of such stars is charac- 
terized by the parameter t = (kinetic energy of rotation)/ 
( I gravitational potential energy |). In particular, for this 
sequence also, a secular instability develops near the point 
t = 0.1375, where for the Maclaurin sequence a bifurcation 
occurs. A slight change in the angular velocity can move the 
configuration either along the Maclaurin sequence or into the 
Jacobi sequence. Once this instability develops, the star may 
undergo disruption. Density profiles of neutron stars are 
remarkably flat, and although general relativity plays a role in 
determining their structure, recent calculation (Cowsik and 
Ghosh 1983) has shown that the general relativistic neutron 
star structures are adequately described by Maclaurin spher- 
oids. For a uniformly rotating homogeneous Maclaurin spher- 
oid, this instability corresponds to the angular velocity Qs 
given by 

Q2 

InGp 
ä 0.18 (1) 

where p is the density of the Maclaurin spheroid, and, in the 
case of the Bodenheimer-Ostriker polytropic sequence, it cor- 
responds to the mean density. Equation (1) for a period of 
1.5577 milliseconds implies a mean stellar density 
p = 2.4 x 1014 g cm“3. For a given equation of state, this, in 
turn, gives a lower limit for the gravitational mass of the 
neutron star. Exactly how this limit is derived, by constructing 

critically rotating neutron star models, is shown in the next 
three sections. While our construction of rotating neutron star 
structures is valid for arbitrarily strong gravitational fields and 
for slow rotation, the limiting criterion implied by equation (1) 
is, strictly speaking, semi-Newtonian, valid for homogeneous 
stars in uniform rotation. Secular instability against radiation 
of gravitational waves has been shown to be generally true for 
all rotating stars (Friedman and Schutz 1975, 1978). Using a 
scalar theory of gravitation and a Newtonian homogeneous 
star model, Papaloizou and Pringle (1978) have shown that 
such instability will be important, on astronomically inter- 
esting time scales, for neutron stars with period <a few milli- 
seconds (see also Comins 1978). While the secular instability 
for homogeneous stars in general relativity in arbitrarily fast 
but uniform rotation is not completely understood, and some 
authors have even questioned if this instability operates for a 
uniformly rotating, centrally condensed star (see Shapiro, Teu- 
kolsky, and Wasserman 1983), we use the condition (1) in this 
paper on the presumption that relativistic analogs of this cri- 
terion exist for realistic stars which are nearly uniform in 
density and may not always be in uniform rotation. 

III. THE STRUCTURE EQUATIONS 

The effect of rotation on the structure of a star is to produce 
both spherical and quadrupole deformations. For a fixed 
central density, the fractional change in the gravitational mass 
{ÔM/M) and radius {ÔR/R) due to spherical deformation is 
proportional to Q2 (Q = angular velocity of the surface mea- 
sured by an observer at infinity) and can be obtained from a 
knowledge of the radial distributions of the mass and the press- 
ure perturbation factors. The mass M and radius R for the 
nonrotating configuration are obtained by integrating the rela- 
tivistic equations for hydrostatic equilibrium. The relevant 
equations for the nonrotating star are 

dP G (p + P/c2)(m + 4nr3P/c2) 
dr r2 (1 — IGm/rc2) 

dm 
dr 

= 47rr2p , 
; 

(2) 

(3) 

where P is the pressure, p is the total mass-energy density, and 
m(r) is the gravitational mass within a proper radius r. 

The potential v(r), relating the element of proper time to the 
element of time at r = oo, is given by 

dv G m + 4nr3P/c2 ... — —   1— (4) 
dr r2 1 — IGm/rc2 

For a given equation of state, P(p), and a given central 
density, p(0) = pc, the above equations are numerically inte- 
grated, with the boundary condition m(0) = 0, to give R and M. 
The radius R is defined by the point where P = 0, or equiva- 
lently, p = ps, where ps is the surface density. The total gravita- 
tional mass is then 

M = m(R) . (5) 

A relativistic effect of rotation is a dragging of inertial 
frames, so that 

co(r) # Q , 
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where co(r) is the angular velocity of the fluid relative to the 
local inertial frame and is given by 

d f Æ dco\ , ^ dj 
7Á'Jl?) + 4ra7r‘° 

where 
j(r) = e v(r)(l — IGm/rc 2U/2 

with the boundary conditions 

= 0 , co(oo) = Q 

For r > R (i.e., outside the star), 

dœ\ 
dr Jr = o 

œ(r) = Q - 
2GJ 

where J is the angular momentum of the star : 

J = 
6G drJr=R 

(6) 

(7) 

(8) 

(9) 

(10) 

The mass perturbation factor m0(r) and the pressure pertur- 
bation factor P0(r) corresponding to spherical deformation are 
given by (Hartle and Thorne 1968) 

dm0 

dr 
-4«Gr>P4P + ?J- + 12c2 

2GmV doj\2 

c2 )\dr 

87rG — 2v 4- - if p 

(11) 

dPo 
dr 

m0(l + $nr2GP/c*) G 4nr2P0(p + P/c2) 
(r — IGm/c2)2 c2 (r - IGm/c2 

H   r' + 12c2 
2GmV Jco\2 SttG 

c2 A dr ) + 3c4 e 2vœ2{ p + -r 

(12) 
with boundary conditions 

mo(0) = 0 , Po(0) = 0 . (13) 

With these boundary conditions, the rotating star will have the 
same central density as the nonrotating one (Thorne 1971). The 
deformations ÔM and SR are given by 

ÔM = 
GJ^ 
c4 R3 

moW + 4 3 , 

ÔR = — Po(pc2 + P) 
dP/dr 

(14) 

(15) 

The above prescription for calculating the mass and radius 
of a rotating star is valid only for rotations that are slow com- 
pared with the critical Qc = (GM/R3)1/2. Hartle and Thorne 
(1968) have constructed “ slowly ” rotating neutron star models 
up to this critical angular speed. In our case, since the secular 
angular speed is 

Qs = (0.27)1/2DC , 

the models constructed are well into the limits of slow rotation. 

IV. CHOICE OF THE EQUATION OF STATE (EOS) 

The structure of neutron stars depends sensitively on the 
equation of state at high densities, especially around the 

density region ~1015 g cm-3. For our purpose, we have 
chosen six equations of state based on representative neutron 
and nuclear matter interaction models : 

1. The Reid-Pandharipande (RP) model is based on the 
lowest order constrained variation (LOCV) method using the 
Reid nucleon-nucleon potential (Pandharipande and Bethe 
1973). Although this equation of state has been extensively 
used in neutron star calculations, it is now primarily of histori- 
cal interest since the Reid potential has since been found to be 
inadequate for describing known nuclear matter properties. 

2. The Bethe-Johnson (BJ) model is based on phenomeno- 
logical nucleon-nucleon potentials (Bethe and Johnson 1974) 
which have a more realistic short-range behavior than the Reid 
potentials. We have chosen BJ model I as a representative 
equation of state. 

3. The tensor interaction (TI) model is based on the LOCV 
method with the assumption that the intermediate-range 
attraction between nucleons can be attributed to higher order 
contributions of the pion-exchanged tensor interaction 
(Pandharipande and Smith 1975). The short-range repulsive 
part of the interaction is not taken into account properly, so 
that this model is inadequate for describing known nuclear 
matter properties (Pandharipande, Pines, and Smith 1976). 

4. The Brown-Weise (BW) model takes into account the 
presence of a negative pion condensate in high-density matter 
(Brown and Weise 1976). The calculation is based on the 
(7-model and includes the s- and p-wave pion-nucleon inter- 
action and the effect of isobars. 

5. The Friedman-Pandharipande (FP) model is based on a 
nuclear Hamiltonian that contains two- and three-nucleon 
interactions and fits the nucleon-nucleon scattering data for s-, 
p-, d-, and f-waves (Friedman and Pandharipande 1981). This 
interaction model reproduces the ground-state energy, density, 
and incompressibility of nuclear matter via variational calcu- 
lations. Nuclear matter calculations using phenomenological 
potentials invariably give too large a value for the incompress- 
ibility parameter K. The FP model is fitted to the recently 
available experimental value K = 240 MeV. In view of this, the 
FP model provides the most realistic equation of state for 
dense neutron matter. 

6. The Canuto-Datta-Kalman (CDK) model includes the 
short-range attraction due to nucleon-nucleon /°-meson 
exchange, in addition to the usual co-meson and (7-meson 
exchange forces. The equation of state is derived using rela- 
tivistic mean field approximation. Here, we take the case corre- 
sponding to the spin-2 coupling constant /2 = 2.91. 
Calculations for nonrotating neutron star structure based on 
this model are reported in Canuto, Datta, and Kalman (1978). 

The composite equations of state to determine the neutron 
star structure are set up in the following way. For each of the 
first five models, for 1013 g cm-3 < p < 1014 g cm-3, P(p) is 
taken from Pandharipande, Pines, and Smith, which corre- 
sponds to a gradual averaging of P for that model with that 
given by Negele and Vautherin (1973). For the inner crust 
region (3.7 x 1011 g cm-3 < p < 1013 g cm-3), P(p) is taken 
from Negele and Vautherin, while for the outer crust and the 
surface (p < 3.7 x 1011 g cm-3), P(p) is taken as given by 
Baym, Pethick, and Sutherland (1971) and Feynman, Metrop- 
olis, and Teller (1949). The P(p) for the CDK model has been 
joined to (i) BJ model V (Malone, Johnson, and Bethe 1975) for 
5.2 x 1014 g cm-3 > p > 1.7 x 1014 g cm-3, (ii) the Baym, 
Bethe, and Pethick (1971) model for 1.7 x 1014 g 
cm-3 > p > 4.46 x 1011 g cm-3, and (iii) the Baym, Pethick, 
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and Sutherland (1971) and Feynman, Metropolis, and Teller 
(1949) models for p < 4.46 x lO^gcm-3. 

Nonrotating neutron star masses calculated using the BW 
model have been reported by Maxwell and Weise (1976). The 
corresponding values that we obtain are slightly different from 
those of Maxwell and Weise because the values for the axial 
vector coupling constant adopted by them differ slightly from 
the one we used (as given by BW). Also, the pressure below the 
condensation threshold has been taken by BW as given by the 
Reid potential, whereas in our case it is given by a gradual 
averaging with that given by Negele and Vautherin, as 
described by Pandharipande, Pines, and Smith. 

V. RESULTS AND DISCUSSION 

Equations (2), (3), (4), (6), (11), and (12) were integrated by a 
two-point modified Euler method using a variable step size. 
The step size employed in a particular region depended on the 
pressure scale height in that region. To obtain R and M, it is 
sufficient to start with an arbitrary value for v(0), which is then 
rescaled to obey the surface condition 

v(R) = i ln (1 - IGM/Rc2), 

so that v(co) = 0, which ensures the correct evaluation of m0(r) 
and P0{r). Likewise, <û(0) is initially chosen to be an arbitrary 
constant; once Q is obtained, a new starting value ¿önew(0) cor- 
responding to an observed Q0 = Qnew is given by 

^new(O) = ^„ew^(0)/n . 

For each equation of state, the interpolation for pressure was 
done using a three-point spline fit to the supplied data points of 
P and p. The numerical integration for each model was termin- 
ated with the last step before p < ps = 7.86 g cm-3. The code 
was tested by comparing the results with those reported by 
Hartle and Thorne (1968) for the Harrison-Walker-Wheeler 
EOS. The agreement was found to be within 0.6%. 

Results of our computations for the six equations of state are 
presented in Tables 1 and 2 and Figures 1-7. Table 1 gives the 
masses and radii (M, R) of the nonrotating configurations, the 
secular angular velocity (Qs), the fractional changes in M and R 
corresponding to Qs, the moment of inertia (/), and the extent 
of the solid outer crust (Ac) of the nonrotating star (the region 
having p < 2.8 x 1014 g cm-3). Figure 1 shows the secular 
limit mass Mr (in units of M0) as a function of Qs

2. The lower 
bounds on Mr and the moment of inertia (I = J/Q.) are the 

TABLE l 
The Bulk Properties of Neutron Stars (Nonrotating and Rotating Configurations) 

for Various Equations of state 

Model 
Pc _ 

(g cm 3) M/Mg 

R 
(km) (rad s b 

ÔM/M 
<xQ2 

ÔR/R 
aQ2 

(g cm 
Ac 

(km) 

BW . 

RP. 

FP . 

CDK 

BJ 

TI 

2.00E15 
1.50E15 
1.30E15 
1.00E15 
7.00E15 
3.00E15 
2.00E15 
1.50E15 
1.00E15 
7.00E14 
4.00E15 
3.00E15 
2.00E15 
1.50E15 
1.00E15 
7.00E14 
4.00E14 
4.00E15 
3.00E15 
2.00E15 
1.00E15 
8.00E14 
6.00E14 
4.00E15 
3.00E15 
2.00E15 
1.00E15 
8.00E14 
6.00E14 
4.00E15 
3.00E15 
2.00E15 
1.00E15 
8.00E14 
4.00E14 

0.83 
0.60 
0.48 
0.30 
1.60 
1.60 
1.42 
1.20 
0.83 
0.55 
1.98 
1.98 
1.81 
1.48 
1.10 
0.72 
0.30 
1.71 
1.74 
1.74 
1.37 
1.04 
0.60 
1.86 
1.87 
1.79 
1.32 
1.13 
0.91 
1.74 
1.77 
1.77 
1.63 
1.58 
1.29 

8.25 
8.54 
8.79 

10.01 
7.72 
8.97 
9.72 

10.19 
10.77 
11.40 
8.83 
9.24 
9.94 

10.57 
11.13 
11.44 
12.96 
10.39 
10.55 
10.88 
11.39 
11.42 
11.60 
9.47 

10.02 
10.96 
12.76 
13.34 
14.10 
10.33 
11.08 
12.32 
14.73 
15.44 
16.27 

7.26E3 
5.87E3 
5.05E3 
3.26E3 
1.11E4 
8.90E3 
7.43E3 
6.36E3 
4.89E3 
3.66E3 
1.01E4 
9.48E3 
8.11E3 
6.68E3 
5.33E3 
4.15E3 
2.24E3 
7.39E3 
7.28E3 
6.96E3 
5.77E3 
5.00E3 
3.68E3 
8.84E3 
8.16E3 
6.96E3 
4.76E3 
4.13E3 
3.41E3 
7.51E3 
6.82E3 
5.81E3 
4.27E3 
3.91E3 
3.28E3 

0.081 
0.078 
0.070 
0.047 
0.046 
0.059 
0.071 
0.078 
0.083 
0.076 
0.048 
0.053 
0.063 
0.076 
0.088 
0.087 
0.053 
0.066 
0.069 
0.073 
0.089 
0.093 
0.070 
0.047 
0.051 
0.059 
0.075 
0.078 
0.079 
0.045 
0.050 
0.058 
0.077 
0.083 
0.094 

0.032 
0.038 
0.041 
0.048 
0.007 
0.015 
0.023 
0.029 
0.037 
0.042 
0.003 
0.006 
0.014 
0.025 
0.033 
0.040 
0.048 
0.019 
0.019 
0.020 
0.029 
0.035 
0.042 
0.010 
0.012 
0.018 
0.032 
0.036 
0.040 
0.018 
0.020 
0.024 
0.032 
0.033 
0.038 

3.48E44 
2.27E44 
1.70E44 
9.47E43 
8.56E44 
1.07E45 
9.91E44 
8.34E44 
5.48E44 
3.35E44 
1.56E45 
1.65E45 
1.54E45 
1.22E45 
8.77E44 
5.09E44 
1.67E44 
1.48E45 
1.56E45 
1.67E45 
1.28E45 
8.60E44 
3.88E44 
1.41E45 
1.54E45 
1.63E45 
1.31E45 
1.14E45 
9.37E44 
1.31E45 
1.50E45 
1.79E45 
2.27E45 
2.42E45 
2.09E45 

1.20 
1.84 
2.39 
4.42 
0.36 
0.59 
0.92 
1.32 
2.31 
3.82 
0.33 
0.40 
0.62 
1.06 
1.80 
3.02 
7.52 
0.79 
0.79 
0.87 
1.42 
2.04 
3.74 
0.81 
0.95 
1.35 
3.04 
4.00 
5.65 
1.63 
1.91 
2.55 
4.52 
5.36 
7.99 

Note.—Nonrotating gravitational mass M (in units of M0), radius R, the secular angular velocity Qs, the 
corresponding fractional changes in mass and radius ÔM/M and ÖR/R for the particular angular velocity Qs, 
the moment of inertia /, and the extent of the solid outer crust of neutron stars Ac, as functions of the central 
density pc, for different equations of state. The powers of 10 by which each entry must be multiplied are 
represented by the numbers following the letter E. 
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TABLE 2 
Parameters of Neutron Stars Rotating on the Point of Secular 

Rotational Instability Implied by PSR 1937 + 214 for Various 
Equations of State 

Equation 
Of Kr,max /min ^max \(Mmin) 

State min/M© (km) (g cm2) (g cm2) (km) 

BW   0.40 9.8 1.2 x 1044 ... 3.4 
RP   0.70 11.7 4.0 x 1044 1.1 x 1045 3.2 
FP  0.76 12.0 5.0 x 1044 1.6 x 1045 3.1 
CDK  0.79 12.0 4.7 x 1044 1.6 x 1045 3.0 
BJ   1.20 13.9 1.1 x 1045 1.5 x 1045 4.2 
TI   1.72 15.6 1.5 x 1045 2.4 x 1045 5.0 

values at Qs
2 = Q0

2 ^ 1-63 x 107 rad2 s-2 (indicated by an 
arrow on the horizontal axis in Figs. 1 and 2), which corre- 
sponds to the millisecond pulsar. The upper bounds on Mr and 
/ are obtained in the standard way, by finding the points of 
maxima in the curves Mr(pc) and /(pc), where pc = central 
density. These bounds are summarized in Table 2. Ignoring for 
the moment the BW model, all the “ normal ” neutron matter 
equations of state give a lower bound for the mass of PSR 
1937 4-214 of >0.7 M0. One particularly stiff equation of 
state, the TI model, gives a value that is quite large (1.72 M0). 
The spread in the range of / is small if one ignores the first and 
the last rows. Referring to Table 2, for the first five equations of 
state, the 7min is obtained from the condition of rotational 
instability, and 7max from the turnover point in the 7 versus Qs

2 

curve; the 7min and 7max for the TI model are obtained in just 
the opposite way (see Fig. 2). 

The mass-radius relationship for rotating neutron star con- 
figurations is shown in Figure 3. Figures 4 and 5 illustrate the 
dragging of inertial frames induced by rotation. The spherical 
stretching due to rotation and the density profiles of rotating 
neutron stars are shown in Figures 6 and 7. 

The parameter Ac determines the total amount of elastic 

Fig. 2.—The moment of inertia corresponding to the secular angular velo- 
city Qs vs. Qs

2 for different equations of state. 

energy stored in the crust of the (nonrotating) neutron star. If, 
as suggested by Baym and Pines (1971), pulsar glitches are due 
to giant starquakes, then the amount of mechanical energy 
released serves as a constraint on the size of the glitches and 
also the mass of the neutron star. Additionally, Ac is of interest 
in determining the thermal and mechanical communication 
time scales between the liquid core and the surface of the star 

Fig. 1.—The gravitational mass (in units of solar mass) corresponding to the secular angular velocity nsvs. Qs
2for different equations of state. 

Fig. 3.—The gravitational mass (in units of solar mass) vs. radius (for rotating configurations corresponding to the secular angular velocity) for different 
equations of state. 
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r/R 
Fig. 4.—Fluid angular velocity at radial distance r (in units of the radius R) relative to the local inertial frame there, as measured by a distant observer, divided by 

the angular velocity of the fluid with respect to distant stars, for a neutron star with Mr = 1.4 M0 for different equations of state. 

Fig. 5.—Fluid angular velocity at radial distance r (in units of the radius R) relative to the local inertial frame there, as measured by an observer in the fluid at r 
(e~v is the time dilation factor), for a neutron star with Mr= 1.4 M0 for different equations of state. 

Fig. 6.—Spherical stretching due to rotation as a function of the radial distance r (in units of the radius R) for a neutron star with Mr = 1.4 M0 for different 
equations of state. The vertical axis represents the fractional change in coordinate radius £0/r of the surfaces of constant density at r, divided by the fractional change 
(£o/r)s = <5#/^ at the star’s surface. 
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p1G 7—Density profiles of neutron stars (Mr = 1.4 M0) rotating at secular angular velocity {p is in g cm 3) for different equations of state. The horizontal axis is 
the radial distance from the center of the star, incorporating spherical stretching due to rotation. 

(Ray 1979, 1981) and can influence surface temperatures of a 
young neutron star (Nomoto and Tsuruta 1981). Since both 
radius (Rr) and crustal thickness (Ac) increase with decreasing 
mass, the third and the sixth columns in Table 2 represent the 
maximum values of Rr and Ac allowed by the six equations of 
state. Again, excluding the BW and TI models, CRr)max and 
(Ac)max sPan a rather narrow range. 

Estimates of neutron star masses, mostly from binary X-ray 
sources, cover a wide range (Kelley and Rappaport 1981). In 
the case of the binary pulsar PSR 1936 + 16, however, the 
pulsar’s mass has been accurately determined to be 
(1.43 ± 0.07) M0 from a measurement of periastron advance 
rate and time dilation arising from transverse Doppler shift 
and gravitational redshift (Taylor 1981). Joss and Rappaport 
(1984) have made a detailed study of the probability distribu- 
tion of masses of six neutron stars which are part of X-ray 
binary systems and of the binary pulsar itself, using a Monte 
Carlo technique. The results of their analysis give masses that 
are consistent with a range of (1.4 + 0.2) M0, expected, for 
example, in the collapse of accreting degenerate stars in a close 
binary system. For the five equations of state quoted in Joss 
and Rappaport, the maximum allowed masses for nonextreme 
equations of state lie between 1.4 M© and 2.7 M©, and the 
authors conclude that the presently available observational 
mass estimates are marginally sufficient to constrain the equa- 
tion of state of matter at high densities. In the current work we 
find that the lower limit given on grounds of rotational stability 
for one particular equation of state, namely, the TI model, is 
1.72 M©. This can be interpreted in two ways: either the milli- 
second pulsar (and objects of similar class) has a mass above 
1.72 M©, or the TI model is a somewhat unrealistic equation of 
state (assuming a mass of [1.4 ± 0.2] M© to be characteristic 
of this class of objects). As pointed out earlier, nuclear physics 
arguments suggest that the TI model may indeed be somewhat 
unrealistic, and the current work on the basis of lower limits of 
neutron star masses may also constrain the validity of the TI 
model. For the more recent equations of state which may be 
taken to be more realistic, the predicted lower limits are consis- 
tent with observational data on neutron star masses. Thus the 
millisecond pulsar is not required to have a mass and a 

moment of inertia much in excess of 1.2 M© and 1.6 x 1045 g 
cm2, respectively, on the basis of the five other equations of 
state reported here. 

The entries in Table 2 have been arranged approximately in 
order of increasing stiffness of equation of state of dense 
neutron matter. It is clear that stiffer equations of state give 
larger lower bounds on mass and moment of inertia. 

Though the masses reported in this work are for neutron 
stars on the verge of secular rotational instability, the same 
quantities for the dynamical instability (corresponding to 
T = 0.2738, or equivalently, Q.2/2nGp = 0.22) can easily be con- 
structed from the data reported in Table 1 by noting that 
SM/M and ÔR/R scale as Q2 for a given nonrotating (M, R). 
The secular limit, rather than the dynamical one, is reported 
here because the former is a stronger restriction on the rota- 
tional speed, and if the millisecond pulsar is envisaged as a 
neutron star spun up, the secular instability intervenes earlier 
than the dynamical. 

Mention may be made here of very recent work on a subject 
similar to that considered in this paper. Harding (1983), using 
the same stability criterion as in equation (1) and a set of 
realistic nonrotating published models for neutron stars, gives 
lower limits of neutron star masses. However, because non- 
rotating models are used, these values are somewhat smaller 
than the corresponding limits obtained by us. Harding con- 
cludes (as we do) that the TI model may indeed be a somewhat 
unrealistic equation of state. Shapiro, Teukolsky, and Was- 
serman (1983), on the other hand, have considered published 
models of equilibrium spherical nonrotating stars that can be 
uniformly spun up to P = 1.558 ms and will still remain in 
hydrostatic equilibrium. Their treatment is general relativistic 
and valid for arbitrarily fast rotations of (1) a uniform density 
and (2) a centrally condensed Roche model. These consider- 
ations are equilibrium ones in contrast to the stability require- 
ments. They conclude that the existing millisecond pulsar PSR 
1937 + 214 does not constrain any of the currently available 
equations of state of neutron star matter, and searches for 
pulsars down to P = 0.5 ms should be made in order to put 
meaningful restrictions on the existing equations of state. 
While shorter period pulsars will certainly be useful in con- 
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straining the more realistic and interesting equations of state, 
we note that even the equilibrium Roche model of Shapiro, 
Teukolsky, and Wasserman (1983) predicts, for the TI equation 
of state, a mass >1.6 M0, which is on the borderline for the 
allowed range of masses implied by Joss and Rappaport (1984). 

From an analysis of the unique position in the P-P (period 
and its time derivative) diagram occupied by PSR 1937 + 214 
and five other pulsars, Alpar et al (1982) have suggested that 
this class of radio pulsars may have had a different genesis and 
evolution from all other long-period pulsars. They and other 
authors (Radhakrishnan and Srinivasan 1982; Fabian et al. 
1983) have argued that such objects could have been spun up 
during an accretion phase, and they have related their periods 
to neutron star parameters like the mass and magnetic field as 
well as the accretion rate. A new millisecond pulsar in a binary 
(PSR 1953 + 29) has been discovered by Boriakoff, Buccheri, 
and Fauci (1983), the spin-up scenario for which has been 
argued by several authors to be essentially the same as for PSR 

1937 + 214 (see, for example, Helfand, Ruderman, and Shaham 
1983 and references therein and other articles in the same 
issue). Since these pulsars form a separate class, their structural 
parameters are expected to be similar. In the case of the milli- 
second pulsar PSR 1937 + 214, we found the lower limits of 
mass, moment of inertia, etc., for given neutron matter equa- 
tions of state. Thus, these lower limits should also apply to the 
other low (P, P) pulsars, since from independent consider- 
ations, these should have similar parameters. Hence, the theo- 
retical limits on mass and moment of inertia reported here will 
have a more general validity for at least a class of neutron stars. 
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