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ABSTRACT 
We use iV-body simulations of competing cosmological scenarios to study the relative orientations of 

the principal axes of clusters of galaxies and the lines connecting them to neighboring clusters and find 
that they provide a sensitive test for the formation of the large-scale structure in the universe. The observed 
tendency of clusters to point toward each other reflects the existence of 20-50 Mpc /z_1 elongated 
superclusters that construct a large-scale cell structure. Tidal interactions between clusters are found not to 
produce similar alignments, presumably because the clusters are surrounded by underdense regions. Hence 
the scenario in which superclusters have collapsed from excessive fluctuations on large scales is favored over 
hierarchical clustering from fluctuations on smaller scales. Rich clusters (but not necessarily galaxies) had 
to be formed after, or during, the aspherical collapse of superclusters, i.e., not long before z ~ 1. 

Other tests are applied to the simulated samples: the axial ratios of clusters on various scales are 
found to be sensitive to the elongation of superclusters, while the maximum percolation length is less 
sensitive to it here. 
Subject headings: cosmology — galaxies: clustering — 

I. INTRODUCTION 

A basic difference between the major scenarios for the 
formation of structure in the universe is expected to show up 
in the shapes of the large-scale structures, as has been pointed 
out by Zel’dovich, Einasto, and Shandarin (1982). In the 
scenario (hereafter the I scenario) where the structure on all 
scales evolves from small to large scales via hierarchical 
clustering (originating for instance from isothermal fluctua- 
tions in the density of the baryons, or as well from 
adiabatic fluctuations if the universe is dominated by cold, 
weakly interacting particles), the shapes of the collapsed 
objects, in the absence of significant rotation, are not 
expected to be very flat, because pressure balances gravity 
early in the collapse of each object. The first objects to 
collapse here have masses only slightly above the Jeans mass 
(Peebles and Dicke 1968; Peebles 1983), and while the 
clustering proceeds to larger scales, the Jeans mass grows 
accordingly as gravity builds up dispersion velocities. The 
superclusters in the I scenario have not collapsed yet, and 
their shapes should therefore not deviate much from the 
shapes in the initial distribution. In the competing scenario 
(hereafter the A scenario), where super clusters originate from 
a truncated spectrum of fluctuations with an excess of power 
on large scales (e.g., adiabatic fluctuations of baryons or 
massive neutrinos), the shapes are expected to be rather flat 
or elongated on large scales because pressure is negligible 
during the collapse of superclusters, i.e., the Jeans mass is 
many orders of magnitude smaller. Primordial, anisotropic, 
streaming velocities, which are coherent on the scale of the 
collapsing superclusters, induce very aspherical collapses that 
end up in thin “pancakes” or “cigars” (Zel’dovich 1970). 
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laxies: formation 

As a part of the ongoing effort to distinguish between 
the theoretical scenarios when confronted with observations, 
we find it crucial to quantify, and be able to measure 
objectively, this property of flattening of the large-scale 
distribution of galaxies. The two-point correlation function, 
when analyzed directly in three dimensions from deep redshift 
surveys (e.g., Davis and Peebles 1983; Einasto et al 1983), 
is found to provide a marginally sensitive test for the desired 
property (see Dekel and Aarseth 1984) in favor of the 
A scenario, but is clearly not the ideal statistics for that 
purpose because it measures shapes only indirectly, through 
their effects on other properties of clustering. Other attempts 
have been made to measure filamentary structure in two- 
dimensional data (Fesenko 1982; Doroshkevich et a/. 1983; 
Kuhn and Uson 1982; Moody, Turner, and Gott 1983; 
J. A. Tyson, private communication), but with limited 
success so far in distinguishing between the major scenarios. 
The Soviet group (Zel’dovich, Einasto, and Shandarin 1982; 
Einasto et al 1983) has proposed a test based on percolation 
theory and applied it to three-dimensional numerical models 
in comparison with the Center for Astrophysics (CfA) 
redshift sample. We find (§ III and Dekel and West 1984) 
that the maximum percolation length is not always useful 
in distinguishing between more realistic numerical simulations 
of the major scenarios. Furthermore, a major difficulty for 
any of the three-dimensional tests arises from the fact that 
observed redshift samples are not so easily converted to 
three-dimensional spatial distributions of galaxies because of 
the large dispersion velocities in rich clusters. 

In the process of looking for a general statistical test for 
this purpose, we report here on a very simple test that makes 
use of rich clusters of galaxies to probe elongation of structures 
on larger scales and which has been found to be successful. 
Clusters are known to accumulate in superclusters (see Bahcall 
and Soneira 1984) and to show well-defined position angles 
(major axes) (see Carter and Metcalfe 1980; Binggeli 1982). 
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Fig. 1.—Binggeli’s effect. The parameter 6 is the angle between the 

major axis of an Abell cluster and the line connecting its center of mass 
to that of its nearest neighboring cluster, and D is the spatial distance 
between the clusters (from Binggeli 1982). 

At least in two major superclusters, Coma and Perseus, 
the cluster position angles are known to be aligned with the 
supercluster major axes (Oort 1983, and references therein). 
Binggeli (1982) has given more significance to this effect 
by finding that clusters of galaxies in general “tend to point 
toward each other.” For each of the 44 Abell clusters he 
studied, Binggeli has determined the position angle of the major 
axis, using the 50 brightest members of the cluster, and 
the position angles of the lines connecting its center of mass 
to the centers of mass of neighboring clusters. In Figure 1 
we show Binggeli’s results for nearest neighboring clusters, 
where 6 is the angle between the position angles described 
above, and D is the three-dimensional separation of the 
clusters, obtained using their redshifts. There is a striking 
alignment of the orientations on scales below 20 Mpc /T1 

which extends out to 50 Mpc h~1. Unlike many other cases 
in this field, there is no need here for any fancy statistics 
to see the effect, and it has been demonstrated by Binggeli, 
using Monte-Carlo techniques, that the errors made in 
determining 6 are indeed very small. 

The possible interpretation of Binggeli’s (1982) alignments 
is apparently ambiguous: while such an effect may be a 
natural consequence of the large-scale flattening in the 
A scenario, where anisotropic shapes and velocity dispersions 
in the clusters have been induced by the anisotropic collapse 
of the parent supercluster (see Oort 1983), it may alternatively 
be a result of tidal interactions between protoclusters which 
act in the I scenario as well (as has been recognized by 
Binggeli himself). This assertion is based on the estimates 
(Binney and Silk 1979; Palmer 1983) that mutual tides in the 
protocluster stage are indeed capable of inducing prolate 
shapes that point to each other. 

In order to identify the actual source of the alignment, we 
have applied an analysis similar to Binggeli’s (1982) to the 
clusters we identify in iV-body simulations of different 
cosmological scenarios. The results give an unambiguous 
answer: a very similar alignment shows up in the 
A scenario, while it is completely absent in the I scenario. 
It seems that tidal interactions do not do the job, perhaps 
because of the presence of underdense regions near, or around, 
the clusters. It means that the observed alignment provides 
evidence in favor of the A scenario. 

(X 

In § II we describe the cosmological simulations and the 
proposed test and show the results. In § III we apply some 
other tests to the simulated samples, and in § IV we discuss 
our results and their cosmological implications. 

II. ALIGNMENT OF CLUSTERS 

a) Simulations 
The simulations used here are based on a comoving 

version of an iV-body code (Aarseth 1984) which integrates 
directly the Newtonian equations of motion of the particles, 
with a chosen softening of the potential on small scales. To 
simulate the I scenario we use the 4000 body simulation of 
Aarseth, Gott, and Turner (1979, hereafter AGT) and three 
realizations of similar 1000 body simulations by Frenk, White, 
and Davis (1983, hereafter FWD, the I simulations referred 
to as FWDI), both in an Einstein-de Sitter universe (Q = 1) 
and starting with a white-noise spectrum (n = 0). For the 
A scenario, we use two recent 10,000 body simulations 
(with Q = 1) from a series of simulations by Dekel and Aarseth 
(1984, hereafter DA) and a set of five 1000 body simulations, 
four of which are by FWD (their models A) and the fifth 
is by DA (model SG) (all five models are referred to 
hereafter as FWD A). These simulations started with an 
adiabatic spectrum that is a white noise on large scales and 
is truncated below a critical damping length scale, 2D. In one 
case there is an additional component of scale-free white 
noise (isothermal fluctuations?) that dominates on small scales. 
The particles were first distributed uniformly inside a unit 
sphere, at the points of a cubic grid (model ADG with 
N ^ 10,500 and FWDA) or, alternatively, at random (model 
ADR with N æ 8000). (Models ADG and ADR are models G 
and R of DA.) Then, the position and the velocity of each 
particle were perturbed by a superposition of 1000, small- 
amplitude plane waves, assuming random phases and wave- 
numbers, k, that were chosen at random in the phase-space shell 
^min < k3 < /imax, where kmin = 2n and /cmax = 3.337T (except for 
ADR where /cmax = 57r). This corresponds to superclusters with 
diameters X = 2n/k between XD = 0.6 (0.4 for ADR 
and 2=1. The evolution of each system has been followed 
in the very linear regime by the approximation of Zel’dovich 
(1970), until a stage where the rms density contrast was 
~0.25. Then, the cosmological expansion factor was set to 
a = 1 and the iV-body simulation started. The first pancakes 
reached singularities at a time stage corresponding to a ^ 4. 
These dynamical simulations are also compared to a 
Poissonian sample of 4000 bodies whose positions were 
randomly distributed in a unit sphere. 

The distribution of galaxies in models AGT, ADR, and ADG 
at the times that correspond to the present epoch are shown 
in Figure 2 (upper) as viewed from one direction. A cell-like 
structure of filaments on the scale of 2D can be recognized 
by the eye in ADG and ADR and is absent in AGT. It is less 
pronounced in ADR because, first, each line of sight crosses 
approximately five cells of superclusters and voids, second, the 
resolution is lower inside each supercluster, and third, they 
are broken into rich clusters. Even the clear distinction 
between ADG and AGT is less pronounced when the systems 
are viewed from other directions, and, as mentioned before, 
it is not easy to quantify. 

The stages of the simulations that correspond to the 
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4 DEKEL, WEST, AND AARSETH Vol. 279 

TABLE 1 
Cluster Alignments 

Model N d/d0 Nm 

D 
(Mpc h~l) 

<cos 6) 3-D 

Minor Axis Interm. Axis Major Axis 

(O') 2-D 

Major Axis 
(degrees) 

ADG .... 

ADR  

ACT  

Random . 

FWDA .. 

FWDI .. 

ADG 
(Cluster-Cluster). 

Binggeli (All)  

Binggeli (Nearest). 

0.31 

0.31 

10439 

7864 

4000 

4000 

1000 x 5 0.31 

1000 x 3 0.12 

35 

30 

0.30 20 

0.6 20 

<30 
>30 
<30 
>30 
<30 
>30 
<30 
>30 
<30 
>30 
<30 
>30 

<30 
>30 
<25 

25 < D < 50 
<15 
<30 

0.304 - 
0.563 ; 

0.055 
0.025 

0.339 ± 0.039 
0.482 ± 0.021 
0.434 ± 0.037 
0.507 ± 0.027 
0.438 ± 0.045 
0.491 ± 0.024 
0.315 ± 0.033 
0.540 ± 0.018 
0.435 ± 0.026 
0.538 ± 0.018 

0.666 ± 0.069 
0.469 ± 0.025 

0.285 ± 0.055 
0.471 ± 0.025 
0.484 ± 0.043 
0.487 ± 0.022 
0.575 ± 0.042 
0.456 ± 0.025 
0.555 ± 0.045 
0.504 ± 0.023 
0.400 ± 0.037 
0.495 ± 0.019 
0.520 + 0.029 
0.478 ±0.015 

0.633 ± 0.072 
0.523 ± 0.026 

0.798 ± 0.054 
0.456 ± 0.025 
0.599 ± 0.043 
0.521 ± 0.020 
0.479 ± 0.049 
0.521 ± 0.027 
0.475 ±0.048 
0.514 ±0.022 
0.744 ± 0.031 
0.475 ±0.018 
0.537 ± 0.026 
0.483 ± 0.014 

0.678 ± 0.053 
0.504 ± 0.023 

25.3 ± 3.0 
47.6 ± 1.3 
35.7 ± 2.1 
42.9 ± 1.1 
43.8 ± 2.2 
44.4 ± 1.4 
44.0 ± 2.1 
44.9 ± 1.2 
29.8 ± 1.7 
47.0 ± 1.0 
43.8 ± 1.4 
47.5 ± 0.7 

34.6 ± 2.8 
46.8 ± 1.2 

36 ± 5 
41 ± 2 

23.0 ± 4.1 
29.5 ± 4.4 

present epoch are determined by the two-point correlation 
function (DA). In the A simulations, its slope grows in time 
and fits the shape of the observed one only at one given 
stage of the evolution which corresponds to a ^ 5-6. The 
observed clustering length of galaxies (at which the correlation 
function is unity) r0 ^ 5 Mpc h~l (cf. Davis and Peebles 
1983), then corresponds to r0 ~ 0.1 (0.67 in ADR) in the units 
of the simulations (with G =1, m = 1). With this scaling, 
the diameter of the system corresponds to 100 Mpc /i_1 

(150 in ADR) and the diameters of pancakes correspond 
to 30 Mpc h~1. The mass within a sphere of diameter XD 
is Md = 3.6 x 1015 M0 h2. In the I simulations, the correlation 
function evolves in a self-similar way, and we choose 
accordingly the stage at which r0 ^ 0.1 to represent the present 
universe (a ^ 6-7). The visible differences in cluster richnesses 
between the models are not real. They mainly reflect the 
differences in the numbers of particles that were simulated. 

b) Analysis of Cluster Orientations 
The procedure adopted here for identifying clusters in the 

simulations is the simple method of linking near neighbors, 
similar to that used by Einasto et al (1983). For a given 
value of the separation parameter d, each particle is linked 
to every other particle whose distance from it is shorter than d. 
Particles that are linked to each other, either directly or via 
other particles (“friends of friends”), construct a cluster. The 
parameter d determines the richness of the clusters identified 
and is closely related to the mean overdensity within the 
clusters relative to the mean background density. A value of d 
just below the mean separation between nearest neighbors, d0, 
gives one huge cluster of very low overdensity, while a much 
smaller d picks up only clusters which are at the high-density 
peaks. The values of d chosen to identify rich clusters in the 

present context (Table 1) correspond to an overdensity greater 
than ~35. A requirement of a minimum number of members, 
iVmin, was imposed (Table 1) in order to focus on the richest 
clusters that would resemble the Abell clusters as much as 
possible. Following the above procedure, we find in each 
simulation typically 10 such clusters (~30 in ADR) which 
contain ~ 10% of the total mass, ~ 1015 M0 each. The clusters 
identified in ADG, ADR, and AGT, are shown in Figure 2 
(lower), projected as above. 

The following procedure has been repeated using a more 
elaborate overdensity criterion for identifying clusters. The 
clusters identified by overdensity were found to be slightly 
less flattened, but there was no apparent effect on the final 
alignments detected. It is because the determination of the 
directions of the principal axes of the clusters is very insensitive 
to the way in which the clusters are identified which makes 
this test so simple and unambiguous. 

Once a cluster has been identified, its principal axes of 
inertia were computed from the distribution of galaxies within 
it, by solving the corresponding eigenvalue equation. The 
principal axes were computed in three dimensions and also 
in three orthogonal, two-dimensional projections. All clusters 
are flat enough for their principal axes to be determined 
uniquely (we discuss the actual axial ratios in § III). The 
angle 6 is the angle between a principal axis of a cluster (in 
three-dimensions or in two-dimensional projections 
alternatively) and the line connecting its center of mass to that 
of another cluster. D is the three-dimensional distance 
between the centers of mass. 

A correlation between the orientations on very large scales 
(D > 1) can arise from edge effects, which tend to bias the 
orientations of clusters near the edges of the system. We 
therefore exclude clusters whose centers of mass are closer 
than 0.1 to the nearest edge. 
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Fig. 3a 
Fig. 3.—Alignments in the simulations. The parameter 0 is the angle between a principal axis of a cluster and a line connecting its center of mass to that 

of another cluster, and D is the spatial distance between the clusters. D = 30 Mpc h~l corresponds to D = 0.6 in the units of the experiment (D = 0.4 in 
ADR). Filled symbols correspond to nearest clusters, (a) Model ADG, (b) model ADR, (c) model AGT, (d) a random distribution, ^) five A models FWDA, 
(/) three I models FWDI, (g) model ADG: here 6 is the angle between the principal axes of every two clusters. 

c) Results 
The results are shown in Figure 3 and in Table 1. 

Figures 3a-3d correspond to the large-iV models ADG, ADR, 
AGT, and the “random” case respectively. Figures 3^ and 3/ 
are superpositions of the 1000 body FWDA and FWDI 
models respectively. In the former, the large number of particles 
in each cluster makes the determination of the principal axes 
and the centers of mass be very precise, and in the latter 
the large total number of clusters improves the statistical 
significance of the measurement of alignments. Each part of 
the figure consists of four plots describing the alignments 
of the three-dimensional minor, intermediate, and major axes 
and the two-dimensional major axes respectively. D, translated 
to Mpc /i-1, is plotted against cos 9 (which is expected 
to be distributed uniformly between 0 and 1 in a random 
three-dimensional distribution) or against 0 (which is expected 
to be distributed uniformly between 0° and 90° in a 
two-dimensional random distribution). Filled symbols 
correspond to the nearest neighbor of each cluster, and open 
symbols correspond to all other neighbors. Figure 3g shows 
for comparison in model ADG the alignments of every two 
clusters relative to each other (instead of the alignments 
of each cluster with the line connecting their centers). In 
Table 1 the data have been divided into two bins corre- 
sponding to 0 < D < 30 Mpc li~1 and 30 < D < 60 Mpc h~ \ 

respectively, and in each bin the mean value of cos 6 (or 6) 
has been calculated together with its standard deviation. 
Binggeli’s (1982) data have been analyzed similarly, and the 
means are given in the table. 

It is evident from the plots that an effect similar to the 
observed one is present in the A scenario and is absent in 
the Escenario. The results from the I models AGT and 
FWDI resemble the results from the random distribution 
within 1 cr. In the A simulations, for D < 30 Mpc /z-1, the 
minor axes tend to be perpendicular to the lines connecting 
the clusters, where <cos 6} deviates from 0.5 by 3.6 cr, 4 cr, 
and 5.6 cr for ADG, ADR, and FWDA respectively. This 
indicates that the superclusters are indeed flattened at least 
along one direction, but it does not distinguish between 
oblate and prolate configurations (pancakes and cigars). The 
major axes tend to be parallel to the connecting lines, where 
(cos Oy deviates from 0.5 by 5.5 <7,2.3 cr, and 7.9 <7 respectively. 
This indicates that, at this stage, the systems tend to be 
cigars more than pancakes—a tendency which is weaker in 
ADR. The intermediate axes support this interpretation: 
they are strongly misaligned with the lines connecting the 
clusters in ADG and in FWDA, similarly to the minor axis, 
indicating cigars. In ADR there is no such misalignment, 
indicating pancakes. 

The projected distribution resembles the observed data, 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



D 
(M

pc
/h

) 
D 

(M
pc

/h
) 

D 
(M

pd
/H

m
pJ

. 
..

 2
79

 .
..
. 

ID
 

60 

40 

20 

^ A A 
S ^ ^ Aa ^ A A A#É . 

^AkAzbA' ^AA‘ 
aa ^a

a 

^ A^ A A A ¿A A^ A AAA A 
k,A AÄ ^ AA y 

A A 
^ä:^aa 

^ * 

T^TÄ^-E I 3 3E"3T"5 
^A ^A A AA A 4^ 
£A V^ôW^ ^a7 

A ^A ^ * AAA- 
\a aa 4^a aa 

^>A - A A Aa^AA A A A AA A AA AA/A AA AAA 
ik ^ AAA a A AA A 

T A aa aaH A ^AA 
A ^ 
a é A 

30 60 
0 (MAJOR 2-D) 

90 

6 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
84

A
pJ

. 
. .

27
9.

 . 
. .

ID
 

RANDOM 

60 

60 
ADIABATIC MODELS 

□ %P □ □ 
Od □I 

40 

-Ä. 

□□ CQ lao 

20 - 

b I M- , rvt],5D 
1 d 

_ ^9 
e □ C%D ^ 

□ d
d
cS!3 ■ Æ 

,0 ^güT^ofilD'.C]®0 §_ 
° ■ ri Bi:iPl D 

CP "□□■ ■ BD0 "E 
[g] □ □ ■ - 

j •ñ 

□ □ i 
□ ■ 

□ 0 
_ □ 

m 

.75 .5 .25 
COS 0 (MINOR) 

4CkAAA **■ ^ 
;-ê A« 

20 

^ ¿A 
- A¿&* Ji 

40 Va 4 a/ AaA aa a a a zta“ * 
A . À AAAa

A V ^ 
i6AA AA A a A A ^;,AA Aa Aa A AAf¿ A zAvf ¿* ï a,aa1 à«A 
^ aa a! a% a 44 a a ^ 

L ^ 4^a * ^ AA. a 4a 

. '7^ I“ 
^ aa 

Al 

30 60 
0 (MAJOR 2-D) 

90 

a, s 

60 

40 

20 

'ç^1' 
" cb^^eÄ s b - ga iÿ %□ □ 
;°sis0 !%»„, 

A □ 

'f'-Jídrár Vo'd 

|D!50s%^" 

° fc 5 

□ 
■ 

□ im □ □- 
_cfi man □ ■ □ ■ a1 

□ □ □ □- 

% ° a* - 

_l I I I I L_ 
.75 .5 .25 

COS 0 (INTER.) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



D 
(M

pc
/h

) 
D 

(M
pc

/h
) 

D 
(M

pc
/h

) 
D 

(M
pc

]/^
 4A

p J
. 

. .
 2

 7 
9  

ID
 

Fig. 3g 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



1 9
8 4

Ap
 J 

. .
 .

27
9 
 

ID
 

ALIGNMENT OF CLUSTERS AND SUPERCLUSTERS 9 

where on small scales (6) is 6.6 a and 5.4 a away from 45° 
in ADG, and in the observations when only nearest 
neighboring clusters are taken into account. In ADR (0} is 
similar to that obtained by Binggeli (1982) taking into 
account all clusters, where it is 4.4 a and 1.8 cr away from 
45° respectively. 

The effect is somewhat weaker in ADR relative to the other 
A models because the clusters develop there from the white 
noise on small scales before the large-scale adiabatic perturba- 
tions managed to collapse a substantial fraction of their way 
to pancakes. In all the A models, the alignment becomes 
much weaker on large scales, and in some cases even an 
anti-alignment shows up (presumably as a result of the edge 
effect mentioned above). 

III. SOME RELATED TESTS 

We have applied two other tests to some of the simulated 
samples in order to gain some more insight into the actual 
shapes of the superclusters: an axial ratios test and the 
percolation test. The former was found to be qualitatively 
successful while the latter failed here. Nevertheless, we 
describe both here, especially because of the recent popularity 
of the percolation test. Eventually, we end up demonstrating 
how simple and sensitive the alignments test is in contrast 
to the other two. 

The tests were applied to the following simulated samples 
with 1000 bodies: to a random Poissonian distribution, to 
1000 particles chosen at random from the dynamical I 
simulation of AGT, to dynamical A simulations analogous 
to ADG and ADR, and in addition to a kinematical A 
simulation, ADZ, which started exactly as the analog to ADR, 
but where gravity has been completely suppressed on small 
scales and the trajectories of the particles have been computed 
using the linear approximation of Zel’dovich (1970). 

a) Axial Ratios on Various Scales 
A direct measurement of the property that may distinguish 

between the scenarios may be the axial ratios of the clusters 
(superclusters) on the various scales. For varying values of d, 

Fig. 4a 

Fig. 4—Axial ratios of the largest cluster as a function of scale via the 

we have repeated the procedure described in § II, but focused 
here on the ratio of the eigenvalues, i.e., the rms dimensions 
of the clusters along their principal axes. In Figure 4 we plot 
the axial ratios of the largest cluster as a function of d for 
(a) the major and the minor axes and (b) the major and 
the intermediate axes. From Figure 6 below, the maximum 
supercluster size of Lmax = 1 corresponds to d = 0.12, and, 
indeed, the flattening becomes more pronounced below this 
scale in ADG and in ADR relative to AGT. Maximum 
flattening is achieved near d = 0.08, which corresponds to a 
length scale of Lmax ^ 0.4, just below the pancake scale 
(XD = 0.6). Recall that those three cases have similar correlation 
functions and can therefore be compared directly, while ADZ 
is less clustered on small scales, and the random distribution 
(Poisson) has zero correlation function on all scales. 

Figure 4 can also distinguish between pancakes and cigars. 
In the dynamical simulations, ADG and ADR, the largest 
structure is cigar-like with axial ratios at d = 0.08 of 
7:1.7:1 and 6:1.3:1, respectively, in agreement with the 
findings of § II. ADZ shows pancakes on slightly smaller 
scales, with axial ratios of 3.3:2.2:1 at d = 0.06. 

There are several weaknesses to this kind of test. First, 
unlike the alignment test discussed in § II, the actual values 
obtained for the axial ratios are sensitive to the methods 
used to identify the clusters, to define the axial ratios, and 
to measure them. Second, the axial ratios depend on the 
number of particles in the cluster. Using samples that have 
the same number of particles within the clustering radius, r0, 
gives clusters of comparable richnesses in the different cases 
(see Fig. 5), which can serve us as a first approximation, but 
the numbers are not identical and the differences have a 
significant effect on the axial ratios measured on small scales. 
Third, there is a noticeable flattening in the superclusters of 
the random distribution, which we find not trivial to take 
onto account when judging the significance of the flattening 
in the tested, clustered samples. Because of the above 
difficulties, we chose to limit the discussion to the largest 
cluster instead of averaging over several. 

It is clear, though, that the axial ratio test is capable 

Fig. 4b 

separation parameter d. (a) Major/minor axes, (6) major/intermediate axes. 
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Fig. 5 Fig- 6 

Fig. 5.—The number of particles in the richest cluster as a function of the separation parameter d 
Fig. 6.—Maximum percolation length as a function of the separation parameter d in the simulations: d = 0.1 corresponds to 5 Mpc h~l. The initial mean 

separation between nearest particles is 0.16. 

of picking up the excess flattening of superclusters in the 
A scenarios relative to the I scenario, and can make, at least, 
a qualitative test. The axial ratios measured in the CfA 
sample by Einasto et al. (1983, Fig. 14) in a somewhat 
different manner shows indeed an excess of flattening in the 
range corresponding to 0.06 < d < 0.12, in agreement with 
the A scenarios. We are in the process of generalizing this 
test and applying it to further observational data. 

One simple, straightforward generalization of this test has 
failed to distinguish between the scenarios. Instead of focusing 
on individual clusters, we considered the flattening of the 
distribution of particles in a neighborhood of a given size 
around every particle. For a given length scale R, we have 
computed for each particle the principal axes of the distribution 
of particles inside a sphere of radius R around it, and compared 
the eigenvalues with the ones obtained in a random distribution 
of the same number of particles in a sphere of the same size. 
We then computed the averages of the largest eigenvalue 
and of the smallest one over all the particles as centers, their 
ratio indicating the degree of flattening in the whole sample. 
The test gave a clear signal of flattening in the A scenarios, 
but unfortunately it gave a similar signal in AGT too. 
The cause of this problem is the presence of rich clusters, 
each pair of them defining a preferred line, and each triplet 
defining a preferred plane. Since each supercluster has at 
the most a few rich clusters in it, those artificial lines and 
planes dominate and give a false signal. We are trying ways 
to improve this test, but we do not have great hopes here. 

b) Maximum Percolation Length 
We have applied the percolation test suggested by Zel’dovich 

et al. (1982) to the same simulated samples. The procedure 
is very simple: for progressive values of the separation 
parameter d, we compute the corresponding values of Lmax, 

the longest separation between any two galaxies that belong 
to the same cluster. Lmax is plotted against d in Figure 6. 
Models ADG, ADR, and AGT are practically indistinguishable 
on all scales ! They all essentially resemble the random distri- 
bution (although the correlation function is very different). 
Our understanding of this effect is that small-scale clustering 
makes it easy to percolate along short distances and hard to 
“jump” from cluster to cluster, while large-scale pancaking 
seems to have a negligible effect in a situation where small- 
scale clustering is developed, especially when the mean 
separation between neighboring particles, d0, is larger than the 
clustering length scale, r0. Hered0 ^ 0.16ïor the corresponding 
Poissonian distribution, and r0 ^ 0.1 in the dynamical cases. 
It is much easier to percolate in ADZ because there is 
indeed no small-scale clustering there, so that the distance 
between nearest neighbors does not vary much throughout the 
sample, and the large-scale pancaking makes the actual d0 
along the percolation path smaller than in the random 
distribution. 

Einasto et al. (1983) found that the same test was useful in 
distinguishing between other models of the scenarios A and I. 
In order to compare to their Figure 11, we note that our 
separation parameters are related by r = (47i/3)ll3d and 
estimate that L = 100 Mpc corresponds to our Lmax = 1. 
The curve for ADZ is similar to the curve plotted by Einasto 
et al. for the A simulations of Klypin and Shandarin (1983). 
This partly reflects the suppression of gravity on small scales 
in their simulations, as a result of the cloud-in-a-cell method 
they have used (integrated by a fast Fourier transform 
technique), where the grid cell size was comparable to r0. 
In our dynamical A simulations, the pancakes break into 
clusters, which make the pancakes harder to percolate through. 
Another cause for the difference in our results for the A 
simulations is the (sometimes ignored) dependence of the 
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percolation test on the mean number density, n. The critical 
separation dc, for which Lmax reaches a certain value Lc, 
is expected to be related to the actual mean separation 
between neighboring particles along the percolation path, d0. 
In the case of three-dimensional structures (e.g., Poissonian, I) 
d0ccn~1/3; but when the structures are very flattened, 
d0ccn~1/2 (for thin pancakes) or even doocn“1 (for thin 
cigars), so that it cannot be estimated a priori for the 
general A scenario. Hence, the «-dependence of dc is different 
in A versus I, which requires that tested samples must have 
the same densities. The difference between the percolation 
properties of the two scenarios is more pronounced when 
denser samples are compared. The samples used by Einasto 
et al are indeed 4-8 times denser than our 1000 body 
samples used to test percolation here. 

For the I scenario, Einasto et al (1983) have used the 
static, hierarchical model of Soneira and Peebles (1978), 
which is built to have the proper 2-4 point correlation 
functions, and they found it to be very hard to percolate 
through. Note, however, that the hierarchical model makes 
a poor fit to the observed universe, e.g., when tested by 
Mead’s statistics (Shanks 1979), and is perhaps not very 
realistic. We find it much easier to percolate in a more 
realistic dynamical model that simulates the I scenario. A 
further disturbing fact for the percolation test is that a non- 
clustered Poissonian distribution shows percolation prop- 
erties similar to those of the clustered samples. We 
conclude that our limited experience with the percolation test 
raises some suspicion concerning its sensitivity as a general 
cosmological test. We study and discuss it in detail elsewhere 
(Dekel and West 1984). 

IV. DISCUSSION 

We have found that the alignments of clusters of galaxies 
detected by Binggeli (1982) provide a useful test for 
distinguishing between the major competing scenarios for the 
formation of large-scale structure in the universe. The test 
is simple to apply both to observations and to numerical 
models because the position angle of a rich cluster is well 
defined in most cases and the procedure of finding it does 
not involve any large errors. The test was found to provide 
unambiguous results: the alignment is due to large-scale 
flattening of superclusters and is not produced by tidal 
interactions in the absence of large-scale flattening. 

We do not attempt here to dig much further into the 
details of the tidal interactions between the protoclusters 
because the numerical simulations give the net result clearly 
enough for our purpose here. We believe that the analytical 
calculations by Binney and Silk (1979) and by Palmer (1983) 
overestimate the effect because they assume for the proto- 
clusters overdense perturbations above a uniform background. 
When realistic protoclusters start contracting relative to the 
expanding background, however, they are likely to evacuate 
underdense regions around them, which tend to weaken their 
gravitational influence on other protoclusters. This can be 
illustrated by the following two simple examples. In the case 
of a spherically symmetric cluster surrounded by an under- 
dense shell, there is a radius inside which the mean density 
matches the mean universal density. Such a sphere would 
exert no gravitational force on its surroundings. When a 
flattened cluster forms first, it evacuates regions in the direction 

of its minor axis (axes). Such an underdense region exerts 
negative tides on a protocluster that is forming on its other 
side which tend to induce a collapse along the direction of the 
minor axis of the original cluster, producing an anti- 
alignment. The general case is more complex and requires a 
study of “holes” which we intend to do separately. It is 
evident though that underdense regions are present between 
the clusters in the I simulations (see Aarseth and Saslaw 
1982) , and that they tend in general to weaken the mutual 
tides between the protoclusters. 

The alignment of clusters indicates not only that super- 
clusters are elongated, but that they have been formed before 
the rich clusters in them. This requires that superclusters 
form by aspherical collapse from an excess of large-scale 
fluctuations. 

Our basic conclusion here applies to a variety of 
cosmological scenarios: the favored A scenario can originate 
from any spectrum of large-scale fluctuations that is 
truncated at the pancake scale, i.e., it can be adiabatic 
fluctuations that are either baryonic (Zel’dovich 1970), or 
dominated by ~30 eV neutrinos (see Doroshkevich et al 
1981, and references therein), or even an excess of isothermal 
fluctuations if baryons roughly close the universe (Hogan 
and Kaiser 1983). The rejection of the so-called I scenario 
applies to any initial fluctuations that form structure solely 
along the route from small to large scales, such as purely 
isothermal fluctuations in the baryons’ density (Peebles and 
Dicke 1968), or adiabatic fluctuations of >1 keV, cold, 
weakly interacting “ions,” or light axions (see Peebles 1982, 
1983; Primack arid Blumenthal 1983, and references therein). 
It is worth noting that just having some power on large 
scales is not enough: a spectrum that has a lot of power 
on large scales (n < 0, say) may produce elongated structures, 
but as long as structure still evolves from small to large, 
such that clusters form before superclusters, there is no 
apparent reason for them to be aligned. It seems that the 
spectrum must have had a real excess of power on scales above 
a critical scale that corresponds to pancakes. 

Failures to detect such an alignment in galaxies relative 
to background clusters or superclusters (Adams, Strom, and 
Strom 1980; Gregory, Thompson, and Tifft 1981; MacGillavry 
et al 1982; Helou and Salpeter 1982; Kapranidis and Sullivan 
1983; Valdes, Tyson, and Jarvis 1983) indicate that a similar 
conclusion is not necessarily true for galaxies : they could 
have formed either as a result of the pancaking of super- 
clusters, as suggested by the dissipative pancake theory of 
Zel’dovich (1970) or, as well, independently, from initial 
fluctuations on small scales, as suggested by the hybrid, 
nondissipative pancake scenario (cf. Dekel 1982, 1983a, b). 
The detected alignment of brightest cluster members with their 
parent clusters (see Carter and Metcalfe 1980; 
Binggeli 1982) is probably an evolutionary effect within the 
clusters. Another possible exception may be the tendency for 
alignment for galaxies in the Coma Cluster (Djorgovski 
1983) , but the fact that the alignment is exactly east-west 
there makes one worried about possible systematic errors in 
the data. 

There is other evidence in support of a hybrid scenario, 
such as the failure of a pure, adiabatic spectrum of baryons 
(Dekel 1982; DA) or of massive neutrinos (White, Frenk, and 
Davis 1983) to reproduce the observed correlation function 
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of galaxies, unless the pancakes have collapsed after z ^ 1 
if £2 = 1 (or after z ^ 2 if Q0 = 0.1), so that galaxies have to be 
formed before superclusters. This is supported by the presence 
of galaxies away from pancakes and by the flattening of 
superclusters which again points to a similarly recent collapse 
(Dekel 1983a, b). If superclusters are indeed so young 
dynamically, then, according to the conclusions of this work, 
rich clusters must be young too. Hence, the hybrid scenario 
predicts that rich clusters should show dynamical evolution 
already at z ~ 1. This is in agreement with constraints 
obtained from the present overdensity in Abell clusters 
(öp/p& 500 inside the Abell radius of 1.5 Mpc /z-1 for 
richness R = 1) that also indicate z < 1 for their collapse 
(Q=l). 

Although the alignment of clusters is clear both in the 
observations and in the simulations, it would gain some more 
weight if the samples were enlarged. One may extend 
Binggeli’s (1982) analysis of clusters for a larger sample 
or use brightest cluster members instead, based on their 
tight alignment with their parent clusters. In Binggeli’s 
analysis of the latter, the effect seems to be weaker when 
only nearest neighbors are concerned, which makes one wish 
to see the test applied to other samples as well. We 
encourage a study similar to that of Binggeli for the possible 
alignment of smaller clusters and groups of galaxies, and 
even of pairs (see Tifft 1980). 

We wish to emphasize that an alignment of each cluster 

AND AARSETH 

with its parent supercluster should be easier to detect than 
a relative alignment of every two clusters, as can be seen 
by comparing Figures 3a and 3g. The former gives twice as 
many points in a D-9 diagram, and the tendency toward 
small (or large) angles in the case of elongated structures 
is relatively smeared out in the latter : when, for example, 
the principal axes of two clusters both form an angle 6 with 
the line connecting their centers, the relative angle between 
their axes can be anywhere in the interval (0, 20). From the 
theoretical side, it would also be of interest to see how the 
test works in other types of cosmological scenarios. 

The success of this simple test makes us optimistic about 
generalizing it to make a more general statistical test. The 
idea is to measure for any given scale the alignment of the 
configuration with respect to a larger scale. This work is 
currently in progress and already gives very promising results 
(West and Dekel 1984). 
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