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ABSTRACT 
We present two new times of mid-X ray eclipse for Cen X-3 based on pulse arrival time analyses 

of pointed observations with SAS 3. These results, when combined with all other published eclipse 
times based on Doppler delay measurements, show that the 2?! binary period is decreasing at an 
average rate of POTb/POTh = -1.8xl0-6yr-1, but with apparently significant fluctuations about a 
smooth, linear decrease. The observed changes in the orbital period can be accounted for by mass 
loss from the system through the L2 point, although the required rates are implausibly high. We also 
show that the long-term overall orbital decay can be readily interpreted as the result of torques 
exerted by the tidally distorted companion star (Krzeminski’s star) on the orbiting neutron star. The 
inferred asynchronism between the orbital frequency and the rotation frequency of the companion 
star may be maintained by mass and angular momentum loss in a stellar wind, or by a tidal 
instability related to the Darwin effect. However, this scenario would not provide a natural 
explanation for any short-term deviations from a constant rate of orbital decay. The implications of 
an inferred shrinking critical potential lobe around Krzeminski’s star are discussed. 
Subject headings: stars: binaries — X-rays: binaries 

I. INTRODUCTION 

The X-ray pulsar Cen X-3 has now been studied for a 
decade. The early discovery of the binary nature of the 
source (Schreier et al. 1972), identification of the O-type 
giant companion star (Krzeminski 1974), and de- 
termination of the binary system parameters, including 
the mass of the neutron star (Avni and Bahcall 1974; 
Bahcall 1978; Rappaport and Joss 1981, and references 
therein) have made this system the prototype of the 
massive X-ray-emitting binaries. In addition, the long- 
term decrease in the 4.8 s pulsation period (Gursky and 
Schreier 1975; Schreier and Fabbiano 1976) has pro- 
vided support for the accretion torque model of pulse 
period changes in X-ray pulsars (Pringle and Rees 1972; 
Lamb, Pethick, and Pines 1973; Rappaport and Joss 
1977; Ghosh and Lamb 1979). 

The early Uhuru observations indicated that the 2^1 
binary period of the system was decreasing at a mean 
rate of Porh/POTb = -(8±4)XlO-6 yr -1 (Schreier et al. 
1973; Fabbiano and Schreier 1977). Evidence was also 
presented for a short-term increase in the orbital period 
in 1972 at a rate of Poxb/POTb~ +5X\0~A yr-1 

(Fabbiano and Schreier 1977). Various mass transfer 
and mass loss effects, as well as tidal interactions, have 
been considered to explain these changes in the orbital 
period (van den Heuvel and de Loore 1973; Wheeler, 

^his work was supported in part by NASA contract NAS5- 
24441. 

McKee, and Lecar 1974; Sparks 1975; Chevaher 1975; 
Fabbiano and Schreier 1977; Thomas 1977). 

In this paper we present two new precise mid-eclipse 
time measurements based on pulse arrival time analyses 
of data taken with SAS 3 in 1976 November and 1978 
December/1979 January. These results are combined 
with all other available mid-echpse time measurements 
determined in the same manner. The data, which span 
an interval of a decade, indicate that the orbital period 
of Cen X-3 has continued to decrease, but at about 
one-fourth the rate suggested by the Uhuru measure- 
ments, and with apparently significant deviations from a 
constant rate of decay. We show that the overall period 
decrease could easily be the result of tidal torques; the 
inferred asynchronism between the orbit and the rota- 
tion of Krzeminski’s star could be maintained ultimately 
by a dynamical instability or by mass and angular 
momentum loss in a stellar wind. We also explore the 
effects of angular momentum lost directly from the orbit 
via mass ejection. 

II. SAS 3 OBSERVATIONS AND RESULTS 

Pointed observations of Cen X-3 were carried out 
with SAS 3 on several occasions between 1975 and 
1979. We have selected the data from two of the ob- 
servations with the best source exposure: 1976 Novem- 
ber 28.4-30.6 and 1978 December 15.3-1979 January 
8.8. The second observation lasted for more than 20 
days, and the results of detailed studies of the correla- 
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ORBITAL PERIOD CHANGES IN CEN X-3 791 

tions between pulse period and X-ray luminosity, as well 
as eclipse profiles, will be presented elsewhere. 

The data recorded with the 3-6 keV energy channel 
of the horizontal tube detectors (e.g., Buff etal. 1977) 
were selected for the pulse arrival time analyses because 
of the high counting rate, low background rate, and 
sufficiently high time resolution (0.416 s). The procedure 
used to determine the heliocentric pulse arrival times 
has been described elsewhere (Rappaport, Joss and 
McClintock 1976; Primini, Rappaport, and Joss 1977). 
We obtained a total of 59 arrival times for the first 
observation and 222 for the second. The 1 a uncertain- 
ties in the pulse arrival times were found empirically to 
be - 50 ms for the first observation and ~ 30 ms for the 
second. 

For the 1976 observation we computed minimum x2 

fits of the pulse arrival times to a function that includes 
the Doppler delays due to a circular orbit and the time 
delays due to a constant rate of change of pulse period. 
The free parameters in the fit were the projected semi- 
major axis of the neutron star orbit, a^sinz, time of 
mid-X-ray eclipse (for an assumed circular orbit), Te, 
pulse period, P, pulse phase reference, and rate of 
change of intrinsic pulse period, P. The value of the 
orbital period was held fixed at Porb = 2<?087117 (Table 
3). The best-fit values of the parameters are listed in 
Table 1 along with formal 1 a confidence limits. 

The behavior of the intrinsic pulse period during the 
course of the 1978-1979 observation was sufficiently 
complex that even a relatively high-order polynomial in 
time plus a circular orbit did not adequately fit the pulse 
arrival times over the entire 20 day observation. To 
improve the fits, we divided the data set into two nearly 
equal segments and fitted a common binary orbit to the 
entire set while simultaneously fitting a different low- 
order polynomial in time to each segment (see, e.g., 
Kelley, Rappaport, and Petre 1980). It was found that 
the best-fit orbital parameters (¿z^sinz, 7^, and ^orb) 
were not very sensitive to the choice of the order of 
these polynomials. This is to be expected since the data 

contain 10 cycles of the binary orbit, and the orbital 
Doppler delays are essentially uncorrelated with the 
intrinsic pulse period behavior. The resulting best-fit 
orbital parameters obtained by this procedure are also 
Usted in Table 1; the corresponding Doppler delay curve 
is shown in Figure 1, along with the residuals from the 
fit. The pulse period behavior for the 1978-1979 ob- 
servation is dominated by an overall spin-up of P/P = 
-5.3X10"4 yr"1. This is about a factor of 2 greater 
than the observed long-term spin-up rate (see, e.g., 
Rappaport and Joss 1982). 

We also carried out eccentric-orbit fits to the arrival 
times from the 1978-1979 observation. Only a margi- 
nally significant detection of the orbital eccentricity, 
e = 0.0004 + 0.0002, was obtained, which is just barely 
consistent with the value of e = 0.0008 + 0.0001 de- 
termined by Fabbiano and Schreier (1977). 

To study possible changes in the orbital period, we 
have collected all available mid-echpse times and the 
corresponding uncertainties determined from X-ray 
pulse timing analyses (Table 2). The deviations in mid- 
echpse times from those predicted for a constant orbital 
period are shown in Figure 2 (these are hereafter re- 
ferred to as mid-echpse time delays). Statistically signifi- 
cant and systematic variations of up to - 800 s are 
apparent; the reduced x2 for a fit to a constant orbital 
period is 624 (per degree of freedom) for 22 degrees of 
freedom. When a quadratic function is fitted to the 
mid-echpse times, the reduced x2 is found to be 30 (per 
degree of freedom) for 21 degrees of freedom. Thus, the 
addition of a quadratic term leads to a very substantial 
improvement in the fit, but there still remain statistically 
significant deviations. The best-fit quadratic function is 
shown in Figure 2. 

Before discussing the possibihty that the observed 
mid-echpse time delays result from a changing orbital 
period, we caution that the echpse-time measurements 
(and their uncertainties) in Figure 2 are from a number 
of different satelhte experiments, and thus were not 
necessarily determined by a uniform analysis procedure. 

TABLE 1 
Circular Orbit Fits to SAS 3 Pulse Arrival Time Data from Centaurus X-3a 

Observation 1 Observation 2 
Parameter 1976 Nov 1978 Dec-1979 Jan 

a* sin /   39.549 ± 0.027 lt-sec 39.636 ± 0.003 lt-sec 
Te  JD 2,443,112.76642 + 0d00040 JD 2,443,870.38910±0d00002 
Porh  2^087117b 2^087097 + 0^000008 
Pc   4.8336641+0.0000015 s 4.8335959 + 0.0000001 s 
P/P   < 7X10-4 yr“1 ~-5.3xl0"4yr“1 

aAll quoted uncertainties are single-parameter 1 a confidence limits. 
bHeld fixed at this value (see Table 3). 
cHeliocentric pulse period referred to an epoch of JD 2,443,112.0 for observation 

1 and JD 2,443,867.0 for observation 2. 
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FIG. 1.—Cen X-3 Doppler delay data from SAS 3 observations in 1978 December-1979 January. Solid curve represents the best-fit 
circular orbit (Table 1). Points clustered around zero Doppler delay {small squares) are the residuals of the data points from the best-fit orbit. 
Note that the scale for the TQÛàudXs {right-hand ordinate) is 50 times that for the Doppler delays. 

TABLE 2 
Centaurus X-3 Eclipse Times*1 

Time 
Orbital Cycle JD - 2,440,000.0 Reference 

0   958.84643 ±0?00045 Fabbiano and Schreier 1977 
57    1077.81497 + 0.00015 Fabbiano and Schreier 1977 
83   1132.08181+ 0.00029 Fabbiano and Schreier 1977 
91   1148.78051+0.00016 Fabbiano and Schreier 1977 

166   1305.31533 + 0.00014 Fabbiano and Schreier 1977 
273   1528.64010 + 0.00030 Fabbiano and Schreier 1977 
284   1551.59798 + 0.00017 Fabbiano and Schreier 1977 
293   1570.38199 + 0.00011 Fabbiano and Schreier 1977 
295 ............. 1574.55610 + 0.00013 Fabbiano and Schreier 1977 
296     1576.64330 + 0.00010 Fabbiano and Schreier 1977 
297   1578.73037 ± 0.00007 Fabbiano and Schreier 1977 
298    1580.81722 ± 0.00009 Fabbiano and Schreier 1977 
300   1584.99193 + 0.00010 Fabbiano and Schreier 1977 
303   1591.25328 + 0.00015 Fabbiano and Schreier 1977 
304   1593.34025 + 0.00015 Fabbiano and Schreier 1977 
307   1599.60212 + 0.00015 Fabbiano and Schreier 1977 
308   1601.68930 + 0.00014 Fabbiano and Schreier 1977 
309   1603.77671+0.00021 Fabbiano and Schreier 1977 
709....  2438.628 ±0.003 Tuohy 1976 
876   2787.1755 ± 0.0007 van der Klis, Bonnet-Bidaud, 

and Robba 1980 
1032     3112.76642 + 0.0004 This work 
1314   3701.33275 + 0.00043 Howe e/a/. 1982 
1395   3870.38910 + 0.00002 This work 
1786   4686.44760 ± 0.00005 Murakami et ai 1982 

aEclipse times are based on circular orbit fits to pulse arrival times. 
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ORBITAL PERIOD CHANGES IN CEN X-3 793 

Orbital Cycle Number 

Fig. 2.—Cen X-3 mid X-ray eclipse time delays. The observed-minus-calculated eclipse times are plotted with respect to the ephemeris 
tn = JD 2,440,958.8557 + 2^0871201 n. The eclipse times and references are given in Table 2. Solid curve represents the best-fit to a constant 
rate of orbital decay (P0rb/Porb = -1.8xl0~6yr-1). 

Although this might account for some of the nonstatisti- 
cal deviations from the best-fit quadratic function, the 
overall systematic trend of the mid-eclipse time delays 
apparent in Figure 2 must certainly be real. 

We further note that if the orbit of Cen X-3 is 
eccentric, with e = 0.0008 (Fabbiano and Schreier 1977), 
simple sinusoidal fits to the Doppler delay data will, in 
general, not yield the true mid-eclipse times (Deeter, 
Boynton, and Pravdo 1981). In this type of analysis, 
systematic, periodic deviations from the true eclipse 
times of up to ePorh/2 (cf. Thomas 1974) may result if 
apsidal motion is present in the system. However, this 
time difference is smaller than ~ 100 s for the Cen X-3 
system, and therefore cannot explain the observed varia- 
tions in the eclipse delays (Fig. 2). Furthermore, the 
“eclipse times” determined from sinusoidal fits have the 
advantage that they yield the mean orbital period, re- 
gardless of the observation interval, even if apsidal 
motion is present in an eccentric binary system. This is 
to be expected since the first term in the Fourier expan- 
sion of the orbital Doppler delays contains no informa- 
tion about the eccentricity. We therefore continue to use 
the term “mid-eclipse times” even though, strictly 
speaking, the actual eclipse times for an eccentric orbit 
cannot be determined from circular orbit fits. 

A constant rate of change of the orbital period will 
lead to a quadratic variation in the mid-eclipse time 
delays. The time of the nth mid-eclipse is then given by 

tn~to+PoTbn + l/2PotbPolbn
2, (1) 

where ^orb and A>rb are the orbital period and its deriva- 

tive, respectively, at time t0. From the best-fit quadratic 
function and equation (1) we obtain Porb/Porb~ 
+ 0.1)Xl0~6 yr_1. (The uncertainty was determined 
after scaling up the error bars on the individual mea- 
surements until x2 per degree of freedom equaled unity.) 
The value of POTh/POTh that we obtain is about one-fourth 
the value determined by Fabbiano and Schreier (1977), 
who used a shorter data span, although it is formally 
consistent with their 2 o result. The orbital period 
ephemeris implied by our best-fit values of t0, Porh, and 

^orb is given in Table 3. 
When carrying out x2 fits to a series of data points 

obtained in different experiments, with error bars that 
differ greatly, and where nonstatistical deviations are 
clearly evident, it is often instructive to carry out an 
additional fit where all data points are weighted equally. 
Such a comparative test provides a measure of the 

TABLE 3 
Long-Term Orbital Period Behavior of Centaurus X-3 

Time of the nth mid-X-ray eclipse and orbital period: 
‘„=t0 + Porbn + \/1PorbPorbnl 

^orb(0= ^orb + ^orb(i “ ^o) 

r0= JD 2,440,958.8509±0i10003 
/>orb = 2d0871390 ± 0d0000009 

1/2 />or+orb= -(1.06±0.05)X10-8 days 
Potb= -(1.02 + 0.05)Xl0-8 

+b/.Porb = - O-78 ± 0.08) X10“6 yr-1 

Standard deviation of the 24 measured eclipse times from /„ = 105 s 
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dependence of the fitted parameter values on the details 
of the assigned error bars. We have, therefore, also 
carried out a x2 fit in which equal uncertainties are 
assigned to each mid-eclipse time measurement. In this 
case we obtain only a slightly larger value for Porh/Poxh 

than obtained above: Porb/Porl? =-(2.2±0.2)X 10-6 

yr_1, where the error bar is again a formal statistical 
uncertainty. 

Finally, we comment on the deviations of the eclipse 
times from a simple quadratic fitting function (corre- 
sponding to a uniform orbital decay rate). These 
observed deviations (Fig. 2) indicate that there are ap- 
parently intervals when the decay rate is faster than the 
average and other intervals when the decay rate is 
slower than average. Nonetheless, all the eclipse times 
seem to be consistent with an orbital decay, with the 
possible exception of the cluster of Uhuru measurements 
(Fabbiano and Schreier 1977) around orbital cycle 300. 
A formal fit to the 13 eclipse times in the subgroup of 
the data yields an orbital expansion rate corresponding 
to Porb/^orb ^ +(4± 1)X10-4 yr-1 (also see Fabbiano 
and Schreier 1977). If the published uncertainties for 
these eclipse times are accepted at “face value,” then 
orbital expansion has been observed at the 4 a confi- 
dence level. However, we note that the corresponding 
values of ax sin i (Fabbiano and Schreier 1977) show an 
empirical scatter of ~ 57 ms about the mean, in contrast 
to the quoted uncertainty of ~ 23 ms. We therefore 
conclude that the quoted uncertainties in eclipse times 
are also likely to have been underestimated by the same 
factor of - 2. If the 13 eclipse times near cycle 300 are 
reanalyzed with error bars enlarged by a factor of ~ 2, 
the statistical significance of the short-term, rapid orbital 
expansion is greatly diminished. We obviously cannot be 
certain that the orbit did not expand; however, we will 
focus attention in the remainder of this paper only on 
the highly significant long-term orbital decay. 

III. DISCUSSION 

The rate of change of the orbital period of a binary 
system is determined primarily by considerations of 
angular momentum. In particular, there are two prin- 
cipal ways in which the orbital angular momentum of 
the stellar components may change. The first involves 
the loss of mass from at least one of the components; 
this might take place by critical-potential lobe overflow 
or by a stellar wind. Even if the total mass and total 
angular momentum of the binary system remain con- 
stant during mass transfer, the orbital period will, in 
general, change due to the redistribution of the angular 
momentum. If mass is lost from the binary system, it is 
likely to carry away angular momentum. In this case 
there are a number of possible modes by which angular 
momentum can be transported away. For example, the 
matter may escape from the L2 point following Roche 
lobe overflow, or be ejected in the wind of a rotating 
star. 

The second way in which orbital angular momentum 
can be modified is through a tidal interaction. Here, one 
or both of the members of a close binary system will be 
tidally distorted, and, through viscous forces, the tides 
raised on one star will lag (or lead) the other orbiting 
component as long as the stellar rotation is not synchro- 
nous with the orbit. A torque is thus exerted which tends 
to decrease (or increase) the orbital angular momentum. 
This mechanism accounts for the presently increasing 
orbital period in the Earth-Moon system (see, e.g., 
Darwin 1879; Counselman 1973). 

In the discussion that follows, we consider both of 
these processes in detail and show that with plausible 
assumptions, the observed overall orbital period de- 
crease of the Cen X-3 system is probably ultimately 
produced by tidal coupling of Krzeminski’s star to the 
orbiting neutron star. 

In a binary system consisting of two point masses, Mc 

(the companion star) and Mx (the X-ray star), the orbital 
angular momenta of the two components are related by 
Lx = Lc (Mc/Mx). If mass transfer and mass loss occur, 
the rate of change of Lx, and hence the effective torque 
on the orbiting X-ray star (if the orbit is assumed to 
remain circular), is given by 

where LT = Lx + Lc is the total orbital angular momen- 
tum, q = Mx/Mc, and ß is the fraction of mass lost by 
Mc that is captured by Mx (ß = - Mx/Mc). The first 
term on the right side of equation (2) represents the 
torque due to mass transfer, and the second term is the 
torque due to mass and angular momentum loss from 
the system. If the mass transfer process is conservative 
in both total mass and angular momentum, then ß = 1 
and = 0. 

For mass transfer processes that are not conservative, 
the rate at which angular momentum is lost from the 
system must be specified. A convenient way to para- 
meterize this rate is to take 

LT = tMTa
2

co>K = aMc(\-ß)a2
cuK, (3) 

where £ is a dimensionless parameter that is to be 
specified or determined, MT is the total mass of the 
binary, ac is the semimajor axis of the orbit of the mass 
losing star, and co^ is the orbital angular velocity. We 
define a torque on the orbiting neutron star due to mass 
loss and exchange by Nx = Lx. With the above defini- 
tion of Lt we can rewrite equation (2): 

N? = Mca
2uK 

[i + ft/g+iQ-/?)],?2 

(l + <7)3 
(4) 

We emphasize that equation (4) is an approximate, 
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parameterized expression that we expect will effectively 
incorporate all of the complex interactions of matter 
during transfer and loss from the system, including the 
effects of a possible disk that may mediate the accretion 
onto the neutron star. 

In the case of the Cen X-3 system, the moment of 
inertia of the companion star is 0.50+ Jis (95% confi- 
dence2) times the moment of inertia of the orbit 
(a2MxMc/MT), and thus can not be neglected in the 
orbital dynamics. In this case we expect that equation 
(4) will continue to be valid, with £ still defined as the 
orbital angular momentum lost from the binary system 
per unit mass lost. If rotational angular momentum is 
carried away from the companion star at a significant 
rate via a stellar wind, then the rate of total angular 
momentum loss may be considerably larger than that 
lost directly from the orbit. However, this will not affect 
the orbit until tidal torques couple the two components 
(see discussion below). 

To account explicitly for the tidal interaction, we have 
adopted a simple one-parameter expression for the tidal 
torque on the orbiting neutron star due to a tidal lag: 

K= - L (- “c) 
(5) 

where Ic is the moment of inertia of the companion, coc 

is its angular frequency, and r is a synchronization time 
scale (which, for radiatively damped dynamical tides 
[Zahn 1977], is itself a function of côk - <oc). Equation 
(5), in its simplist form, is based on the notion that the 
tidal lag angle is expected to be approximately propor- 
tional to the difference in angular velocities between the 
companion star and the orbit (see, e.g., Lecar, Wheeler, 
and McKee 1976; Zahn 1977, and references therein). 

The dynamical equations governing the evolution of 
the system are given by 

^ = N‘ + Nf‘, (6a) 

^ = Ni + Nx*. (6b) 

orbital angular momentum and thus can be neglected in 
equation (6b) (i.e., Jx « Lx). The orbital period deriva- 
tive can be computed from equations (4), (5), (6b), and 
Kepler’s third law, a3co2

K = GMT: 

Porb Mc (UK-UC\\ 
^r3/srM 0)K J T 

(7a) 

where 

7 ^ (I^j ’ (7b) 

and 

g = y(l + q)2(Xc/a)2/q. (7c) 

The quantity rj is the moment of inertia of the compa- 
nion star in units of MCR

2. Equation (7) is significantly 
different from the expressions for Porh/Porh given by 
Fabbiano and Schreier (1977) and Thomas (1977) in 
that it has been derived by considering only the torque 
on the orbiting neutron star, rather than the net torque 
on the entire binary system. The advantage of this 
approach is that it does not require any assumptions 
about the time rate of change of both the radius and 
angular velocity of the companion star. We emphasize, 
however, that equation (7) yields only the instantaneous 
value of the rate of change of the orbital period. To 
determine the evolution of the orbital period and the 
other orbital parameters requires a solution of the cou- 
pled differential equations (6a, b). 

To investigate the implications of equation (7), we 
consider two limiting cases: (i) the synchronization time 
scale is much longer than the time scale for orbital decay 
(Porb/Porb « 5 X 105 yr), and the orbital period changes 
are therefore due entirely to the effects of mass loss and 
exchange, and (ii) tidal effects dominate the orbital 
dynamics. 

The relation between the X-ray luminosity, Lx, and 
the mass accretion rate, Mx, provides an additional 
constraint on the mass loss rate: 

In these expressions Jc and Jx are now the total angular 
momenta (i.e., rotational plus orbital) of the companion 
star and the neutron star with respect to the center of 
mass of the binary system, and N™ and A/ are the 
mass-loss and tidal torques, respectively, on the compa- 
nion star. The spin angular momentum of the neutron 
star in the Cen X-3 system is much smaller than the 

2 The value for the moment of inertia of Krzeminski’s star and 
the corresponding uncertainty were obtained from a Monte Carlo 
error propagation technique (Rappaport, Joss, and Stothers 1980; 
Rappaport and Joss 1982) and from calculations of the moment of 
inertia [/= (0.06±0.02)MCR

2] of stars similar to Krzeminski’s 
star by Stothers (1982). 

K 1 / KL* \ 
Mc ß \ GMCMX )’ 

(8a) 

or, for the parameters of Cen X-3 given below, 

M ® - 6X 10”9J 
ß \ 5X 1037 ergs s 

— |M©yr 

(8b) 

(We have assumed here that the time delay between 
mass loss by the companion and accretion onto the 
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Fig. 3.—Angular momentum loss parameter, £, vs. mass capture fraction, ß (see eq. [7]). Solid curve gives the relation between £ and ß 
for the case that mass and angular momentum loss from the Cen X-3 system account for the observed orbital period changes. Dashed curves 
indicate illustrative values of £ and ß that would result in different rates of change in the orbital period (including positive values of Porb). 
These curves are calculated for the orbital parameters and the X-ray luminosity of the Cen X-3 system. 

neutron star surface is negligible compared to the time 
scale for changes in the orbital period.) To explore the 
effects of case (i) (mass-loss dominated orbital dy- 
namics) we combine equations (7) and (8) with r -> oo 
and obtain a relation between the orbital angular 
momentum loss parameter £ and the mass capture frac- 
tion, ß. This relation is shown as the solid curve in 
Figure 3. In plotting this relation, we have taken Mx = \.0 
M0, Mc = 19.0 Mq, Rx = \0 km, and L;c = 5Xl037 

ergs s-1 (see, e.g., Rappaport and Joss 1981; 1982), and 
Kb/Porb = - 1.8 X KT6 yr-1 (see § II). 

Inspection of Figure 3 reveals that the minimum 
value of the orbital angular momentum loss parameter, 
£, that can yield the observed orbital decay rate is ~ 14. 
This minimum value of £ is attained as ß 0 (i.e., most 
of the mass lost by the companion is ejected from the 
system). For capture fractions in the range 10-4 < ß < 
10“3, values of £ in the range 20-50 are required to 
explain the observed orbital decay. Thus, we see that the 
orbital angular momentum carried away per unit mass 
loss must be considerably larger than the specific orbital 
angular momentum of the companion (i.e., £7» 1; see 
also Fabbiano and Schreier 1977). The dashed curves in 
Figure 3 illustrate the relation between £ and ß for 
smaller values of the rate of decay of the orbital period. 
Note, in particular, that for £ and ß sufficiently small 
the orbital period will actually increase. Furthermore, 
for conservative mass transfer (Porb/POTb = -L7XlO-8 

yr-1 with ß = 1) we see that POTb/Porb is two orders of 
magnitude smaller than that observed for Cen X-3. 

Large values of £ could be attained if the characteris- 
tic “lever arm” for the ejected matter were closer in size 
to the full semimajor axis, a9 rather than to the value of 

as used in equation (3). This might seem a more 
reasonable choice for the case of mass loss via a mod- 
erately high-velocity stellar wind, since the specific angu- 
lar momentum of matter at the surface of a nearly 
corotating companion (and hence that of the stellar 
wind) would be significantly larger (by a factor 
[Rc/ac]2 « 150) than that implied by equation (3). As 
discussed above, however, this angular momentum comes 
from the rotational angular momentum of the compa- 
nion and not directly from the orbit, unless there is the 
appropriate coupling by tidal torques (see discussion 
below). In addition, we note that in the Cen X-3 system, 
the expected capture fraction from a high-velocity stellar 
wind is ß < 10-3 (Davidson and Ostriker 1973; Lamers, 
van den Heuvel, and Petterson 1976; Bonnet-Bidaud 
and van der Klis 1979). This implies (from eq. [8b]) that 
A/c > 6 X 10-6 Mq yr- x

9 which is at the high end of the 
range of the stellar wind mass loss rates expected for a 
star of spectral type 06-8f (Hutchings etal 1979): — 2 
X 10_7-6 X 10~6 Mq yr-1 (Abbott et al 1980; Garmany 
etal 1981; Lamers 1981). 

A mass-loss mode that could yield a large value of £ 
(> 102) would occur if much of the matter leaving 
Krzeminski’s star escaped via Roche lobe overflow fol- 
lowed by loss from the system through the L2 point. The 
corresponding mass capture fraction, from Figure 3, is 
ß « 2X 10-3. In this picture, matter flows through the 
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Fig. 4.—Relation between the synchronization time scale, r, and the synchronism parameter, y = (coK — uc)/uK, required to explain the 
observed rate of decrease in the orbital period of Cen X-3. Synchronism corresponds to y = 0, the tidal case to y = 1, and counter-rotation to 
y>l. The curves.labeled “equilibrium tide” and “dynamical tide” are plots of eqs. (7a) and (10), respectively, with / = 0 (pure tidal 
interaction), and Porb/P0rb = -1.8Xl0-6yr-1. 

inner Lagrange point at a rate of - 3 X 10~6 M0 yr-1 

(see eq. [8b]) with only a small fraction captured by the 
neutron star. This much matter flowing in a relatively 
thin disk or streamhke structure with a typical velocity 
of a few hundred km s_1 could result in densities in 
excess of 1014 cm“3 and column densities of up to 1026 

cm“2. It seems highly unlikely that such a stream of 
matter would have gone undetected in orbital phase 
dependent X-ray and optical studies. In fact, column 
densities of only ~ 5X 1023 cm“2 are required to pro- 
duce the observed intensity dips at orbital phase - 0.6 
(Pounds et al. 1975; Jackson 1975; Schreier er<2/. 1976) 
and the extended OFF states due to “choking” (Giacconi 
1975; Schreier et al. 1976). We therefore tentatively dis- 
count this mode of mass transfer for driving the orbital 
decay, although we cannot completely rule out the possi- 
bility that we are viewing the system at just the right 
inclination to observe broad eclipses while avoiding the 
obscuration effects of such large matter flows. 

From the above discussion we conclude that the loss 
of matter and concomitant orbital angular momentum 
loss from the Cen X-3 system is probably insufficient by 
itself (i.e., in the absence of tidal effects) to explain both 
the magnitude and sign of the overall long-term orbital 
period changes (see discussions in van den Heuvel and 
de Loore 1973; Wheeler, McKee, and Lecar 1974; Sparks 
1975; Chevalier 1975; Fabbiano and Schreier 1977; 
Thomas 1977). 

The effects of the tidal interaction given by equation 
(5) can be assessed by examining equation (7) with / set 

equal to zero. In this case we obtain a simple relation 
between the degree of asynchronism, (u>K - uc)/uK, 
and the synchronization time scale, r. This is shown 
graphically in Figure 4. For this result we have again 
used POTh/POTh = - 1.8 X 10"6 yr“1, Rc/a = 0.65 
(Rappaport and Joss 1982), and adopted a value for 
t) = 0.06 (see footnote [2]). As an example, it is found 
that the observed orbital period decrease can be 
accounted for with a synchronization time scale of ~ 105 

yr if the system is out of corotation by only 10%. The 
dashed portion of the curve in Figure 4 corresponds to a 
sense of rotation of the companion star that is opposite 
to that of the orbital motion. 

Zahn (1975, 1977) gives an expression for the tidal 
torque for the case of radiatively damped dynamical 
tides (see also Nicholson 1979 for a more recent study of 
dynamical tides). When Zahn’s (1977) equation (5.6) is 
cast in the form of our equation (5) it reads: 

N‘ = - r ^c) / 
tD \ 

where 

‘1 = 3 X 25/3 GMC 

Rl 

1/2 17/2 
v q 

{~2{\ + qf/6l '2’ 

(9b) 

and E2 is Zahn’s tidal coefficient. Our definition of td is 
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the same to within a factor 5/3 of Zahn’s ¿sync (1977; eq. 
[5.7]). Equation (7a) (with / = 0) then becomes 

3g 
uK - ^ \8/31 

UK I TD' 
(10) 

This equation yields a simple relation between rD and 
{uK ~ °>c)/uki which is also plotted in Figure 4. The 
numerical value of E2 for a star like Krzeminski’s star is 
probably in the range 3 X 10~6-1 X KT5 (Zahn 1975, 
1977). Thus, we see from equation (9b) that td should lie 
in the range ~ 4x 103-1 X 104 yr. From Figure 4 we 
can then infer a value of - 20% for (coK- wc)/wK. 

From the above discussion we see that it is quite 
plausible that the observed long-term orbital period 
decrease could be due largely to tidal effects. It is 
unclear, however, whether the apparent deviations from a 
constant rate of orbital decay can find a natural explana- 
tion in the context of tidal interactions. 

Theoretical calculations indicate that in many cases 
the synchronization time scale in X-ray binaries should 
be of the same order of (or shorter than) the circulariza- 
tion time scale (Lecar, Wheeler, and McKee 1976; 
Zahn 1977; Hut 1981). One might then wonder why 
Krzeminski’s star, which is in a highly circular orbit 
(Fabbiano and Schreier 1977), would not rotate syn- 
chronously with the orbit. There are at least two dis- 
tinctly different mechanisms that can account for such 
asynchronism and hence the tidal torque effects. The 
first invokes angular momentum loss in a stellar wind. 
The specific angular momentum of material at the 
surface of Krzeminski’s star is - R^uc. With a stellar 
wind mass loss rate of - 6 X 10“6 M0 yx~x, the angular 
momentum carried away in the wind would be sufficient 
to explain the orbital decay rate. In this mode, the 
companion would continuously lose rotational angular 
momentum to its stellar wind and, through the action of 
tidal torques, extract angular momentum from the orbit. 

The second scenario invokes a self-generating tid- 
al instability of the basic type originally proposed 
by Darwin (1879) and explored more recently by 
Counselman (1973), van Hamme (1979), and Hut (1980, 
1981). As discussed earlier, the moment of inertia of 
Krzeminski’s star (about its center of mass) is 0.50+ oj8 
times the moment of inertia of the binary system. Darwin 
(1879) showed that, for the case of a binary system 
where the component masses and radii are constant in 
time, the equilibrium configuration with uK = coc will be 
secularly unstable if the rotational angular momentum 
of the companion is larger than one-third the total 
orbital angular momentum. Such an orbit may expand 
to reach a second equilibrium configuration which is 
stable, or it may decay until the two stars coalesce. The 
present problem, however is likely to be substantially 
more complicated because Krzeminski’s star is losing 
mass, and as it evolves, its radius and internal structure 

will change. In order to determine the stability of the 
Cen X-3 orbit against tidal decay, one would have to 
integrate the coupled differential equations of motion 
(eqs. [6a] and [6b]) for an assumed (and highly uncer- 
tain) evolution of Krzeminski’s star under the influence 
of its nuclear evolution and mass loss. All that we can 
say at this point is that its high moment of inertia, in 
relation to that of the orbit, makes it a good candidate 
for tidal instability. 

If the orbit of Cen X-3 is in fact unstable, the 
question then arises as to how such a state could be 
achieved. Since the orbit is presently observed to be 
highly circular, it was presumably stable at some previ- 
ous epoch, at least for a period of time comparable to 
the circularization time scale at that epoch. A likely 
possibility is that the evolutionary expansion of 
Krzeminski’s star resulted in an increase in its moment 
of inertia to a value exceeding the critical value of 
one-third that of the orbital moment of inertia. 

Finally, another potentially very important conclu- 
sion can be drawn from the observed decreases in the 
orbital period of Cen X-3. From the fact that the total 
mass of the binary system can only decrease with time, 
we can infer from Kepler’s third law that the orbital 
separation must also be decreasing with time. We fur- 
ther note that the mass ratio, q = Mx/Mc, can only 
increase with time. If Krzeminski’s star is in corotation 
with the orbit, it then follows that its Roche lobe, is 
shrinking at a rate RL/RL > 1.2X 10-6 yr-1. Further- 
more, for all reasonable rotation rates, the actual critical 
potential lobe of Krzeminski’s star will also be decreas- 
ing unless the rotation rate of the star is decreasing at 
least a factor of ~ 3 faster than the orbital period is 
decaying (Pratt-Strittmatter 1976 effect). It therefore 
seems highly likely that the critical potential lobe of 
Krzeminski’s star is shrinking at a fractional rate of at 
least 1.2 X 10 6 yr l. If this is the case, one of the 
following situations should apply: (i) Krzeminski’s star 
and its atmosphere are smaller than the critical potential 
lobe and the mass transfer takes place via a stellar wind 
(see above discussion), (ii) The critical potential lobe is 
within a few atmospheric scale heights of the photo- 
sphere, and mass transfer proceeds via Roche lobe over- 
flow (Savonije 1979, 1980). In this case the star may 
even by expanding at the natural rate governed by its 
nuclear evolution (Rc/Rc ~ 2 X 10~7 yv~l; see Savonije 
1979; van der Linden 1981), with the mass transfer rate 
increasing as the critical potential lobe penetrates fur- 
ther into the stellar atmosphere. We would then be 
observing a period of relatively controlled mass transfer 
(<3Xl0-8 M0 yr-1) to be followed in ~ 104 yr by 
catastrophic mass transfer on a thermal time scale (see 
Savonije 1980, 1982). If this is the case, then the rate of 
shrinking of the critical potential lobe may be very 
important in governing the lifetime of the X-ray source, 
(iii) Krzeminski’s star is shrinking at a rate equal to that 
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at which the critical potential lobe is shrinking. This 
should not be the case during the normal evolution of an 
O star after leaving the zero-age main sequence, except 
during core contraction following core hydrogen exhaus- 
tion (van der Linden 1981), or unless there are large 
transient episodes of mass loss (>10~5 M0 yr_1; 
Savonije, van den Heuvel, and Takens 1981). 

In summary, we have determined the mean rate of 
decrease in the orbital period of Cen X-3 to be 
Porb/Porb = -(L8±0.1)X10_6 yr-1; this is about one- 
fourth the previously reported value (Fabbiano and 

Schreier 1977) and is more statistically significant. The 
overall long-term period decrease can be well accounted 
for by tidal interaction between Krzeminski’s star and 
the orbiting neutron star. 

The authors are grateful to P. Hut, P. C. Joss, S. 
Tremaine, E. P. J. van den Heuvel, and J.-P. Zahn for 
helpful discussions, and to P. Goetz for assistance with 
the data analysis. We also thank T. Dobson for her work 
in preparing the manuscript. 
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