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ABSTRACT 
X-rays emitted in the inner part of an accretion disk system can heat the surface of the disk 

farther out, producing a corona and possibly driving off a strong wind. We analyze the dynamics of 
Compton-heated coronae and winds, using an approximate two-dimensional technique to estimate 
the mass loss rate as a function of distance from the source of X-rays. 

Our findings have important dynamical implications for accretion disks in quasars, active galactic 
nuclei, X-ray binaries, and cataclysmic variables. These include: (1) mass loss from the disk 
possibly comparable with or exceeding the net accretion rate onto the central compact object, 
which may lead to unstable accretion; (2) sufficient angular momentum loss in some cases to 
truncate the disk in a semidetached binary at a smaller radius than that predicted by tidal 
truncation theories; and (3) combined static plus ram pressure in the wind adequate to confine 
line-emitting clouds in quasars and Seyfert galaxies. 

We analyze and discuss the observable manifestations of Compton-heated winds and coronae in a 
companion paper (Paper II). 
Subject headings: galaxies: Seyfert — hydrodynamics — quasars — stars: accretion — 

X-rays: binaries 

I. INTRODUCTION 

Coronae and winds form outside the photospheres of 
stars when energy from the stellar interior is deposited in 
gas which is too tenuous to radiate it away efficiently. 
Viscous accretion disks also have internal heat sources 
and densities which decline sharply away from the 
equatorial plane; hence coronae and winds may develop 
in much the same way (Liang and Price 1977). Several 
mechanisms have been proposed for internally powering 
coronae and winds from disks, including acoustic fluxes 
driven by convection (Bisnovatyi-Kogan and Blinnikov 
1977; Livio and Shaviv 1981), turbulence (Icke 1976), 
or gravitational instabilities (Paczynski 1978); and non- 
thermal heating by magnetic flares (Galeev, Rosner, and 
Vaiana 1979). In addition to various forms of heating 
from within, the outer parts of an accretion disk may 
intercept some of the energetic radiation emitted in the 
inner parts of the gas flow which surrounds the central 
compact object (Shakura and Sunyaev 1973). The flux of 
radiation produced in the central regions of the 
accretion disk and absorbed at some larger radius may 
greatly exceed the heating produced locally. The rate of 
heating per particle is proportional to the intensity of 
radiation, while the cooling rate in the disk relies on 
two-particle processes and therefore declines with the 
density as one moves away from the equatorial plane of 
the disk. Below some critical density, radiative heating 
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and cooling processes overwhelm two-body cooling, 
and the gas heats toward some high temperature 
determined by interactions between the particles and the 
photons. For X-ray binaries and quasars, the radiation is 
sufficiently hard that the gas can be heated to tempera- 
tures exceeding 107 K, predominantly through the 
Compton process. Since these temperatures far exceed 
the internal temperatures associated with the outer parts 
of accretion disks, the heated gas forms a tenuous corona 
with a thickness exceeding that of the disk. If the sound 
speed in the heated gas also exceeds the escape speed 
from the system at the radius of interest, then the gas 
steadily escapes as it is heated and a wind results. 

Our purpose in this paper is to analyze the 
dynamics of Compton-heated winds and coronae that 
may form above accretion disks whose surfaces are 
irradiated by X-rays from a compact central source. 
Parts of this and related problems have been tackled by 
other authors, and we extend or complement their work. 
For example, Compton-heated winds from stars have 
been studied extensively, for the conditions appropriate 
to X-ray binaries like HZ Her. Here the main motivation 
has been to discover whether mass transfer from the 
“normal” star to the compact companion could be 
“self-excited” (Davidson and Ostriker 1973; Arons 1973; 
London, McCray, and Auer 1981 and references therein; 
London and Flannery 1982) by X-ray irradiation of the 
former by the latter. We examine the dynamical implica- 
tions of Compton-driven mass loss from disks in § IV, 
and find that mass and angular momentum loss can have 
an important impact on both the structure of the disk 
and the evolution of an X-ray binary. We defer our 
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WINDS AND CORONAE ABOVE ACCRETION DISKS 

analysis of the directly observable manifestations of 
Compton-heated winds and coronae to a companion 
paper (Begelman and McKee 1983, Paper II). These 
depend sensitively on the geometry of the disk and the 
transfer of incident X-rays through the heated gas, 
whereas the purely dynamical features of the mass loss do 
not. 

In order to make our quantitative analysis tractable, 
we have made a number of simplifying assumptions : 

i) We consider heating and cooling by Compton 
scattering only. London, McCray, and Auer (1981) have 
demonstrated that our neglect of line cooling on the 
dynamics is justified, provided the gas heats to tempera- 
tures greater than a few times 106 K over a pressure 
scale height. This is probably the case for the spectra and 
dimensions appropriate to quasars and X-ray binaries, 
but may not apply to objects with much softer spectra. 

ii) We assume that the disk photosphere is irradiated 
by a point source of X-rays located at the center of the 
disk. The disk is likely to be opaque to all but the most 
energetic X- and gamma-rays, but particles at the 
photosphere will be able to “see” the central source if the 
disk flares, i.e., if the height of the photosphere above 
the equatorial plane increases with radius R at a rate 
faster than one proportional to R. Shakura and Sunyaev 
(1973) found that the outer regions of their disk models 
flared, and foresaw that Compton-heated winds and 
coronae could result. Other geometric configurations 
may enable hard radiation from the inner regions to 
reach the outer parts of the disk, e.g., if the source of 
X-rays extends far enough above and below the 
equatorial plane that its thickness exceeds that of the 
disk, or if radiation from a central compact source is 
scattered down onto the disk by material lying at high 
latitudes. Provided the local radiation intensity at the 
disk photosphere can be estimated self-consistently, the 
local properties of the resulting wind or coronae can 
be inferred. 

iii) We neglect nonthermal sources of energy from 
within the disk which may contribute to heating the 
corona or wind. 

iv) We assume that conduction effects are not im- 
portant, except perhaps in a thin boundary layer near 
the base of the corona/wind. This contrasts with the 
nonthermal, conduction-stabilized corona considered by 
Liang and Thompson (1979). In a Compton-heated 
corona, conduction is less important because (1) tem- 
peratures are lower than a few times 108 K, (2) densities 
are higher than in the nonthermal case, and (3) the 
heating is spread throughout the corona/wind. It is 
interesting to contrast the third point with coronae or 
winds driven from below, where it is often argued that 
most of the energy is dumped into a narrow layer at the 
base, and further redistribution relies largely on con- 
duction. 

v) We assume that the X-ray source is time- 
independent. Thus, caution should be exercised in 
applying our results to pulsating or highly variable 
sources, although it may be permissible to use a time- 
averaged luminosity if the variability time scale is 
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shorter than the characteristic dynamical time at the 
radius of interest. 

vi) We neglect the effects of radiation pressure. Where 
attenuation is unimportant, this can be remedied by 
replacing the central mass by an effective mass, smaller 
by a factor (1 — L/LE), where LE is the Eddington limit 
and L is the luminosity of the source. However, where 
attenuation along the line of sight is significant, the 
required modifications are much more complicated. It 
is worth noting that the characteristic “critical” 
luminosity in our problem (eq. [2.12]) is typically a 
few percent of LE or less, so that strong Compton- 
heated winds and coronae do not require luminosities 
close to the Eddington limit. 

vii) We consider only the gravitational field of the 
central compact object in analyzing the structure and 
dynamics of the corona/wind. In particular, we neglect 
the self-gravity of the disk and the distributed mass of a 
star cluster, both of which may be important in quasars, 
and we also neglect the gravitational influence of a 
binary companion, which may influence the outer 
corona/wind in X-ray binaries. 

viii) We seek solutions for the corona/wind in which 
the pressure approaches zero away from the disk. Thus, 
we ignore possible back-pressure due to a high-latitude 
wind (jet?) or, in the case of an X-ray binary, a wind 
from the companion star. 

We proceed as follows. In § II we review the thermal 
properties of gas irradiated by X-rays, give the relevant 
heating and cooling rates, and describe the qualitative 
behavior of Compton-heated winds and coronae. For a 
central radiation source, the structure of the corona/wind 
can be divided into five regions, the boundaries between 
which depend on radius and on the luminosity and 
spectrum of the X-ray source. This parameter space is 
summarized in Figure 1. In § III we analyze optically 
thin Compton-heated winds in detail, and derive expres- 
sions for the local mass loss rate in each region of the 
parameter space. An analysis of radiative transfer effects 
is deferred to Paper II, but the results of this section are 
readily generalized to optically thick winds. The 
integrated losses of mass and angular momentum due 
to Compton-heated winds are computed in § IV, for a 
disk of finite extent. We find that the total mass loss may 
greatly exceed the accretion rate responsible for 
producing the X-ray flux, and demonstrate that this 
situation may lead to instability in the accretion flow, 
and a fluctuating luminosity. The angular momentum 
carried away by the wind is also substantial, and will in 
some cases be able to truncate the accretion disk in an 
X-ray binary at a smaller radius than that predicted 
by the tidal truncation theory of Smak (1976) and 
Paczynski (1977). 

II. GENERAL CONSIDERATIONS 

a) Thermal Equilibrium 
The thermal equilibrium of a gas exposed to ionizing 

radiation which extends into the X-ray region of the 
spectrum has been calculated most recently by Krolik, 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
83

A
pJ

. 
. .

27
1.

 . 
.7

O
B 

72 BEGELMAN, McKEE, AND SHIELDS Vol. 271 

McKee, and Tarter (1981, hereafter KMT) for conditions 
appropriate to quasars and by London, McCray, and 
Auer (1981) for the higher density conditions expected 
in binary X-ray sources. The thermal state of the gas 
is determined by the shape of the spectrum together 
with the parameter 

4nJ 
pc ’ 

(2.1) 

where J is the mean intensity of the radiation integrated 
over frequency and p is the gas pressure. For a beam of 
radiation, 4nJ equals the flux F, and S' is simply the 
ratio of the radiation pressure to the gas pressure. 
For a fully ionized gas of cosmic abundances, this param- 
eter is related to the parameter S used by KMT by the 
relation H' = (J/2.3 Jion)S, where Jion is the mean intensity 
of the ionizing radiation between 1 and 103 rydbergs. 

For spectra appropriate to quasars or X-ray sources, 
there are two stable phases : 

1. For S' < S'c#max there is a cool phase with 
T < IO4,5 K, in which photoionization heating is 
balanced by recombination and line cooling. KMT 
assumed the density was sufficiently low (ne < 1012 

cm-3) that line cooling was effective and found 
S' max = (2.5—10)(J/Jion) for a variety of power law 
spectra. London, McCray, and Auer (1981) assumed 
that line cooling was collisionally quenched and found 
S'max ~ i-4 for a variety of bremsstrahlung-like spectra. 

2. For S' > S^min there is a hot phase in which 
Compton heating by energetic photons is balanced by 
inverse Compton cooling by softer photons. The equili- 
brium temperature Th is generally close to the “inverse 
Compton temperature ” Tlc ä 108 K, discussed below. 
The value of S^min is determined by the effect of other 
heating and cooling processes ; if the only such process 
which is important is bremsstrahlung, then KMT showed 

SUm = l-22Td/2 , (2.2) 
where ^ics — ^ic/lO8 K. 

For sufficiently hard ionizing continua, there is a small 
range H^min < S' < S'>max in which the hot and cool 
phases can exist in pressure equilibrium with each other. 
In this range of S' there is also an intermediate 
equilibrium temperature that is thermally unstable. On 
the other hand, for softer continua giving Th < 107 K, 
the equilibrium temperature is a steep but monotonie 
function of S in the range S = 10± \ and no two-phase 
equilibrium is possible. 

The thermal equilibrium in the cool phase is a 
complicated function of atomic heating and cooling 
parameters, but fortunately that of the hot phase is much 
simpler (cf. KMT). For our applications, the size of the 
region producing most of the hard radiation is small 
compared to the volume of hot gas. If the gas is 
optically thin, then an isotropic source of radiation of 
luminosity L leads to heating and cooling rates per unit 
volume at a radius R of 

,F = ne (JT 
<0 L 

me c
2 4nR2 ’ 

(2.3a) 

where 

n2Alc = ne (7j 
4kT L 
mec

2 4nR2 ' 
(2.3b) 

<€> = L-1 

In the hot phase, the temperature rises until inverse 
Compton cooling, which predominates, balances 
Compton heating. This gives an equilibrium temperature 

kTlc = ¿<6) , (2.4) 

which allows us to reexpress the heating rate as 

kTlc (7tL 
mec

2 nR2 (2.5) 

b) Qualitative Behavior of Compton-heated Winds 
An accretion disk is thin at radius R0 if its internal 

sound speed is much smaller than the local Keplerian 
speed. The vertical scale height h'd is related to R0 

through the ratio of these two speeds (Shakura and 
Sunyaev 1973). At larger distances from the midplane 
the pressure and density both drop sharply. If such a 
disk is illuminated by X-ray and EUV continuum, the 
ionization parameter H will increase rapidly with 
increasing height in the atmosphere, eventually exceeding 
Sc,max- Above this level, the gas must either be in the 
hot phase, T = 7¡c, or be in the process of heating 
toward Tic- 

A nearly hydrostatic corona will exist at R0 if the 
Compton temperature Tlc is less than the “escape 
temperature” Tg = GMplR0k, that is, 

Tic 
Tg 

(2.6) 

where cIC = (kTlc/p)1/2 is the isothermal sound speed at 
7¡c and vg is the Keplerian velocity. This condition is 
satisfied inside the radius 

Ric = 

Therefore, for 

GMp _ 1.0 x 101 

ic iIC8 (—) Wo/ 
cm (2.7) 

£ — Ro/Ric — Tic/Tg (2.8) 
much less than one, we expect a sharp transition from 
a disk photosphere (or photoionized chromosphere) to 
a static hot corona at T = Tlc- On the other hand, for 
£ > 1, a vigorous wind may arise as gas rising above 
the level at which S = Hc>max is heated to a temperature 
that exceeds the escape temperature; we term this the 
“wind region” of the disk. In fact, the analysis in § III 
shows that a significant wind occurs for £ > 0.1. A wind 
is possible only at large radii because the Compton 
temperature Tlc depends on the spectrum of the radiation 
and not on its intensity, whereas Tg decreases with 
increasing F0. 

In the wind region, the finite heating rate of the hot 
gas must be considered. Conceivably, the gas will not 
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have time to heat to 7¡c before it has reached height 
~R0 above the disk. In this case, the effectiveness of 
gravity at inhibiting the wind is a function of the 
temperature actually reached by the gas at heights ~R0i 
compared with Tg. This motivates the definition of a 
“characteristic temperature,” Tch, that satisfies the self- 
consistent condition kTch = r0(R0/cch), where r0 is the 
optically thin heating rate evaluated at R0 and 
cCh = (kTJii)112 is the isothermal sound speed at Tch- 
This gives 

kTch = n1/3(r0R0)2/3 . (2.9) 

The importance of gravity in the wind region may 
be expressed in terms of the dimensionless parameter 

where tg = R0/vg and th(Tch) = kTcJT0 are characteristic 
gravitational and heating time scales. For a > 1 and 
£ = R0/Ric > the wind heats quickly enough to escape 
without suffering a large pressure drop due to gravity. 
We denote the radius at which a = 1 as Rch; for 
R0 > Max (Rch, jRic), gravity does not inhibit the wind. 
Equations (2.9) and (2.10) together with the definition 
of Tg imply 

Rch = oc~6Rlc. (2.11) 

The condition that the three temperatures 7¡c, Tg, 
and Tch all be equal implies that £ = 1 and a = 1. 
This defines a critical luminosity 

where 

= 0.030Tfc¿
,2LE , 

(2.12a) 

(2.12b) 

Eg — 4nGMinec/(TT ~ STrc/cTj^Ri^/dy 

= 1.5 x 1O38(M/M0) ergs s-1 (2-12c) 

is the Eddington luminosity, and ^ æ 2/i is the mean 
mass per electron. Note that Lcr is an intrinsic function 
of the continuum source, involving M and Tlc; it is 
independent of R0. One may readily show that 

a 2 (2.13) 

(2.14) 

Hence, if L > Lcr, then gravity is not important (a > 1) 
anywhere in the wind region (7¡c > 7^, £ > 1). Evidently, 
L/Lcr characterizes the effectiveness of the X-ray 
luminosity in overcoming gravity, not by radiation 
pressure as in the ordinary Eddington limit, but by 
Compton heating. For 7¡c > 107 K, one has Lcr < 0.1LE, 
and our neglect of radiation pressure is self-consistent. 

Our description of the disk is completed by intro- 

ducing a third radius, Riso, at which Tlc = Tch. In terms 
of L/Lcr one has 

Figure 1 illustrates the various possibilities as a 
function of luminosity, Compton temperature, and 
location in the disk. The left half of the diagram 
corresponds to radii inside RIC, where there is a bound 
corona at temperature Tlc; for R < 0.1RIC the mass loss 
rate is exponentially small. The right half corresponds 
to the wind region. It is worth noting here that the 
boundaries of the wind zones A-C are insensitive to 
radiative transfer effects. Most of the heating in these 
zones occurs at heights ~R0 above the disk, where the 
optical depth along the line of sight to the X-ray source 
can be shown to be small (Paper II). Of course, the 
division between corona and wind depends only on the 
spectrum of the radiation, not on its intensity ; hence it is 
never affected by Thomson scattering along the line of 
sight. 

The mass loss rate per unit area in each region of the 
graph is analyzed in detail in § III. There we show that 
the functional form of rh depends on L/Lcr and 
whereas the magnitude of rh is determined by the 
pressure p0 at the point in the atmosphere where rapid 
heating begins. As just mentioned, the functional form 
of rh is insensitive to radiative transfer; however, the 
magnitude does depend directly on the attenuation of 
the radiation between the source and the disk surface 

0.1 1 10 TiC/"*"g 

Fig. 1.—Parameter space for Compton-heated winds from 
accretion disks. The radius R0 at which a streamline originates on the 
surface of the disk is normalized to Rlc, the radius at which gas at the 
Compton temperature Tïc is marginally bound. The parameter L/Lcr, 
where Lcr = 0.03T{dl2LE, measures the effectiveness of the luminosity 
in driving a wind by Compton heating. The outer part of the disk, 
comprising Regions A-C, is the wind region in which gas at TiC 
is unbound (£ = R0/RiC > 1). In the inner part of the disk (Regions 
D and E) is a quasi-static corona with a negligible mass loss rate for 
£<0.1. 
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(Paper II). The essential results of the analysis in § III 
may be summarized as follows: 

Region A.—Here Tg < Tlc < Tch, so that gas at 7¡c is 
not bound to the disk, and gas flowing through the base 
of the corona at S' = S' max is heated to T & Tlc 
before it reaches a height ~R0 above the disk. 
This is possible in an annulus 1 < £ < RiSO/RiC = 
L/Lcr < 30T{¿1/2, where the last inequality follows from 
the requirement L < LE. In § Hie we show that this 
flow leaves the disk moving nearly in a plane-parallel 
fashion and passes through an isothermal sonic point 
v2 = Cs at a height much less than R0 where T first 
approaches Tic. The gas further accelerates to reach 
a critical point v2 = (5/3)c2 at a height ~R0 above the 
disk, by which point the flow has become roughly 
spherical. The mass loss rate per unit area is given by 
m « (i)Po/cic- 

Region B.—Here Tg < TCh < Tlc , so that the gas reaches 
T ~ Tch at a height ~R0, but this suffices to overcome 
gravity. The temperature rises steadily as the flow rises 
above the disk and passes through a critical point at a 
height ~R0. The mass loss rate is of order m æ Po/cCh- 
If the disk extends to radii beyond Max (Riso, Rch), 
then the outer part of the disk will be in Region B. 

Region C.—Here Tch < Tg < Tlc and 1 < ^ < Rch/ 
Rlc = (Lcr/L)2. Gravity strongly retards the flow, and the 
velocity is regulated to a low value that allows the 
temperature to reach at a height At this 
point the flow is still subsonic, v/cs 1. The sonic point 
is reached only at much larger radii, Rsonic ~ 
Rch = oc~bR0, where adiabatic cooling lowers cs below 
the essentially constant flow velocity v. For R0 Rch, 
one has a 1 and the pressure drop caused by gravity 
leads to a very low mass loss rate m æ ^p0!cch. 

Region D.—Since £ < 1 and L < Lcr, this corresponds 
to a weakly heated corona. Gravity is strong enough 
to reduce mass loss by an exponential factor, 
rh oc exp (—Tg/2Tlc). The critical point occurs far from 
the disk (Rcrit ~ Rch = a~6R0) just as in Region C; 
however, the flow velocity is low enough that the heating 
is able to maintain T ~ Tic out to a radius of order 
(Tg/Tlc)R0 < Rcrit. 

Region E.—Here £ < 1 and L > Lcr so that the corona 
is strongly heated. For a given value of TK/Tg = i, 
the mass loss rate is similar to that in region D, evaluated 
at L = Lcr. The isothermal sonic point occurs at rx & 
(^)R0(Tg/Tlc) < Rch. The heating in this case is strong 
enough to maintain T ~ 7¡c out to radii in excess of r1. 

These results are derived in § III by means of detailed 
analytic solutions of the hydrodynamic equations. The 
reader interested in the observational applications may 
skip to § III/, where we summarize the main quantitative 
results, and continue on to our discussion of dynamical 
applications in § IV. 

III. THEORY OF OPTICALLY THIN 
COMPTON-HEATED WINDS 

a) Basics 
In analyzing outflow from a disk, we can either search 

for an exact similarity solution to an idealized problem 

or we can obtain approximate solutions for more 
realistic, non-self-similar problems. Bardeen and Berger 
(1978) have found a similarity solution for an infinite 
disk in our Region C, where the temperature of the 
wind scales as Rq1. We wish to determine the mass 
loss near the edge of the disk as well as in the interior, 
and for all of the regions discussed in § II; hence we 
shall develop an approximate, one-dimensional model 
for the outflow. Near the surface of the disk the flow 
is nearly plane-parallel, while farther out the streamlines 
diverge due to transverse gradients (and second deriva- 
tives) of pressure, gravity, and angular momentum, and 
eventually become radial. A certain amount of divergence 
is necessary for the existence of a sonic (critical) point, 
as we shall see in § IIIc. Interaction between flows arising 
from different radii is ignored; study of such effects would 
require two-dimensional numerical calculations. 

Suppose we consider hydrodynamic variables to be 
functions of R0, the radius of the disk at the base of a 
given streamline, and r — R0, the distance along a 
streamline from the base. In terms of the dimensionless 
coordinate 

y = r/R0 , (3.1) 

the divergence of streamlines can be characterized by a 
dimensionless flow tube area, normalized to unity at the 
base of the flow (y = 1): 

A{y) = . (3.2) 

Here </> is the log-weighted average, between 1 and y, 
of the local rate of divergence 

ß{y) = 
d\n A 
d\n y ' 

(3.3) 

We treat ß(y) as an unknown function constrained to 
vary between 0 at y = 1 (vertical flow) and ~2 at 
y > 1 (spherical flow). In terms of equation (3.1), the 
continuity equation can be written 

m = pvy<ßy = constant, (3.4) 

where p and v are, respectively, density and velocity 
along a streamline. We shall demonstrate that although 
ß(y) is uncertain, the mass loss rate rh is reasonably 
well determined. 

The equation of motion along a streamline is given by 

dp 
dr - Pd(r), (3.5) 

where g(r) is the component of effective gravity (gravity 
plus centrifugal force) parallel to the streamline. Since 
the disk is assumed to be Keplerian and thin, g(R0) < 
g(2R0). Rigorously, g(r) depends on the streamline’s 
trajectory, which is not known a priori even if ß(y) 
is specified. For example, if a streamline curves strongly 
at y — 1 <1, the parallel component of gravity may 
increase rapidly with y, while for streamlines which 
remain nearly vertical over y — 1 <0, gravity is roughly 
proportional to y — 1 and centrifugal force does not 
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affect motion along a streamline. However, if angular 
momentum is conserved along a streamline, then 
approximate balance of gravity and centrifugal force to 
~0(y — 1) will hold in the range 1 < y < 2, regardless 
of the trajectory. The effective gravity is relatively 
insensitive to trajectory, despite the fact that gravity and 
centrifugal force each depend on it rather strongly. At 
y > 2, we expect all trajectories to be approximately 
radial, with yR0 & R = spherical radius ; hence g(r) tends 
in this regime toward the total gravity. Specifically, we 
take 

b) Dimensionless Equations 
The flow equation can be made dimensionless by 

eliminating p through the equation of state p = pkT/p 
and introducing the dimensionless variables 

where Tch is defined in equation (2.9), c = (kT/p)112 

is the isothermal sound speed, and J/ is the isothermal 
Mach number. The dimensionless mass flux is 

g(r) = go(Ro)fg(y), (3-6) 

where, for a thin disk, 

9o(Ro) = > fg(y) = ~TT3~~ • (3-7) Ko y 

The tendency of fg to diminish as y-> 1 reflects the 
fact that the gravitational binding energy of material in 
a Keplerian disk is only half that of stationary material, 
and hence less work is required to unbind it. For flows 
in which gravity determines the mass flux (cf. § Hid), 
this results in larger outflow than would occur in a non- 
rotating flow with the same geometry. 

Conservation of energy is most conveniently expressed 
in terms of an entropy equation, 

^y¿ln(^) = ”er(r’T)’ (18) 

where T is the temperature, ne is the electron density, 
and F is the heating rate per unit mass. Equation (3.8) 
is easily converted to an enthalpy equation through the 
use of equations (3.4) and (3.5). For optically thin flow, 
the spatial dependence of F may be specified in advance 
as a function of R, and approximated (for a given 
streamline) in terms of yR0 if |d ln T/d ln R | < 0(1). In 
this paper, we consider only Compton heating, which 
typically dominates at T greater than a few times 
106 K (KMT), so that 

r(r,t) = r0(Ro)My)(l-T/Tlc), (3.9) 

where Tlc is defined in equation (2.4). The form factor 
fr(y) is determined by the unknown trajectories of the 
streamlines. For an isotropic central source of radiation, 
we consider two extreme cases : Case 1 is vertically rising 
outflow,/r = [1 + (y - l)2]"1; case 2 is radial outflow, 
fr = y~2- 

Finally, we have the boundary conditions appropriate 
to wind solutions, 

V=T = 0, p = p0 at y = 1 , (3.10) 

where p0(Ro) the critical pressure discussed in § II. 
At y -► oo the pressure vanishes, and we shall seek solu- 
tions which pass through a critical point and become 
supersonic. As in standard accretion and wind problems, 
the latter condition is sufficient to determine a unique 
mass flux. 

Wch PoA'ch ‘ 

The continuity equation (3.4) becomes 

p* = m*T*112/Jiy*'^ . (3.13) 

The equation of motion (3.5) may be written in two 
equivalent ways as 

d In p* 
dy 

din (1 + Jt2) J(2 ß 
d'y + 1 + Jt2 y 

+ fg 
(1 + J?2)a2T* 

(3.14a) 

or as 

(JÍ2 - 1) 
d In Jl2 

dy 
+ (J/2 + 1) 

rfln r* 
dy 

The entropy equation (3.8) is 

2ß 2/9 

y a.2T* ' 

(3.14b) 

(p*ll5JiT*3l2y<ß>) = (|)/rP*1/V/i>(l - T*/T*c), 

where we have used ne = p/pe ä p/2p to obtain the 
right hand side of (3.15). The dimensionless boundary 
conditions are = T* = 0, p* = 1 at y — 1. 

c) Sonic Points 
The momentum and entropy equations can be 

manipulated to give 

-5) 
din, 

dy 
— = — (5 + , 

y 
(Jf2 + l)/r 

JtT*212 

x (3.16) 

The adiabatic sonic point (Jl2 = 5/3) is a critical point 
of this equation. Wind solutions, which make the 
transition from subsonic to supersonic flow, must pass 
through this point, yielding the auxiliary condition 

where subscript s denotes evaluation at the adiabatic 
sonic point ys. Note that gravity and heating contribute 
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to the auxiliary condition with terms of the same sign, 
implying that the flow must diverge (ßs > 0) in order for 
a sonic point to exist. This statement does not contradict 
the results of London and Flannery (1981), who found 
transonic solutions for plane-parallel flow, because they 
considered a gravitational field which changes sign (at a 
Lagrangian point) while we assume that fg is positive 
everywhere. 

In some cases the flow is nearly isothermal, and the 
condition that the solution pass through the isothermal 
sonic point (denoted gives the condition (from eq. 
[3.14ft]) 

provided d ln T*/dy ßi/y^ This is a critical point of 
the system of equations only if T* is set constant. 

d) Flows with Steady Heating 

i) General Results 

If T 7¡c, as in regions B and C of Figure 1, the 
heating rate F becomes insensitive to temperature and 
it is possible to obtain accurate approximate integrals for 
the entropy and momentum equations. In this case, the 
right-hand side of the entropy equation (3.15) then 
depends on hydrodynamic variables only through a 
factor p*1/5. The weakness of this dependence results 
from the form of the heating function, as well as the 
proximity of the adiabatic index (y = 5/3) to 2. If y 
equaled 2, the p*1/5 dependence would disappear and 
the analog of (3.15) would be exactly integrable. We 
can write the integral of (3.15) with steady heating in 
the form 

with 

Jrr*3,2 = (^\yfry<ß>dy (3.19) y J1 

_(K/rP*1/5y</'>á>') 
^ _ (p*1/5 Ji /r y^^dy) ’ 

(3.20) 

where we have taken J?T*3/2 = 0 at y = 1, the disk 
surface. If p* does not vary too strongly with y, r¡ will 
remain close to unity. In any case, since p* is a 
decreasing function of y, we have r¡ > 1. 

In order to evaluate the integral in equation (3.19), 
we make use of the fact that fr is bounded from above 
by [1 + jy — l)2]-1—the case of vertical outflow—and 
from below by y"2—the case of spherical outflow. In 
either case, we approximate 

(3.21) 

with an accuracy of better than a factor 1.5 for y < 20 
and </?> = const, between 0 and 2. For y > 20, the factor 
y<ß> on the right-hand side of equation (3.21) should be 
replaced by to obtain the correct asymptotic 
behavior. 

At the sonic point, equation (3.19) becomes 

?i1/2T*3/2 = ^s 
fr. 

1/2 
te - 1) • (3.22) 

When substituted into the critical point condition (3.17), 
this yields (recall T Tlc) 

ßs l/rVte^2 , /3\2/3 te-l)1/3 

2r,s(ys-l) + \2r,J ' 
(3.23) 

The two terms on the right-hand side represent the 
effects of Compton heating and gravity, respectively. 

The equation of motion (3.14a) can now be integrated 
by using equations (3.13) and (3.19) to eliminate T* in 
favor of p* and y. The result is 

p* = 
[1 - (5m*/8a4)1/2/J2 _ 

1-h^2 
ßJ(2l(l+J(2) (3.24) 

where 

fg 
.7</*[(^2-l)/te02+l)]>/4 

(i + ^2)(y- i) 1/2 dy (3.25) 

and 

<*>'¿(>7- (126) 

Equations (3.13) and (3.22-3.24) allow us to determine 
yS’ Tf, p*, and m* for an assumed flow divergence, 
represented by ß and fr. A related problem of interest is 
that of spherical outflow with spatially uniform heating 
(./r = 1), since the latter is formally identical to the 
suprathermal, Coulomb heated (“SCH”) evaporation 
flow analyzed by Balbus and McKee (1982). In this case 
equation (3.19) can be integrated exactly, and our 
method (with rj & 1) gives a value for m* within 6% of 
their exact result. 

We now obtain explicit solutions for the cases a > 1 
(extreme Region B) and a 1 (extreme Region C). 

ii) Steadily Heated, Free Wind (Region B) 

When a 1, gravitational effects on the flow are 
negligible. Anticipating that ys < 2, we approximate the 
exponents of ys as (ß) = (i)ft, <ßF) = </?><F>, and 
(F(.//2)) = F(:.//

2/2) (the accuracy of the last approxi- 
mation has been verified by Balbus and McKee 1982); 
we also set rjsæ 1. The critical point condition (3.23) 
then becomes 

2ßs(ys-i) = yF(ßsl4)frJ2. (3.27) 

The pressure (eq. [3.24]) and temperature (eqs. [3.22] 
and [3.27]) at the sonic point reduce to 

pî = (ite-<5W22) 

T* = 0.29(ys frJßs)
2/3 . 

(3.28) 

Finally, the mass loss rate is determined by the equation 
of continuity to be 

m* = 0.90(ßjfrf
/3y2ßsl11 -1/3 . (3.29) 
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First assume that/r has its maximum possible value, 
corresponding to vertical outflow. In fact, the flow has a 
finite divergence, and this divergence is necessary to 
give a sonic point. For = (1.7, 2, 2.5), equation (3.27) 
gives ßs = (1.2, 0.8, 0.5) and equation (3.29) gives m* = 
(1.1, 1.0, 0.9). Note that the uncertainty in the location 
of the sonic point does not lead to a significant 
uncertainty in the mass loss rate. We expect > 0.8 at 
ys ~ 2 and conclude m* > 1.0. At ys = 2, the temperature 
is Tf = 0.33 and the pressure is pf = 0.33. 

Next consider the opposite limit in which /r 
corresponds to spherical outflow. In this case, ys = (1.3, 
1.7, 2) corresponds to ßs = (1.9, 0.8, 0.55) and m* = (1.4, 
1.1, 1.0). Since the upper bound on ßs is 2, we conclude 
m* < 1.4. At ys = 1.3, we find Tf = 0.16 and pf = 0.33. 

We conclude that, independent of the precise manner 
in which the flow diverges from the disk, the mass loss 
rate is 

m* = 1.2 ± 0.2 (Region B). (3.30) 

The temperature at the sonic point is 0.16 < Tf < 0.33 
and the pressure is p* æ 0.33. 

The qualitative nature of the flow in this case can now 
be described. The flow reaches a critical point at 
4/3 < ys < 2. Because of the short range of the subsonic 
regime, the divergence of the flow does not strongly affect 
the variation of flow parameters [i.e., y<ß> ~ 0(1)], 
despite the fact that the presence of nonnegligible 
divergence is responsible for the existence of the sonic 
point. Since gravity is unimportant, the pressure is 
roughly uniform, and we have 

•* Pv 
m* = — cch 

Po c 
VCch 

2 ' 'p* 1/2 (3.31) 

while JiT**12 ~ y — 1 from the heating equation (3.19). 
Thus the flow is characterized by 

v <£ T* ~ (y — 1)1/2 , J? ~ (y — 1)1/4 (3.32) 

in the subsonic regime. In the supersonic regime, we 
have y > 1, ß ^ 2, and the pressure declines: 

p* 
T*1/2 

(3.33) 

while the declining heating rate (F oc y 2) is only 
partially able to compensate for adiabatic losses, 

JtT*212 ~ l/y . (3.34) 

As a result, we obtain a wind solution with 

v ~ const. , T* oc y~1 , JÍ oc y1/2 , p* oc y 

(3.35) 

which we refer to as the constant velocity, non-isothermal 
flow pattern. Note that the temperature reaches a 
maximum near the sonic point. 

iii) Gravity-inhibited Wind (Region C) 
When > Tch (a 1), gravitational effects signifi- 

cantly impede the wind. Bardeen and Berger (1978) 
have obtained a self-similar solution for this class of 
problems, and they find that for a central point mass 

and a disk pressure proportional to y~2 the flow 
asymptotically approaches ß = 1.2. As discussed at the 
outset of § III, our problem is not self-similar and we 
anticipate ß -► 2, at least near the edge of the disk 
where the mass loss is greatest. Although the location of 
the sonic point is sensitive to the asymptotic value of /?, 
the mass loss rate is not, so this uncertainty is not 
important. 

Solution of equation (3.23) shows that the adiabatic 
sonic point occurs far from the disk when a 1: 

vl-<0>/3 / 3 \2/3 1 
\2riJ a2ßs 

P (3.36) 

where we have neglected the first term on the right-hand 
side of (3.23). This is a good approximation for </?> < 2, 
but for </?> = 2, ys

1/3 should be increased by a factor 
4rjs/(4fjs — 1). The temperature at the sonic point is 
T* ^ ys"

<^>/3 1. Inserting expression (3.24) for p* 
into equation (3.13) and solving, we obtain 

m* = [0.79/03 a-2 + iA3Tf1/4y;<m+J(2)>/2]-2\ (3.37) 

where Igs is the integral Ig (eq. [3.25]) evaluated at ys. 
For a <0, the second term is negligible and we find 

m* = 1.6a4/~2 . (3.38) 

Since Igs is dominated by the contribution from 
y ~ 0(1) ys, we may approximate it by extending the 
upper limit of integration to infinity and by setting 
1 + ^2 and rj equal to 1; this yields 

Igs = f O' - iyi2y-3(y<ß>fr)-ll4dy . (3.39) J 1 

In the limiting case of spherical outflow, one has </?> = 2 
and y<ß>fT = 1, so that Igs = £(3/2, 3/2) = 0.39, where 
£(m, n) is the beta function. In the opposite limit of 
vertical flow, <ß> = 0 and numerical evaluation of the 
integral gives Igs = 0.58. Adopting a value intermediate 
between these two cases, we set Igs = 0.5 and obtain 

m* = 6.4a4 1 (Region C). (3.40) 

This gravity-dominated flow is characterized by three 
regimes, two of them subsonic. In the first subsonic 
regime, y ~ 0(1) and Ig in (3.24) is sufficiently far from 
its asymptotic limit that the term in square brackets is 
0(1). Thus the pressure is roughly uniform and the flow 
is characterized by the same scaling as (3.31) and (3.32). 
The normalization, however, is different, since m* is 
smaller by a factor ~a4. Instead of T* ~ Jé2 ~ 
(y — 1)1/2, we have 

T* ~ öl 2(y—1)1/2, ~ a3(y - 1)1/4 . (3.41) 

In the second subsonic regime, 1 y < ys and J?2 1. 
Setting </?> = 2 for simplicity gives the pressure 
declining as 

4- T'sk 1 ¡2 
p*~c^rzVgs-ig\

2zy-3 (3-42) 

from equations (3.24), (3.25), (3.28), and (3.39). Inserting 
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this pressure variation into equation (3.20) yields 
rjs = 2.5; then, since ys oca-6 (eq. [3.36]), we obtain 
pf = (1.58a)18. Equation (3.34) still holds, and as a 
result the wind pattern has the constant velocity, non- 
isothermal flow pattern 

v ~ const. , T* ~ (a2y)-1 , JÍ ~ a3y1/2 . (3.43) 

Except for scaling factors, (3.43) is identical to (3.35), 
the supersonic solution for the heating-dominated case. 
In fact, this scaling continues smoothly into the super- 
sonic regime of gravity-dominated flow, suggesting that 
there is nothing very special about the critical point. 
Instead of being fixed by the sonic point conditions, 
the mass flux is determined by the requirement that 
1 — [(5/8)(m*/a4)]1/2/^ nearly vanish in the limit y > 1. 
Conditions at the sonic point provide a negligible correc- 
tion to this result, confirming the implausibility that such 
a distant constraint could control flow near the disk 
surface. 

Finally, we note from (3.41) that the maximum 
temperature reached in the gravity-dominated case is 
~ Tg, the gravitational escape temperature from the disk. 
The gas is able to reach a higher temperature than 
in the heating-dominated case (by a factoría-2) 
because the slower outflow velocity affords a longer time 
for heating. At large y, the temperature is fixed by 
equality between heating and flow times, kT/F and R/v 
respectively. Since v levels off at roughly the escape 
speed from the disk and FocÆ-2, the temperature is 
comparable with the local escape temperature at all 
radii. 

e) Isothermal Flows 
So far, we have examined flows subject to steady 

heating. These reach maximum temperatures Tmax ~ 
max [Tch, Tg] at a distance ~ R0 from the base of the 
flow. Such flows, however, are inconsistent with the 
heating function (3.9) if Tmax > 7¡c, i.e., if 

T,*c < 1 + a-2 . (3.44) 

For the latter case, we expect the temperature to 
approach Tlc at (y — 1) <0, and to remain nearly 
constant over some range of y. The nature of the flow 
depends upon a2Tf^ = ^. If a2!^ > 1, then the gas 
temperature in the isothermal zone greatly exceeds the 
escape temperature and gravitational forces have a 
negligible effect. In the opposite limit (a2!^ 1), a 
quasi-static corona is formed and the wind is weak. 

i) Isothermal Free Wind (Region A) 
Region A of Figure 1 is characterized by strong 

heating (Tch > 7JC or T?c < 1) and weak gravitational 
forces (Tlc>Tg or ^ = a2Tj^> 1). It occurs in an 
annulus of the disk Riso > R0 > Rlc provided L > Lcr 
(see § II). Reference to the momentum equation (3.14b) 
shows that the isothermal sonic point occurs close to 
the surface of the disk, either near the point at which 
T approaches Tlc so that ß & d \n T*/dy 1, or at the 
pointy! in equation (3.18) where ß ~ (y\ — l)/<x2T?c 1. 
(Note that for spherical outflow, with ß = 2, the 

isothermal sonic point must occur in the heating zone; 
cf. London and Flannery 1981.) For one-dimensional 
flow, p + pv2 = const, so that px = (|)p0 and 

fh* = Piyi^T* 1/2 = 2^72 (Region A) (3.45) 

since yi ^ 1 and Tf æ T?c . 
The critical point in the outflow (the adiabatic sonic 

point) occurs significantly farther from the disk surface. 
Neglecting the small gravitational term, we can integrate 
the momentum equation and find (cf. Balbus and McKee 
1982) 

T* 

T?r 

4JÏ2 

(1 + ^2)2 
y<ß/(l+ji2)> (3.46) 

where we have used the result (3.45) for m*. Hence 
T -» 7¡c as -► 1, and ^ can reach (5/3)1/2 only 
when y and ß are large enough. 

In the supersonic regime (y > ys) we set ß æ 2 and find 

^2 ä 4 In y , p* « [y2(l + ^2)]"1 . (3.47) 

For the isothermal approximation to be self-consistent 
we require 

Kfry^dy 2 y — 1 
y<ß> ^ 5 yl (3.48) 

from equations (3.19) and (3.21). This condition breaks 
down at 

yI^0.2(lnyi)-
1TI*c-

3/2>2. (3.49) 

For y > yh the heating can no longer keep up with 
adiabatic cooling and the flow becomes non-isothermal. 
The flow then follows the constant velocity, non- 
isothermal pattern (eq. [3.35]), but with a different 
normalization. 

ii) Corona with Weak Isothermal Wind (Region E) 
Deep in Region E of Figure 1, the heating is strong 

(T?c 1, L Lcr) as in the case above, but here 
gravitational forces are strong as well (Tg ^ Tlc, or 
Ç = a2Tj^ 1). The isothermal sonic point (eq. [3.18]) 
occurs far from the disk surface, 

1 

^ “ Wñc 
(3.50) 

i.e., at r = Rlc/ß, where Tic is about equal to the local 
escape temperature Tg/y. Since yx > 1, we have assumed 
that ß is constant and have set ßx = ß. The gas is 
nearly isothermal, so the pressure can be found from 
equation (3.14a) to be 

p* = (1 + ^2)"1 exp [-(1 - y_1)2/2^] (3.51) 

which for y y! is just an isothermal atmosphere. The 
mass loss rate is then 

ñ* = ¿ftp* (^) exP ( - °-5^ “1 ) (3 52a) 

->0.9(^2Tjlc1/2)_1 exp (—0.5<i;-1) (Region E), 

(3.52b) 
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where the second expression is for ß = 2. Flow from the 
inner radii of the disk will be collimated by the flow 
from the outer parts of the disk, so that in the interior we 
expect ß to be closer to 1.2, the value in Bardeen and 
Berger’s similarity solution, than to 2. However, if the 
disk terminates at Rd < RIC, the flow from the outer parts 
of the disk, which dominates the mass loss, will have 
ß ~ 2. In this case the corona fills the volume inside 
RIC, the area of the sonic surface is of order 
Rie = R2/Ç2, and equation (3.52b) shows that the mass 
loss rate is larger by a factor ^ “ 2 over what one might 
naively expect. Note that equation (3.52) is valid only for 
Ç < 1. In fact, we expect that m* in Region E should be 
less than the value given by (3.45) for Region A, which 
implies that (3.52b) is valid for ¿ < 0.1. 

The condition for the flow to be isothermal out to 
the critical point may be inferred from the critical point 
condition (3.17), 

y* = O-ó^! + 12 9T* I j I • (3.53) 

The requirements that the adiabatic sonic point at ys 

occur outside the isothermal one at y1 and that 
(TJc ~ T)/T be small imply 

oc2T?c~
1/2 P 1 , or L Lcr . (3.54) 

In the supersonic isothermal regime the flow 
parameters scale as in equation (3.47); once the flow 
becomes non-isothermal, the flow follows the scaling in 
(3.35). 

iii) Corona with Weak Non-isothermal Wind (Region D) 

In Region D, the heating is weak (o^Tfe-1/2 < 1, 
L < Lcr) and the gravity strong (Tg > TCh or a < 1), 
so that the resulting wind is extremely weak. We 
therefore content ourselves with an approximate analysis. 
As in Region E, the sonic point occurs at large y; 
but as in Region C, the heating is inadequate to main- 
tain T = Tlc out to the sonic point. To determine where 
the isothermal approximation breaks down, we use the 
energy equation, which may be derived from the 
momentum and entropy equations. For J? 1 and 
y > 1, we have 

dT* 
dy 

2 1 Tlc — T 
5(x2y2 5J?T*1/2y2 Tlc ’ 

(3.55) 

hence the temperature begins to drop below Tlc at 
J( = Mi = (j)cc2T^c~

1/2 = L/2Lcr 1. The flow then 
enters the constant velocity, non-isothermal pattern, just 
as in Region C. In this case JÍT*112 is constant so that 
equation (3.55) can be integrated. One finds that T*y is 
a constant somewhat smaller than 0.4a-2. Evaluating 
the mass loss rate by applying the continuity equation 
at yh the point at which ^ we find that m* is 
smaller than that in Region E by about a factor 

m*(Region D) % m*(Region E) . (3.56) 
^cr 

The constant velocity, non-isothermal flow pattern can 
be self-consistently extended out to the adiabatic sonic 
point only if ß > 1.5; then one finds rs/Rlc ~ 0(Lcr/L)2 

and Tf - 0(a4) 1. 

/) Summary 
For Ç = R0/RiC > 1 there is a wind with a mass loss 

rate 

1 / L \1/3 

rh* = - ) £ 1/3 (Region A) 

= 1.2 (Region B) (3.57) 

/ L \4/3 

= 6,4(tt) ^2/3 (ResionC) 

in Regions A-C, respectively. For ^ < 1 (Regions D-E) 
a quasi-static corona forms and the mass loss rate is 
exponentially small; for £ < 0.1, we estimate 

rh* * r7/3 exp (-0.5/g). (3.58) 

Here we have set ß = 2, which is appropriate for the 
outer part of the disk. Curves corresponding to (3.57) 
and (3.58) are displayed in Figure 2. 

The physical mass loss rate, per unit area is 
m = m*mch = m*p0/cch, where we recall that p0 is the gas 
pressure at the base of the flow and cch = (kTch/p)1/2 

can be found from equation (2.9). If the incident X-rays 
are not attenuated while passing through the flow, then 
p0 ce L/4kRq, cch oc R-1/3, and mch oc 5/3. If the X-rays 
are attenuated, then, as we pointed out in § II and 

LOG £ 
Fig. 2—The normalized mass loss rate per unit aream* (eqs. [3.12] 

and [3.57]) is plotted as a function of the normalized radius K/Klc, 
with L/Lcr as parameter. The mass loss rate in the outer corona 
(0.1 < ¿ < 1) is uncertain and is indicated by dashed lines; we have 
chosen to extrapolate the results from the wind region (eq. [3.57]) 
since this generally gives a lower mass loss than extrapolating Irom 
the inner corona (£<0.1, eq. [3.58]). For L/Lcr = 1, we have 
extrapolated from Region A rather than Region C since the result for the 
latter is valid only for a 1 ; the discontinuity at £ = 1 indicates the 
magnitude of the error to be expected when the result for a given 
region is used at the boundary of that region. 
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demonstrate in Paper II, neither the form for m* (given 
Lcr and £) nor the value of cch is altered ; p0 is reduced, 
but except perhaps in the inner corona, where m is 
already exponentially small, p0 remains strictly propor- 
tional to J0, the mean radiation intensity at the base of 
the flow. (In the inner regions of the corona, cooling 
by soft radiation emitted locally within the disk may 
reduce p0 below the value that one would estimate by 
simply considering the transfer of X-rays to the base of 
the hot gas—see Paper II.) We can therefore characterize 
the effects of scattering in the corona and wind through 
a single “attenuation factor” 

= f 
4nJ0 c , 

Jr° - L/AnRl 
(3.59) 

which multiplies the mass fluxes given above. In Paper 
II we estimate / in different regions of the disk, and 
find that it generally exceeds 0.1 in the wind zone. 
In terms of /, the pressure p0 is 

Po = 
Lf 

AnRl SÓ c ’ 
(3.60) 

where H'o is evaluated at the base of the flow. In the 
wind H'o = H' max, whereas in the corona a range of values 
above H;,>niin are possible (Paper II). 

IV. DYNAMICAL IMPLICATIONS FOR 
ASTROPHYSICAL ACCRETION DISKS 

a) Mass Loss and Accretion Instability 
If the disk extends out to a radius Rd, the total mass 

loss rate due to the wind on both sides of the disk is 
Rd 

rh(R0)R0dR0 . (4.1) 
o 

The characteristic mass loss rate from the disk is 

Mch = 4nRÏcmch(ç = 1) 

range 0.1 < £ < 1 which is unphysical, we adopt the 
expedient of extending the expressions for Regions A 
and C into Regions E and D, respectively; e.g., for 
0.1 < ¿ < 1 and Lcr < L < Le, which we write as 
E(¿ > 0.1), we adopt m* = 0.5(L/Lcr)

1/3¿~1/3 (see Fig. 2). 
Evaluation of the integral in (4.4) then leads to the 
approximate results (see Fig. 3) 

1 / L \1/3 

0m(c7 = 2 y In (12.5^) 

= m1*l3-i) 
I L \4/3 

= 6-4fc) fe-008) 

1.8(¿/¿crr g_ ,2 

1 + L/Lcr . 

[A + E (¿ > 0.1)] 

[B] 

[C + D (£ > 0.1)] 

[D, E (Ç < 0.1)] . 

(4.5) 

These expressions have been adjusted so that they are 
continuous at ¿ = 0.1. At the boundary between Regions 
A and B (^ = L/Lcr >1), Qm is continuous to within 
about 5%. The continuity between Regions B and C 
and between E (£ >0.1) and D (^ > 0.1) is much worse 
because the expression for m* in Region C is valid only 
for a 1. 

For a given value of LE the largest mass loss rates 
occur for L ~ LE in Regions A and B. Note that our 
result for Mw is of the same order as that expected for a 
strong radiation-pressure driven wind, M ~ L/cvmax 
(Castor, Abbott, and Klein 1975), even though in our 
case the mass loss is due to radiative heating rather 
than radiation pressure. Correspondingly, one can show 
that the energy flux in the wind (j)Mwvlind is small 
compared to L: the decrease in vlind as R0 increases 
outweighs the increase in Mw in Region B. 

Comparison of the mass loss from the disk with Ma, 
the rate at which mass is accreted by the central object, 

fL (LA1/3 

CCIC “0 \ ^ / 
(4.2) 

= 4.5 x 10" 7 fL3 
77' Till “0 1 IC8 

Mq yr 1 . 

In evaluating Mch, we used equation (3.60) and took the 
attenuation factor / to be constant in the part of the 
disk from which the wind arises. In terms of Mch, the 
total mass loss rate is 

Mw = MchQm(Çd), 

where 

Qm(td)=\ d£C2l3m* . J 0 

(4.3) 

(4.4) 

Unfortunately, the analysis of § III is quite approxi- 
mate for £ ~ 1, and our estimate of Qm(id) must be 
correspondingly crude for Çd < 1. Recall that equation 
(3.58) for m* in Regions D and E applies only for 
¿ < 0.1. Since this expression reaches a maximum in the 

Fig. 3.—The integrated wind mass loss, normalized to Mch, is 
plotted as a function of the outer radius of the disk, normalized to 
Rlc, with L/Lcr as parameter (see eqs. [4.2]-[4.5]). 
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reveals an important result. In terms of the radiative 
efficiency 

e = L/Mac
2 (4.6) 

which is typically of order 0.1, the characteristic mass 
loss rate (eq. 4.2) is 

Mch 25.8e-!//Lcr\
1/3 

Ma S'0 T}¿¡ \ L J 
(4.7a) 

In Regions A, B, and E (^ > 0.1), where L > Lcr or 
is large, the mass loss rate in the wind Mw = Mch Qm(Çd) 
typically exceeds Mch. Hence, unless the flow is inefficient 
(£_! < 1), or the outer disk is shadowed (/ 1) or 
severely truncated (Çd <0), the mass loss in the wind 
exceeds the accretion rate by the central object in this 
case. In Regions C and D (£>0.1), where L < Lcr, 
the factor Qm may be small; the ratio MJMa in this 
case is 

Mw 
Ma 

^Tri^fe- O.OS), C + D (£ > 0.1) 
“0 1 IC8 V^cr/ 

(4.7b) 

from equations (2.12b), (4.5), and (4.7a). For L Lcr, 
the attenuation factor / approaches unity (Paper II); 
hence accreting neutron stars or black holes with erl ~ 1 
and with low luminosity can easily have MJMa > 1. 
For accretion onto white dwarfs, the efficiency is so low 
(€_! ~ 10“ 2) that this condition is difficult to attain. 

Disks with Mw > Ma are likely to be unstable since 
small fluctuations in L can lead to small fluctuations 
in Mw which then get magnified into a large fluctuation 
in Ma. Because it takes the accreting gas a finite time 
Ai to go from the wind region to the central object, 
this instability is likely to be manifested as overstability. 
A similar situation has been discussed by Arons (1973) 
in connection with self-excited flow in binary X-ray 
sources in which the X-ray source drives a wind from the 
companion star instead of from the disk. 

We demonstrate the existence of the instability through 
a simple mathematical model. Suppose Min is the rate 
at which mass is injected into the disk, and that the mass 
accreted at time t is simply the mass which is not blown 
away in a wind at t — At: 

Ma(t) = Min(t - Ai) - Mw(t - At) . (4.8) 

This neglects the radial variation of Mw and the time 
variation of the disk mass; it is thus equivalent to 
having the wind arise from a ring of fixed mass. We also 
assume that the mass loss in the wind is a fixed constant 
times the luminosity and hence the accretion rate: 

Mw(t)=CMa(t). (4.9) 

If Min(i) = M0) a constant, for i<0 and Min(t) = 
M0 + A sin cot for t > 0, then equations (4.8) and (4.9) 
can be solved by Laplace transforms: 

m 
Ma(t) = M0(l + C)_ 1 + A £ (- C)""1 sin œ(t - nAt), 

n=l 
(4.10) 

where m is the greatest integer in t/At. If the wind mass 
loss is less than the accretion rate (C < 1), then the 
series converges and the flow is stable ; but in the opposite 
case (C > 1) the series diverges in an alternating fashion 
and the flow is unsteady. The critical value of C required 
for the onset of instability depends on the assumptions 
in the model; for example, allowing the disk mass to vary 
leads to C > 2 for instability. In this simple model the 
accretion eventually will become intermittent, alternating 
between on states of normal luminosity and off states of 
negligible luminosity. The characteristic time scale for 
the on and off states is given by the inflow time from the 
radius R0 of the ring; for a standard a-model disk 
(Shakura and Sunyaev 1973), this is 

At = ad
1(hd/R0)~2tg(R0) 

= SSaJ^h'JRoy^M/M^/T^f12 s , (4.11) 

where tg is the free-fall time and hd is the scale height 
of the disk. (Note that hd may differ from the height hd 
of the disk surface above the midplane—see below.) 

In a more realistic disk, the wind arises over a range 
. of radii, £ >0.1. Let £ be the surface density of the 
disk and È = 2m(£) be the rate at which £ decreases due 
to the wind. Then the characteristic time for the wind to 
destroy the disk at £ is iw = £/£. Gas is resupplied at £ 
by inflow in a time At — 2tlR2£/M(£), where M(£) is the 
mass inflow rate in the disk at £. With the aid of 
equation (4.2), we find that the ratio of these times is 

- = T77krh*t113 ■ (412> tw M(£) 

For £ < 0.1, the wind mass loss is exponentially small 
(m*->0) and M(£) ä Ma; then At/tw < 1 so that the 
surface density is controlled by inflow rather than by 
mass loss. However, if Mch/Ma > 1, then at some radius 
£w > 0.1 the integrated wind mass loss Mw (£ < £w) 
equals the accretion rate Ma. For £ > £„,, the surface 
density is controlled by the wind mass loss (which implies 
M(£) ~ Mw(<£), so that Ai ~ tw from eq. [4.12]), and 
the instability can operate. Since Ai(£) oc £3/2(/zd/R)-2 

increases with radius, so does iw(£): when the disk has 
been burned away at £w, it will still be intact at £ ^> £w. 
Hence we expect the dominant time scale for the 
instability to be of order Ai(£w) ~ ivv(£>v). The outer part 
of the disk (£ > £w) is unaffected by these fluctuations, 
but it may well be unstable on a longer time scale. For 
Mch/Ma > 1, we estimate £w ~ 0.2 from equation (4.5) 
so that 

AI,instab¡lity)~3,10>»|»(¿,) s. (4.13) 

For stellar X-ray sources this is of order an hour, whereas 
for disks in active galactic nuclei it is of order 104 yr. 
Because of this competition between inflow and mass 
loss, the instability may saturate at a finite amplitude 
rather than going to the limit in which the luminosity 
alternates between on and completely off. Radiative 
transfer effects (Paper II) can considerably complicate 
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this simple picture, though: if the attenuation factor/ 
is small at ¿ ^ 0.2 and increases outward, then may 
be determined by the variation in /. In principle, the 
height of the disk could be altered by the mass loss, 
which would greatly complicate the instability since / 
depends on the shape of the disk. In Appendix B we 
discuss the vertical structure of the disk and show that 
this is not a problem. 

A possible example of this instability is provided by 
4U 1626 — 67, an X-ray pulsar which exhibits flares 
which recur approximately every 1-3 x 103 s (Li et al 
1980; Middleditch et al 1981). Its hard spectrum 
corresponds to Tlc æ 108 K. Middleditch et al (1981) 
have determined its binary period to be 2500 s and have 
inferred hJR < 0.05. If h'JR is close to this maximum 
value and if ad ~ 1, then equation (4.13) shows that the 
predicted instability time scale is close to the observed 
one. Such flaring has not been reported in other binary 
X-ray sources, however, so this argument is far from 
conclusive. The most likely explanation for the absence 
of flaring is that the attenuation factor / is too small 
for the instability to operate. As shown in Paper II, 
such small values of/ are easily possible, but the theory 
is not sufficiently exact to explain why a sufficiently 
large / is found only in 4U 1626 — 67. In the case of 
Her X-l, McCray et al (1982) account for the observed 
soft X-ray flux by reprocessing of the hard X-rays at the 
“inner” edge of the accretion disk, which is assumed to 
be thickened by interaction with the magnetosphere; 
such a configuration would lead to small/ and eliminate 
the instability. If this model is correct, then soft X-ray 
excesses should be anticorrelated with flaring. A search 
for flaring behavior in other sources would be worth- 
while. 

The unsteady disk accretion we find for high efficien- 
cies and luminosities is the two-dimensional analog of 
the X-ray preheating instability in spherical accretion 
(Ostriker et al 1976; Cowie, Ostriker and Stark 1978; 
Krolik and London 1983). In our case, the existence of 
the instability depends on the shape of the disk ; if the 
disk does not flare, the attenuation factor / will be small 
and the instability will not occur at all. There are several 
effects which can thicken the outer disk and thus enhance 
the instability: The disk may be “twisted” so that the 
planes of the inner and outer disks are not coincident 
(Bardeen and Petterson 1975), as has been suggested for 
Her X-l (Roberts 1974; Petterson 1977). Second, if the 
disk in a binary system is large enough that the trajec- 
tories of the orbiting particles intersect (Paczynski 1977), 
then the outer disk will be heated and will thicken. 
Finally, it must be remembered that the effective 
thickness of the disk is not the scale height, but rather 
the point at which the pressure has dropped sufficiently 
far that S = Sc>max, which could be several scale heights 
above the plane (cf. Appendix B). 

b) Angular Momentum Loss and Disk Truncation 
The fundamental problem in the theory of accretion 

disks is the mechanism of angular momentum transport. 
This problem divides into two parts (Shu and Lubow 

1981): transport within the disk and removal of angular 
momentum from the disk as a whole. In binary systems, 
it is thought that tidal interactions remove angular 
momentum by transferring it from the disk to the orbital 
motion of the stars. For accretion disks in active galactic 
nuclei, Gunn (1979) has suggested that angular 
momentum may be removed by viscous interaction with 
a nonrotating, hot ambient gas, whereas Blandford and 
Payne (1982) have suggested magnetic braking. Winds 
from accretion disks remove angular momentum as well 
as mass and thus provide yet another mechanism for 
angular momentum removal. Winds may act in concert 
with tidal interaction or magnetic braking, and their 
effectiveness should be inferable from observation. We 
shall calculate the angular momentum loss due to a 
Compton heated wind, although the mechanism is 
independent of the origin of the wind. 

Let/be the angular momentum per unit mass. For gas 
in a Keplerian orbit we have 

7 = ^iccic£1/2 • (4-14) 

The angular momentum carried off by the wind is then 

4n m(R0)J(R0)R0 dR0 = Mch Rlc cIC Q^), (4.15) 

where 

QMä)=fädtl;-ll6m*. (4.16) 
Jo 

The average value of/in the wind is Rlc CiC<^1/2>, where 

<ï1,2> = Qj/Qm<tt,2 ■ (4.17) 

Approximate evaluation of Qj leads to 

= ¿¿'2(1 - 0.28£r1/2)/ln (12.5^) 

= 0.4£j/2 
l-0.5(L/Lcr)°^d-5/6 

l-0.67£ -1/3 

|1/2 

[A + E (£ > 0.1)] 

[B] 

= 0.67^/2(l - 0.022/^2)/(l - 0.08/^) 

[C + D(£>0.1)] 

= 61/2 [D,E(¿< 0.1)]. (4.18) 

The comments on the approximations below equation 
(4.5) apply here also. 

We now focus on the case of semidetached binaries, 
in which accretion is due to Roche lobe overflow. As 
we shall see, a sufficiently strong wind can truncate the 
disk at a radius smaller than it would otherwise have. 
The gas injected into the accretion disk has an angular 
momentum corresponding to a circular orbit about the 
accreting star at a radius Rin. Flannery’s (1975) calcula- 
tion of Rin can be fitted to within a few percent by 

Rin 
a 

OAfi 
1 - 0.8/r 

+ 0.036 , (4.19) 

where 0.05 < fi = Mx/Miot < 0.95 is the fraction of the 
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Fig. 4.—Disk truncation by a Compton-heated wind: Rd/Rm is plotted as a function of ¿;in. The lower curves give the minimum possible 
disk size: for MJMa-+ oo, where Mw is the mass loss in the wind, the angular momentum per gram carried off in the wind is equal to the 
injected angular momentum per gram. Note that RJRxn is independent of L/Lcr in Regions A + E (^ > 0.1). The upper curves give Rd/Rin for 
Mw = Ma. Curves for Mw = MJa can be obtained by displacing a point on one of the curves for MJMa = oo to the left by a factor (1 4- a)2 

and then up by the same factor. The normalized maximum disk radius RmaJRin given by the Paczynski-Smak tidal truncation theory (eq. [4.20]) 
is shown for a range of values of the mass ratio ft; it is independent of ¿in. Tick marks indicate values of fi from 0.1 at the left to 0.9 on the 
right. The disk is truncated by a wind at Rd rather than at Rmax only for small <^in and large MJMa. 

mass in the two stars which is in the X-ray source; a 
is the separation between the two stars, which are 
assumed to be in synchronous rotation. Angular 
momentum transport within the disk will cause the disk 
to spread outside Rm. Smak (1976) and Paczynski 
(1977) showed that, at a radius somewhat greater than 
Rin, particle orbits begin to intersect, and they suggested 
that this is likely to be the termination point of the disk. 
When the orbits begin to intersect, they are elliptical, 
and they have a maximum distance Rmax from the 
accreting star of about 2-3.5 times Rln (for 0.05 < 
fi < 0.95). More precisely, in this mass range 

RmJRin * 2.4 + 3.5fi - 4Afi3 (4.20) 
to within about 5%. For /¿ > 0.8, orbits at Rmax are 
unstable and the disk may be up to 20% smaller than 
this (Paczynski 1977). When the orbits intersect, one 
expects that turbulence will be generated which will 
facilitate the removal of angular momentum by tidal 
interaction. Observations of cataclysmic variables 
quoted by Paczynski (1977) support the idea that the 
disks are indeed somewhat smaller than Rmax. In X-ray 
binaries, the heating associated with orbital intersection 
should thicken the disk and thus enhance the mass loss 
due to the Compton-heated wind. 

To analyze the disk truncation due to a Compton- 
heated wind, we assume that the accretion is steady, 
that / = const., and that the wind is the dominant 
mechanism for removing angular momentum from the 
disk. Balancing the angular momentum MWKIC cic<£1/2> 
carried away by the wind (see [eq. 4.17]) with the 
injected angular momentum Min Rlc clc , we find 

(Mw + Ma)tlJl
2 = MwQj/Qm, (4.21) 

where we used the relation Min = Mfl + Mw. The solu- 
tion of this equation gives Rd/Rin, as shown in Figure 4; 
Rmax/Rin plotted there also for comparison. In order 
for a Compton-heated wind to be more effective at 
truncating the disk than the Paczynski-Smak mechanism 
(Rd<Rmax\ large values of Mw/Ma are required; for 
L/Lcr > 1, small values of ^in are needed as well. Since 
we have argued that accretion flows with Mw > Ma are 
unstable, we conclude that disks truncated by a 
Compton-heated wind should exhibit unstable accretion. 
The converse will often be true if ^in is small; thus 
the disk in 4U 1626 — 67, which has ¿;in æ 0.4 based on 
parameters from Middleditch et al (1981), should be 
truncated by a Compton-heated wind. Other examples 
will be discussed in Paper II. 

Our discussion up to this point has concentrated on 
X-ray binaries. In principle, winds could occur in 
cataclysmic variables, but the lower coronal tempera- 
tures imply that large disks are required (Rd > 0ARlc ~ 
10 cm) and the low luminosities^ < 1033 ergs s-1, 
Cordova, Mason, and Nelson 1981) and efficiencies 
(e ~ 10~3) imply that MJMa is small. On the other 
hand, in the case of accretion disks in quasars or 
active galactic nuclei, there is no binary to limit the 
disk size or to take up the angular momentum, so winds 
are likely to be an important mechanism for removing 
angular momentum over a wide range of parameters. 
The result in Figure 4 applies to such isolated disks 
as well. 

Finally, we compare the effectiveness of winds with 
the other suggested mechanisms for angular momentum 
removal. Tidal interaction has been discussed above. 
Viscous interaction with a hot ambient medium (Gunn 
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1979) will dominate the wind only if its pressure exceeds 
p0 so that the wind is suppressed. Since 

OM/T^ÍL/Le) _ 3 
Po = M8 SÓ 22 ergSCm 

= 0.027/L46/Rf8E0 ergs cm 3 (4.22) 

(M8 = M/108 M0) whereas the ambient gas is likely to 
have a pressure nearly independent of this will be 
possible only at very large radii. Magnetic fields (Bland- 
ford and Payne 1982) exert a torque 2RqBzB^ti. 
If we write BzB(f) = (b/2)B2, where b < 1, then the wind 
carries off more angular momentum than the field if 

Po(Qj/t) > b(B2ßn) . (4.23) 
(This condition is exact if B cc Rq1 so that 
B2 ccp0 ce Rö2.) Since is typically of order unity, 
this is equivalent to requiring the gas pressure at the 
surface of the disk to exceed b times the magnetic 
pressure. Numerically, this condition becomes 

B< 1.0 
fQjT2

C8(L/LE) 
M8Z

f
0be 

1/2 
gauss . (4.24) 

No measurements of field strengths in accretion disks 
are available, so it is not clear whether this criterion is 
satisfied. We note that for binary X-ray sources, fields of 
order 104 gauss at a radius of order 1010 cm are required 
in order to dominate over the angular momentum loss 
due to the wind. 

v. SUMMARY 
In lieu of strong nonthermal heating from within the 

disk, the formation of a Compton-heated corona and 
wind above an accretion disk is inevitable if the 
photosphere of the disk is exposed to hard radiation 
from the central regions. The pressure at the base of the 
flow is proportional to the radiation intensity ./ reaching 
the base. Since this varies radially, the flow is strongly 
two-dimensional where the wind is strong, but we have 
shown that the mass loss rates are insensitive to the 
trajectories of the streamlines. Since we do not need to 
assume self-similarity to obtain an approximate map of 
the mass loss over the disk, our analysis is more general 
than that of Bardeen and Berger (1978), and we are able 
to consider all cases describing the relative importance 
of heating versus gravity. Our approximate two-dimen- 
sional analysis of the wind from the corona yields the 
surprising result that mass loss is significant down to 
radii where the inverse Compton temperature is only a 
tenth of the temperature necessary for escape from the 
gravitational field of the central body, since the large area 
of the sonic surface (^tlR^) compensates for the 
pressure and density drop between the surface of the disk 
and the sonic surface. 

In deriving our map of mass loss, we assume that the 
source of hard radiation is located in a compact region 
at the center of the disk. Nevertheless, radiation from 
this source can reach the photosphere of the opaque 
disk because the photosphere “flares” with radius. Flare 
is evident in the disk models of Shakura and Sunyaev 

(1973), but even if it were absent there are other routes 
by which hard radiation could reach the surface of the 
disk. For example, if the X-ray source were extended 
(e.g., emission from the magnetic polar caps of a neutron 
star or emission from a pair of jets) or if the radiation 
from a compact source were scattered by material at 
high latitudes above the equatorial plane, then X-rays 
could “shine down” upon the disk. In Paper II we 
analyze the weakly flaring case; this represents a “least 
favorable” case in which a Compton-heated flow is 
possible, because the X-rays must traverse the corona/ 
wind along highly oblique paths in order to reach the 
base of the flow. 

Compton-heated coronae and winds utilize only a 
small fraction of the energy available from the central 
X-ray source. This is true, in part, in the inner corona 
because the heated gas occupies a small solid angle as 
viewed from the source, and in the outer corona and 
wind because the optical depth through the flow is small 
(cf. Paper II). Furthermore, each scattering gives up only 
a fraction kT/mec

2 <0 of the photon’s energy, and 
relatively few photons are scattered more than once in the 
heated gas. As a result, there is not much one can infer 
about the relative importance of Compton heating in 
determining the thermal behavior of disk coronae and 
winds, compared with the various nonthermal mechan- 
isms suggested by other authors (cf. § I). The energy 
flux in the latter is presumably limited to the local 
dissipation rate in the accretion disk, which is much 
smaller than the unattenuated X-ray flux from the central 
source; however, a much larger fraction of the available 
nonthermal energy may be absorbed by the gas. 

Compton-heated winds lead to a mass loss from the 
disk Mw which is often comparable to or larger than 
the mass flow Ma onto the central object which 
produces the X-ray flux. Instability can result if 
Mw > Ma since small fluctuations in L lead to small 
fluctuations in Mw which lead to large fluctuations in 
Ma. This instability is the two-dimensional analog of the 
X-ray preheating instability in spherical accretion 
(Ostriker et al 1976). The detailed behavior of the 
instability depends on the uncertain attenuation factor 
/, which will be estimated in Paper II. The instability 
can result in large-amplitude fluctuations in X-ray 
luminosity such as those observed in 4U 1626 — 67. 

Compton-heated winds also remove angular momen- 
tum from the disk. If gas enters the disk with an 
angular momentum corresponding to a circular orbit at 
Rm, then mass loss from R > Rln provides a sink for the 
angular momentum of the matter which accretes onto the 
central object. As a result, the disk is truncated at a 
radius Rd > Rln. For X-ray binaries in which mass is 
supplied to the disk through Roche lobe overflow, Rd 
may be smaller than that predicted by tidal truncation 
theories. Wind truncation requires Mw > Ma and may be 
associated with the accretion instability described above. 
Since the excess angular momentum is lost to the system 
rather than being fed back into the orbit, the presence 
of a Compton-heated wind from the disk can influence 
the evolution of mass-transferring binaries. 
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Finally, we note that the momentum flux itself can 
have important dynamical consequences. Although the 
back pressure of the wind is generally small compared 
with the pressure inside the disk, so that it will not 
strongly modify the disk structure (Appendix B), the 
combination of static plus dynamic (ram) pressure in 
the wind will be enough to confine cool clouds in thermal 
equilibrium and at the ionization parameter inferred 
from the broad emission lines of quasars. Thus, 
Compton-heated winds can provide naturally the hot 
medium which must confine the broad-line emitting gas 
in quasars (KMT). 
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APPENDIX A 

SELECTED GLOSSARY OF FREQUENTLY USED SYMBOLS 

Isothermal sound speed 
Isothermal sound speed at temperature Tic, Tch 
Flux of radiation, measured at the source 
Form factor for effective gravity along streamline (eq. [3.7]), at adiabatic sonic point 
Form factor for heating rate (eq. [3.9]), at adiabatic sonic point 
Attenuation factor (eq. [3.59]) = form factor for heating at base of corona/wind 
Height of disk photosphere above midplane, effective thickness of disk 
Scale height of disk, may be smaller than /id (eq. [4.11]) 
Mean intensity of radiation integrated over all frequencies, from 1-103 rydbergs 
Mean intensity of radiation at base of corona/wind (eq. [3.59]) 
Angular momentum per unit mass (eq. [4.12]) 
Total luminosity, luminosity of ionizing radiation (1 <hv< 103 rydbergs) 
Eddington limit 
Critical luminosity for wind parameter space (eq. [2.12]) 
Mass at center of accretion disk 
Local mass flux through disk 
Total mass loss rate due to wind (eq. [4.1]) 
Characteristic mass loss rate from disk (eq. [4.2]) 
Accretion rate by central object 
Rate of mass injection into disk 
Mass loss per unit area of disk 
= Po/Cch (eq- [3-12]) 
= m/mch (eq. [3.12]) 
Gas pressure at base of corona/wind (eq. [3.60]) 
P/Po (ecl- [3-11]), at adiabatic, isothermal sonic points 
Form factor for mass loss due to wind (eq. [4.3]) 
Form factor for angular momentum loss due to wind (eq. [4.15]) 
Radius in plane of accretion disk 
Radius at which Compton temperature equals escape temperature (eq. [2.7]) 
Radius at which wind barely is affected by gravity (eq. [2.11]) 
Radius at which wind barely heats to Compton temperature (eq. [2.15]) 
Outer radius of disk; outer radius due to truncation by wind 
Radius of circular orbit associated with gas injected into disk (eq. [4.19]) 
Radius at which orbits in Roche potential intersect (eq. [4.20]) 
Distance along streamline from disk surface; r = R0 at surface 
Equilibrium temperature of hot phase 
“Inverse Compton temperature”, at which Compton heating balances inverse Compton cooling 
(eq. [2.4]) 
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“Escape temperature” = GM/i/#0/i 
“Characteristic temperature” of steadily heated wind (eq. [2.9]) 
= T/Tch (eq. [3.11]), at adiabatic, isothermal sonic points 
= r/R0, dimensionless distance along streamline (eq. [3.1]) 
Adiabatic (eq. [3.17]), isothermal (eq. [3.18]) sonic point 
= (TcJTg)

1/2, measures ability of wind to heat to escape temperature in free fall time (eq. [2.10]) 
“Alpha-parameter” of standard accretion disk theory (Shakura and Sunyaev 1973) 
Exponent describing divergence of streamlines (eq. [3.3]) 
Log-weighted average of ß 
ß at adiabatic (eq. [3.17]) and isothermal (eq. [3.18]) sonic points 
Heating rate 
Optically thin heating rate at Æ0 

Efficiency of mass-to-energy conversion in the accretion flow (eq. [4.6]) 
= 6/0.1 
Defined eq. (3.20), evaluated at adiabatic sonic point (eq. [3.22]) 
Mean mass per particle, per free electron 
Mass ratio of compact X-ray source to total mass of binary 
Ionization parameter; for a beam of radiation, ratio of radiation pressure to gas pressure (eq. [2.1]) 
Ionization parameter used by KMT, = (2.3Jion/J)E' 
Maximum S' allowing gas in cool phase 
Minimum S' allowing gas in hot phase 
S' at base of corona/wind (eq. [3.60]) 
= Ro/Ric (eq. [2.8]); in general, = RJR0 
Surface density of disk (eq. [B.3a]) 

APPENDIX B 

HEIGHT OF AN X-RAY HEATED ACCRETION DISK 

In our analysis of mass and angular momentum loss from accretion disks in § IV, we assumed that the 
height of the disk was fixed. Here we show that in practice this assumption is generally satisfied: hd is only weakly 
dependent on the surface density E or the luminosity. We also discuss the modifications in disk structure 
associated with a Compton-heated corona and wind. 

Radiation from the central source and the inner parts of the disk heats and thickens the outer regions of the 
disk (Cunningham 1976). Over much of the surface of a disk around a high-efficiency source (e > 10-3), such 
external heating dominates local viscous energy dissipation (Cunningham 1976; Paper II). A corona or wind can 
alter these effects in several ways: first, the radiation is generally absorbed at the interface between the disk and 
the corona or wind (h = hd), where the pressure is p0 (eq. [3.60]). As we shall see, hd is typically related to the 
scale height h'd by hd ~ (2-3)hd. Second, this disk can in principle become pressurized by the wind, so that 
hd<hd; however, this occurs at such large radii (^ > 100) that other effects are likely to intervene. Finally, the 
corona and wind can scatter X-rays down onto the disk (see Paper II), thereby increasing the effective temperature 
above that given by direct irradiation alone. 

Following Cunningham (1976), we model the disk as being isothermal in the vertical direction, a reasonably good 
approximation for standard a-model disks (Shakura and Sunyaev 1973) and an even better approximation for 
externally heated disks. An isothermal disk has a pressure 

P = Pc exP [ — (h/h¿)2], (Bl) 
where the scale height is given in terms of the isothermal sound speed in the disk cs by 

h'd = 2V2(cs/vt)R0. (B2) 

Cunningham (1976) assumed that the disk was unbounded vertically, and made the approximation that the 
radiation was absorbed at one scale height (h = hd) above and below the midplane. In fact, the disk is generally 
highly opaque and, as remarked above, the radiation is absorbed at h — hd where p = p0. 

The surface density of the disk is 

I = 

“ 2Pc h'd erf 

(B3a) 

(B3b) 
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where erf (x) is the error function. Let pcu be the pressure in the midplane of an unbounded disk, i.e., one in which 
p0 = 0 as assumed by Cunningham. For such a disk erf (hd/h'd) = erf (oo) = 1 and we have 

Pcu = ^/nll2h’d . (B4) 

Equations (Bl), (B3b), and (B4) then provide two simultaneous equations for the unknowns pc (the actual central 
pressure) and hd: 

Pc = Pcu/erf (hd/h'd) = p0 exp (hd/h'd)
2 . 

These equations can be solved in the limiting cases of small surface pressure 

K 
K 

In — 
Po 

Po < P, 

1/2 
x (In I)1/2 

- Pc ; 

and large surface pressure 

K 
K 

n112 Pcu oc Z , 

(B5) 

(B6) 

(B7) 

(B8) 

(B9) 

(BIO) 

2 po 

Pcu<Po~Pc- 

An approximate solution for hd/h'd which has an accuracy of 5 % over the entire range of Po/Pc is 

^Líi+iáVT2 

K [ \ 2 Po) \ ' 
Note that in the case of small surface pressure (p0 < pcu; eq. [B6]) the height of the disk hd is insensitive to the surface 
density Z. We now demonstrate that this is usually the case in practice. 

To this point our discussion has been independent of the uncertain viscosity in the disk. In order to relate Z 
to observable quantities, however, we adopt an a-model disk (Shakura and Sunyaev 1973) in which 

M(Ç) = 2n(xdcshdI, . (BH) 

This relation is not significantly altered by mass loss (Liang and Price 1977). The vertical electron scattering 
optical depth through the disk is 

Tes = Z(7t/ pe 

780(L/Le) M((^)/7jC8\
3/2 

<Xd£-iTM Ma \ £ / 

(B12) 

(B13) 

where we have used equations (4.6) and (B2). The quantity is the disk temperature in units of 104 K, and is 
typically of order unity for ^ ^ 1 (Cunningham 1976; Paper II). If is the angle of incidence for the external 
irradiation, then we require t^cos > 1 in order to ensure that the hard X-rays are absorbed near the surface of the 
disk (h~hd). Since M(Ç) = Ma + MW(Ç) > Ma, equation (B13) shows that this will generally be true unless the 
luminosity is very low. 

The ratio of the central pressure of an unbounded disk to p0 varies as Z just as ies does. Equations (3.60), 
(4.6), and (B4) yield 

Peu Tics ítha\ 
7o~12^¡7^JñFC (B14) 

This ratio is almost always large. In the inner parts of the disk (^ < 0.1), we have M(£) æ Ma and 

^ n /fyA . 
Po ' oidt-i/Tjf \ ’ 

in Region A + E (ç > 0.1) we have M(Ç) > MH,(c) so that 

i1/2 In (12.5£) 

Po “ \ Td4 j Í 

(B15) 

(B16) 

In the remaining regions the ratio is larger yet. Hence the surface pressure is small (p0 -4 pcu) except at very 
large radii, ç > 100/ad. So long as the surface pressure is small, equations (B6)-(B9) imply that the height of the disk is 
insensitive to the surface density E. This means that moderate changes in E, such as those caused by the onset of the 
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wind-driven instability discussed in § IVa, will only weakly affect the transfer of X-rays to the surface of the disk. 
Since the scale height varies as T]/2, which in turn varies as L1/8, the disk height is insensitive to variations in L 
as well. (A similar scaling, with different normalization, holds for radiation generated within the disk itself.) Therefore, 
for most disks the height of the disk is insensitive to variations in the mass of the disk or in the central luminosity. 
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