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ABSTRACT 
The observed complex postglitch behavior of the Vela pulsar is explained as resulting from coupling of the 

crust to crustal neutron superfluid, specifically that part of the superfluid in which vortex lines are pinned to 
crustal nuclei. We show how the general theory of vortex creep developed in a preceding paper provides an 
excellent fit to the timing observations of Downs which span the decade 1969-1979 and include four giant 
glitches. We extract from our fit to the data relaxation times, inertial moments, and limits on superfluid pinning 
parameters for three distinct regions of vortex pinning in the star, with results which are consistent with 
microscopic theories of its internal structure. In our theory, relaxation times due to vortex creep are directly 
proportional to the internal temperature of the star, so that the limits we obtain for pinning parameters translate 
to bounds on this temperature. We conclude that the internal temperature of the Vela pulsar is ~ 107 K and 
discuss the extent to which improved calculations of vortex pinning as well as soft X-ray observations of other 
stars will make possible an improved determination of the pulsar temperature. 
Subject headings: dense matter — pulsars — stars: neutron 

I. INTRODUCTION 
In the first paper in this series (Alpar et al. 1984, hereafter Paper I) we developed a general theory of vortex creep, the motion 

of vortex lines in that portion of the neutron superfluid which permeates the crust of a neutron star and is pinned to the crustal 
nuclei. We showed that for many physically plausible situations, a simple set of equations suffices to describe the coupling of the 
pinned superfluid to the crust. We further suggested that vortex creep is likely to be the dominant mechanism by which the pinned 
crustal neutron superfluid keeps pace with the crust as a neutron star is spun up or down by an external torque, and found that 
the relaxation times which characterize this coupling offer promise of being observable in the behavior of those stars which 
exhibit glitches. These relaxation times are proportional to the internal temperature of the neutron star, so that studies of postglitch 
behavior offer the considerable promise of providing a measure of the temperature. 

The Vela pulsar has exhibited both more frequent and “larger” giant glitches than any other pulsar. Moreover, Downs (1981) 
has recently published the results of a monumental series of timing observations which span more than a decade and include 
four giant glitches. It is therefore a natural candidate for a first application of our theory of vortex creep. In § II, following a brief 
review of the observational results, we show how the theory developed in Paper I provides an excellent fit to the observed complex 
postglitch behavior of the pulsar. A glitch acts to stop vortex creep and thus to decouple temporarily from the crust all regions 
of pinned vorticity in the star. We conclude from our fit to the data that internal torques from at least three such regions contribute 
to postglitch behavior. Two of these torques correspond to the time-dependent recoupling of physically distinct regions in which 
glitch-induced vortex motion does not take place ; the relaxation times which characterize vortex creep in these regions are 
~3d and 60d, respectively. The third torque, which varies linearly with time, is produced by the gradual recoupling of vortex 
creep in the boundary between the above regions, a recoupling which is determined by the glitch-induced vortex motion which 
occurs there. In § III we use a simple model of glitch-induced vortex motion to place limits on the parameters which determine 
this torque. In § IV we extract from our fit to the data inertial moments and limits on superfluid pinning parameters for the two 
regions in which glitch-induced vortex motion has not occurred, and show that our results are consistent with microscopic 

1 This research was supported in part by NSF grants PHY 80-25605, PHY 80-23721, NASA grants NAS8-3073, US NASA NSG-7653, and NATO Research 
Grant RG 186-81. 
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TABLE 1 
Observed Parameters for the First Four Vela Glitches 

Quantity Glitch 1 Glitch 2 Glitch 3 Glitch 4 

AQC (10 4_rad s ^    
AQC/QC = Tp/I (IO"2)   

= AQc/(V/) (10-2rads-1) . 
Am (days)     
t0 = AQC/|QC| (days)  

1.65 1.39 
0.93 1.49 
1.77 0.93 
7 14 

19 16 

1.42 
1.00 
1.42 
5 

16.5 

2.16 
2.58 
0.84 

23 
25 

Note. —AQC is the jump in observed rotation frequency, Af2c/Qc the fractional jump 
in spindown rate, and Am the time between the last preglitch observations and the first 
postglitch observations. 

theories of neutron star superfluidity and structure. We use these results in § V to estimate the internal temperature of the Vela pulsar, 
and in this way obtain temperature limits which are sensitive mainly to the (in principle) calculable distance between pinning sites. 
We consider as well information on vortex pinning and energy dissipation in neutron stars which may be obtained from soft X-ray 
observations such as those carried out by Helfand (1982) using the Einstein observatory. We discuss our results in § VI. 

II. POSTGLITCH BEHAVIOR 

Before making a comparison of the theory we presented in Paper I with observation for the Vela pulsar, we review briefly 
the overall observational situation. Thus far six glitches have been observed (Radhakrishnan and Manchester 1969; Reichley and 
Downs 1969, 1971; Manchester, Goss, and Hamilton 1976; Downs, Manchester, and Newton 1978; McCulloch, Hamilton, and 
Royle 1981; Hamilton, McCulloch, and Royle 1982; McCulloch et al 1983). We apply our theory to the detailed postglitch 
observations for the first four glitches (Downs 1981). A general overview of these glitches is presented in Table 1. The timing 
behavior following glitch 5 published recently by McCulloch et al (1983) appears similar to that found in the earlier glitches. 

One can define, as we did in earlier work (Alpar et al 1981), an effective moment of inertia /p #of the neutron superfluid in the 
pinning layers of the star from the observed jump in the time derivative of the crustal frequency, ADC, which is found to accompany 
each glitch: 

Tp/I = AÙC/ÙC. (1) 

Here Qc and Ùc are the observed rotation and spin-down rates of the pulsar crust and / denotes the total moment of inertia of 
the star. We define a mean decrease 0Qp in the superfluid rotation rate in these layers as found from: 

TPÔÙP = ICAQC, (2) 

where AQC is the glitch in Qc. The moment of inertia Ic represents the crust and all components of the star that are coupled to it 
on time scales < hours. Recent calculations show that the superfluid in the core of the neutron star couples to the crust with 
coupling times of the order of seconds (Alpar, Langer, and Sauls 1984). Thus Ic includes the entire star except the pinned super- 
fluid. In Table 1 we have listed the observed values for AQC and the postglitch delay time i0, which we defined in equation (45) 
of Paper I, (1.45), 

where = N/I is the steady state spin-down rate (cf. eq. [1.20]) of the Vela pulsar, which in the applications that follow can be 
taken to be given by 

IQI^ EE ftc/is » 9.83 x 10"11 rad s"2 

on taking is, the pulsar spindown time, as 2.27 x 104 yr. We also tabulate the uncertainty, Am, in the actual time at which the 
glitch took place. 

The general features of post-glitch behavior are best appreciated by examining the behavior of Qc, since it is here that the 
influence of the internal torque produced by the coupling of the neutron superfluid to the crust is most clearly manifested. As may 
be seen in Figures la-lh, the postglitch behavior of the Vela pulsar after each of the first four glitches is rather complex, in that 
it is clearly not describable by a single exponential relaxation process, and would seem to be a superposition of several different 
internal torques. More specifically, we find the following characteristic behavior after each of the first four glitches: 

1. Within the first 20 days or so after the glitch, there is comparatively rapid relaxation of one component, whose contribution 
to the internal torque we denote by Ni. 

2. A second component of the internal torque, N2, relaxes with a characteristic time 40d < t < 100d. 
3. A third component, iVA, varies linearly with time, and is thus responsible for the Qc æ constant behavior observed by 

Downs. 
4. As is the case for AQC, Tp, and ôÙp, each of the internal torques varies somewhat from glitch to glitch; however, their general 

order of magnitude remains the same. 
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VORTEX CREEP: VELA PULSAR 793 No. 2, 1984 

Fig. 1.—Fits to the postglitch Clc(t) in each of the first four Vela glitches. The figures refer to the glitches in chronological order. For each glitch the first 
figure (la, le, le, lg) shows the fit with ^ = 3d, t2 = 60d. The second figure in each pair (lb, Id, If, Ih) shows the best fit. Data points are Ùc(t) - Qc(0) from 
Downs’s P observations (Downs 1981) in units of 10“1J rad s-2. The time t = 0 is the time of the first postglitch data point; t is given in days. The crosses in 
Figs. 1c, Id (postglitch 2) and le, If (postglitch 3) are data points not included in the fit. They are discussed in the text. The fitting function is given in eq. (9). 

As we have emphasized in Paper I, a glitch leads to the temporary decoupling of all regions of pinned vorticity in the crust; 
we interpret the postglitch behavior as reflecting the recoupling of the neutron superfluid by vortex creep in these various regions. 
Microscopic calculations strongly suggest substantial variations in the pinning parameters which determine vortex creep as one 
goes through the pinning region. We therefore expect this recoupling to give rise to distinct torques representing regions 
characterized by distinct rates of vortex creep. We have also seen in Paper I that the postglitch vortex creep of a given region 
depends sensitively on the influence of the glitch on that region. More specifically, in those regions of the star through which no vortices 
travel in the course of a glitch, the changed rate of thermal creep represents a response solely to A£\; it is characterized by a 
relaxation time t and the postglitch delay time t0, equation (3). It is natural to represent the response of these regions by at least 
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two distinct internal torques, since we expect the glitch to take place in a boundary region, on either side of which the relaxation 
times, Th may be expected to be different. These are from equation (1.44): 

m=
ii  ^  (/=12) 

\N\ II + [exp (ioAi) - 1] exp (-í/t¿) 

The vortex creep relaxation times which appear in equation (4) are, from equation (1.32), 

.7c T 
ID 

kT 
ÇlcPi Kr^bi 

(4) 

(5) 

where Ep is the energy gain (per nucleus) from the pinning of a vortex line, a;cr = (Q — Qc)cr the critical lag between Qc and the 
superfluid rotation rate Q for unpinning, £ is the coherence length of the superfluid, p its density, k the quantum of vorticity, 
and r the distance from the rotation axis. It is possible that other boundary layers, separating additional regions with distinct t 
values, exist in the star ; we shall see that one boundary layer, and hence two such internal torques, suffice to fit the data at present. 

The third torque, NA, we identify as coming from the boundary region which separates regions 1 and 2, as shown in Figure 2. 
Glitches originate in the sudden unpinning of pockets of pinned vorticity in such boundary regions, and these are therefore the 
regions through which vortices move. We have proposed in Paper I a simple model for the glitch and subsequent changes in the 
vortex creep in a boundary region, namely that in a given glitch, some N vortices in region G unpin, move through region B, and 
repin in region G', as likewise depicted in Figure 2. We found in Paper I that the internal torque NA, which describes the recoupling 
of vortex creep in the regions G and G', initially increases linearly with time, and may be written (cf. eq. [1.56]) during this 
epoch as 

Na i tB 
(6) 

Here ôü.B is the sudden decrease in the superfluid rotation rate caused by the outward motion of unpinned vortices through region 
B at the glitch. It defines a time scale (cf. eq. [1.52]) 

tn — 
<5Í2r ¿fin 

C2„ a 
(7) 

In this simple model, there is a fourth internal torque, NB, associated with the recoupling via vortex creep of region B of 
Figure 2. We show in the following section that this torque begins to be significant only when the torque NA goes nonlinear. 
We note that the last timing fits to the postglitch observations of Downs (1981) extend to 153, 97, 99, and 388 days before the 
next glitch and cover data chains of about 80-150 days. Downs finds that Qc increases linearly with t throughout his entire data 
base, once the relaxation described by Nx and N2 is complete. This then implies that throughout the observations, NA has not gone 

No vortex motion Vortex motion at No vortex motion 

Fig. 2.—A schematic description of the boundary region. The distance from the rotation axis increases to the right, and density to the left. We have marked 
the regions 1 and 2 associated with the creep relaxation times ti and t2 on the figure, as well as the boundary region between them. The upper figure gives the 
variation of mcr and co«,. The middle figure shows the change in vortex density in the glitch, according to our model of vortex unpinning and repinning in the 
boundary layer. The lower figure shows the resulting decrease <5Q(r, 0+) in the superfluid rotation rate; Q -► Q - <5Q(r, 0 + ) in a glitch. 
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No. 2, 1984 VORTEX CREEP: VELA PULSAR 795 

TABLE 2 
Parameters of our Model Obtained by Fitting Equation (9) to the Observed 

Qc Data 

Quantity Glitch 1 Glitch 2 Glitch 3 Glitch 4 

T! (days)  3 4 3 2 3 2 3 6 
t2 (days)  60 100 60 60 60 60 60 60 
A (days)  5 5 14 14 5 5 16 22 
Ji/J (KT2)....   0.31 0.33 1.11 1.01 0.19 0.16 1.44 2.37 
/2//(10-2).  0.96 1.57 2.12 2.12 0.54 0.64 2.08 1.85 
/A//iB (10-6/day).... 3.1 2.4 3.7 3.7 6.3 6.3 3.3 3.4 

Note.—t1? IJI, and t2, I2/I are the relaxation times and fractional moments of inertia 
of regions 1 and 2, respectively. IA/ItB is the slope of the component of Ùc(t) which 
increases linearly with t, due to the torque iVA = iVG + G- from the glitching regions. 

nonlinear and the torque NB (vortex creep through region B of our model) plays a negligible role; hence we do not include these 
possibilities in our fits to the postglitch Qc(t) data. 

We thus attempt to fit to the observational data of Downs with the following expression for Ùc(t): 

IcÙc(t) = N + N1+N2 + NA, (8) 

where N is the external torque acting on the star, Ni and N2 are the distinct torques specified by equation (4), and NA is given 
by equation (6). 

In comparing our model with observations, we must also take into account the uncertainty in the actual date of each glitch. The 
first observation date after each of the first four glitches is some A days after the glitch, where 0 < A < Am, Am being the time 
between the last preglitch observation and the first postglitch observation. In our fits, we derive Ùc values from the observed P 
values given by Downs, and compare the value of [Qc(i) — Dc(0)]obs we obtain from the observations (i = 0 being the date of the 
first postglitch data point) with : 

a /. i a\ ôfAU: Y l^l7' d 1 - exp (-t/T,) |iV| /A t 
c 7 ; = i h I 1 + exp ( —A/T¡)[exp (í0/t,) - 1] 1 + exp [-(t + AJ/T^exp (fo/i,) - 1] Ic I tB 

Using equations (4), (5), and (6), the first two terms have the free parameters /,//, A, and t¿. The third term has the slope, 
Wltß (Ia/I cannot be separately fitted). We fit each postglitch data set for Qc(i) — Qc(0) separately with equation (9), searching 
numerically for the parameters that yield the least sum of squared differences. 

We plot in Figures la-lh the fit Clc(t + A) — QC(A), given by equation (9), together with the Ùc(t) — Dc(0) values derived from 
P observations. Table 2 gives the values we have obtained from our fits. The best fits for t15 t2 are (4d, 100d), (2d, 60d), (2d, 60d), 
(6d, 60d) for the four postglitch fits, respectively. The choice (3d, 60d) gives a fit that is close to the best fit in all four cases, in the sense 
that at each data point the difference between the fit with (3d, 60d) and the best fit is less than the root mean square scatter 
of data points with respect to the best fit. We display both fits in Figure 1. Although we have six parameters altogether, 
we find it encouraging that independent fits to each postglitch relaxation give similar values for all the parameters involved, 
and are indeed consistent with the same values for t¿. We conclude that the basic elements of the postglitch behavior observed 
by Downs are contained in the torques, N2, and NA. In Figure 3 we illustrate the separate contributions of these three 
torques to Q.c(t) for our fit of equation (9) to the data following glitch 4. Note that the torques Nt, N2, and NA dominate 
the behavior of Qc(i) in distinguishable successive time intervals; the variation in Qc(i) in, say, f < 25d reflects Al5 that in 
25d < t < 150d reflects N2, and the linear Qc(i) at i > 150d reflects NA. The data following each of the other three glitches also 
divide naturally into such phases, in each of which the evolution of Clc(t) is dominated by one of the torques Nu N2, NA. 

We note that the relaxation time t is expected to vary within each of the regions 1 and 2. A realistic expression for the torques 
Ni and N2 would contain a superposition of torques with different t¿. For example, Ni would contain a range of relaxation times 
of the order of a few days, and possibly shorter relaxation times as well. As can be seen in equation (4) (and is discussed in 
detail in Paper I), as long as t ^ t0, each such torque would cause a sharp “Fermi function” recoupling in Ùc(t), i.e., a relaxation 
process lasting some t days about i = i0. For each of the first four glitches only two or three postglitch data points are available 
within t0 days; the average is not complete enough to enable one to resolve a family of such t’s. We therefore described the entire 
region 1 with a single t in our fits. Similarly, a single t was used for region 2. 

There are two features in the data distinct from the smooth postglitch relaxation we model by equation (9). These are a small 
glitch (AQC/QC ~ 10"8) following glitch 2, represented by a single point in the Qc data, and a discontinuity in Qc, but not in its 
slope, some 650-750 days after glitch 3 [the last three data points for Ùc(t) lie on a straight line with the same slope as, but displaced 
from, the earlier data points already in the linear Qc(i) regime]. These will be addressed in future work concerning irregularities 
and noise in vortex creep. We have not included either of these features in our fits, but the data points are indicated in Figure 1. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 
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Fig. 3.—The separate effects of the three torques Nu N2, and NA on Ùc(t). As an example, our model fit (eq. [9]) to postglitch 4 data (shown in Fig. Ig) is 
separated into its components here. We plot Qc(t + A) - &c{t) in units of 10“13 rad s-2 as a function of time in days, as in Fig. 1. The lower curve shows the 
contribution of iV^; the middle curve, that of N2‘: and the upper curve, the contribution of NA. For about 25 days after the first postglitch timing observations 
(t = 0), the torque N1 dominates the evolution of Ùc. Following this, the torque N2 is the dominant internal torque until ~ 150 days. After and N2 have settled 
to their constant steady-state values, NA is responsible for the persistent linear increase of Ùc(t) with time. Our fits to Í2C following the other glitches break down 
in a similar way into phases in which iY2, and NA successively dominate the evolution of Í2C. 

III. GLITCH PRECURSORS AND HYSTERESIS 
We now examine the glitch-affected boundary region in more detail and take up the related questions of glitch precursors and 

hysteresis. We first pursue further consequences of the simple model for the postglitch decrease in the superfluid velocity given 
by equation (1.49) and illustrated in Figure 2. We then consider the more complex structures to be expected if there is appreciable 
hysteresis, associated with the onset of a glitch before the consequences of the previous glitch have healed. 

In our simple model of a glitch (Fig. 2) there are two internal torques associated with a boundary region. The first, iVA, given in 
equation (6), arises from recoupling of vortices in the regions G and G' and enables us to determine the combination of model- 
dependent parameters, IJItß. A second torque, NB, arises from recoupling of vortices in the region B; here the decrease in 
superfluid rotation rate following the glitch is assumed to be constant and takes on the maximum value, 

<5Q(rB,0+) = <5QB = 
Nk 

2nrB
2 ’ 

(10) 

immediately after the glitch; N is the. number of vortices which unpin in G. The internal torque associated with region B is given 
by Equation (1.51): 

NB(t)_IB 1 
|N| / 1 + [exp (íb/tb) - 1] exp (-í/tb) ’ 

where IB and tb are the inertial moment and average relaxation time of the region, and tB is given by equation (8). For cases of 
physical interest tB >> tb, so that this torque has the characteristic Fermi function behavior, in that it vanishes for t << fB, rises to 
(/B//)| AT I over a time rB about iB, and remains constant thereafter: 

iyB(7 /b 1 
\N\ ~ / 1 + exp [(tB - i)/iB] ' (12) 

If the time between glitches is greater than iB, and further, if the interval between observations is less than tB, such behavior 
could be resolved in the data, and would enable one to determine /B, tB, and rB. If the time between glitches, tg, is of order iB, 
it is in principle still possible to infer these quantities from observations close to the time of the next glitch, since these would 
disclose a departure from the linear behavior of Qc immediately prior to the glitch. Finally, if the time between glitches is short 
compared to tB, then the next glitch comes along before one has, so to speak, cleared out the consequences of the previous glitch. 
Consequently, after the next glitch, postglitch behavior will not only reflect what transpired at the time of this new glitch 
(characterized by some AQ(.) but also will reflect continuing recovery of those regions affected by the previous glitch which had 
no time to recouple before the new glitch came along. The three possibilities for Ùc are illustrated in Figure 4. 

At t ~ tB, examination of the more complete expression for NA given below (cf. eq. [1.54]) shows that departures from linearity 
will also arise as a consequence of the recoupling of vortices in regions G and G' (which jointly make up region A): 

Aa(í) _ 1a 1 - (t/tB) In [1 + exp (tB/t - 1) exp (-t/r)] 
|1V| / l-exp(-t/r) (13) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
84

A
pJ

. 
. .

27
8.

 .
79

1A
 

No. 2, 1984 VORTEX CREEP: VELA PULSAR 797 

  ^ 
tß ~tg 

Fig. 4b 
Fig. 4.—The effect that the coupling of boundary region B would have on the observed Ùc(t). The expected signature of Qc(i) is shown schematically for three 

possible cases: Upper, if iB < tg, the time to the next glitch, the region B would completely couple and Qc(t) would no longer increase linearly with time. 
Middle, if tB ~ tg, the nonlinear behavior associated with the coupling of region B signals the imminence of the next glitch, which interrupts it. Lower, if 
h > tg> region B is still uncoupled and there is no sign of nonlinearity in Qc(t) at the time the next glitch arrives. 

These are, however, of order tb/íb compared to the linear variation produced by vortex recoupling in these regions, and hence 
may be neglected in the limit tb iB. 

The postglitch data of Downs enables us to rule out the possibility illustrated in Figure 4a : since a constant value of Qc is not 
observed, the simple model does not apply with tg$> tB. However, the interesting case, illustrated in Figure 4b would seem 
not inconsistent with the current Ùc fits of Downs. The last preglitch timing fit involves fitting to data extending over 80-150 
days. The departures from linear behavior that would show up in timing fits at - tb < i < might not be apparent in these 
fits, since values of tb are expected to lie between 3d and 60d if the boundary region connects the regions characterized by these 
time scales. This possibility is of special interest because, under these circumstances, a glitch would be preceded (over times rB) 
by enhanced vortex creep associated with the lowering of the potential barriers for vortex motion through region B. On this 
picture, the region B acts as a gradually lowering barrier for vortices unpinned in region G: vortices unpin in G all the time but 
cannot scatter outward through B unless co( = Q - Qc) in B is quite close to its steady state value Until vortex creep begins in 
B, the only way ôœB = coB - can change is through the change in Qc; thus ôœB(t) ^ <5QB - |Qji for times t such that 
t < tB — tb (cf. eq. [L41]). When i ~ iB — tb(<5cob ~ |Dc|tb), vortex creep starts. If outward scattering of unpinned vortices also 
become feasible at a comparable value of ôœ, then a local fluctuation leading to vortex unpinning can develop into a glitch 
since vortex motion through B is now possible. Thus, timing fits within about 60 days preceding a glitch should cast light on 
whether this scenario is operative. Since one does not know when a glitch will come, the above chain of reasoning points to 
the desirability of monitoring the Vela pulsar over intervals small compared to 60d. 

The possibility iB > tg, illustrated in Figure 4c, if realized in practice leads to considerable hysteresis in Ùc(t) and For example, 
suppose that glitch 3 occurred at a time tg much less than iB for glitch 2, and that it had a shape consistent with our simple 
model, but with parameters JA, IB, and <SQB which are different from those which characterize glitch 2. The resulting ÔQ curve 
after glitch 3 might then look like Figure 5. As a consequence, at a time ~iB, after glitch 3, the region B' (which reflects glitch 2, 
not glitch 3) will recouple. 

Has such recoupling been observed? In the Ùc(t) observations following glitch 3, there is a jump AQC/QC ^ 6 x 1(T4 between the 
timing observations of Downs at t = 548-650 days after his first postglitch observation and those at later times t > 757 days 
(see Fig. le, /). On either side of this apparent jump, Ùc(t) is linear with little, if any, change in slope across the jump. If the jump 
was due to the recoupling of a region such as B in our simple model with no hysteresis, Qc would be constant after this increase, 
as shown in Figure 4a. The persistence of the linear increase in Qc(i) after this event suggests that only one of several such regions, 
each with a different SQ, recoupled. This kind of partial recoupling is just what one would expect if the SQ profile after glitch 
3 includes effects of hysteresis; for example, the observed recoupling could be associated with a region such as B' in Figure 5. 

Let us pursue this possibility further. Since (SQ is a constant (<SQB') throughout B', this recoupling would take place at a time 
~iB' = (SiV/lQl^. Since iB> is bounded by 650d < iB^ < 757d, <5£V is likewise bounded by 7.8 x 10“5 < <3QB'/QC < 9.1 x 10~5. 
Any discontinuity in the constant slope of Qc(i) associated with such an event would then correspond to the subsequent linear 
recoupling of a region such as G" in Figure 5 (which would start to recouple at t = iB>). The observed event following glitch 3 
involved a jump, AQC/QC = 6 x 10~4, which we can identify as IB'/I. Any discontinuity in Qc (the observational limits on this are 
— 1.1 x 10“21 rad s-2 d-1 < AQC <4.5 x 10“22 rad s-2 d-1), would reflect the difference in contributions from regions G" 
and G'. 

The case iB ~ tg, the time of the next glitch, is both possible and physically appealing in that there will then be little or no 
hysteresis and glitches would originate at more or less the same domain in the star. We therefore take the further step of inquiring 

<—G—x B -—>G'^B W-G'-> 
Fig. 5.—A schematic description of possible hysteresis in the glitching regions. At the time, say, glitch 3 occurs, the caused by the previous glitch, glitch 2, is 

only partially healed. The lower curve shows this remnant, = ¿Q(0_) ^ 0, just before glitch 3. The upper curve shows the resulting <5Q(0+ ) after glitch 3. 
This includes both the remnant from glitch 2 and the <5Q cased by glitch 3. 
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TABLE 3 
Parameters of our Simple Model (eq. [10]) for the Effect of the Glitch in the 

Boundary Region 

Quantity Glitch 1 Glitch 2 Glitch 3 Glitch 4 

iB = tg (days)  
£>Qb = |^oo I^B (19 
I a/I (10-2) ........ 
/b//(10-2)   

= Ia/Ib   

: rad s ^ . 
900 

0.76 
0.28 
1.97 
0.14 

1485 
1.26 
0.55 
0.80 
0.69 

1000 
0.85 
0.64 
1.33 
0.48 

1170 
0.99 
0.39 
1.77 
0.22 

Note.—is the glitch induced decrease in superfluid rotation rate in the region B. 
IJI and IB/I are the fractional moments of inertia of the regions A = G + G' and B, 
respectively. 

what the glitch parameters IB and IA might be under these circumstances for the first four glitches. As we have emphasized, there is 
no hysteresis in this case; we know (IJ2 + JB) and (IA/ItB), so that the condition iB = tg serves to specify not only <5QB, but also 
IA and IB. It is moreover clear that if x0 = IJI b for iB = tg, then for values of x = Ja//b kss than x0, iB < tg, while for 
(Ia/Ib) > *o, tB > tg. Thus for the first four glitches, there is a definite association between x and iB (or <5QB), provided hysteresis 
effects do not play a significant role. 

Our values of/A, /B, iB, ôQB, and x0 are given in Table 3. Since, as we have noted, no significant events of the type illustrated in 
Figure 4a have been seen, to the extent that our simple model with no hysteresis is appropriate we conclude that the ratio 
IA/IB must be >x0 for the parameters which characterize the first four glitches. Finally, we note that the parameters of Table 3 
provide a useful starting point for an examination of glitch-to-glitch correlations, a question we hope to address in a future paper. 

In developing our model in Paper I, and applying it to the Vela pulsar in this paper, we have neglected changes in vortex density 
associated with the glitch and concentrated on the way in which changes in the superfluid and crust rotation rates, ÖQ, and AQC, 
influence the vortex creep process. We can now justify this approximation for the Vela pulsar. As may be seen in Figure 2, for a given 
glitch, the initial (and largest) change in vortex density ôn occurs in the unpinning and repinning regions of widths G and G' : 
it is given by 

KÔnG = -r(ôQB/G), (14) 

KÔnG' = r(ÔQB/G'). (15) 

These changes in vortex density lead to the changes in superfluid rotation <5Q rate given in Figure 2 for our glitch model. At later 
times, the perturbations in vortex density tend to heal as vortex creep gradually picks up. Using our results for the Vela pulsar, 
we find: 

KÔnG ~ KÔnG> ~ <5Db * (I/1A) ~ 1 rad s_1 . (16) 

On the other hand, the overall vortex density is 

Kn = 2fi + r^«2n + r^>2a= 140 rads”1 . (17) 
dr dr 

for the Vela pulsar. Hence, the results are indeed consistent with taking ôn/n 1 for this pulsar. Note, however, that our model 
treats vortex unpinning and repinning in regions G and G' as being uniform; in other words, we have averaged out density 
fluctuations associated with vortex pockets. A treatment that resolves the effects of individual vortex pockets in the recoupling 
of the glitch regions to Qc, or in noise due to unpinning and repinning, might well lead to vortex density fluctuations which are 
sufficiently localized that the corresponding values of ôn become comparable to n. We plan to return to this question in the future. 

IV. PINNING PARAMETERS 

Encouraged by our success in explaining the postglitch behavior observed by Downs for the first four glitches, we now take up 
the question of whether by combining theory with observation we can learn something about the nature of the regions of pinned 
vorticity in the Vela pulsar. In so doing, we lay the groundwork for our examination of what postglitch behavior tells us about 
the internal temperature of the neutron star. 

We have adopted as a working hypothesis that the internal torques, Ni and N2, represent the response of distinct regions of 
pinned vorticity to a glitch. These regions are characterized by relaxation times ~ 3d, t2 ~ 60d. The torque NA describes the 
response of the boundary between these regions. Our fit to the observational data leads to inertial moments of these regions, 
IJI, 12/I, /A// which are in the 10“ 2 range. This is the range to be expected for a 1.4 M0 neutron star with pinning regions which 
lie between stellar densities p13 (p in units of 1013 g cm"3) such that 3 < p13 < 20, provided the star obeys a reasonably stiff 
equation of state (Pandharipande, Pines, and Smith 1976; Pines 1980; Nandkumar 1983). This part of our model is thus consistent 
with microscopic theory. 

From our expression for the relaxation time, equation (5), we see that the only quantity which may be expected to vary sharply 
between regions 1 and 2 in the sense of reflecting a transition in the physics of pinning is b, the spacing along the vortex line 
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between effective pinning centers. The other quantities involved, p, T, and A, all vary continuously through the pinning layers and 
would not exhibit transitions in their values by a factor of ~20 between the regions 1 and 2. Thus in region 2, with its ^60d 

relaxation time scale, each vortex is pinned some 20 times more densely along its length than in region 1. There are, however, 
three distinct possibilities for these regions : 

i) Region 2 (t ~ 60d) corresponds to “strong” pinning; region 1 (t ~ 3d) to “weak” pinning. 
ii) Region 2 corresponds to strong pinning; region 1 to “superweak” pinning. 
iii) Region 2 (t ~ 60d) corresponds to weak pinning, region 1 to “superweak” pinning. 

The nature of the different pinning regimes (strong, weak, superweak) and the criteria for the transitions between them are 
discussed in the Appendix. As we also discuss there, we expect that the boundary region which separates the distinct pinning regimes 
will encompass densities p13 ~ 8; in what follows we assume that the transition from one kind of pinning to another will occur in 
this vicinity. If we had at present accurate microscopic treatments of the energy gap À as a function of p, and moreover, could 
calculate with some accuracy the pinning energies, Ep, for each of the possibilities, it would be straightforward to combine theory 
and observation to determine uniquely the nature of pinning in the regions responsible for the observed 3d and 60d relaxation 
times. However, as we discuss in some detail in the Appendix, the current status of microscopic calculations of À and Ep is such 
that any of these three possibilities is consistent with microscopic theory. Still it is illuminating to examine the results of model 
calculations for the variation of pinning parameters and relaxation times throughout regions 1 and 2 for each of the above 
possibilities. 

For the Vela pulsar, equation (5) may be written as: 

_ 280T7 A(MeV) 

“ r6(kFnb/40) 
(18) 

where T7 is the temperature of the inner crust in units of 107 K, r6 the location of the pinning layer in units of 106 cm, b is given 
in fermis, and /cF, the Fermi wavenumber for the superfluid neutrons, is given in fm-1. We consider first the possibility [cases (i) 
and (ii)] that the region which is characterized by a vortex creep relaxation time, t2 ~ 60d, is one in which vortex lines are strongly 
pinned to crustal nuclei. The spacing between effective pinning centers along a vortex line is then given by b ~ hz, the internuclear 
spacing, and equation (18) becomes 

?2(d) = Ts(d) = 
280T7 A(MeV) 

WñbJWj^' 
(19a) 

According to Table 4 (cf. the Appendix), the strong pinning region is 3 < p13 < 8. The calculated variation to be expected for ts 

throughout this region is shown in Figure 6a; there the temperature, T7, which sets the scale of r2. is chosen in such a way that 
the average over the strong pinning region satisfies 

<t2> « 60d = <t2
s(d)> = 280 ' A(MeV) \ 

(kFr(bz/4oy6y2 
7 (19b) 

If case (i) applies, then the density region, 8 < p13 < 11, is one of weak pinning, so that in this region b = bz
3/^2ny4 where 

y4 ~ 1 is a factor which reflects our lack of knowledge of the effective radius of the vortex core for pinning, as discussed in the 
Appendix. We thus write 

i^d) = t^d) = 94y4 
 Tj  
r6A(MeV)(/cF)2(f>z/40)3 (20a) 

<Tl>Ä3d = <T1“'(d)>«94y4 
1 

,r6 A(MeV)(kF)2(i>z/40)3 t7. (20b) 

The calculated variation to be expected for xw throughout the latter region is likewise shown in Figure 6a. 
On the other hand, if case (ii) applies, with superweak pinning throughout the density region, 8 < p13 < 20, say, since we lack 

at present any calculations of superweak pinning energies, then the observation of an “average” 3d relaxation time simply tells 
us that <hsw>, the average effective distance between pinning sites along a given vortex line, is ~ 20b-. We show superweak pinning 
qualitatively for the cases (i) and (ii) with the dashed line in Figure 6a. 

For case (iii), the 60d time is to be attributed to a weak coupling region; one thus uses equation (20a), but the average carried 
out over the density region 3 < p13 < 8: 

<t2> * 60d = <T2
w(d)> = 94y4 

Tj 
A(MeV)(/cF

2)(hz/40)3 (21) 

The calculated variation in tw (with T7 chosen so as to yield eq. [20b]) is shown in Figure 6b; for 3^8, the superweak pinning 
region, matters are the same as for case (ii); one knows only that <bsw> ~ 20<bw>. 
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p (lO^gm/cm^) 
Fig. 6b 

Fig. 6.—(a) Relaxation times t2
s and t1

vv in the cases (i) and (ii). t2
s, corresponding to strong pinning at the lower densities, refers to the axis on the right; 

T iw calculated for weak pinning of the intermediate densities refers to the left axis. The dashed line shows the relaxation time, t1
sw, for superweak pinning qualitatively, 

and also refers to the left axis. Superweak pinning obtains at p > 1.1 x 1014 g cm-3 in case (i) and at p > 8 x 1013 g cm-3 in case (ii). The run of t2
s with density 

is given in eq. (19a) through its dependence on A(p), /cF(p), bz(p), and is calculated from Table 4. For t2
s, we chose T7 =0.07, such that <t2

s) = t2 ~ 60d. 
Tx” is calculated from eq. (20a). <t1'

v> = ix % 3d with the average taken over 8 < p13 <11 corresponds to T7 = 0.03. (h) Relaxation times t2
w and iisvv in the case (iii). 

The dashed line for txsw is, again, only qualitative. 12” is given in eq. (20a), with T7 taken to be 1.5, such that t2 ^ 60d = <t2'
v) (eq. [21]). 

V. INTERIOR TEMPERATURE 
From equations (19) and (21) it is straightforward to obtain estimates of the temperature of the Vela pulsar at the densities which 

characterize the pinning layers. Given the age of this pulsar (>104 yr), these layers are part of the isothermal core of the star 
(Nomoto and Tsuruta 1981; Richardson ei al 1982), so the temperature we estimate is actually the central temperature. 

If the 60d relaxation time is attributed to a region of strong pinning, i.e., in either case (i) or case (ii), we find from (19) that 

j^sucng = a21r6 
' A(MeV) \-1 

kAbjÄö)/ 
0.07 , (22) 

on making use of Table 4 and Figure 6a. Further, for strong pinning to characterize this region, we show in the Appendix 
(eq. [A5]) that there must be a lower bound on A; hence there is an upper bound for T7, which does not depend on a particular 
gap calculation, but follows from the existence of strong pinning. It is, on making use of equation (A5), 

r7
strong ^ 016 / Ti\1/2 / Z/50 

W Wk^ibJAOpURv/ir2, 
(23) 

where y1 and y2 reflect uncertainties in our knowledge of the pinning energy and the energy required to pull a nucleus from its 
equilibrium site, respectively. We expect these quantities to vary through the pinning region. In Table 4 (see the Appendix) we 
give values of yx for different densities in the pinning region for a particular pinning calculation. Here and in the following we 
treat ^ and y2 as constants for simplicity. For given microscopic results these constants can be evaluated as weighted averages 
defined by equations (22) and (23) and the inequality (A5). In equation (23), we have taken r6 = 1, = 7 fm, Z = 50. 

If on the other hand, the 60d relaxation time is attributed to a region of weak pinning, we find from (21) that 

j weak ^ 0.64 

?4 
r6 A(MeV)/cF

2(hz/40)2 
L5 

74 
(24) 

on using Table 4 and Figure 6b. Since strong pinning is not present in this region, we obtain a bound on A by inverting the 
inequality (A5): 

/.. \i/z/r7\/L \ — óiz / r> \ —i/z 
(25) A < 1.4 | — 

yi Hixr^- 
1/2 

On the other hand, since superweak pinning is also not present in the region, we obtain a lower bound on A from equation (A7). 
On substituting these inequalities for A into (21), and calculating the resulting average over values of kF and bz, we obtain 

0.4 

73 74 
(26) 
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The are taken as constants to represent weighted averages. Note, however, that the averaging in the inequality (26) based on 
equation (21) is different from the averaging in the inequality (23) based on equation (19). The factor y3 characterizes our lack 
of knowledge of the details of the transition to superweak pinning. These bounds again do not depend on a particular gap 
calculation. 

Standard cooling calculations (Tsuruta 1979, 1981; Glen and Sutherland 1980; Nomoto and Tsuruta 1981; Van Riper and 
Lamb 1981; Richardson et al 1982) predict internal temperatures ~a few x 107 to 108 K or more for the Vela pulsar. Thus if the 
60d time is associated with weak pinning, our results equations (24) and (26) are marginally consistent with some of the standard 
cooling scenarios of Glen and Sutherland (1980) and Van Riper and Lamb (1981). However, there are considerable uncertainties in 
the standard cooling calculations, in particular concerning the effect of strong magnetic fields on opacities in the neutron star crust 
(Tsuruta 1983). Thus in the case of weak pinning at densities <8 x 1013 g cm-3 one cannot conclude from our internal 
temperature estimate that some nonstandard cooling history involving a fast-cooling pion condensate or quark component is 
called for. On the other hand, if strong pinning is present in this region, the internal temperatures we infer from equations (22) 
and (23) are clearly too cold for standard cooling, and would require a fast cooling component in Vela. 

Observational upper limits to the unpulsed surface X-ray flux from the Vela pulsar (Harnden et al 1979) are consistent with the 
surface and associated internal temperature range predicted by standard cooling calculations. The surface temperatures we infer 
from our estimates of the interior temperature using the temperature profiles given by Gudmundsson, Pethick, and Epstein (1982) 
are well below these upper limits. 

An observational means of distinguishing between the options of moderate internal temperatures (weak pinning) and very low 
internal temperatures (strong pinning) is provided by comparing the energy dissipation expected in either case with detections of, 
or upper limits on, the surface thermal flux. As we saw in Paper I (eq. [L57J), the rate of energy dissipation due to vortex creep 
is proportional to an average value of the steady state lag between the pinned superfluid and crust rotation rates: 

(27) 

on noting that ^ cocr and introducing an average value œCT of cocr, the critical lag for unpinning, which from equation (Lll) is 

co cr Ep 
pKrbÇ ' 

(28) 

Constraints imposed on £diss by a detection or upper limit of the surface X-ray flux will give information on cbcr through 
equation (27). Table 5 of the Appendix gives cocr as a function of density in the pinning layers for both strong and weak pinning, 
based on the specific model used to calculate Table 4. Depending on whether or not one has appreciable regions of strong pinning 
present (I2

S/I ~ 10“2), the resulting values of cöcr differ by a factor ~35. Thus, one expects œcr ~ 1 rad s“1 in the case of strong 
pinning in the region Pi3 á 8, and cöcr ~ 0.2 in the case of weak pinning in this region. These averages are taken over the entire 
pinning region, and hence are less than half the average values for Pi3 ^ 8, as the values of cocr at the higher densities are 
negligible in comparison. The upper limit to the unpulsed X-ray flux from Vela, Lx < 1033 ergs s_1 (Harnden et al 1979) gives 
œcr < 1 rad s-1, and hence favors weak pinning. Detected X-ray fluxes (Helfand 1982) from two radio pulsars PSR 1929+10 
(detected as a point source) and PSR 0950 + 08 likewise yield interesting upper limits on cöcr. If /p æ 10-2 / is taken to be 
1043 g-cm2, these pulsars have œcr < 5.6 x 10“ 2 and œcr < 0.75, respectively, so that to the extent that the current distance estimates 
to these pulsars are reliable, we conclude in these cases as well that no significant regions of strong pinning exist. 

The instrumental lower limit for soft X-ray detections with the Einstein Observatory was fmin æ 10”13 ergs cm”2 s”1 (Helfand 
1982). Future X-ray detectors with an improved sensitivity will be able to search for pulsars radiating surface flux associated with 
energy dissipation by creep, equation (27), out to a larger distance. The limiting distance within which a pulsar with given 
D, Ip, and œcr would be detected with a detector which is sensitive to a soft X-ray flux greater than / is: 

D = 
+ Q>cr|Ô| 

l 4rt/ 

1/2 
(29) 

Normalizing to typical values /p = 10 2 I = 1043 g-cm2, |Q| = 10 14 rad s 2, and fE ^ 10 13 ergs cm 2 s \ the flux threshold 
of the Einstein Observatory, we find this limiting distance to be 

D æ 100 /^p,43 I ^ I — 14 ^cr\ 
\ (///e) / 

1/2 
pc (30) 

A future instrument with / = 0.1/E would push this limit to 300 pc for these representative values. Such a detector might also 
uncover a new class of hitherto unobserved neutron stars : those with low magnetic fields and/or rotational periods which do not 
lead to a detectable radio luminosity, but which nonetheless are slowed down by electromagnetic torques. These might be 
descendents of pulsars whose magnetic fields have decayed or whose rotation rates decreased below the threshold values of BQ.2 

for pulsar activity, but which nevertheless still produce long-wavelength dipole radiation and hence a large enough spin-down 
rate Q. We further note that if there are neutron stars whose rotation rates at formation are too low to produce pulsar activity, 
but which nevertheless decelerate by electromagnetic torques, for large enough cocr and Ù these might be detected through the 
energy dissipation rate given in equation (27). 
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VI. CONCLUDING REMARKS 

Our principal conclusions are fourfold : 
i) The observed complex postglitch behavior of the Vela pulsar after the four glitches which took place during the decade 

1969-1979 can be explained as resulting from the coupling of the crust to that part of the neutron superfluid in which vortex 
lines are pinned to the crustal nuclei. 

ii) At least two distinct pinning regions separated by a boundary exist in this pulsar; their inertial moments are ~10-2/, a 
result consistent with microscopic theory for neutron matter equations of state which are moderately stiff to stiff. This indicates 
that the entire star, except for the pinned superfluid, must be included in the “crust” moment of inertia, in agreement with recent 
calculations which show that the superfluid core of the star couples to the crust on time scales of seconds (Alpar, Langer, and 
Sauls (1984). 

iii) State-of-the-art microscopic calculations do not enable one to decide between the alternatives of strong and weak pinning for 
the density region 3 < p13 < 8 ; however, combining our theoretical results on energy dissipated by vortex creep with X-ray 
observations of the Vela pulsar and two other pulsars, we conclude that there are no significant regions of strong pinning in these 
stars. Hence the two distinct pinning regions must correspond to weak pinning and superweak pinning, respectively. 

iv) Consequently, the internal temperature of the Vela pulsar is (1.5 ± 1) x 107 K. The quoted errors do not refer to a particular 
calculation, but rather reflect estimates of the degree of uncertainty introduced by our lack of knowledge of various pinning 
parameters. This temperature range is consistent with standard cooling scenarios for this pulsar. 

In our fit to the timing data we have made the simplest possible assumptions regarding the regions in which vortex creep takes 
place. For example, we have approximated the expected variation in the distances b between pinning sites for either weak or strong 
pinning regions by some average values. In practice, we expect a distribution of h-values in either case, a distribution which may 
in principle be observed as a distribution of those relaxation times which characterize the return of vortex creep in these regions 
to its steady-state values. These averages will, in fact, differ from one glitch to the next, since the regions through which no 
vortices travel may be expected to vary from one glitch to the next. Moreover, we have used a highly simplified model for the 
boundary region. Again, structure in the timing data may arise from pockets of pinned vorticity which are to be expected in this 
region. Needless to say, it is highly gratifying that none of these expected inhomogeneities are present to such an extent as to 
preclude agreement at an elementary level between theory and observation. 

It will be of great interest to see whether the theory developed here and in Paper I can explain the timing behavior of the Vela 
pulsar following its fifth and sixth glitches with no significant changes in the average relaxation times and t2. The recently 
published timing results after glitch 5 are encouraging in that they seem to have characteristic features which are similar to those 
observed after the first four glitches. The fit to timing data following this glitch presented by McCulloch et al. (1983) consists of a 
fast exponential relaxation time of 1.6 days, followed by a slower exponential relaxation, with time constant t = 233d fitted to a data 
span of ~6 weeks. We expect that the timing data can be fitted equally well, and easily interpreted in physical terms, if one fits 
Úc(t) with the internal torques of our vortex creep model, viz., the torques N1 and N2 with time scales Ti ~ 3d, t2 ~ 60d, and 
a boundary layer response NA which contributes a term linear in i to Qc. Such fits to the timing data following glitch 5 will be 
particularly interesting, as the occurrence time of this glitch is known with an uncertainty of only 18 hr. We also expect Ùc(t) 
following glitch 6 (Hamilton, McCulloch, and Royle 1982) to display similar features. Moreover, the study of glitch-to-glitch 
correlations in our derived quantities Iu /2, and iA, as well as in “best-fit” values of t1 and t2, should provide considerable 
insight into the origin and frequency of giant glitches. 

The twin possibilities of glitch precursors and/or hysteresis also deserve further study. It is tempting to conclude from the fact 
that McCulloch et al. find, just before glitch 5, an Qc term which is 2.1 ± 0.3 x 10“16 rad s~2 d-1, and hence is lower than the 
value 3.7 ± 0.7 x 10“16 rad s" 2 d"1 found by Downs in his postglitch 4 data, that a significant part of the boundary layer region 
relevant to glitch 4 relaxed just prior to glitch 5, a possibility which deserves careful examination. 

Improved theoretical calculations of the superfluid energy gap, the pinning energy, and the distance between pinning sites under 
weak pinning conditions will make possible an improved determination of the pulsar temperature. Microscopic calculations of 
pinning parameters in the superweak regime are also highly desirable ; these will be especially helpful in sorting out the nature and 
extent of the transition from weak to superweak pinning to the star, as well as providing a basis for an independent estimate of 
the internal stellar temperature. 

Finally we note that the general theory of vortex creep developed in Paper I and applied here to the Vela pulsar with encouraging 
results offers other astrophysical applications. One particular application is to noise associated with small discrete unpinning events 
and the response of vortex creep to these. Another interesting application is to many X-ray sources where an accreting neutron star 
may be subject to variations in the external (accretion) torque on time scales comparable to the relaxation times of vortex creep, 
so that the response of vortex creep will produce time-varying internal torques. Observationally, the energy dissipation associated 
with vortex creep may provide a future means of detecting neutron stars which experience an external torque but are not active 
as pulsars. These further applications of our vortex creep theory will be explored in future work. 

We thank G. Downs, D. Helfand, R. Nandkumar, M. Ruderman, and S. Tsuruta for useful conservations. M. A. A. and J. S. thank 
M. Ruderman, the Columbia Astrophysics Laboratory, and the Departments of Physics and Astronomy, Columbia University for 
their hospitality. We want to give our special thanks to the Aspen Center for Physics, where our collaborative efforts on this problem 
began in the summer of 1975, and where they have continued to flourish in subsequent summers. 
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APPENDIX 

In this Appendix we examine predictions of microscopic theory for the various pinning regions. We make the theoretical 
uncertainties explicit by including uncertainty factors y* in several key equations that distinguish the different pinning regimes. 

We first examine the pinning energy. The volume pinning effect we have considered in previous work (Alpar 1977; Anderson 
et al 1982) gives the pinning energy of equation (1.7) and Figure 1.2, 

The quantity in the square brackets is the energy cost per unit volume to create a vortex line core, which is normal matter. The 
subscripts “out” and “in” refer to values of A, /cF, and EF for the superfluid neutrons outside nuclei and inside nuclei, respectively; 
V is the geometrical overlap volume of the pinned vortex line (treated as a cylinder of radius £) and the nucleus (a sphere of radius RN)\ 

4n 
T 

V = ~R^ 

3/2 
(£ < Rn) , 

(Í > Rn) - 
(A2) 

Ç = 2£F/7r/cFA is the coherence length of the neutron superfluid. There are two sources of uncertainty in equation (Al). First, the 
comparison of condensation energies per unit volume between the superfluid inside and the superfluid outside the nuclei, represented 
by the square brackets in equation (Al), is not exact ; it rests on the approximation of separately defined local densities of superfluid 
neutrons inside and outside the nuclei. Second, the effective volume within which the microscopic structure of the superfluid 
is changed by pinning may differ to some extent from the geometrical overlap, equation (A2). For example, Thuneberg, Kurkijärvi, 
and Rainer (1982) have recently carried out a microscopic calculation of the binding of a magnetic vortex to a pinning center of 
radius RN in a type II superconductor; they find that quasi-particle scattering by the center leads, in the case £ RN, to an increase 
in the pinning volume by a factor ^(^/R^y). 

In the following discussion, we shall deal with these uncertainties by taking the pinning energy to be : 

to scale the dependence of Ep on the gap and density in a simple way. In equation (A3), energy cost per unit volume to create a 
vortex core is scaled to the value of the condensation energy in the bulk of the superfluid outside the nuclei, while V is taken to be 
2nÇ2RN, the approximate geometrical overlap volume as long as Ç < RN (which is roughly the case for p < 7 x 1013 g cm-3). 
The quantity y x takes into account the uncertainty implied in this procedure as well as the uncertainty in the condensation energy. 
A given model calculation of Ep can then be parameterized by the value of it yields. For example, the pinning energy calculated 
using equations (Al) and (A2) is given in Table 4 (see also Fig. 2 of Paper I). One finds Ep > 0 (i.e., pinning occurs) at p 3 x 1013 

g cm 3; the values of ^ tabulated there are obtained by comparing equation (A3) with equations (Al) and (A2). 
Strong pinning obtains when the pinning energy is large enough to displace nuclei from their equilibrium sites by an amount 

sufficient to enable the vortex line to pass through every lattice site on its path, so that the distance between pinning sites along the 
vortex line is h ~ bz, the internucleon spacing (Anderson et al 1982). To achieve this, one requires Ep > £L, the energy to displace 

TABLE 4 
Pinning Parameters as a Function of Density (in 1013 gem-3) 

p bz(fm) Z kf (fm
-1 ) A(MeV) £(fm) £p(MeV) £L(MeV)/y2 7l 

3.41..  49 50 0.82 2.8 3.8 0.86 0.46 0.34 
4   47 50 0.86 2.8 4.0 1.3 0.58 0.44 
5   43 50 0.93 2.7 4.5 2.0 0.92 0.53 
6.  40 50 1.0 2.5 5.2 2.6 1.6 0.57 
7    36 50 1.0 2.2 6.1 3.0 2.9 0.57 
8   33 40 1.1 1.9 7.4 2.8 3.6 0.47 
9    31 40 1.1 1.7 9.0 2.3 6.0 0.34 

10    30 40 1.2 1.4 11.0 1.8 10.0 0.24 
11   28 40 1.2 1.2 14.0 1.3 19.0 0.16 
12     27 40 1.3 0.85 19.0 0.71 44.0 0.08 
13.17   25 32 1.3 0.65 26.0 0.45 96.0 0.04 

Note.—The values of bz and Z are interpolated between values given by Negele and Vautherin (1973) 
at Pi3 == 3.41, 7.93, 13.17. We stop at p13 = 13.17 as this is the highest density at which parameters of the 
lattice are given by these authors. The values of A are taken from Hofîberg et al. (1970). Values of kF, 
A, and £ correspond to the density of superfluid neutrons outside the nuclei. Ep is calculated from eqs. 
(A 1-2), El from eq. (A4), y1 by comparing the calculated values of with eq. (A3). 
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a nucleus a distance (If there is a region of strong pinning, it is characterized by £ < RN, the radius of a nuclear cluster.) 
The energy for displacing nuclei by a distance ^ in the lattice can be written as: 

Ej. = 
ZV 

í272 , (A4) 

where the factor y2 ~ 1 allows for our lack of knowledge of the mean displacement of a nucleus to achieve pinning. Depending on 
the orientation of the vortex lines with respect to the lattice and the actual microscopic mechanism of pinning, the relevant mean 
displacement in equation (A4) may be somewhat greater or less than £. For the specific example tabulated in Table 4 we find that 
if y2 ~ 1, strong pinning exists for densities, 3 < p13 < 8, where p13 is the density in units of 1013 g cm-3. 

Inspection of Table 4 shows that if the ratio yjy2 were a factor of 2 smaller for 3 < p13 < 8 (as might result, for example, 
from an overestimate by a factor of 2 of the difference in condensation energy per unit volume for superfluid neutrons inside and 
outside nuclei, or with y2 ~ 2), there would be no region of strong pinning. It is either of these possibilities which is likely the 
primary source of uncertainty in the nature of the pinning here; at the densities involved (p < p0/4, where p0 is the density of nuclear 
matter), the low density approximation inherent in the Hofiberg et al (1970) or Takatsuka (1972) calculations of A is likely 
valid. Using (A2) and (A4), it is straightforward to obtain the following criterion for strong pinning: 

A(MeV) > 1.4(y2/y1)
1/2(Z/50)(bz/40)_ 3/2kF~ 1,2(RN/!)~1/2 , (A5) 

where bz is in fm and kF in fm~ ^ 
Weak pinning obtains when Ep < EL, and the coherence length ^ < bz/2 (see below). Inspection of Table 4 shows that for this 

model calculation weak pinning is to be expected for 8 < p3 < 11. However, over this density region existing gap calculations are 
not as reliable as at lower densities ; if the true value of A is a factor ~ 2 larger than those calculated in the low-density limit for 
10 Pi3 20, one would find weak pinning for 8 < p13 < 20; conversely, if the true value of A were some 80 % smaller for p13 ~ 9, 
superweak pinning would begin in this density range. Where weak pinning exists, vortex lines cannot displace nuclei to achieve 
optimal pinning at intervals b ~ bz. Nor can they bend to pin, as the tension on vortex lines is EFkF ä 30-40 MeV/fm. They 
therefore pin only to those nuclei that coincide with the vortex core. If the effective cross section area of the vortex core for such 
“geometrical” pinning is y^nÇ2, with y4 ~ 1, the distance between successive pinning nuclei along the vortex line (the length of 
vortex core in which there is a single pinning nucleus) is given by: 

(A6) 

where bz
3 represents the volume per nucleus in the lattice. In Table 5 we give calculated values of b, the distance between pinning 

centers, and cocr = Q — Qc, the critical lag for unpinning, given by equation (28), for two different models. The first is the example 
of Table 4, in which one has strong pinning for 3 < p13 < 8, weak pinning for 8 < p13 ;$ 11; this corresponds to case (i) discussed 
in the text. The second is the possibility cited above, that (yjy^) ^0.2 for 3 < p13 < 8, in which case one has weak pinning 
throughout this density range; it will correspond then to case (iii) considered in the text. The results presented in Table 5 illustrate 
the dramatic change in b and cocr which occur with a transition from strong to weak pinning; we see also that for the same density 
region, these parameters differ substantially, depending on whether or not strong pinning conditions are met. 

Superweak pinning obtains when the coherence length ^ > bz/2. As illustrated in Figure 1 of Paper I, the vortex line core then 
encompasses many nuclei within its diameter, so that moving the vortex line makes little difference in the available pinning energy. 

TABLE 5 
Pinning Parameters as a Function of Density for Two Different Models of 

Pinning Energies and Superfluid Energy Gaps 

Case (i) Case (iii) 

Pi3 £p(MeV) b(ïm) cocr(rad s ^ £p(MeV) b(fm) cocr(rad s l) 

3.41   0.86 49 12 0.43 2500 0.12 
4   1.3 47 15 0.65 2000 0.18 
5   2.0 43 18 1.0 1200 0.31 
6   2.6 40 18 1.3 700 0.49 
7   3.0 36 17 1.5 400 0.76 
8   2.8 33 13 1.4 200 1.03 

10   1.8 72 2 
11   1.3 39 1.9 

Note.—The first model is based on the calculations presented in Table 4 and 
corresponds to case (i) of the text; the second assumes that Ep is everywhere reduced 
by a factor of 2 and leads to case (iii) of the text. Our model calculation stops at the 
transition to superweak pinning. 
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We take into account our lack of knowledge of just where the transition from strong or weak to superweak pinning occurs, by 
writing the condition for a transition to superweak pinning as 

, 2E¥ bz 

TCrCp A 2 

where y3 ~ 1. Hence where 

(A7) 

A(MeV) 2: (0J/y3)kF/(bz/40), (A8) 

there will be no regions of superweak pinning present. Here bz is in fm and /cF in fm" ^ 
Microscopic calculations do not exist for b and œcr under superweak pinning conditions. The pinning energy, is comparable 

to those which are tabulated in Table 5; however, because ¿ 5: hz/2, a given vortex core can pin to many adjacent nuclei 
simultaneously, what is then relevant is the potential barrier for motion of this configuration from one set of nuclear sites to another. 
This motion can be described by the same vortex creep equations as those used to treat strong or weak pinners; b is, however, 
to be interpreted as the distance along the vortex line between the sets of nuclei which constitute an effective pinning site. Clearly b 
in the superweak regime is considerably greater than the pinning length in the weak pinning regime, while the effective pinning energy 
per nucleus, £/ff, will be considerably less than the previous energy per nucleus, Ep, of the weak pinning regime. Similarly we 
expect that representative values of œcr in the superweak regime will be considerably less than those encountered in the weak 
pinning regime. 

We conclude that either a strong-to-weak or a strong-to-superweak transition at p13 ~ 8 is consistent with current microscopic 
calculations, as is the possibility of a weak-to-superweak transition at about this density. 

REFERENCES 

Alpar, M. A. 1977, Ap. J., 213, 527. 
Alpar, M. A., Anderson, P. W., Pines, D., and Shaham, J. 1981, Ap. J. (Letters), 

249, L33. 
 . 1984, Ap. J., 276, 325 (Paper I). 
Alpar, M. A., Langer, S., and Sauls, J. A. 1984, Ap. J., submitted. 
Anderson, P. W., Alpar, M. A., Pines, D., and Shaham, J. 1982, Phil. Mag. A, 

45, 227. 
Downs, G. S. 1981, Ap. J., 249, 687. 
Downs, G. S., Manchester, R. N., and Newton, L. M. 1978,1A U Circ., No. 3274. 
Glen, G., and Sutherland, P. 1980, ^4p. J., 239, 671. 
Gudmundsson, E. H., Pethick, C. J., and Epstein, R. I. 1982, Ap. J. (Letters), 

259, L19. 
Hamilton, P. A., McCulloch, P. M., and Royle, G. W. R. 1982, IAU Circ., 

No. 3729. 
Harnden, F. R., Jr., Hertz, P., Gorenstein, P., Grindlay, J., Schreier, E., and 

Seward, F. D. 1979, Bull. A AS, 11, 424. 
Helfand, D. 1982, in I AU Symposium 101, Supernova Remnants and Their 

X-Ray Emission, ed. P. Gorenstein and J. Danziger, (Dordrecht: Reidel). 
Hoffberg, M., Glassgold, A. E., Richardson, R. W., and Ruderman, M. 1970, 

Phys. Rev. Letters, 24, 775. 
Manchester, R. N., Goss, W. M., and Hamilton, P. A. 1976, Nature, 259, 291. 

McCulloch, P. M., Hamilton, P. A., and Royle, G. W. R. 1981, IAU Circ., 
No. 3644. 

McCulloch, P. M., Hamilton, P. A., Royle, G. W. R., and Manchester, R. N. 
1983, Nature, 302, 319. 

Nandkumar, R. 1983, private communication. 
Negele, J. W., and Vautherin, D. 1973, Nucl. Phys. A, 207, 298. 
Nomoto, K., and Tsuruta, S. 1981, Ap. J. (Letters), 250, L19. 
Pandharipande, V. R., Pines, D., and Smitn, R. A. 1976, Ap. J., 208, 550. 
Pines, D. 1980, J. de Phys., C2, 111. 
Radhakrishnan, V., and Manchester, R. N. 1969, Nature, 222, 228. 
Reichley, P. E., and Downs, G. S. 1969, Nature, 222, 229. 
 . Í971, Nature Phys. Sei., 234, 48. 
Richardson, M. B., Van Horn, H. M., Ratcliff, K. F., and Malone, R. C. 1982, 

Ap. J., 255, 624. 
Takatsuka, T. 1972, Progr. Theor. Phys., 48, 1517. 
Thuneberg, E. V., Kurkijärvi, J., and Rainer, D. 1982, Phys. Rev. Letters, 48, 

1853. 
Tsuruta, S. 1979, Phys. Rept., 56, 237. 
  . 1981, in I AU Symposium 95, “Pulsars,” ed. R. Wielebinski and W. 

Sieber (Dordrecht: Reidel), p. 331. 
 . 1983, private communication. 
Van Riper, K. A., and Lamb, D. Q. 1981, Tp. J. (Letters), 244, L13. 

M. A. Alpar and D. Pines: Physics Department, University of Illinois, Urbana, IL 61801-3000 

P. W. Anderson : Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 

J. Shaham: Racah Institute of Physics, Hebrew University, Jerusalem, Israel 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 


	Record in ADS

