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ABSTRACT 
We describe a rather general approach to the stability of axisymmetric rotating non-self-gravitating bodies 

to local perturbations, and then specialize to systems such as thick accretion disks, where viscosity is negligible. 
A detailed analysis of the case where velocity perturbations are parallel to the non-azimuthal flow is 
carried out by examining the dominant terms in the fifth order dispersion relation. We find that the stability 
criteria applicable in different regimes are close analogs of the Holland condition, and that oscillations similar 
to the g- and p-modes in stars exist in thick disks. 
Subject headings : stars : accretion 

I. INTRODUCTION 
Recently, thick accretion disks have been extensively studied by many authors (see Appendix A for a review). Such 

disks may exist in active galactic nuclei or in exotic objects like SS 433, Cyg X-l, ß Lyr, etc. It has also been suggested that the 
(unstable) inner parts of thin accretion disks may become thick. 

The properties of thick disks differ, even locally, from those of thin disks and rotating stars. Therefore, existing results 
concerning the stability of the latter (see Appendix B for a review) cannot be applied to thick disks without a careful examination. 

The present paper initiates a series devoted to the study of the pulsations and stability of thick accretion disks. We examine 
here only local dynamical stability, i.e., we neglect the effects of boundary conditions. Although there is no formal justification 
for this procedure, it is well known that a local analysis usually yields a fairly good description of the pulsation modes 
and the criteria for stability. The full behavior, propagation, etc., can of course only be studied in a global framework. 
The object of this research is to eventually treat a flow with viscosity and thermal effects fully included. This first paper 
presents the general method of analysis that will be expanded upon in subsequent papers. 

We consider local, axisymmetric, dynamical perturbations of stationary rotating fluid bodies. First, a rather general fifth order 
dispersion relation is derived. Since it is an impossible task to solve the general dispersion relation, we introduce a method in 
which the various terms in this dispersion relation are classified according to their dependence on five dimensionless parameters 
(Appendix C). Our analysis proceeds by examining the order of magnitude of all terms rather than directly neglecting terms in 
the coefficients for the low viscosity case, thus making clear the general method to be employed. The dominant terms found 
for all points in the five-dimensional phase space compose an approximate dispersion relation whose stability properties should 
closely approach those of the complete system. As an example, we study the stability of a two-dimensional subspace of the 
five-dimensional parameter space. Although our attention is directed to thick accretion disks, our approach is valid for any 
rotating configuration which obeys our basic assumptions. 

In § II of this article we describe our basic assumptions and present a general discussion of the order of magnitude of the 
variables determining the pulsation modes of rotating objects. We begin § III with the general equations governing rotating 
non-self-gravitating fluids. Aiming at thick accretion disks, we specialize to the negligible viscosity case for which we write down 
the dispersion relation and devise a “magnitude” method for analyzing it. In formulating this method we again focus on thick 
accretion disks (which allows us to restrict the relevant parameters to five). We examine in § IV the stability conditions for a 
two-dimensional subspace of the parameter space. Section V includes a physical discussion of the results and conclusions. 
Appendices A and B review the theory of thick disks and of the stability of rotating configurations. Appendix C includes a 
catalog of the terms appearing in the dispersion relation for a three-dimensional subspace of the five-dimensional parameter 
space. 

1 On leave from Copernicus Astronomical Center, Warsaw, Poland. 
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TABLE 1 
Basic Assumptions of This Approach 

A. Equilibrium 

a  X0 = X0(r, z), ôX/ôç = 0 = ôX0/ôt 
b  The configuration is not self-gravitating 
c  No electromagnetic field present 

B. Perturbations 

d  X(t, r, z) — X0(r, z) = 3X(t, r, z) = <<5A> exp [i(a>t + Krr + kzz)] 
e  Angular momentum and entropy are conserved 
f Wavelength of perturbation ^ ^ 

scale-height 

II. BASIC ASSUMPTIONS, DEFINITIONS, AND ORDER-OF-MAGNITUDE ESTIMATES 

We consider stationary and axisymmetric configurations. Unperturbed quantities (which are denoted with a subscript zero) 
depend on r, the cylindrical radius, and z. The fluid is rotating in the external gravitational field of a central object. We 
ignore the self-gravitation of the fluid, and we use the Newtonian gravitational force. Long-range electromagnetic forces are 
not present. Only axisymmetric, local, and dynamical (adiabatic) perturbations will be discussed. These basic assumptions are 
summarized in Table 1. 

Five forces should balance for a dynamical equilibrium. These are: Fh Fg, FCi Fp, and Fv, the inertial (other than centrifugal), 
gravitational, centrifugal, pressure gradient, and viscous forces, respectively. We can estimate the order of magnitude of these- 
forces as: 

F ^ (velocity of non-azimuthal flow)2 v2 

1 ~ scale height H ’ 

F ^ (Keplerian velocity)2 vK
2 

9 radius r 

^ ^ (velocity of rotation)2 _v(p
2 

c radius r 

F ^ (velocity of sound)2 v2 

p ~ scale height H ’ 

(velocity of sound)2 v2 

Fvx OL   y t v . = 0Í — . 
scale height H 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

The scale height H in these formulae is either one of Hr or Hz : 

where p0 denotes the unperturbed density distribution. The dimensionless viscosity parameter, a, is defined as 

oc = —rjp~1r(dQ/dr), 

(2.6) 

(2.7) 

where rj, p, and Q are the viscosity, pressure, and angular velocity, respectively. 
The seven parameters appearing in (2.1)-(2.7) determine the local dynamical equilibrium of rotating fluid masses. These 

are four velocities, two characteristic scale heights and the viscosity parameter a. The relative importance of these parameters is 
shown in Table 2 for rotating stellar atmospheres, thin disks, and thick disks. 

Pulsations with a wave vector Kr, kz and a wavelength A, have typical frequencies, co, which can be constructed from these 
variables: 

co = fll2V/L, (2.8) 

where V = (r, rK. r,,,, i;s) is one of the characteristic velocities, L = (r, Hr. Hz, k/ '. kz ~1 ) is one of the characteristic lengths, 
and / is a dimensionless, model-dependent factor. 

The equilibrium parameters are not completely independent since the following order-of-magnitude relations generally hold for 
rotating objects: 

r ~ Hr~ vr ~ vv ' 
(2.9) 
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TABLE 2 
Equilibrium Parameters for Rotating Fluids 

Rotating Stellar 
Parameter Atmosphere Thin Disk Thick Disk 

Shape ... 
Rotation 

Pressure 

Viscosity   

Non-azimuthal 
flow   

Horizontal and 
vertical structure 

Spheroidal 
Slow: vK, 

Important: 
vs~vK 

Unimportant: 
ai^ ^ vs 
Unimportant: 
v <$ vs, 
V 4 Vy, 
V VK 

Similar: 
Hr * Hz 

Disklike 
Fast: Vy = vK, 

Vtp > vs 
Unimportant: 
vs < vK, 
Vs < Vy 
Large : 
a ^ 1 
Unimportant 
in central and 
outer parts: 
v < Vy 
Important in 
innermost parts: 
v ^ vs 
Very different: 
Hr> Hz 

Toroidal 
Fast: Vy zz vK, 

Vcp - vs 
Important: 
VS ^ Vy, 
vs ^ VK 
Small: 
a < 1 
Unimportant 
in central and 
outer parts: 
v < 
Important in 
innermost parts: 
v - vs 
Similar: 
Hr*Hz 

Here h = h(r) describes the location of the surface (p = 0) of the object; the equation for the surface is z = h. Therefore, 
any pulsation frequency in the disk will be a combination of eight standard frequencies, constructed according to (2.8). 
These frequencies are listed in Table 3. In this table and elsewhere, we use the terms “infinitesimal” (or “finite”) for perturbations 
which are independent (or dependent) on the scale heights // or on r. 

HI. BASIC EQUATIONS AND METHOD OF SOLUTION 
The basic equations describing both the unperturbed and perturbed states are: 

Conservation of mass: 

dp 1 d \ d 

conservation of momentum: 

"V \ , d® , dp Id 
-|+',a7 + S“7a:K') 

Idv dvr dvr tv2\ , 
'’^87 + "'ä7 + ,’•&-T)+', 

(dvz dvz dvz\ ôQ> dp Id'. 

Idv^ dvy dvv v^vA 

dTr: 

dz 
= 0, 

12. (ri + 

dz 

ï(t>r . ^ 
r dz 

= 0, 

= 0 

isentropy : 

r^ldS dS dS\ ¡t¡ 
pT[d¡ + v^ + v^)~V 

2 T 2 *1 2 'i ^ 'i ^ rq) ^ Z(p ''rr ^"77 _h^ + 7TL__h7^__h22L_ _VF=:0; 
rj rj rj rj rj ) 

(3.1') 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

TABLE 3 
Eight Standard Types of Pulsations 

Type “Infinitesimal” “Finite” 

Sound  œa) = vsK
d œa) = vs/H

b 

Inertial  œ{3) = vkc co(4) = v/H 
Rotational   co(5) = v^k cu(6) = vjr 
Gravitational  oj(1) = vkK w(8) = vjr 

a Sound wave: stable. 
b Brunt-Väisälä frequency. 
c Perturbation of the velocity field: stable. 
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where t¿j- is the viscous stress tensor, F the radiative flux, and O the gravitational potential. But as we are currently interested in the 
stability of thick disks, we can neglect all of the terms which include viscosity and thermal effects. Then (3.1)-(3.5) assume 
the form 

dp 1 ô . . c . . 

dvr . dvr dvr vv
2\ d® dp 

- — j + P ^7 + ^7 = 0 - PW + V'^ + V2 dz dr dr 

ldvz dvz dvz\^ dQ) dp 
p\~dï + Vrë7 + v^l+p^ + te = 0’ 

ÔVv 
5 , \ , dvv n 

rlh+V'dr^v^ + rVllz=0' 

dp dp dp p ^ ¡dp dp 
“AT + A I“ A •Til ~T~ + Vr — h dt dr dz p \dt dr 4H- 

(3.1') 

(3.2') 

(3.3') 

(3.4') 

(3.5') 

where T1 = (d In p/d In p)s. 
We are now concerned with the local stability of perturbations about stationary solutions to equations (3.T)-(3.5'). Although 

specific solutions to these equations have yet to be derived, as they demand a three-dimensional numerical treatment, such 
solutions certaintly exist (if time-averaged values in convective zones are used; Paczynski and Abramowicz 1982). For such an 
equilibrium, (3.4') and (3.5') can be stated as: r • V/ = r • VS = 0, with / the specific angular momentum and S the specific 
entropy. If we have an axisymmetric stationary fluid with no dissipation and nonzero vr and/or vz, then the level surfaces of S 
and / coincide; but if vr = vz = 0, then the surfaces of S and / need not do so. As many thick disk models have regions where 
(d//dr) = 0 (e.g., Jaroszynski, Abramowicz, and Paczynski 1980), then (3.4') means only that vz = 0 or that / is fixed on 
cylinders and VS ^ 0 is still possible for finite v. When S- and /-surfaces do coincide, reasonable thick disk models have been 
produced (Paczynski and Abramowicz 1982; Rózyczka and Muchotrzeb 1982). This might seem to be overly restrictive, but it 
must be stressed that thick disks are intermediate between thin disks and spherical accretion, and can have nonzero vr and vz 
with extremely small values of a. Surfaces of S and l do not necessarily coincide to the extent that the non-azimuthal velocities 
are small with respect to v^, and this is a key condition for thick disks (cf. Abramowicz and Zurek 1981). The immediate 
application of the above restrictions would enable us to achieve some simplification of the dispersion relation derived below 
(3.26), but we wish to demonstrate the general procedure by retaining all terms at this stage. Simpler ways of obtaining some 
of our results are discussed in § V. 

Using the standard linear perturbation technique, we rewrite the equations (3.1')-(3.5') as equations for the linear parts of the 
perturbations ôp, dp, ôv^ ôvr, ôvz in the form 

(/co + pi) 0 

Pi Pi 
Pi Pi 

-vs
2(ico + p4) (ico + p4) 

0 0 

The quantities plyzu z5 are defined by 

0 r, 
q>2 (ico + r2)p 

0 r3 

0 r4 

(ico + cp5) rs 

vr dvr dvz 

dp P 
r'=Tr+-r + 'pK- 

dp . Zi = — + IpK, , 

Zl 
Z2 

(ico T z3)p 
z4 

Z5 

Sp 
dp 
à»«, 
dvr 

dvT 

= 0 

Pi 
=75) ^+VÁTz + 77 

p2 = lKr , 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

where x = vrKr + vzkz. 
The condition for a nontrivial solution of (3.6) is the vanishing of the determinant of the matrix which appears there. This can be 

written as the fifth order dispersion relation : 

ia5 + ÜQ 0 , (3.26) 

where the dimensionless coefficients a0-a5 are: 

a5 = 1 , (3.27) 

fl4 = Q X(p4 + r2 + Z3 + ^5 + Pi) ^ (3.28) 

a3= -(pQ.)-2[p(p2r5 - (PsPrf2 - (q>5 + pl)(p¿ + r2 + z3)p2 - p2(p4r2 + p4z3 + r2z3) 

+ p(r4P2 + z<ip3) + z2r3+rl(p2p + vs
2p2p)+vs

2zlp3p + pp3z1], (3.29) 

«2 = -(p~2^~3){(P2r5p(Pi +P4 + z3)-(p2Z3r3 - [p2 r3z4 + p3r4z2 + p2p4r2z3 - z2r3p4 - pz3r4p2 - pz4p3r2) 

- («Ps + Pi)[p2(,P4r2 + P4Z3 + r2z3)~ z2r3 - pr4p2 - pz4p3] - q>5p1p
2(p4 + r2 + z3) + rl(p5p(p2 + vs

2p2) 

-ri[P3Z2-v2p2p(p4 +z3)+v2p3z2-p2p(z3 + p4)] + Z^sPÍPí + v2p3) 

+ Zi[(P4 + r2)p3 p - v2p2 r3 + v2p3 p(p4 + r2) - r3 p2]}, (3.30) 
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«1 = (pß2) 2{<P2''5|>3Z4 + /JsZj + Ds
2ZlP3 “ P(PlP4 + ?4 ¿3 + Pl^s)] ~ <?>2 Zs|>3 ^ + Ps “ '•r,(P4 + Pl)] 

+ (<P5 + Pl)[P2''3Z4 + PS^ZZ - Z2 ^3 P4 + p2P4 ^ Z3 “ P^í^aPi + ^Ps^)] 

+ <P5Pi[P2(P4'*2 + P4Z3 + ^Zs) - ZZ^S - P('-4P2 + Z4p3)] 

+ ''i (P2 P3 Z4 + P3 Z2 P4 - Us
2P4 Z3P2P + Vs2P4 Pî Z2 - P3 P2 Z4 - Z3 P4 P2 P) 

+ rl<P5[P3 Z2 — Vs
2p2 p(pA + Z3) + l’s

2p3 Z2 — p2 P(Z3 + P4)] 

- Zi(p2 Pi rA + Pi PPa r2 - vs
2p2 r3 p4 + v2pA r2 pp3 - r3 p2 p4 - r4p2 p3) 

- Zi(P5[PiP{p4 +r2)-v2p2r3 + v2pp3(p4 +r2)-r3p2]} , (3.31) 

a0 = (p2Q5)~l{(p2r5[p3z4p1 + p4p3z1- pp4fi1z3 + u/z^p^ - <p2 z5[PiP3 ^ + P3''1P4 ~ r3p4p1 + v2p4p3r1] 

+ (PsPi[P2riZ4 + p3r4z2- z2r3p4 + p2p4r2z3- z3r4p2p- z4p3r2p] 

+ r\V5[p2Pi24 + PiZ2p4 - v2{p4z3p2p - p4p3z2)~ z3p4p2p - p3p2z4] 

- zi<p5[p2p3 r4 + p3p4r2p- r3p2p4 - v2(p2 r3 p4 - p4r2p3 p) - r4p2 p3]} . (3.32) 

In practice it is impossible to examine the stability conditions for the full dispersion relation (3.26). Such a general discussion is 
only of academic interest anyway. Since we are interested in local stability, it is sufficient to consider the stability of given small 
regions of the whole configuration. In a small region particular conditions hold, and these can be used to simplify the dispersion 
relation. In the following section we develop a method for specializing the dispersion relation to particular regions (in a specified 
parameter space) by picking up only its dominant terms. The resulting dispersion relation is tractable. 

We have already shown that the variables iv, vz, vK, vs, Hr, Hz, Kr, kz, r, and a determine the local conditions in any 
non-self-gravitating rotating object. In the following discussion we are interested only in the order of magnitude of these 
variables; therefore, for disks (in fact, for any rapidly rotating object) we can eliminate % since % = O^). For thick accretion 
disks we can further eliminate a few other variables, since using (2.9) v ^ vr^ vz and H ^ Hr ^ Hz.Fov these disks the scale height 
H is also of the same order of magnitude as the radius r. 

We now convert all quantities to dimensionless variables. The basic approximation (/) provides us with a standard 
dimensionless variable : 

£ = (À/H) <1. (3.33) 

We next define five other dimensionless variables : a, (v/v^), (i^/t^), n= |ic*r|/|fc||r|, and (co/Q). Without loss of generality we can 
express these five variables as: 

fi - tj, (3.34) 

(vjvj-e*, (3.35) 

a ~ £*, (3.36) 

(aVQ)~£"\ (3.37) 

(v/Vy) ~ £" . (3.38) 

Each term in the dispersion relation can be expressed in the form 

term ~ /zNl(i;s/i;<p)N2aN3(£o/QyV4(i;/i;(p)
7V5(2///)N6 . (3.40) 

This defines the “magnitude,” M, of each term: 

M = iVij + N2k + N31 + N4.n1 + N5n + N6 . (3.41) 

We classify different regions in the disks of interest according to their locations in the five-dimensional phase space [/, k, /, m, n], 
and compute the value of M for each term in the dispersion relation. We retain only the terms of lowest magnitude and solve the 
resulting approximate dispersion relations. Note that sometimes higher order terms ought to be kept in order to discover slower 
instabilities for which | Im co | <^ | Re co |. 

Systematic application of this procedure to the entire parameter space [/, /c, /, m, n] can provide us with detailed information 
about the local stability of all the possible configurations satisfying our basic assumptions, in particular thick and thin accretion 
disks and rotating stellar atmospheres. The stability conditions vary from one point to another in the parameter space, but 
usually a given condition holds in some finite subspace. The purpose of this series of papers is to scan the parameter space and 
to derive the relevant stability conditions. 

We now examine the allowed range for the parameters 7, k, /, m, and n. The parameter m can range from -00 to +00. 
Both ¡J, and a are less than (or of order) unity, and therefore j and / vary between 0 and + 00. In principle n could vary between 
— 00 and + 00, however negative rc-values mean that v > i.e., a configuration in which the non-azimuthal (radial infall) 
velocity is larger than the rotational velocity; clearly the current approach is not intended to analyze such situations. 
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Fig. 1 Fig. 2 
Fig. 1.—The division of the m-n plane into the 15 regions corresponding to the different first order dispersion relations. The areas are labelled A, C, J, K, N, 

and O, the lines dividing them are labeled B, E, G, H, I, L, and M, and the points of intersection are D and F. 
Fig. 2.—The physical properties corresponding to the different regions in the m-n plane. Here v = the accretion velocity, vp = the velocity of the perturbation, 

and vs = the sound speed in the disk. For our thick disks, the Keplerian (i;K) and azimuthal (v^) velocities are approximately equal to vs. 

The two parameters / and k are independent, but both are related to the disk’s thickness. We have already implicitly set 
/ = oo by neglecting viscous terms in equation (3.1'-3.5'). The dispersion relation (3.26) is valid for every /c; still for thick disks 
we expect k = 0 and we restrict the rest of the discussion, and in particular the catalog given in Appendix C, to this special case. 
In addition to these restrictions, note that some part of the parameter phase space is not physically accessible since certain 
combinations of 7, /c, /, m, and n lead to contradictory physical assumptions. 

IV. THE NEGLIGIBLE VISCOSITY, PARALLEL PERTURBATION, THICK DISK CASE 
As a physically relevant example we consider in this section the question of dynamical stability of thick disks (k = 0) 

of negligible viscosity (/ = 00) and we examine perturbations which are parallel to the non-azimuthal flow (j = 0). In addition, 
we shall assume that Kr^Kz, i.e., that the perturbation is isotropic. 

In light of the specializations discussed above, the magnitudes of the terms in the dispersion relation now only involve iV4, N5, 
and N6, so that 

M = N4.n1 + N5n + N6 . (4.1) 

For each individual term in the dispersion relation the values for A4, A5, and N6 are given in the Catalog (Appendix C). 
We compute the magnitude of all terms for 

— oo<m<+oo, — 00 < + 00 . (4.2) 

The [m, n]-plane is divided into 15 regions in which there are different lowest order dispersion relations. These regions comprise 
six different areas, A, C, O, N, K, and J, seven different lines, L, H, I, G, M, E, and B, and two points, D and F, as shown in 
Figure 1. 

The diagonal line across the plane, « = m + 1, corresponds to the condition that the velocity of the perturbation is 
approximately equal to the non-azimuthal velocity. Indeed, the velocity of the perturbation can be estimated by 

vp^lw, (4.3) 

and therefore, 

Vp/v^WHXœW-e"'*1 . (4.4) 

On the other hand, (v/v^) ~ en, and the condition {v/v^) % {vp/v^) is equivalent to n = m + 1. Other lines also have clear 
physical meanings. The condition that the velocity of the perturbation is about equal to the speed of sound corresponds to the 
equation m = — 1, i.e., to the line L. Also, the condition that the velocity of sound is approximately equal to the non-azimuthal 
velocity is equivalent to the equation n = 0, or the line E. 

The physical meanings of the different parts of the [m, «]-plane are shown in Figure 2. Note the similarity between Figures 1 
and 2, which, of course, stems from the fact that different stability properties are connected with different physical regimes. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

4A
pJ

. 
. .

27
9.

 .
36

7A
 

ABRAMOWICZ ET AL. 374 

We shall now explain how the stability of the 15 different cases has been examined by taking the line H as an example. 
On that line we have 

Vr^Vz2¿0, 

Icol ^ Q . 

(4.5) 

(4.6) 

There are seven relevant terms of dominating order c 2 in the dispersion relation, viz., 137, 153, 188, 213, 238, 263, and 373 in the 
Catalog. The dispersion relation for this case reads 

(i) + Kr
2[dzQz] + «rKz 

df 
dz H 

Qz + KzKr[-gzQr] (4.7) 

= Kz
2Bzz + Kr Kz Brz + Kz Kr Bzr + Kr

2B„ = H(Kr, Kz 

Here / = Qr2 is the specific angular momentum and 

Qr = 
dp_v2Ídp 

dr 

Qz = 
11) 

1 
r\p’ 

i 

r>’ 

ÔQ> 
9r — — + 5 9z — > Bo > Q - r or dz 

Note that from the mechanical equilibrium conditions (3.2) and (3.3) with vr = vz = 0 it follows that 

(Vp_ x) x (Vp) = (r_3V/2) x er, 

which is equivalent to 

QrGz- Qz9r = r-2>{dl2/dz) . 

Thus the matrix is symmetric. 
The necessary and sufficient condition for stability is that the form /cf Kj should be positive definite, i.e., 

Trace (B0) > 0 , Det (B0) > 0 . 

These two conditions are equivalent to 

(dl2^ 
:)-(f)-(7p.VS)>0, 

/dp\[/dP\/ds\ _ /^\/5s\ 
Vdzfidr/ 

>0 . 

(4.8a) 

(4.8b) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

This is exactly the well known Holland criterion for stability (e.g., Tassoul 1978). When no rotation is involved (/ = 0), it yields 

(-0)VS>O, (4.15) 

which is just the Schwarzschild criterion for convective stability. It also ensures that all c/-modes are stable, as will be discussed 
later (see also Cox 1980). In the case of a homentropic configuration (VS = 0) the Hoiland criterion becomes 

dr 
>0 . (4.16) 

Therefore, for stability the specific angular momentum must increase outward. Condition (4.16) is the Solberg criterion which 
generalizes to homentropic configurations the Rayleigh criterion for an inviscous incompressible fluid. 

In a similar way, the other 14 cases have been studied. The results are summarized in Table 4. 

v. DISCUSSION 
Let us now discuss the results presented in Table 4 in those regions where definite solutions have been obtained. In order to do 

this, it is useful, for example, to move from high frequencies to low ones (from left to right in the [m, n]-plane). Area A 
(Fig. 1) gives inconsistent results. This fact is not surprising since it is the consequence of the requirement that œ is so large 
so that only the term co5 survives in the dispersion relations. This, however, leads to the solution, co = 0, which contradicts the 
assumption that œ is large. 

Line L, which corresponds to a high-frequency, low-velocity limit, gives a stable frequency 

œ = ±vs(Kr
2 + K2)112 . (5.1) 
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TABLE 4 
Stability Properties on the j = 0, /c = 0, / = + oo Surface 

Region 
Typical 
Point Terms Included 

Dispersion Relation, 
Its Solution Result3 

A 
(area) , 

B 
(line).. 

C 
(area) .. 

D 
(point) . 

E 
(line). 

F 
(point) . 

G 
(line). 

n = 0, 
m— —2 

n= -1, 
m= -2 

n = — 1, 
m = — 1 

n = 0, 
m = — 1 

n = 0, 
m = 0 

1, m = 0 

« = 1, 
m — 0 

380 

33, 163, 177, 294 
304, 312, 365, 368 
378, 380 

33 

33, 68, 113, 163, 177, 198, 
223, 253, 279, 294, 304, 
312, 322, 329, 340, 357, 
365, 368, 373, 378, 380 

33, 68, 113 

9, 24, 54, 68, 87, 93, 
113, 126, 137, 153, 188, 
198, 213, 223, 238, 253, 
263, 279, 322, 329 
340, 357, 373 

9, 24, 54, 68, 87, 93, 
113, 126 

co5 = 0, 
No solution 

(co + x)5 = o, 
co= -x 

x5=0, 
No solution 

(CO + x)5 - Vs
2(Kr

2 + Kz
2) 

x (co -h x)3 = o, 
CO= -X + Vs(Kr

2 + K,2)1'2 

X2 - Vs
2(k,2 + Kz

2) = 0, 
? 

(K,2 + KZ
2) ’ 9 

impossible 

stable 

impossible 

stable 

second 
order 
terms 

Vs
2(Kr

2 + Kz
2)(œ + xf 

-H(Kr,Kz)(co + x) = 0, 
co = -x; 

'= ~x± [H(Kr, kz)/(k
2 -f Kz

2)]il2 and 
stable 

Two modes: 
Holland 

second 
order 
terms 

H 
(Line). 

(line). 

J 
(area) . 

K 
(area) . 

L 
(Line). 

M 
(line).. 

N 
(area) . 

0 
(area) . 

n = 2, 
m = 0 

n = 2, 
m = 1 

n = 2, 
m = 2 

n = 3, 
m = 1 

n = 1, 
m = — 1 

n = 0.1, 
m = —0.9 

n = 0.2, 
m = 1.0 

n = 0.9, 
m = -0.1 

137, 153, 188, 213, 
238, 263, 373 

9, 24, 54, 87, 93, 126, 
137, 153, 188, 213, 238, 
263 

9, 24, 54, 87, 93, 126 

137, 153, 188, 213, 238, 
263 

373, 380 

68, 113, 198, 223, 253, 
279, 322, 329, 340, 
357, 373 

68, 113 

373 

co2B0 — Q2Bij Ki Kj = 0 , 

_¡ H(k„kz) V'2 

" W + Kz2)/ 

H(Kr, Kz)(x + <o) = 0, 
0)= ~x 

H(Kr, KZ)X = 0. 
No solution 

H(Kr, /cz)co = 0, 
co = 0 

CO2 - V2(Kr
2 + Kz

2) = 0, 
CO = Vs(Kr

2 + Kz
2)112 

Vz
2(Kr

2 + kz
2)(w + x)3 = 0, 

co = -x 

vs
2(kz

2 + Kr
2)x3 = 0, 

No solution 

vz2(Kr2 + Kz
2)w3 = 0, 

No solution 

Hoiland 

stable 

impossible 

neutral 

stable 

stable 

impossible 

impossible 

3 The Result column indicates if the region under consideration is always stable, if it is neutral to perturbations, if the 
Hoiland criterion determines the stability, or if the region corresponds to a physically contradictory situation 
(“impossible”), where there is no consistent solution of the dispersion relations for the assumed values of m and n. 
A question mark in the Solution column indicates that the first order terms identically vanish so that second order terms 
ought to be included in determining the stability criterion in that region. 
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This is the equivalent in thick disks of high order p-modes in stars (e.g., Cox 1980). It is also a known frequency limit in adiabatic 
stability analyses of stars. 

At point D (Fig. 1) the velocity field becomes important, and the frequency becomes that of a sound wave in a moving medium; 
this represents essentially the Doppler effect (see, e.g. Landau and Lifshitz 1959), 

(D — — K ' V A Vs(Kr
2 + Kz

2)112 . (5.2) 

The same result can be obtained by a different procedure. For large co one writes co = co0 + Aco, where œ0 is given by (5.1), 
and Aco<^(d0. Neglecting second and higher powers of Aco and keeping only leading terms in the coefficients, one can 
show (after some tedious but straightforward algebra) that Aco = —k* v. 

The results for line H have been discussed thoroughly in § IV. Here we would like to note that the same results can be obtained 
formally by setting vr = vz = 0 in the initial equations and dropping terms in the coefficients of the resulting dispersion 
relation according to basic approximation (/). 

In the limit of negligible rotation (/ -► 0) we obtain on line H: 

(a= ± [(0r QrYl2Kz - (gz ôz)1/2Kr)](Kr
2 + Kz

2) 1/2 . 

It is instructive to evaluate (5.3) in the equatorial plane (where gz = Qz = 0); there we obtain 

OJ = ± 
(Kr

2 + Kz
2y2 

2^P\ 
r^pydr Vs dr J 

1/2 

(Kr
2 + K2

2) 2U/2 N, 

(5.3) 

(5.4) 

where N is the Brunt-Väisaäla frequency. The frequency (5.4) (and in fact [5.3]) represents the high order ¿/-modes of stars 
(e.g., Cox 1980). Stability or instability is obtained (in the limit of negligible rotation) according to whether 

(5.5) 

is negative (stable) or positive (unstable) (e.g., Ledoux and Walraven 1958). 
The region O (Fig. 1), while giving inconsistent results when only the leading term is considered, gives the Hoiland stability 

criterion when second order terms are included and terms are dropped in the coefficients according to the basic 
assumption (/). The dispersion relation assumes the form 

- ^i(p/p)(Kr
2 + Kz2W + JC2) = 0 , (5.6) 

so for stability we need H(/cr, kz) > 0, which leads to the Hoiland criterion, as shown in § IV. 
As a final case, we would like to mention that the destabilizing effect of the velocity field can be demonstrated when second 

order terms are considered in the low frequency domian (such as m = 1, n = 1 on line G). In the equatorial plane we obtain 
in this case 

where 

cd — —D/C + iB/C , (5.7) 

C = [r~3(dl2/dr) +grQr]Kr
2-3l2(Kr

2 + kz
2) , (5.8) 

D = x{K2
2[r~3(dl2/dr) + grQr] - i2(icr

2 + kz
2)} , (5.9) 

(^)( 
+ (KzX)2 -l/dp) _Vr 

r 
dvr 

dr + («rX)2 

‘ti 

(5.10) 

This clearly shows that the velocity field introduces the destabilizing part B. In particular, had we taken the limit 
(this is not inconsistent with the way the leading terms were kept since x~ e°)> then 

cd ~ ivr (5.11) 

which is unstable (i;r < 0). 
To summarize, various regimes in the [m, n]-plane, corresponding to different physical situations, give us a variety of pulsations 

and stability criteria. We have been able to demonstrate that most of the dynamical pulsations obtained in thick disks are very 
similar to those of ordinary stars; in particular, there exist pulsations that are equivalent to p and g modes. In the limit of low 
non-azimuthal velocities, the stability criterion for thick disks is the known Hoiland criterion for rotating stars. In the low 
frequency limit the velocity field introduces an overstability with a frequency of order cd ä vk. 

As explained in the introduction, much work is still needed to sort out cases not discussed in the present paper. For example, 
thin disks have to be dealt with separately, and “orthogonal” perturbations need to be treated in a similar fashion. Once the 
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latter work is completed, actual disk models will be tested for stability. Finally, we would like to again remark that while 
caution must be exercised when interpreting the results of a local analysis, the identification of many of the modes obtained with 
familiar results is very encouraging, and we feel confident that much valuable information can be gained by continuing this 
approach. 

We would like to thank Mr. P. J. R. Warren, who found and returned the only complete copy of the calculations. M. L. thanks 
Drs. D. Sciama and G. Bath and the Department of Astrophysics at Oxford for their generous hospitality. T. P. acknowledges 
support by NSF grant Phy 79-19884 to the IAS and by the Revson foundation. P. J. W. acknowledges a foreign currency 
travel grant from the Smithsonian Institution, and partial support from NSF grant AST 82-01165. 

APPENDIX A 

THICK ACCRETION DISK MODELS 

The standard models of accretion disks are geometrically thin and assume that the material in the disk follows Keplerian 
orbits (e.g., Shakura and Sunyaev 1973). For central black holes, such disks must terminate with their inner edge at the last stable 
circular orbit, rms (= 6GM/c2 = 3rs for a Schwarzschild black hole). But analyses of the equilibrium distributions of perfect 
fluids around black holes (e.g., Fishbone and Moncrief 1976; Abramowicz, Jaroszynski, and Sikora 1978) showed that a 
non-Keplerian angular momentum distribution could exist if there were sufficient pressure in the fluid, and that material could 
approach the marginally bound orbit, rms (= 2rs in the Schwarzschild case). This material would then flow in through a cusp, 
analogous to flow through the inner Lagrange point in close binary systems (Kozlowski, Jaroszynski, and Abramowicz 1978). 
A detailed analysis of this flow (Abramowicz and Zurek 1981) has shown that the infall is subsonic at the cusp, thus justifying 
the common assumption that the radial motion is slower than azimuthal motion in thick disks. In discussing quasars, Lynden-Bell 
(1978) showed that the accreting material could form a pair of very steep vortices or whirlpools along the accretion axes and 
that any relativistic plasma generated by the central object could be shot out as a pair of jets. 

The first attempt at the full-fledged thick disk models was that of Paczynski and Wiita (1980). They employed several simplifying 
assumptions including the following: a global energy balance was assumed, i.e., the total amount of energy generated by 
viscosity within the disk was radiated from its bloated surfaces; because of radiation pressure domination each element of the 
surface was taken to radiate critically, with the flux = cge{{/K; a pseudo-Newtonian potential [O = GM/(R — rs)] was used in 
lieu of full general relativity; a barytropic equation of state was used; and the self-gravity of the disk material was ignored. 
Now, it turns out that, if one specifies the distribution of angular momentum per unit mass, /(r), on the surface of the disk and picks 
an inner edge for the disk, (rmb < < Tms), then the balance of gravitational, rotational, and pressure forces immediately 
determine the shape of the disk. The most basic of stability requirements, that dl/dr > 0 (see, e.g., eq. [4.16]), and the demand 
that the flow be inward (dQ/dr < 0) significantly restrict the allowed forms of /(r). When the flux is integrated over the surface 
area, the total luminosity is found, as long as the outer boundary, r0, of the thick portion of the disk is known. Once it is 
matched to a standard thin solution at large enough radius, then the accretion rate can be determined. Surprisingly, all of these 
results are independent of any knowledge of the disk’s interior. These rotatiqnally supported disks can remain in mechanical 
equilibrium even for significantly supercritical accretion rates, when M > Mcr = Üncri/K, and can radiate ^ 10LEdd, where 
LEdd = 4tzcGM/k. The bulk of the energy is emitted deep within the funnels so that these thick disks resemble stars that have 
had a pair of holes bored into them, exposing their hot cores to the rest of the universe. 

Shortly thereafter, Jaroszynski, Abramowicz, and Paczynski (1980) extended these models to a fully general relativistic framework 
in both the Schwarzschild and Kerr metrics. They used an angular momentum distribution, which, while only marginally stable, was 
later shown (Abramowicz, Calvani, and Nobili 1980) to maximize the emitted luminosity for given values of rt and r0 ; (they were also 
able to drop the barytropic assumption). Luminosities from disks around rotating holes can exceed those from disks around 
nonrotating ones by ~ 30 %. The validity of the pseudo-Newtonian potential was basically confirmed. They also showed that the 
equivalent of the thin-disk a viscosity parameter had to be much less than unity in thick disks. Even though these 
supercritical disks do depend on general relativistic effects (rf < rms) Abramowicz, Calvani, and Nobili (1980) showed that good 
approximation can be obtained using a purely Newtonian potential. They found that (L/LEdd)max ^ -2 In (r^o) - 2.44 as long as 
ri/r0 < 10“ 2, and they also realized that an important consistency requirement was that the mass of the disk must be less than that 
of the central object. This implies that the more massive the black hole, the lower the ratio of L/LEdd; however, a 108 M0 black 
hole could conceivably entertain a disk giving off 100LEdd or lO48 ergs s_1, adequate for any active galactic nucleus. 

Quite a wide variety of approaches have since been followed in trying to discuss the interior properties and stability of thick 
disks. The first detailed specific model was proposed by Paczynski (1980), who analyzed the case in which the accretion flow is 
confined to a thin surface layer; then the assumptions of hydrostatic equilibrium and local heat balance suffice to describe the 
shape, luminosity, and angular momentum distribution once the accretion rate is specified. A complementary model, where the 
accretion is confined to a thin region along the equatorial plane, has been considered by Paczynski and Abramowicz (1982). 
This is a more likely approximation in that the viscous processes of heat generation and accretion flow should be more efficient 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

4A
pJ

. 
. .

27
9.

 .
36

7A
 

378 ABRAMOWICZ ET AL. Vol. 279 

in the central plane and convection can develop; they argüe that this leads to the specific entropy being a function of the 
specific angular momentum alone. A few midly supercritical disks around 10 M0 black holes have been computed and are 
stable to the Holland criterion (4.13), while Goldreich-Schubert-Fricke instabilities only operate over long thermal time scales. 
A set of assumed self-similar models has been analyzed by Begelman and Meier (1982), who found that the interior structure 
is sensitive to the viscosity law and the degree of equatorial pressure support. Their models appear to be unstable to local 
axisymmetric perturbations at high latitudes and to convection in most regions. However, these disks differ significantly from the 
others discussed here in that a very large fraction of the radiation generated is assumed to be trapped and swallowed by the hole, 
and they require the unphysical assumption that M > 103Mcr. Two different approaches have been used by Wiita (1982a) 
to estimate the central temperatures and densities of standard thick disks around black holes ranging from 1 to 108 M0, 
for accretion rates from 1.3 to 89 Mcr, and for polytropic indices of 0, 3/2, and 3. Important limits are found for fully 
self-consistent models: for low-mass black holes, nuclear fusion can dominate over viscosity for energy generation; if the radiation 
pressure is too high, mechanical equilibrium can be violated; and, as also noted by Abramowicz, Calvani, and Nobili (1980), 
if the mass of the hole is too high, then the disk’s mass must exceed that of the hole (but Wiita argues that the upper limit set by 
this constraint is ~ 107 M0). Of course, rotation and higher accretion rates could loosen this limit, but self-gravitating disks 
may have to be considered. 

Although the super-Eddington luminosities exhibited by these disks are very interesting, probably the main reason for studying 
them involves the possibilities for the production of collimated relativistic jets. All of the work completed to date assumes that 
a relatively small amount of material is lost from the surface of the funnels and is available for acceleration as an optically 
thin plasma. Although Jaroszynski, Abramowicz, and Paczynski (1980) had derived an approximate equation for the acceleration 
of particles in funnels, Abramowicz and Piran (1980) made the first estimates of the terminal velocity of ejected material, 
claiming ~0.75c to ~0.91c for ordinary plasma. Models of the reprocessed radiative field involving most general relativistic 
effects were developed by Sikora (1981); deep within the funnel the field is nearly isotropic and exerts a drag, while at larger 
heights the anisotropic flux begins the acceleration. Detailed calculations by Sikora and Wilson (1981) and general arguments 
by Piran (1982) yield lower terminal velocities, although fairly narrow (<10° opening angle) jets are produced by all these 
investigators. The unbalanced tangential force exerted by the radiation on the material in the funnel walls was considered by the 
earlier authors to drive unimportant mixing motions, but Nityananda and Narayan (1982) argued that it would inevitably lead to 
the ejection of large chunks of the walls and implied a gross inconsistency. A more careful analysis of this issue has shown that 
this usually is not the case, and that the ejected particle luminosity depends on both the sound speed in the disk material and the 
exact strength of the shear induced turbulence in the outer layers (Narayan, Nityanada, and Wiita 1983). A discussion of these 
jet phenomena in the context of observations of active galactic nuclei has been given by Wiita, Kapahi, and Saikia (1982), 
while applications to SS 433 have been made by Calvani and Nobili (1981) and Calvani, Sharp, and Turolla (1982). 

The only semiclassical stability analysis of thick disks other than the present paper is due to Hacyan (1982), who employs a 
global stability technique (see Appendix B) to conclude that the restricted set of n = 3 models should be considered unstable. 
While this is an interesting approach, the choice of basis eigenvectors he uses to analyze the stability is not very suitable and the 
conclusions are very uncertain. More detailed reviews of thick accretion disk models have recently been published by 
Paczynski (1982) and Wiita (1982h). 

APPENDIX B 

STABILITY OF ROTATING STARS AND THIN DISKS 

The analysis of the stability of rotating stars has a long history, much of it summarized in the books by Chandrasekhar 
(1969) and Tassoul (1978). In this appendix we shall merely mention some of the important approaches that have been used 
to investigate various aspects of the stability of both rotating stars and thin disks. In the case of stars we will touch on both 
local and global approaches to dynamical stability. The literature on disks is less extensive and is more concentrated on thermal 
instabilities, and this discussion will reflect that fact. 

Because the von Zeipel (1924) paradox shows that pseudo-barytropic models in a state of permanent rotation cannot correctly 
describe rotating stars in strict radiative equilibrium, any plausible model of a star must either have Q = Q(r, z) or a permanent 
meridional circulation. Assuming the former, the key question which local stability analyses try to answer is: With a prescribed 
Q(r, z), what are the conditions for the star to be stable with respect to small isentropic perturbations? A general answer for 
axisymmetric perturbations was provided by Hoiland (1939, 1941) and can be phrased in the following way (Tassoul 1978): 
A baroclinie star [one with p = p(p, T, X2, ...)> with the 2’s variables depending on r and z] in permanent rotation 
is dynamically stable with respect to axisymmetric motions if and only if the two following conditions are satisfied: (i) the entropy 
per unit mass S never decreases outward, and (ii) on each surface 5 = const., the angular momentum per unit mass, Qr2, 
increases as we move from the poles to the equator. A simpler version for isentropic stars had been found by Solberg (1936), 
and more detailed discussions were given by Fjortoft (1946) and Holmboe (1948). In the present paper, studying thick disks, 
we have specialized to local perturbations, so that X < H, and this type of result then becomes a necessary, but not a sufficient, 
criterion for stability. The question of nonaxisymmetric motions is much more complicated, but several authors have produced 
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partial generalizations (Spiegel and Zahn 1970; Zahn 1974; Sung 1974a, 1975). Even if a star satisfies the Hoiland criterion 
and is thus dynamically stable, it was shown by Goldreich and Schubert (1967) and by Fricke (1968) that such a chemically 
homogeneous, inviscid star still exhibits slower thermal instabilities with respect to axisymmetric disturbances if Q depends on the 
coordinate z. More refined analyses were later produced by Sung (1974h) and Smith and Fricke (1975). 

Global methods of stability analysis basically depend on considerations of integrated energy functionals. Here one computes 
the variation of the total energy of the system (W) and a moment of inertia (/) including perturbations; appropriate values of the 
normal frequencies come from a2 = — W/I, where trial displacements are used. This variational technique was applied to uniformly 
rotating stars by Clement (1964) and to general differentially rotating systems by Lynden-Bell and Ostriker (1967). Subsequent 
workers have expanded on this technique and applied it to specific problems (Unno 1968; Lebovitz 1970; Schutz 1972). 
A similar method involves using the second order virial theorem to obtain more easily understandable representations of small 
departures from permanent rotation. Pioneered by Ledoux (1945), it was very successfully applied to a variety of problems by 
Chandrasekhar and Lebovitz (Lebovitz 1961; Chandrasekhar and Lebovitz 1962a, b, 1973; Chandrasekhar 1969). The recent 
attempt by Hacyan (1982) to treat the stability of thick disks follows this approach. A very general way of analying the 
vibrational stability of differentially rotating bodies is due to Aizenman and Cox (1975). They specialize to linear, non- 
adiabatic arbitrary perturbations on steady, inviscid flows in the unperturbed state and compute formal solutions for the 
perturbations; however, these results depend on unknown nonadiabatic eigenfunctions and are very difficult to apply to actual 
models. 

Because of their basically Keplerian structure, little concern has been expressed over the dynamical stability of thin accretion 
disks. However, Lightman and Eardley (1974; Lightman 1974) showed that the inner regions of standard thin disks around black 
holes were subject to secular clumping instabilities as long as the usual assumptions about viscosity were made. Shakura and 
Sunyaev (1976) produced a more general analysis; in addition to the relatively slow, long-wavelength, Lightman-Eardley 
instabilities, they showed that a thermal instability, whose growth rate was nearly independent of wavelength, should exist. This 
problem was further generalized by Pringle (1976), who basically agreed with the previous authors but also showed that radiation 
pressure-dominated regimes could be thermally stable if electron scattering did not dominate the opacity. An extension to non- 
standard thin disk models was made by Piran (1978), who provided a useful test for stability in terms of parameterized heating 
(viscosity) and cooling rates. He also showed how mass loss via a wind from the disk could aid in stabilizing it. Abramowicz 
(1981), expanding upon this point, noted that the relativistic potential near a black hole forces an overflow at the cusp at the inner 
edge of the disk which is probably adequate to stabilize the innermost region of disks around black holes. 

Several other approaches to the study of the stability of thin disks have been investigated. Shakura, Sunyaev, and Zilitinkevich 
(1978) claimed that the thermal instabilities remained even if convective energy transport was included. Tayler (1980) argued that 
convection would always occur in standard disks if Pgas/Prad^ and that convective energy transport would be important in 
any thermally unstable disks. This analysis has been extended (Robertson and Tayler 1981) to show that convection does set in 
before thermal instabilities, that it can slow, but not eliminate, the growth of such instabilities, and that it could never carry the 
bulk of the energy. The case of pulsational perturbations which are of long wavelength with respect to the disk thickness, but are 
otherwise local (Hz < À < Hr) for both optically thin and optically thick disks, has been analyzed by Kato (1978, 1979). He 
showed that if the coefficient of viscosity increases by more than a critical amount during the compressional phase of the 
oscillation, then such quasi-radial pulsations can grow by extracting thermal and dynamical energy from the shear. Perhaps the 
approach closest to the one that we have used in this paper is due to Livio and Shaviv (1977, 1981). They analyzed linearized 
perturbations where the vertical dimension is not integrated out, in distinction to almost all of the other work. Gas pressure 
dominated regions were first considered, and the stability conditions included the Schwarzschild criterion in the vertical direction, 
the Hoiland criterion in the radial direction and an upper limit on the value of a (Livio and Shaviv 1977). Later, short-wavelength 
perturbations in the z direction were treated, and they found that such modes would always grow for high enough viscosity; 
in radiation pressure-dominated regions a sonic group velocity is achieved and the instability grows rapidly (Livio and Shaviv 
1981). 

APPENDIX C 

A CATALOG OF TERMS IN THE DISPERSION RELATION 

A total of 96 expressions combine to form the coefficients a0-a5, but most of these produce several different terms when 
considered in light of the magnitudes as defined by (4.1). In Table 5 all 380 such possible contributions are given, grouped first 
by iV4, the power of (m/Q) that multiplies that coefficient. Two basic groupings are determined by whether the perturbation is 
“orthogonal” to the nonazimuthal flow (fi = 0, or j = 0) or whether it is “parallel” to the velocity (/a = 1, or 7 = + 00); the latter 
case is analyzed in this paper, and the former is even more complicated. The columns headed i indicate whether the term is real 
(i = 0) or imaginary (i =1). The columns headed N6 give the power to which e = (À/H) contributes to the terms, while N5 
indicates the power to which (v/v^) enters. This catalog is restricted to the thick disk case in that /c = 0, while / = + 00. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

4A
pJ

. 
. .

27
9.

 .
36

7A
 

TABLE 5 
Order-of-Magnitude Catalog 

No. Term 

¿¿EE 1 

i n4 n6 N5 i Na n6 n5 No. Term i n4 n6 n5 i JV4 n6 n5 

1 (p2f'5P3Z4Pi 
2 
3 VirsPiPiZ-L 
4 
5 
6 
7 
8 
9 (P2r5^i(p/p)z1P3p4 

10 
11 

-^2^5 PP1P4Z3 

~<P2^5 P\P3 U 

12 
13 
14 
15 
16 
17 
18 -(P2Z5P3rlpA 
19 
20 
21 
22 
23 
24 -(p2Z5ri(p/p)p4p3rl 
25 
26 
27 92 ^5^3 Pa Pi 
28 
29 
30 WsPiPj^Za 
31 
32 
33 95Pip2P4r2Z3 
34 
35 
36 
37 
38 
39 95piP3r4Z2 
40 
41 
42 -9sPiZ2rip4 
43 
44 
45 
46 -95piZ3r4P2P 
47 
48 
49 
50 -9sPiZ4P3r2p 
51 
52 
53 
54 rl(p5 p2 p3 z4 
55 
56 
57 
58 
59 
60 ri(p5 p3 z2 p4 
61 
62 

0 0 
1 0 
0 0 
1 0 
0 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
1 0 
0 0 
1 0 
0 0 
0 0 
1 0 
0 0 
1 0 
0 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
1 0 
0 0 
1 0 
0 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
1 0 
0 0 
1 0 
1 0 
0 0 
1 0 
1 0 
0 0 
1 0 

-2 1 
-1 1 1 0 

0 0 

-3 1 
-2 1 
-1 1 
-3 3 
-2 3 
-1 3 

0 3 
-2 1 
-1 1 

0 0 

-3 1 
-2 1 
-1 1 
-2 3 
-1 3 

0 3 
-3 3 
-2 3 
-1 3 

0 0 
1 0 

0 0 

0 0 

0 0 

1 0 

0 0 
1 0 

0 0 
1 0 
1 0 
1 0 

-1 1 

10 -1 1 
0 1 

1 0 
0 0 
0 0- 
1 0 - 

0 0 
1 0 - 
0 0 

10 -1 

0 3 

-2 1 
-1 1 

0 3 

10-13 

0 5 

0 5 

-1 3 

10-13 

-2 1 
-1 1 

-2 3 
-1 3 
-1 3 
-1 5 

63 
64 
65 
66 
67 
68 -rl(p5r1pp4z3p2 
69 
70 
71 
72 
73 r1(p5ri(p/p)p4p3z2 
74 
75 
76 
77 ~rl(p5z3p^p2p 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 —r 1(p5 p5 p2 z4 
88 
89 
90 
91 
92 

-Zi9sP2P3r4 

~ zi95 P3 PPa r2 

93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 zl(ps Tl(p/p)p2 r3 p4 
110 
111 
112 
113 —zl(p5 F1PP4 r2 p3 
114 
115 
116 
117 
118 zl(p5r3p2p4. 
119 
120 
121 
122 
123 
124 
125 

1 0 
0 0 
1 0 
0 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
1 0 
0 0 
1 0 
1 0 
0 0 
1 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
0 0 
1 0 
0 0 
1 0 
0 0 
0 0 
1 0 
0 0 
1 0 
1 0 
0 0 
1 0 
0 0 
1 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 

-3 3 

0 0 
0 0 
0 0 
1 0 

0 0 
1 0 

1 0 
0 0 

-4 3 
-3 3 
-2 3 
-1 3 

0 3 
0 5 

-2 3 
-1 3 

-2 3 
-1 3 

-1 3 
0 3 

1 0 - 
0 0 

0 0 
1 0 

0 0-2 
1.0 -1 

0 0 
1 0 

0 0 
1 0 

1 0 
0 0 

1 0 
0 0 

0 0 
1 0 

0 0 
1 0 

1 0 
0 0 

1 0 
0 0 

-1 3 
0 3 

-1 5 
0 5 

-2 3 
-1 3 

-2 3 
-1 3 

-1 3 
0 3 

-1 5 
0 5 
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TABLE 5—Continued 

No. Term 

126 z1(p5r4p3p2 
127 
128 
129 
130 
131 
132 (p2 r5 p3 z4 

133 (p2r5p3zi 
134 
135 
136 
137 (p2r5ri(p/p)z1p3 
138 
139 -(p2r5ppip4. 
140 
141 
142 -(p2r5pp4z3 
143 
144 
145 -(p2r5pplz3 
146 
147 
148 —(p2z5p3r4. 
149 -(p2z5p3rl 
150 
151 
152 
153 -(p2z5ri(p/p)p3rl 
154 
155 (p2z5r3p4 
156 
157 (p2z5r3pl 
158 
159 (Pi+ (Ps)p2r2Z4 
160 
161 (pi + <Ps)PzrAz2 
162 
163 (pi + (p5)p2p4r2z3 
164 
165 
166 
167 
168 -(pi + (psjzirsP* 
169 
170 
171 -((p5 + 
172 
173 
174 ~((p5 + pl)z4p3r2p 
175 
176 
177 <p5 p1p

2(p4 r2 + p4 z3 + z3 r2) 
178 
179 
180 
181 
182 -<p5plz2r3 
183 
184 
185 (p5pi{-pr4p2 + z4p3p) 
186 

1 
0 
1 
1 
0 
1 
1 
1 
1 
0 
0 
0 
1 
0 
1 
0 
0 
1 
0 
0 
1 
0 
1 
1 
1 
0 
0 
0 
1 
1 
0 
1 
0 
0 
1 
0 
1 
0 
1 
0 
1 
0 
0 
1 
0 
1 
0 
1 
1 
0 
1 
0 
1 
0 
1 
0 
0 
1 
0 
1 
0 

p=l p=0 

n4 n6 n5 i n4 n6 n5 

0 -3 1 
0-2100-21 
0-1110 -1 1 
0 -3 3 
0- 230 0 -2 3 
0 -1 3 1 0 -13 
1- 1011-10 
1-1011-10 
1-1211 -1 2 
1 0 0 0 1 0 0 
1 0 2 0 1 0 2 
1 -2001 -20 
1-1 0 11 -1 0 
1-2 2 
1 -1 2 
1 0 2 0 1 0 2 
1 -2 2 
1-12 
1 0 2 0 1 0 2 

1 -2 2 
1-1 2 
1 0 2 0 1 0 2 
1-1011-10 
1-101 1 -1 0 
1 -121 1 -12 
1 0 0 0 1 0 0 
1 0 2 0 1 0 2 
1-200 1 -2 0 
1 -1 0 11 -1 0 
1 -12 
1 0 2 0 1 0 2 
1 -1 2 
1 0 2 0 1 0 2 
1 -2 2 
1-1211-12 
1 -2 2 
1-1 2 1 1 -1 2 
1 -4 4 
1 -3 4 
1 -2 4 
1 -14 
1 0 4 0 1 0 4 
1 -2 4 
1 -14 
1 0 4 0 1 0 4 
1 -3 2 
1 -2 2 
1 -1211-12 
1 -3 2 
1 -2 2 
1-1211-12 
1 -4 4 
1 -3 4 
1 -2 4 
1 -14 
1 0 4 0 1 0 4 
1 -2 4 
1 -1 4 
1 0 4 0 1 0 4 
1 -3 2 
1 -2 2 

No. 

187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 

Term 

riP2P3 z4 

riP3Z2p4 

-rlTlpp4p2 z3 

^ri(p/p)p4P3^2 

~riz3 Pa Pi P 

~r 1P3 Pi z4 

ri(PiPiZ2 

-ri<p5
iripp2{p4 + z3) 

ri<p5ri(p/p)p3z2 

-riVsPlizi + Pa)p 

-Z1P2P3 r4 

-Zip3pp4 r2 

PeeI 

i n4 n6 n5 

11-12 
0 1-20 
0 1-22 
11-10 
11-12 
0 1 -2 2 
11-12 
0 1 0 2 
0 1-24 
11 -14 
0 1 0 4 
0 1 -4 2 
11-32 
0 1-22 
1 1 -1 2 
0 1 -2 2 
11 -12 
11-32 
11-32 
0 1-22 
11-12 
0 1 0 2 
11-34 
0 1 -2 4 
11-14 
0 1 0 4 
0 1-20 
0 1-22 
11-10 
11-12 
0 1-22 
11-12 
0 1 0 2 
0 1-24 
11 -1 4 
0 1 0 4 
0 1-42 
11-32 
0 1-22 
11-12 
0 1-22 
11-12 
11-32 
11-32 
0 1-22 
11-12 
0 1 0 2 
11-34 
0 1-24 
11-14 
0 1 0 4 
0 1-20 
0 1-22 
1 1-1 0 
11-12 
1 1-3 2 
0 1-22 
11-12 
0 1 0 2 
11-34 
0 1 -2 4 
11-14 
0 1 0 4 

p = 0 

i n4 n6 n5 

11-12 
0 1-20 
0 1-22 
11-10 
11-12 
0 1 0 2 
11-12 
1 1 -1 4 
0 1 0 4 

0 1-22 
11-12 

0 1-22 
11-12 

11-12 
0 1 0 2 

11-14 
0 1 0 4 
0 1-20 
0 1 -2 2 
11-10 
11-12 

11-12 
0 1 0 2 

11-14 
0 1 0 4 

0 1-22 
11 -1 2 
0 1-2 2 
1 1-1 2 

11-12 
0 1 0 2 

11-14 
0 1 0 4 
0 1-20 
0 1-2 2 
11-10 
11-12 

11-12 
0 1 0 2 

11-14 
0 1 0 4 
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TABLE 5—Continued 

No. Term / JV4 n6 n5 i n4 n6 n5 

/^ = o 

No. Term / N4 N6 N5 i N4 Nè N5 

250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 

-i^iPPaPs^i 

-ziripp4p3 r2 

-l^P2P4 

-IUP2P3 

-Z1(P5P3P(P4 + r2) 

i(P5^l{p/p)P2f‘i 

-zl(p5ripp3(p4 + r2) 

ZiVsr3p2 

-<P2r5p{pi + P4 + z3) 

<P2Z5r3 

P2 r3 ^4 
P3 U z2 

P2P4 r2 23 

-Z2r3P4. 

-Z3UP2P 

-Z4P3 r2p 

{(Ps + Pl)p2(P4l' 

-(<P5 + Pi)z2r3 

-(<Ps + Pi)p(r4P2 + Z4P3) 

0 1 
1 1 
1 1 
0 
1 
0 
1 

1 - 
1 - 

1 - 
0 
1 1 
0 1 
0 1 
1 1 
0 1 
0 
1 
0 
1 
1 1 
0 1 
1 1 
0 1 
1 
0 
1 1 
0 1 
1 1 
0 1 
1 
0 
0 1 
1 1 
0 1 
1 1 

-2 2 
-1 2 
-3 2 

4 2 
3 2 
2 2 
1 2 

1 - 

1 - 

1 - 
1 - 

1 - 
1 - 

1 - 
1 

0 2 
1 2 
1 2 

0 2 
1 2 

2 0 
1 0 
2 2 
1 2 

3 2 
2 2 
1 2 
0 2 

-4 2 
-3 2 
-2 2 
-1 2 

0 1 
1 1 

0 1 
1 1 

0 1 
-1 1 
-1 1 
-3 3 
-2 3 
-1 3 

0 3 
-1 3 

0 3 
-2 1 
-1 1 

1 1 
0 1 

0 1 
1 1 

-2 2 
-1 2 

-2 2 
-1 2 

0 2 
0 2 
1 2 
1 2 

0 2 

0 2 

1 2 

1 2 

0 2 
0 2 

-1 4 
0 4 

-1 2 
0 2 

-2 2 
-1 2 

-1 1 

0 3 

0 3 

-1 1 

-1 1 

0 3 
0 3 

~rl(P5p2P 

-r1(p5ripp2 

-rip3Z2 

-f’iri(p/p)p2(p4 + z3) 

~rip2P(z3 + P4) 

12-11 

312 (p5p1p
2{p4 + r2 + z3) 

313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 riri(p//9)p3z2 
333 
334 
335 
336 
337 
338 
339 
340 -zl(p5ripp3 
341 
342 
343 
344 
345 
346 
347 
348 
349 ~zl(p4 + r2)p3p 
350 
351 
352 
353 
354 
355 zlrl(p/p)p2r3 
356 
357 
358 
359 
360 
361 
362 
363 
364 

-zl(p5p3p 

~^iPP3(p4 + r2) 

^1^3 P2 

(p2r5 

365 (PsPiP2 

366 
367 
368 
369 
370 
371 
372 
373 

((Ps + Pi)(P4 + r2 + z3)p2 + p2(p4r2 
+ P4Z3 + r2z3) 
— P(r4P2 + Z4P3) 
-^2^3 
-MP2P + r>p2) 

1 
0 
1 
0 
0 
1 
0 
0 
1 
0 
1 
0 
1 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
0 
1 
0 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 2 
0 2 
1 2 

0 2 
1 2 
0 2 
0 2 
1 2 
1 2 
1 2 
0 2 

-3 3 
-2 3 
-1 3 

0 3 0 2 

-3 
-2 1 0 
-1 1 1 

0 
1 

-2 1 0 
-1 1 1 
-2 
-1 

0 
-2 
-1 

0 
-3 
-2 
-1 
-2 
-1 

0 
-2 
-1 

0 
-2 
-1 

0 
-2 
-1 

0 
-2 
-1 
-3 
-1 
-2 
-1 1 

0 1 
-1 3 

0 3 
0 0 

1 
1 0 2 
1 1 2 

-1112 
0 10 2 
-13 12 

0 3 0 2 
-3 1 
-2 1 
-1 1 

0 2 
1 2 

0 3 

1 2 
0 2 

1 2 
0 2 
0 2 
1 2 

-2 1 
-1 1 
-2 1 
-1 1 

-2 1 
-1 1 

-1 1 
0 1 

-1 3 
0 3 

0 0 

0 
-1 

0 
-2 
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TABLE 5—Continued 

1 ^0 

No. Term i n4 n6 n5 i iV4 n6 n5 

^ 1 ^ = o 

No. Term / n4 n6 a5 / n4 n6 n5 

374 + 
375 
376 
377 

13 -10 13 -10 
13-1213-12 
03 0003 00 
0 3 0 2 0 3 0 2 

378 p2(p4 + r2 + z3 
379 + (p5 + Pi) 
380 1 

14-1114-11 
0 4 0 1 0 4 0 1 
0 5 0 0 0 5 0 0 
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