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ABSTRACT

I use a modified form of the Newtonian dynamics (inertia and /or gravity) to describe the motion
of bodies in the gravitational fields of galaxies, assuming that galaxies contain no hidden mass, with

the following main results.

1. The Keplerian, circular velocity around a finite galaxy becomes independent of r at large radii,
thus resulting in asymptotically flat velocity curves.
2. The asymptotic circular velocity (V) is determined only by the total mass of the galaxy (M):
V2 = a,GM, where a is an acceleration constant appearing in the modified dynamics. This relation
is consistent with the observed Tully-Fisher relation if one uses a luminosity parameter which is

proportional to the observable mass.

3. The discrepancy between the dynamically determined Oort density in the solar neighborhood

and the density of observed matter disappears.

4. The rotation curve of a galaxy can remain flat down to very small radii, as observed, only if the
galaxy’s average surface density X falls in some narrow range of values which agrees with the Fish
and Freeman laws. For smaller values of Z, the velocity rises more slowly to the asymptotic value.

5. The value of the acceleration constant, a,, determined in a few independent ways is approxi-
mately 2X 1078(H, /50 km s~' Mpc™")? cm s™2, which is of the order of CH,=5Xx10"8(H, /50

km s~ ' Mpc™!) cm 572,

The main predictions are:

1. Rotation curves calculated on the basis of the observed mass distribution and the modified
dynamics should agree with the observed velocity curves.

2. The V; = a,GM relation should hold exactly.

3. An analog of the Oort discrepancy should exist in all galaxies and become more severe with

increasing r in a predictable way.

Subject headings: galaxies: internal motions — galaxies: stellar content — galaxies: structure —

stars: stellar dynamics

1. INTRODUCTION

In an accompanying paper (Milgrom 19834, hereafter
Paper I) I suggest that a certain modification of the
Newtonian laws of dynamics (inertia and/or gravity)
eliminates the need to assume the existence of hidden
mass in galaxies and galaxy systems. The basic assump-
tions of the modified dynamics are: (a) Standard dy-
namics breaks down in the limit of small accelerations;
(b) In the limit of small accelerations, the acceleration
of a test particle, in a gravitating system, is given by
(a/ay)a =gy, where g, is the conventional gravita-
tional acceleration and a, is a constant with the dimen-
sions of acceleration; (c¢) The transition from the
Newtonian regime to the low acceleration asymptotic
regime is determined by the acceleration constant a, (in
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the sense that the transition occurs within a range of
accelerations of order a, around a,).

I discuss in Paper I questions of principle concerning
the proposed modification. In particular, it is pointed
out that the modification can be one of the law of
inertia, in which case it has to be implemented, whenever
the acceleration is small, for whatever combination of
forces produces it. Alternatively, it may turn out to be a
modification of gravity alone. Within each interpreta-
tion there are still different formulations which can be
built on the basic assumptions. It is important to realize
(see § IX) that all the qualitative results of this paper do
not depend on the exact formulation or interpretation of
the modified dynamics. They result only from the above
basic assumptions.

In the present paper I discuss the implication of the
proposed modification for galaxies. In testing the above
ideas, I assume that no hidden mass exists besides that
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in stars, ISM, and IGM, which can be observed directly.
It is, of course, possible that some unseen mass exists,
but I would argue that it does not play the major role in
determining the dynamics in galaxies and galaxy sys-
tems.

I use a nonrelativistic formulation whereby the mod-
ified dynamics, in a gravitational field, takes the form

n(a/ao)a=gy, (M

where g, is the conventional gravitational acceleration,
assumed to have the usual dependence on its sources
and their distribution in space, and a is the acceleration
of a particle (a = |a|) with respect to some fundamental
frame (determined, say, by distant matter in the uni-
verse). The acceleration g, is assumed to be a static field
in this frame. The quantity p is a function of the ratio
a/ay. Fora/ay>> 1, p=1 (with the usual choice of the
gravitational constant G). For x < 1, u(x) & x, in which
case we can choose a, so that p(x) = x for x < 1.

In Milgrom (19835, hereafter Paper III) I show that
this modification results in masses for galaxy systems
(binaries, clusters, etc.) which are consistent with all
being due to the observed stars and gas.

In the following sections I discuss what I think are the
more straightforward (to derive and to test) implica-
tions, for galaxies, of modifying the dynamics in this
way. In § II, I consider the rotation curves of idealized
disk galaxies. In § III, I discuss Tully-Fisher relations.
Section IV is devoted to motions perpendicular to the
plane and the relevance to the Oort limit. Section V
deals with our own Galaxy. In § VI, I discuss two
aspects of galaxy structure, the existence of a maximum
average surface brightness (the Freeman and Fish laws)
and the particular distributions of the surface brightness
galaxies have. In § VII, I briefly discuss elliptical galax-
ies. In § VIII I list the main predictions related to
observations of galaxies. Section IX is a discussion.

II. THE VELOCITY CURVE

The observed velocity curves of disk galaxies provide
perhaps the major constraint on theories which propose
that there is no hidden mass in appreciable quantities. If
the observed mass is all there is, the expected rotation
curves can be calculated on the basis of the observed
mass distribution and the theory, and compared with
the observed curves. (Some uncertainty still remains in
deducing mass distribution from light distribution.)

The prominent feature of the rotation curves seems to
be their asymptotic flatness, evidenced by the many
curves given by Krumm and Salpeter (1977), Salpeter
(1978), Bosma (1978, 1981a, b) and by Rubin, Ford,
and Thonnard (1978, 1980, 1982). Various aspects of
this feature are discussed by Faber and Gallagher (1979,
hereafter FG) with further references.

With the proposed modification of the dynamics, the
asymptotic flatness of the rotation curve of a finite
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massive body, is ensured by the required linearity of
p(x) for small values of the argument, or from assump-
tion (b) of the modified dynamics (and indeed it is the
asymptotic flatness which motivated this requirement).

At large galactic radii we can put gy = MGr~? and
with a =V?2/r we get:

V4(r) = MGa,. )

Here M is the total mass of the galaxy.

Calculation of detailed velocity curves for actual
galaxies are important for the following reasons: (1)
Testing the theory by comparing calculated curves for
the observed mass distribution of galaxies with their
observed velocity curves; (2) Obtaining information on
the function u(x) via such comparisons; (3) It appears
that the flatness of the rotation curves has more to it
than the fact that they are asymptotically flat. The
velocity remains, in many cases, approximately constant
down to radii well within the observed mass distribu-
tion. I find that there is a tight link between this fact
and the question of why galaxy disks tend to have
certain profiles and a preferred value of the surface
density. To understand this link I consider theoretical
velocity curves for various mass distributions. I discuss
this matter in more detail in § VL.

In this section I calculate rotation curves, on the basis
of the modified dynamics, for an idealized model galaxy
made up of a planar flat disk and a spherical bulge,
assuming purely circular motions in the disk.

Let gy(r) be the conventional radial gravitational
acceleration at radius r in the disk’s plane. Then the
rotational velocity for equilibrium circular orbits is given
by (from eq. [1]).

[V2(r)/r]n(V2(r)/ray) = gn(r). (3)

Let M,, M, and M be, respectively, the mass in the
disk, the sphere, and the total mass (M = M, + M,). Let
h be some characteristic length scale in the galaxy which
we shall use as unit length, i.e. define s=r/h. As we
saw (eq. [2]), for r — o0,V (r) > V,, = (MGa,)'/*. De-
fine v(s)=V(sh)/V,.

It is true in general that gy (7) can be written in the
form

gn(r) = MGr2y(s,t1,....1,), (4)

where y depends on the mass distribution and ¢, are
dimensionless parameters (such as the fraction of mass

in the various components, the characterizing length
§ =00

parameters in units of &, etc.). y(s) — 1.
Equation (3) can then be written in a dimensionless
form

S_lvzgﬂ(s_lvzg)=£25_27(sat1’“~’tn)’ (%)

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1983ApJ...270..371M

5
h

T IoZi0C 37

Ald

o
0,
&

No. 2, 1983
where £ is given by

£=(MG/agh?)"* =V2 /ayh. (6)
For a given density distribution (or equivalently y),
one gets a family of scaled velocity curves u(s 3]
spanned by the parameter ¢ (by solvmg xp(x)= é s “2y
<1

for x = s~ '0%¢). Note that since u(x) = X, v(s)——>1
In the limit of very small £, v(s) becomes independent
of &, and we obtain the limiting velocity curve:

v(s,$<<1)z[y(s,t],...,tn)]]/4. @)

The parameter £ measures the “typical” acceleration
in the galaxy in units of a,. If mass is replaced by
luminosity, £ defines some average surface brightness of
the galaxy.

I shall not attempt here the computation of the veloc-
ity curve of specific galaxies, but rather give the results
of a parametric study.

For the sake of concreteness I shall assume that the
disk has an exponential surface mass density law Z(r) «
e /" and use a deprojected de Vaucouleurs density
distribution p,(r/r,) for the spheroid. In fact I use the
approximated density laws for small and large radii
given by Young (1976) at radii smaller and larger,
respectively, than the radius at which they coincide. The
parameter r, is the effective radius (containing half the
projected mass).

Justification for this choice can be found, for exam-
ple, in de Vaucouleurs (1962), Freeman (1970), de
Vaucouleurs and Freeman (1972), Kormendy (1977a,
b), Burstein (19794, b) and Whitmore and Kirshner
(1981). One perhaps has also to consider exponential
disks cut off below a certain radius (Freeman 1970;
Kormendy 1977b) or cut off at large radii (e.g., van der
Kruit and Searle 1981a, b). I assume that the mass
distribution is the same as the observed light distribu-
tion in each component separately.

One can write for a sphere +disk galaxy

v(s) = a v, (s)+ (1= ag)v4(s), (8)

where a,=M,/M, and the spheroidal contribution

v,(s) is simply the fractional mass in the sphere en-
S-—’OO

closed in s (we have y,, y,— 1).
For an exponential d1sk an analytic expression for
v,(s) can be obtained from Freeman (1970)

va(s) = (s3/2)[ 1o (s/2) Ko (s/2)— I,(5/2) K (5/2)],
)

with & being the exponential scale of the disk A = h , and
where I and K are the modified Bessel functions. The
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sphere contribution y,(s) will then depend on the
parameter s, = r, /h. For the cases with a sphere only, I
take h=r,. To proceed I now need to specify the
function p(x). In calculating velocity curves I have
arbitrarily used

p(x)=x(1+x2)""2 (10)
I have also used other forms for p(x) such as p(x)=
l—e ™ orp=xforx<1and p=1 for x >1. Although
the details of the results depend on the choice of p, the
major features are insensitive to the choice of y from the
above three. Hopefully, detailed comparisons between
calculated and observed velocity curves will help con-
strain p in the future. I shall give the results for p given
by equation (10) and in a few comparative cases for
=1l-e""

Consider first pure disks. The velocity curves are
given by solutions of equation (5) with y(s,2,)= v,(s)
from equation (9). The curves v(s, §) form a one param-
eter family.

When using the conventional dynamics, the dimen-
sionless velocity curve, for objects with one scale length
(h), is unique. However, by introducing a new constant
a, we can form a quantity of the dimensions of length in
addition to h, ie., r,=(MG/ay)"/?, so the dimension-
less curve depends on the ratio r, /h = §£.

I give in Figure 1 the results for a few values of & (for
§ =2, I also give the curve for p =1— e~ *). We note the
following: (a) For £ <1 the rotation curve is already
very nearly the limiting curve for §=0; ie., v(s)=
[v4(s)]"/*. (b) For ¢ = 2 the curve stays rather flat down
to about two disk scale lengths. (¢) For §£>3 the
velocity curve acquires a considerable hump and de-
viates more and more from flatness for increasing values
of €.

Point (c) is an important general result. If most of the
mass in the galaxy is contained well within the radius 7,
(i.e., if £ > 1), there is a region between 4 and r, which is
outside most of the mass, but in which p=1. In this
region the dynamics is Newtonian, and v(s) has to
decrease like s~/ and to deviate from a flat curve.

Consider now galaxies with no disk component. We
now define ¢ =(MG/ayr?)'/*> and s=r/r,. Some
curves are shown in Figure 2. As before, we get a
one-parameter family. For £ =2 we get a very flat curve
(£5% downtor=20.1r,).

Compound model galaxies constitute a three-parame-
ter family. In addition to § one has to specify a,(=
M,/M) and s.(=r,/h). In Figure 2, I show the veloc-
ity curves for a, =0.25, 0.5, and 0.75, each with s, =
0.25, 0.5, and 1. (Kormendy 1977a and Burstein 19795
find for all the galaxies they studied and all fitting
procedures s, < 1.) For each pair (a,, s,), I have plotted
the curve for a value of §, which gives a nearly flat
curve, and for two values of £ above and below that.
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F1G. 1.—Calculated velocity curves for a pure exponential disk (Fig. 1a) and pure de Vaucouleurs sphere (Fig. 1). Velocity is in units of
V., and radius in units of the exgonential scale length and effective radius, respectively. The values of £ are marked on the curves. Continuous

line is for p(x)=x(1+ x2)~"/

Note that velocity curves which are flat down to small
radii are obtained only for certain combinations of
(ay, S,, £). In particular they occur only near § =1. As I
shall show in § VI, ideal spheres or disks which have an
exactly flat rotation curve also have a unique average
surface mass density of order a,G™' (or a unique value
of £ of order 1).

We are now in a position to give an estimate of a,,
the acceleration constant. Since many galaxies have a
rather flat rotation curve down to small radii, we can
assume that they have £, say, between 1 and 2. The

and dashed line for p(x)=1-e¢"*

typical value of the extrapolated central surface bright-
ness for exponential disk galaxies is B = 21.65
mag arsec” * (e.g., Freeman 1970), which corresponds to

(11)

Assuming that this value corresponds to 1<§<2 we
take M,;G/ayh® = a,* ~ 0.5-2, to get ay~ (0.7-3)X
1078P cm s™2, where P = M, /Lp g in solar units and
is between 1 and 4 depending on galaxy type. This is of
course only a rough estimate of a,. The proper de-

Ly giw/2mh* =145Lp o pc 2
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F16. 2.—Calculated velocity curves for sphere+ disk galaxies, with disk to total mass ratios of a, = 0.75 (Fig. 2a), a, = 0.5 (Fig. 2b),
a, = 0.25 (Fig. 2¢). In each case the results are given for three values of the sphere-to-disk scale ratios, =1(___), s, = 0.5(___), s, = 0.25(...).
The values of § are marked on the curves. The ordinate scale for s, =1, 0.25 are given on the left. That for s, = 0.5 is given on the right.

termination of g in this way should involve a fit to the
observed velocity curves of specific galaxies using the
observed mass distribution.

The value of a /a, = v*¢ s~ !, in galaxies, is in general
much smaller than 1 at s > 1, it increases beyond 1 as s
becomes smaller than 1 where v is still near 1 and then
goes down again as v decreases rapidly inward. The
velocity curve thus does not sample u(x) at very large
values of x, and it may not be possible to determine the
asymptotic behavior of u(x) from the velocity curves. If,

however, specific forms of u(x) have to be tested, the
velocity curves provide a potentially very useful test.

Galaxies are, in general, accelerated in the gravita-
tional field of a neighboring galaxy or of a group of
galaxies. As a result, the acceleration of objects within
the galaxy with respect to the fundamental frame differs
somewhat from its acceleration with respect to the center
of the galaxy.

If the strong equivalence principle still holds in the
modified dynamics, the external acceleration does not
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affect the internal dynamics. It may be, however (see
Paper I) that, in the modified dynamics, the acceleration
which determines p in Equation (1) is the net accelera-
tion with respect to the distant matter. In this case, the
effects of an external mass on the internal dynamics of a
galaxy may be (when the external acceleration is larger
than the internal one and the latter is much smaller than
a,) much stronger than its tidal effects from which they
differ in the following ways: (a) The new effects do not
result from nonuniformity of the external field across
the galaxy. They exist in full strength in a uniform field.
(b) The effects of an external, spherically symmetric
field (e.g., that of a point mass) are not symmetric with
respect to the center of the galaxy. Thus, asymmetries in
the structure of the galaxy may be produced. (¢) Due to
(a), the effective “internal” force produced by the exter-
nal field may be much larger than its tidal force. For
example, a point mass M at a distance R from an object
of size r produces tidal forces of the order of MGrR™3
but may produce effective internal forces in that object
of order MGR™? (i.e., R/r times larger), due to the
corrections to the internal accelerations. In this case, at
large distances from the center of the galaxy, where the
external acceleration dominates, u becomes a constant,
and the orbital velocity in the galaxy will start to
decrease with radius.

To summarize this section: (a) The asymptotic flat-
ness of galaxy rotation curve is ensured by assumption
(b) of the modified dynamics (linearity of p for small
values of its argument). (») Rotation curves for realistic
mass distribution behave like observed curves (i.e., stay
nearly flat to small radii) for values of £ (or equivalently

the average surface brightness) in a certain narrow range.
(c) For a given mass distribution the deduced rotation
curve is rather insensitive to the choice of p(x) as long
as p has the required behavior at small and large values
of x. j

III. THE M — V_ RELATION AND THE TULLY-FISHER
CORRELATION

Tully and Fisher (1977, hereafter TF) were the first to
find a relation (hereafter the TF relation) between the
luminosity (L) of galaxies and the width of their 21 cm
line (which is a measure of the galaxy’s rotational veloc-
ity). Since then a few analyses of this relation have been
published (e.g., Sandage and Tammann 1976; Aaronson,
Huchra, and Mould 1979; Bottinelli et al. 1980; Rubin,
Burstein, and Thonnard 1980; Visvanathan 1981; de
Vaucouleurs et al. 1982).

Different groups chose their galaxy samples in differ-
ent ways, use luminosities defined in different bands,
apply the various corrections necessary in different ways,
etc. All suggest a relation of the form L o V', where V is
either the velocity at some prespecified point taken from
the velocity curve, or the velocity inferred from the 21
cm line width. The values of 8 found are between 2.5
and 5.

The existence of such a relation and its exact form
seem to be of little theoretical use if one assumes the
existence of hidden mass to explain the rotation curves.
V then measures the total mass (luminous + hidden) and
the L(V) relation can, at best, provide a relation be-
tween the amount of total mass within a certain radius
and the luminosity. As in the case of the velocity curves,
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the TF type relations become an extremely important
constraint on theories which assume no hidden mass.

As we saw in § II, I predict (from assumption [5]):

Vi =a,GM. (12)
This is a major prediction and an absolute relation
independent of galaxy type or any other property of the
galaxy.

In order to test relation (12) one has to obtain a TF
type relation with the following points in mind.

1. The velocity to be used should be V_, not the
maximum velocity, nor the velocity at some isophotal
radius, etc. (although all of these velocities are in many
cases close to each other).

2. The luminosity can be used only as a measure of
M. One should use a sample of galaxies for which there
are good reasons to believe that the mass-to-luminosity
ratio (M/L) is constant (for the standard matter) in the
band for which L is measured.

Requirement 2 can perhaps be satisfied if one uses
galaxies of one type (Rubin, Burstein, and Thonnard
1980, but see de Vaucouleurs etal 1982), or if one
chooses a photometric band for which one can safely
assume that M(luminous)/L is independent of galaxy
type. The choice of the luminosity in the IR seems
particularly appealing, in this respect, for the reasons
discussed by Aaronson, Huchra, and Mould (1979). It is
thus encouraging that their derived relation agrees so
well with equation (12) (see also Visvanathan 1981 and
Weekes 1981).

Alternatively, one can use a mixed type sample at a
band for which M/L is not constant but obtains the
luminous mass for each galaxy from its L and a theoreti-
cal value of M/L proper for its type.

I analyzed the galaxy data given in Table 1 of FG in
this way. Given are 51 galaxies with their luminosities
and rotational velocities V(Ry) at the Holmberg radius.
I have not considered the Sdm and Sm type galaxies for
which the inclination determination is very uncertain
(see, e.g., Tully eral 1978). I have taken out M8,
N4736, M51, M83, and M101 for which the velocity
curve is still sharply rising or decreasing at the last
measured point. One is then left with 40 galaxies. I have
divided them into four type groups as did FG (SO-Sa,
Sab-Sb, Sbc-Sce, Scd-Sd). For each group I have calcu-
lated the average value of V*/L, and found (10.5, 8.3,
3.5, 1.8)x1072 (km s~ ")*Lj ;. The respective standard
deviations are (5.9, 5.5, 1.9, 1.2)x1072 (km s~ ")*Lz &
and the number of galaxies in each group (6, 11, 15, 8).
If the M« V? relation holds, the values of V*/Lg
should be proportional to M/Ly for the stars and gas.

I use the values of M/Ly in solar units derived by
Larson and Tinsley (1978) for the stellar population
from their models as given by FG, corrected for the
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mass of the gas using Roberts’s (1975) result (again as
quoted by TF), to obtain the following model values
of M/L, for the above groups (3.56, 2.89, 1.71, 0.89).
The ratios of the values of V*/Ly to these values of
M/Ly are, respectively, (2.95, 2.87, 2.05, 2.02)x102
(km s~ ")*Mg5" which are very close to each other con-
sidering the uncertainties involved and the fact that the
values of M /L themselves vary by a factor of 4.

I use the average value of V*/L,/(M/Ly) over the
four groups (2.47%x107% (km s~ ")*M3") to obtain the
value of a,:

a,=1.9x%x10"%% cms 2,

(13)

with ks, = H, /(50 km s~! Mpc™'). The uncertainty in
a, is of about a factor of 2.

To test the M — ¥V relation for this mixed sample, in
more detail, I obtained the theoretical mass of each
galaxy in the sample from its quoted L and the theoret-
ical M /L values as discussed above. I obtain the best fit
slope of 3.1 and 4.2 for the log M versus log V and log V'
versus log M. Constraining the slope to be 4, I obtain
the best fit intercept which yields a,=1.5Xx10"%h%,
cm s~2 again with a factor of 2 uncertainty (which
correspond to a scattering of 0.3 in log M about the
log M-log V regression line).

Constraining the slope for the data, on Sc galaxies, of
Rubin, Burstein, and Thonnard (1980) to be 4, I obtain
the best fit value of the intercept which gives a, = 3.7 X
1078P~'h%, cm s~2, where P =(M/Lp) in solar units,
assumed constant for the sample. I use the value of P
adequate for Sc galaxies from Larson and Tinsley (1978)
as quoted by FG: P =1.71, to obtain a, = 2.1 X 10~ %A%,
cm s~ 2, with an uncertainty similar to the one above.

The determination of a, from the proportionality
factor in the TF relation is independent of that which is
described in § II. The second is only based on the shape
of the rotation curve and makes use of surface mass
densities (or surface brightness); hence, it does not
depend on knowledge of H, and, for that matter, is
insensitive to errors in determining inclinations or errors
in determining L due to deviations from the Hubble
flow, absorption in our Galaxy, or even internal absorp-
tion. The determination of a as described in this section
makes use of total luminosities and asymptotic veloci-
ties, so it is sensitive to the above factors; on the other
hand, it is not affected at all by uncertainties in the mass
distribution within the galaxy or the exact form of p(x)
to which the other method is sensitive. Note also that an
overall error in the assumed values of M /L affects the
value of a, in opposite ways in the two determinations.

Our present knowledge of the TF relation is sufficient
to rule out a modification of only the distance depen-
dence of gravity as the sole explanation of the mass
discrepancy, as such a modification implies a M-V rela-
tion of the form M o« V2,
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IV. THE DYNAMICS OF THE z-MOTIONS

There is an important aspect of galactic stellar dy-
namics for which the major implications of the modified
dynamics are quite straightforward. This has to do with
the structure of the galactic disk and motion of stars, in
the direction, z, perpendicular to the plane of the disk.

I shall adopt the standard assumptions which
are made for studying this problem (e.g., Oort 1965;
Mihalas 1968), i.e., that the particle trajectories are
nearly circles around the galactic center and in the disk
plane. The z-motions (as well as other deviations) are
small perturbations. Namely, the z-excursions of the
particles are small compared with the orbital radius and
the deviations of velocities and accelerations from those
of circular motion are small. One can then decouple the
dynamics of the z-motion from that in the other direc-
tions and find relations between the z-component of the
galaxy’s gravitational acceleration (g)), the z-velocity
dispersion, and z-dependence of the density of some
group of test particles. One can then determine gV and
via Poisson’s equation determine the total gravitational
mass density in the central plane or the surface mass
density in the disk (Oort 1960, 1965).

On the basis of the above assumptions, all the stars
involved in the analysis have approximately the same
acceleration xa, = V'2/r in the galaxy’s field, where V is
the circular velocity and r is the distance from the
galactic center. As can be shown explicitly from equa-
tion (1), keeping terms to the lowest order in the acceler-
ation deviations from the average galactic rotation, the
effect of the modification on the z-dynamics is to make
the effective inertial mass of all particles involved a
factor u(x) smaller than their gravitational mass, other-
wise leaving the dynamics Newtonian. The true (mod-
ified) effective gravitational acceleration, g,, which is
derived from the stellar dynamics, in the conventional
manner, is larger, by a factor approximately equal to
[p(x)]"", than the Newtonian acceleration, g, which is
related to p via the Poisson equation. This factor
increases with r (at large r and with a flat rotation curve
it is proportional to r).

For example, Spitzer’s (1942) solution for the z-struc-
ture for a plane symmetric isothermal, self-gravitating
disk, when applied to galaxy disks, will now give

p(z)=p(0) sech’ (z/z), (14)

with
(15)

where p(0) is the density in the mid-plane and (V) is
the (z-independent) z-dispersion.

Another modification takes place when one employs
the Poisson equation to obtain the mass density p from
gY. For an axisymmetric galaxy, we have for the radial

zo=[u(x)(¥V2)/27Gp(0)]'?,
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terms in the Laplacian, in the midplane of the galaxy:

dgl/dr+gl/r=p(x)(4- B)
X {f(x)+2[1+ f(x)]
X (A+ B)/(4- B)),

f(x)=dIn[p(x)]/dIn(x).

Here 4 and B are the Oort rotation parameters.

Thus the relation between p and dg/dz depends
differently on the galactic rotation parameters then in
the Newtonian case (p =1, f=0).

We shall see below that near the Sun, dg"/dr+ g™/r
is much smaller than dg/3z.

(16)

V. THE MILKY WAY

I first obtain the value of a, from estimates of the
Galaxy’s mass (M) and its asymptotic rotational veloc-
ity. I take the estimated mass of the standard matter in
the Galaxy given by Bahcall and Soneira (1980) (without
the mass which they add to account for the Oort dis-
crepancy) M;=3X10'""M,. Assuming, as in Gunn,
Knapp, and Tremaine (1979), that the velocity curve of
the Galaxy is flat beyond the Sun and normalizing to
their value of the rotational velocity at the Sun’s posi-
tion, I get:

ag=V3iG"'M;'= (58+1.0)x10°3(¥, /220 km s~ ')*

1

X (Mg/3x10"°My) ", (17)
where the error quoted reflects only that in V.

That this value of a is consistent with that obtained
in § III is not really surprising. After all we know that
the Galaxy does not deviate much from the TF relation.
However, in terms of the astrophysical assumptions
made, this is an independent estimate of a, (as can be
seen from the fact that it is independent of 4, and that
it does not make use of a model value for M/L).

The value of £ I get for the Galaxy normalized to the
above values of M, and V_ is (using a, from eq. [17])

£=V2/agh=08(h/3.5kpc) (¥, /220kms™!) "

(18)

Next consider the question of the mass density near
the Sun. The observational situation is summarized by
FG. The dynamical mass density (Oort 1965) (deduced
with the conventional dynamics) is p, = 0.15 M, pc>.
Estimates of the mass density in conventional forms give
(0.08-0.12) M, pc™? (FG and references therein). One
finds that it is practically impossible to account for the
remaining mass density of, say, 0.06 Mg pc™ > by the

X (Mg /3%x10"°M,).
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contribution from an unseen halo which one assumes to
explain the velocity curve, unless the halo is very flat
(see, for example, Bahcall and Soneira 1980).

With the modified dynamics one deduces a dynamical
mass smaller by a factor approximately equal to
p(V3/roa,) (assuming that the radial terms in the
Poisson equation can be neglected; see below). If the
Oort discrepancy results from the use of Newtonian
dynamics when in fact the modified dynamics should be
used, we can write u(V2/roa,) = 0.7. This then implies
that the argument of p is of order 1 (from assumption
[c] of the modified dynamics). This in turn gives a, ~
Vé/rez= 1.9X1078(V,/220 km s™')%(ry/8.5 kpc)™!
cm s” %

I now estimate the contribution of the radial terms
in Poisson’s equation. I take the values of A and B
from Gunn, Knapp, and Tremaine (1979): 4 = (13+2)
km s~ ' kpc™!, B=— 4, to get (from eq. [16])

g/ ar+ g/ r=xop'(x0)(A— B)’
= xoi'(x0)7.5x 1073 572, (19)

This value is to be compared with that of — dg¥/dz
= u(x0)8.8X1073% 572 as given by Oort (1965) [and
corrected by a factor p(xg)].

It is hard to estimate xou'(xp). Note, however, that if
p(x) is monotonic (' > 0) and concave (p” <0) we
have xp'(x)<p(x) (see § VI after eq. [22] for an
important implication of this inequality). In this case,
the radial term given by equation (19) is at least a factor
of 10 smaller than the z-term.

VI. GALAXY STRUCTURE

Two of the major questions concerning galaxy struc-
ture have to do with the following observations.

1. Galaxies have particular density distributions, i.e.
they involve disks which are approximately described by
a surface brightness =(r) = =Pe~"/* (perhaps cut off at
small and /or large radii) and spheres or ellipsoids which
are approximately described by the de Vaucouleurs law
S = She (/70" (oo de Vaucouleurs 1962; Freeman
1970, 1978; Kormendy 19774, b). Other forms have also
been suggested for describing spherical components in
galaxies and they work better in some cases (Hubble
1930 and the King 1966 models).

2. There are values of the central surface density
3/, different for disks and spheres, which appear to play
a special role. They are &P =145L; o, pc™ (S, = 21.65
mag arcsec”2) for the disks, and =P =23 X 10°Ly
pc~2(S, =13.65 mag arcsec” ) for spheres. Here =i is
the extrapolated central surface brightness in the B band
using an exponential law for the disks and de
Vaucouleurs law for the spheres. These were first pointed
out by Fish (1964) and by Freeman (1970).
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Allen and Shu (1979) discuss the evidences and con-
clude that the above values constitute upper cutoffs.
Galaxies with higher surface brightnesses are very rare.

The modified dynamics involve a constant, a, which,
with the proper transformation from mass to luminosity,
defines a special value of surface brightness, ie.,
[aoG~(M/L)™"]. As I now show it is indeed this value
(within a numerical factor of order one) which corre-
sponds to 2, for both disks and spheres.

The observed values of T and {P" define certain
values of the parameter £ defined in § II.

For an exponential disk

(£7°)’ = GM™®/agh® = Py(M/Ly) (G /a,)2wZg®,
(20a)

For a de Vaucouleurs sphere:
(67)" = GM=/ayr?
=1.1x1072Py(M/Ly) (G /ay) =F*.

(20b)
Here, M®*® and M*" are the masses of the exponen-
tial disk and sphere, respectively, Py is M/Ly in solar
units, r, is the effective radius of the sphere. The numeri-
cal factors are introduced through the relations between

2{ and the quantities L/h?> and L/r?2, respectively.
With the above values of =& and =" we get:

éSph = 1'4(PB)1/2h;019
(21)

g = 0.85(Py)' "y

with ay =2X1078h%; cm s 2.

Thus, the preferred values of ={ correspond in both
disks and spheres to values of £ near 1.

As we saw in § II, a value of £ which is not much
larger than 1 is a necessary condition for the velocity
curve not to deviate much from flatness. I thus find that
galaxies possess, in general, the two properties between
which I found a causal link, i.e., rotation curves which
stay flat well within the luminous mass on the one hand,
and on the other, values of £ near (or at least below) 1.
As I show below, ideal spheres or disks which have an
exactly flat rotation curve, indeed have a unique mass
distribution and a unique average surface density. It is
not clear, at the moment, which of the two properties is
the cause and which is the consequence. It is tempting to
suggest that the flatness of the rotation curve is the
cause, i.e., that many galaxies are built in such a way so
as to make their rotation curve as flat as possible. This
then requires that they have a certain mass distribution
and size to match their mass, so as to produce a value of
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£ close to or smaller than 1. This must remain a conjec-
ture for the time being.

I now consider idealized galaxies which have an ex-
actly flat rotation curve (down to r =0). They can be
used as reference models for real galaxies. Just as a
spherical mass with M(r) « r produces a constant rota-
tional velocity if the conventional dynamics applies,
there is a spherical density distribution which has a
constant rotational velocity with the modified dynamics.
This distribution is

M*(r)=Mu(ry/r)(r/n),  ro=(MG/ay)">.

(22)

I shall call such spheres flat rotation curve (FRC)
spheres.

Three important properties of the FRC sphere are (a)
It is finite: for r > ry, M*(r) = M; (b) It has a unique
mass distribution up to a scale length; and (¢) It has a
unique surface mass density M/ri=a,G~'. I shall
hereafter use the name FRC-like (FRCL) body for a
spherical object which has the density law of an FRC
but does not necessarily have the unique surface density
(and is thus not an FRC). Expression (22) for M*(r)
can be a mass law only if it nowhere decreases with r.
This is equivalent to the condition dIn[p(x)]/dIn (x)
< 1 which I shall assume. (See end of § V.) I find that if
the de Vaucouleurs sphere is required to be a FRC-like
object u(x) is determined to be very nearly of the form
1—e* for x < 10.

There is also a unique surface density distribution
2*(r) in a thin disk which produces a flat rotation
curve. Using formulae from Mestel (1963) (modified to
be compatible with the modified dynamics) I find for
this distribution as a function of the distance from the
center, r

S*(r)=Mh~ 2 2y!

11 u’dutdt d
></o/o (1—u2) (1= g2) /> du'

w'n(un '],

(23)

where n=r/h and h = (MGag")'/%. As for the spheri-
cal case, 2*(r) has a finite mass M, it is unique up to
one scale parameter (h), and it has a unique average
surface density.

A compound galaxy with a total mass M, and a
FRCL spheroid of mass M,, has an exactly flat rotation
curve if its disk surface density *(r) is given by

3*(r) =2*(n)— 5722 (n/s,).

Here 2* is that given by equation (23), a,= M, /M,

(24)
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s, =r,/h, r,is the scale radius of the sphere (replacing r,
in the first of egs. [22]), and n and A are defined as
before.

It should be stressed that the existence of a preferred
value for the surface mass density is not a necessary
result of the modified dynamics as the asymptotic flat-
ness of the rotation curve, and the M « Vo‘; relation are.
It is only necessary if the rotation curve is to stay flat
down to small radii. When the average surface density
much exceeds a,G~!, the rotation curve must have a
large bump. Such bumps are not observed for actual
galaxies. When the average surface density is smaller
than a,G™', the velocity rises more slowly from the
center out.

Burstein (1982) recently found that there exists a
strong correlation between the infrared average surface
brightness of galaxies and their asymptotic rotational
velocity. Rubin, Burstein, and Thonnard (1980) find, in
their sample of Sc’s, correlation between the luminosity
(or rotational velocity) of galaxies and the steepness
with which the velocity rises near the origin. There
should then exist a correlation between surface bright-
ness and steepness of rise of the velocity. The modified
dynamics implies such a correlation.

VII. ELLIPTICAL GALAXIES

Ellipticals form a rather heterogeneous group. They
have different degrees of ellipticity, perhaps different
M/L, and although many are well approximated by de
Vaucouleurs’s law, many depart from this law in differ-
ent ways (see, for example, Oemler 1976, Kormendy
1977, Strom and Strom 1978). Also, the orbits in
ellipticals may vary within the galaxies and from galaxy
to galaxy. It is thus difficult to make general predictions
as was possible for disk galaxies.

Elliptical galaxies exhibit, however, some properties
which very much resemble analogous properties of disk
galaxies.

1. In the one case I know of (Knapp, Kerr, and
Williams 1978), where a 21 cm rotation curve is avail-
able for an elliptical (NGC 4278), it stays flat to large
radii, [instead of M /Ly =19.8(M/Lg), which FG give
for this case, I get (M/Lg)=7.5(M/Lg), with the
modified dynamics].

2. Various groups find correlations between the
luminosity (L) and the central velocity dispersions, ¢, in
ellipticals (Faber and Jackson 1976; Sargent ez al. 1977,
Schechter and Gunn 1979; Tonry and Davis 1981,
Terlevich et al. 1981; Tonry 1981). All fit a relation of
the form L o o°. All except Tonry (who finds § =3.2+
.2), find & to be nearly or at least consistent with 4.

3. I have already mentioned the evidence that ellipti-
cals tend to have values of L/r? which are close to, or
at least not larger than, a certain critical value which is
nearly the same as that for disks.
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A major step in understanding ellipticals can be made
if we can identify them, at least approximately, with
idealized structures such as the FRCL spheres discussed
above. I have also studied isotropic and nonisotropic
isothermal spheres, in the modified dynamics, as such
possible structures. I found that they have properties
which very much resemble those of ellipticals and
galactic bulges. I describe these in Milgrom (1983¢).

VIII. PREDICTIONS

The main predictions concerning galaxies are as fol-
lows.

1. Velocity curves calculated with the modified dy-
namics on the basis of the observed mass in galaxies
should agree with the observed curves. Elliptical and SO
galaxies may be the best for this purpose since (a)
practically no uncertainty due to obscuration is involved
and (b) there is not much uncertainty due to the possi-
ble presence of molecular hydrogen.

2. The relation between the asymptotic velocity (V)
and the mass of the galaxy (M) (V2= MGa,) is an
absolute one.

3. Analysis of the z-dynamics in disk galaxies using
the modified dynamics should yield surface densities
which agree with the observed ones. Accordingly, the
same analysis using the conventional dynamics should
yield a discrepancy which increases with radius in a
predictable manner.

4. Effects of the modified dynamics are predicted to
be particularly strong in dwarf elliptical galaxies (for
review of properties see, e.g., Hodge 1971 and Zinn
1980). For example, those dwarfs believed to be bound
to our Galaxy would have internal accelerations typi-
cally of order a;, ~ a,/30. Their (modified) accelera-
tion, g, in the field of the Galaxy is larger than the
internal ones but still much smaller than a,, g= (8
kpc/d)a,, based on a value of ¥, =220 km s~ for the
Galaxy, and where d is the distance from the dwarf
galaxy to the center of the Milky Way (d ~ 70-220
kpc). Whichever way the external acceleration turns out
to affect the internal dynamics (see the discussion at the
end of § II, the section on small groups in Paper III, and
Paper I), we predict that when velocity dispersion data
is available for the dwarfs, a large mass discrepancy will
result when the conventional dynamics is used to de-
termine the masses. The dynamically determined mass is
predicted to be larger by a factor of order 10 or more
than that which can be accounted for by stars. In case
the internal dynamics is determined by the external
acceleration, we predict this factor to increase with d
and be of order (d /8 kpc) (as long as a;, < g, hsy=1).

Prediction 1 is a very general one. It is worthwhile
listing some of its consequences as separate predictions,
numbered 5-7 below (note that, in fact, even prediction
2 is already contained in prediction 1).
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5. Measuring local M/L values in disk galaxies (as-
suming conventional dynamics) should give the follow-
ing results: In regions of the galaxy where V?/r > a,
the local M/L values should show no indication of
hidden mass. At a certain transition radius, local M/L
should start to increase rapidly. The transition radius
should occur where V2/r = a,,. This test has the follow-
ing advantages: (a) It does not require an absolute
calibration of M/L as we are concerned only with
variations of this quantity; (b) Effects of the modified
dynamics manifest themselves more clearly in local mass
determination than in the integrated masses; and (¢) In
many cases this test requires information on local behav-
ior in the disk only while the spheroid can be neglected.
This makes the determination of mass from velocity
more certain.

6. Disk galaxies with low surface brightness provide
particularly strong tests (a study of a sample of such
galaxies is described by Strom 1982 and by Romanishin
etal. 1982). As low surface brightness means small
accelerations, the effects of the modification should be
more noticeable in such galaxies. We predict, for exam-
ple, that the proportionality factor in the M « V2 rela-
tion for these galaxies is the same as for the high surface
density galaxies. In contrast, if one wants to obtain a
correlation M « V2 in the conventional dynamics (with
additional assumptions), one is led to the relation M «
272 (see, for example, Aaronson, Huchra, and Mould
1979), where X is the average surface brightness. This
implies that low surface density galaxies, of a given
velocity, have a mass higher than predicted by the M-V
relation derived for normal surface density galaxies.

We also predict that the lower the average surface
density of a galaxy is, the smaller is the transition
radius, defined in prediction 5, in units of the galaxy’s
scale length. In fact, if the average surface density is
very small we may have a galaxy in which V?/r<a,
everywhere, and analysis with conventional dynamics
should yield local M/L values starting to increase from
very small radii.

7. As the study of model rotation curves shows, we
predict a correlation between the value of the average
surface density (or brightness) of a galaxy and the
steepness with which the rotational velocity rises to its
asymptotic value (as measured, for example, by the
radius at which V'=1V_ /2 in units of the scale length of
the disk). Small surface densities imply slow rise of V.

IX. DISCUSSION

The main results of this paper can be summarized by
the statement that the modified dynamics eliminates the
need to assume hidden mass in galaxies. The effects in
galaxies which I have considered, and which are com-
monly attributed to such hidden mass, are readily ex-
plained by the modification. More specifically:

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1983ApJ...270..371M

T IoZi0C 37

pJ

F19B3A

382 MILGROM

1. The velocity of a particle in a circular orbit around
a finite galaxy becomes independent of the radius of the
orbit at large radii. This results in asymptotically flat
rotation curves of galaxies.

2. The asymptotic rotational velocity V,, depends
only on the mass of the galaxy, M, V2= a,GM. This
relation, I find, is in agreement with the observational
relations (of the Tully-Fisher type) between the velocity
and the luminosity of galaxies, when the properly de-
fined luminosity is used.

3. The mass density in the solar neighborhood de-
duced from the z-dynamics with the modified dynamics
is smaller than that deduced with the conventional dy-
namics and is consistent with that which is observed
directly.

4. T have calculated velocity curves for model galax-
ies. I find that the resulting rotation curves can be flat
down to small radii, deep within the mass distribution
(in accord with the observed behavior of many galaxies)
only when the surface mass density is near a certain
critical value (of order a,G~'). This again is in accord
with the observational fact that galaxies tend to prefer a
certain value for their surface brightness. For galaxies
with lower surface density, the velocity is expected to
rise more slowly toward the asymptotic value.

I wish to stress again that the main results of this
paper only depend on the bare-bones assumptions of the
modified dynamics. They do not depend on the particu-
lar formulation which one builds on these assumptions,
nor on the exact form of p(x) in the formulation I have
used. The asymptotic flatness of the rotation curves and
the relation MGa, = V2 result from assumption (). The
relation between average surface density and shape of
the velocity curve result in the following way from the
basic assumptions. If the average surface density is
much larger than a G~ ', most of the mass of the galaxy
is deep within the Newtonian regime. In this case there
should be a wide range of radii within which V' decreases
as r~'/2, There must then be, in this case, a large bump
on the velocity curve. The statement that the galactic
acceleration at the Sun’s position is of order g, also
follows from assumption (c) of the modified dynamics
and the fact that the Oort discrepancy is of order unity.

It is of great importance to determine the value of q,
and the form of p(x). As I discuss in Paper I, there is,
hopefully, a theory in which these are calculable (to-
gether with G) from the distribution of matter in the
universe and its manner of expansion.

I have determined a, (with uncertainty of about
a factor of 2 on each side) in a few ways: (a) From
the proportionality constant in the M « V? relation:
ag=2x10"2r%(P/Py)~" cm s~ 2, where P is the M/L
ratio for standard matter in galaxies, in solar units,
and P, is a model value I used for it. () From the
M « V} relation applied to the Milky Way: a, = 6 X
107%(V; /220 km s™")4(M;/3x10°My)~" cm s72,
where M, is the Galaxy’s mass and V¥ its asymptotic
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velocity. (¢) From the requirement that the preferred
surface brightness, observed in galaxies, equals the one I
find is necessary to obtain rotation curves which stay
flat to small radii: a,=3X1078(P/2) cm s~ 2 (d)
Assuming that the discrepancy factor between the Oort
density and the observed ome is u(V3/roay)=0.7,
where V; and r; are the Sun’s orbital velocity
and radius respectively, I get a,=2x10"%(V,/220
km s~ ")?(r5/8.5 kpc) ' em s 7.

Determination (a) is insensitive to the form of p(x)
or to details of the mass distribution in galaxies. It does
require knowledge of H, and M/L and involves
uncertainties in the inclinations and obscuration correc-
tions as reflected in uncertainties in ¥, and L. De-
termination (b) does not require knowledge of M/L or
of H,. It is susceptible to uncertainties in the galaxy’s
mass and its asymptotic velocity. Determination (c)
does not require knowledge of H,, or the inclination of
galaxies but (for an accurate result) requires a detailed
analysis of individual galaxies, and unlike (a) and (b)
may require knowledge of p(x). Determination (d)
again requires more information on p(x) and involves
uncertainties in the velocity and orbital radius of the
Sun.

It should be noted that the range of values I get for q,
contain the value of CH, = 5X 1078k, cm s ™2, where C
is the speed of light. This fact may be most significant as
is discussed in Paper I.

As to the form of u(x). As already said, most of the
results of this paper are not sensitive to the exact form
of p. As shown in Paper I, solar system experiments put
some constraint on the asymptotic form of p (for x = ).

It appears to me that the best way to determine p(x)
observationally will be through detailed comparison of
calculated and observed velocity curves. In galaxies,
though, x = a /a, does not much exceed 10, and so p(x)
can be obtained only up to x ~ 10.

Another potential method of determining p(x) is
through identifying ellipticals with specific structures
such as FRCL objects or isothermal spheres. If such
identification can be made, p(x) can be deduced di-
rectly from the observed surface brightness distribution
of ellipticals. For example, I have demonstrated in § VI,
that if isolated ellipticals are FRCL bodies (except per-
haps at very small radii), u(x) is fixed and at least for
x <10 is well approximated by p(x)=1—e""

Some additional major aspects of galaxy dynamics
which are bound to be greatly affected if the ideas
presented here and in Paper I are basically correct, are:

1. Galaxy formation. With smaller effective inertial
mass than thought before, galaxies collapse easier and at
lower masses of the perturbation.

2. Galaxy evolution. I mention in Paper I the possi-
bility that a, vary with cosmic time. This will lead to
evolution of galaxies due to changes in the inertia field
with which they interact.

3. The question of stability of self-gravitating disk
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galaxies (Ostriker and Peebles 1973) has to be re-
checked.

4. The dynamics within globular clusters should be
greatly affected. The typical gravitational acceleration in
them is gy =1.5X 10" ¥(M/10°Mg)(r/10 pc) "2 cm s~ 2,
compared with a, ~ 2X 1078 cm s 2 we find in previous
sections.

5. The formation and maintenance of warps in the
outer parts of discs (e.g., Hunter and Toomre 1969) will
have to be reconsidered.
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