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ABSTRACT 
Interstellar scintillations of separate pulse components were measured as a test for whether the 

corresponding emission regions are spatially separated when radiating toward an observer. Pulse 
components scintillate identically within the errors, implying that the emission regions have 
transverse separations < 103 km. In polar cap models, such separations correspond to a limit on 
emission altitude of 6% of the light-cylinder radius for PSR 0525 + 21. In light cylinder models, 
the limits require that nonazimuthal velocities of the emission regions must be identical to within 
Av/v < 0.06 and must be within 3° of the radial direction. 
Subject headings: hydromagnetics — interstellar: matter — pulsars 

I. INTRODUCTION 
The resolving power of interstellar scintillations (ISS) 

with regard to angular size is extraordinary: at meter 
wavelengths, attenuation of the scintillations occurs for 
sources larger than about 0C ~ 10"7 arcsec. Such angular 
resolution corresponds to an interferometer with a base- 
line of 20 AU. Although pulsars are sufficiently small to 
scintillate, they are potentially resolvable with ISS, as 
first pointed out by Lovelace (1970, pp. 390-391) and 
later by Lyne (1974) and Backer (1975). A simple way 
to see that pulse components may scintillate differently 
is to compare the critical size </>c with the angular size 
of a pulsar’s velocity-of-light cylinder, whose radius is an 
upper bound on the spatial separation of emission 
regions. These quantities are 

«Ke = TlcA = 0.33Pz¿p
1

c micro-arcsec (1) 

and 

</>c æ 0.2(C^/10-4m~6,67)-0,6 

x (f/430 MHz)_1;2Zkpi'6 micro-arcsec , (2) 

where P is pulsar period in seconds, zkpc is the pulsar 
distance in kiloparsecs, / is the observation frequency, 
and Cjy is the level of turbulence along the line of sight. 
Recent studies have shown that electron density fluctua- 
tions ône/ne ~ 10“3 on length scales of ^lO11 cm are 
those responsible for pulsar ISS and that the fluctuations 
are consistent with an overall wavenumber spectrum of 
the form C^(wavenumber)“a possibly extending over 
many decades in wavenumber, where a = 3.7 ± 0.6 
(Rickett 1977; Armstrong and Rickett 1980; Armstrong, 
Cordes, and Rickett 1981). If </>c < </>LC, then emission 

regions separated by a light-cylinder radius will produce 
diffraction patterns at the Earth, and hence scintillations, 
that are independent. The scaling laws of </>c and (j)LC with 
distance and pulsar period are such that pulsars with 
large periods and large distances are more likely to be 
resolved by ISS. 

Whereas the notion of angular resolution is useful in 
comparing various astronomical techniques, a careful 
treatment of the resolving power of scintillations requires 
that we consider the spatial scale of the underlying 
diffraction pattern. A point source produces a scintilla- 
tion diffraction pattern at the Earth whose spatial scale 
(transverse to the line of sight) is 

Sj = 2.8 x 104/GHZ
zkP

3/5 

x (Civ/10“4m“2O/3)“3/5 km . (3) 

Its meaning is as follows : A point source will produce 
ISS that is 100e_1% decorrelated for two observers 
separated by transverse distance Sj. Reciprocity dictates 
that two transmitters with transverse separation Sj will 
produce two diffraction patterns at distance z that are 
decorrelated by 100e“1 %. Therefore two pulsar emission 
regions whose transverse separation is Sj at their retarded 
emission times will produce ISS at a single observatory 
that are decorrelated by the same amount. 

It is well known that pulsar emission is associated 
with beams of radiation attached to rotating neutron 
stars. Relativistic beaming is almost certainly relevant, 
either because of motion along approximately radial 
lines (polar cap models) or because of motion in the 
rotational azimuthal direction at or near the light 
cylinder (light-cylinder models). Average pulse shapes 
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INTERSTELLAR SCINTILLATIONS 371 

often have several components, whose separations in time 
evidently correspond to angular separations in the pulsar 
magnetosphere. Depending on the geometry, these 
angular separations may further imply spatial separa- 
tions which are large enough to be resolved with ISS. 

In this paper we discuss scintillation observations of 
two pulsars that have well-defined pulse components. 
Scintillations are manifest as intensity fluctuations in 
both time and frequency, so we measured radio- 
frequency spectra at 10 s intervals for each pulse 
component. The ISS-induced corrugation of what would 
otherwise be a flat or nearly flat spectrum (according 
to pulsar phenomenology) varies on time scales that are 
typically minutes. If pulse components were produced at 
significantly spaced emission regions, then the spectra for 
the components would be different. 

Section II outlines the details of our observations and 
the correlation analysis of the spectra. Section III 
discusses the implications of our failure to detect any 
difference between the ISS of the two components. 

II. OBSERVATIONS AND ANALYSIS 

a) Radio Spectra of Pulsar Signals 
Measurements were made at 430 MHz using the 305 m 

Arecibo telescope in 1980 November. Figure 1 shows the 
average wave forms of the observed pulsars and the time 
windows in which spectra were obtained. A one-bit auto- 
correlator was gated so as to accumulate lagged products 
separately for the windows of Figure 1 over an elapsed 
time of ~ 10 s (four pulse periods for PSR 0525 + 21 and 
eight periods for PSR 1133 + 16). The resultant 252- 
channel power spectra extend over total band widths of 
0.312 MHz for PSR 0525 + 21 and 10 MHz for PSR 
1133 + 16. Lagged products accumulated in an off-pulse 
window were used to form a reference spectrum so that 
the instrumental spectral response could be removed. 

In contrast to the beam switching or frequency switching 
used in the spectroscopy of time-stationary sources, the 
temporal-switching technique provides extremely 
smooth baselines in the spectra that are free from 
standing wave effects or uncertainties due to spatially 
varying background emission, etc. The technique is 
described in some detail by Weisberg, Rankin, and 
Boriakoff (1979). 

Denoting A^f), A2(f), Ao{{(f) as the power spectra 
(i.e., the Fourier transforms of the sines of the auto- 
correlation functions of the one-bit signals) and Pi, P2> 
Poff as the total power measured in the three windows, 
quotient spectra were computed in the standard way as 

Sl,2{f) 
^1,2 Aj^if) ~ Poff^off(/) 

^off(/)(Pl,2 - Poff) 
(4) 

where 1 and 2 correspond to the two pulse-windows. 
Figure 2 shows sequences of spectra for the two pulsars. 

We must address the question of whether the one-bit 
autocorrelation technique, which is predicated on 
Gaussian signals with stationary statistics, can be used on 
pulsar signals with impunity. Pulsar intensities vary on 
time scales as short as microseconds with decidedly non- 
Gaussian statistics. However, it has been demonstrated 
(Cordes 1976a; Hankins and Boriakoff 1979; Cordes and 
Hankins 1979) that pulsar signals are accurately 
described as slow modulations (of arbitrary statistics) of 
Gaussian noise. If the modulation is approximately 
constant over a time equal to the maximum lag in the 
ACF, then the assumption of Gaussian statistics becomes 
a good one. One must still contend with the intensity 
fluctuations within the 10 s integration period. As shown 
in the Appendix, the net effect of these is to cause the mean 
levels of the quotient spectra to be in error. In our analysis 
of the derived spectra, we subtract mean levels, so fluctua- 
tions are of no consequence. 

Fig. 1.—Wave forms of PSR 0525 + 21 and PSR 1133 + 16. Horizontal bars designate the windows in which spectra were separately obtained. 
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Fig. 2—Spectra versus time for PSR 0525 + 21 (Fig. 2a) and PSR 1133+16 (Fig. 2b). The left- and right-hand sides are the respective spectra 
for the sampling windows designated in Fig. 1. For PSR 0525 + 21, blank spots of approximately 10 s duration are caused by episodes of pulse 
nulling. For the purposes of the display here, the spectra are normalized to unit area and scaled by Tpsr (T¿sr + T^ys)~

112, where Tsys and Tpsr 
are respectively the system and pulsar temperatures. Such scaling removes the effects of broad-band intensity fluctuations intrinsic to the pulsar and 
keeps low signal-to-noise spectra (Tpsr Tsys) from dominating the display. There are eight gray-scale levels, with white corresponding to samples 
that are less than 12.5% of the maximum for the entire plot. 
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374 CORDES, WEISBERG, AND BORIAKOFF Vol. 268 

b) Correlation Functions of Pulsar Spectra 
Instantaneous spectra show scintillation-induced 

frequency structure that varies on time scales consider- 
ably longer than an integration time of ~ 10 s. From the 
spectra we are interested in two quantities: (1) the 
characteristic bandwidth of the frequency structure and 
(2) the correlation coefficient of the spectra for the two 
pulse components. Both quantities were obtained from 
auto- and cross-correlation functions of the spectra, 
defined according to 

cjk(ôf) = ¡2 wi X M/ + ôf) - s/i] 
\ I f 

X M/) - SmIJ/Zwi ’ (5) 

where j and k label the window, the summation over / 
is over a set of spectra, 

7/ = ¿ I sAf) 

is the mean spectral power level, and ôf the frequency 
lag. The weights were wt= T*, where Tp is the pulsar 
temperature of the /th spectrum. The autocorrelation 
functions of the spectra for the two windows are therefore 

ACF^à/) s Cn(4f), 

ACF2(<5/) = C22(ôf), 

and the cross-correlation function is 

CCF(<5/) EE C12(ôf) . 

Figures 3 and 4 show the correlation functions for the 
two pulsars we observed. For a sufficiently long integra- 
tion and apart from different normalizations, the two 
ACFs should be identical owing to ergodicity. The spikes 
in the ACFs at zero lag are absent in the CCF because 
they are due to radiometer noise that is uncorrelated 
between the two windows. Aside from the spikes, the 
CCF may or may not have the same shape as the two 
ACFs, depending on whether scintillations are identical 
in the two windows. The width of the ACFs represents 
the characteristic bandwidth of the scintillations. We will 
take the half-width at half-maximum (HWHM) 
(reckoned from the ACF peak after removing the zero- 
lag spike) as the so-called decorrelation bandwidth, 
A/ISS. In the next section we will use A/ISs to infer the 
spatial scales of the diffraction patterns for the lines of 
sight that we observed. The correlation coefficient of the 
ISS for the two pulse components is, as a function of 
frequency lag, 

p(ôf) EE CCF(<5/)/[ACFi(ôf )ACF2(<5/)]1/2 . (6) 

If scintillations are perfectly correlated between the 
two windows, then, apart from noise, p(Sf) is identically 
unity, except at zero lag where the noise spikes of the 
ACFs cause incorrect normalization. The spikes are 
evident in the correlation functions for PSR 0525 + 21 
but are absent in those for PSR 1133 + 16 because the 

PSR 0525+21 

Lag (MHz) 
Fig. 3.—Correlation functions for PSR 0525 + 21. The autocorrela- 

tion function of one window is plotted for positive lags, the other for 
negative lags. The quotient correlation function, p(<5/), is unity if 
scintillations are perfectly correlated for the two pulse components. 

signal-to-noise ratio is much larger. The intrinsically 
noiselike nature of the pulsar signal should also produce 
spikes at zero lag, (Cordes and Hankins 1979), but these 
are smaller than scintillation features in the correlation 
functions by a factor of (intrinsic modulation time)/(net 
integration time) <0.02, where the intrinsic modulation 
time is that corresponding to micropulse emission which 
is ~1 ms for PSR 1133 + 16 and ~4 ms for PSR 
0525 + 21. Some subtleties of the correlation analysis can 
cause the shapes of the three correlation functions to 
differ slightly even if ISS is perfectly correlated between 
the two channels. One consequence of the one-bit 
correlation technique is that the derived spectra will be 
biased from their true shapes by an amount that depends 
on the signal-to-noise ratio (see Appendix). Since this 
ratio is different in the two windows, we expect some 
slight differences in shape. Second, the correlation func- 
tions in equation (5) have zero area; therefore, they must 
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cross zero and, because of slight biasing of the spectra, 
the zero crossings of correlation functions will be at 
slightly different lags. The plots of p(Sf) in Figures 3 and 
4 are consistent with values of unity except near the lags 
of zero crossing, and we presume that the deviations from 
unity are solely instrumental effects. By using values of 
p(ôf ) away from the lags of zero crossing, we find average 
values of p as listed in Table 1 along with the decorrela- 
tion bandwidths. 

III. LIMITS ON SPATIAL SEPARATIONS OF EMISSION 
REGIONS 

In order to use our measurements to constrain pulsar 
geometry, we must quote some results of scintillation 
theory that are relevant to extended media in the strong 
multiple scattering limit. In this limit, the central limit 
theorem predicts that scintillations are 100 % modulated 
(rms intensity equal to the mean) because the electric 
field is normally distributed (Rickett 1977). Lee and 
Jokipii (1975) derive the second moment of the scalar 
field, 

rut, *) = 
(u(r, z)u*(r + g, z)> 
(\u(r,z)\2} (7) 

where u is the scalar electric field and the asterisk denotes 
complex conjugate; z is the distance along the line of 
sight between source and observer, and r and Ç are vectors 
in the plane transverse to the line of sight at distance z. 
For power-law electron density irregularity spectra of 
slope a, Lee and Jokipii obtain 

Ti.ií?, z) = exp [ —(C/Cc)*-2] (2 < a < 4) (8) 

which is valid for f-1 being both much greater than 
the low wavenumber cutoff and much less than the high 
wavenumber cutoff and where (c is the spatial scale of the 
diffraction pattern. The Fourier transform of Fí j is the 
apparent brightness distribution of a point source as 
viewed through the interstellar medium. Multipath 
propagation causes temporal smearing of a pulse over 
a time 

AiISS = z62/2c , (9) 

a relation which holds if 0C is given by 9C Cc = kßn (eq. 
[60] of Lee and Jokipii). Although equation (9) was first 
derived for the case of scattering in a thin screen whose 
thickness is much smaller than the distance to the source, 
Lee and Jokipii have expressed their results for a thick 
extended medium such that equation (9) is still applic- 
able and where z is the distance to the source rather than 
to the scattering screen. It is well known that the temporal 
broadening time AiISs is related to the decorrelation 
bandwidth A/ISs by the uncertainty relation (Rickett 1977) 

27rA/¡ss AíISs = 1 • (10) 

Finally, by invoking the strong, multiple scattering limit, 

TABLE 1 
Scintillation Measurements of Two Pulsars at 430 MHz 

Decorrelation Correlation 
Integration Spectral Bandwidth Coefficient 

Time Resolution A/ISs of components 
Pulsar (min) (MHz) (MHz) p 

0525 + 21....  30 0.0012 0.05 1.0 ± 0.003 
1133 + 16  47 0.040 ~1.0 1.0 ± 0.003 
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it is possible to express the covariance function of the 
intensity, /(#*, z), 

r t ^ + As> z)> - </(»•, z)>2 iin 
rAi(As’z) = </(nz2)> ’ (11) 

in terms of Fi i : 

rA/(Ai, z)= Ir^^As, z)|2, (12) 

where As is a spatial lag. 
By expressing 

rAJ(As, z) = exp[ —(As/s/)“-2], 

we find that S/, the e_1 spatial scale of the diffraction 
pattern, is given by s¡ = (c2

_1/(a_2). Then, expressing £c 

in terms of A/1Ss by using equations (9) and (10), we have 
si = (czA/iss/47r/2)1/22_ 1/(a-2) . (13) 

Equation (13) holds for the case of scattering of plane 
waves in a medium of homogeneous turbulence. For a 
point source, the right-hand side should be multiplied by 
(a — 1)1/2 if the turbulence is homogeneous (Rickett 
1977), which appears to be a good assumption for both 
pulsars considered here (J. M. Cordes, J. M. Weisberg, 
and V. Boriakoff, in preparation). We have included this 
correction in what follows, but we have ignored the fact 
that equation (91 gives a value for AiISs that is not 
precisely the e~* width of the temporal broadening 
function. The correction for this amounts to multiplying 
the right-hand side of equation (13) by ~ 1.15. We note 
that there is some dispute as to whether the fourth 
moment can be expressed in terms of (second moment)2 

(Lerche 1979) even in the strong multiple-scattering limit. 
The error in doing so amounts to at most a 10% 
uncertainty in the width s7 that is calculated in equation 
(13). Consequently it is of little importance here. 

We can relate the theoretical spatial correlation func- 
tion of equation (12) to the empirical frequency correla- 
tion function p(ôf) (cf. eq. [6]) by recognizing that the 
zero-lag value, p(öf = 0), must be equal to rAJ(As, z). 
Our procedure has been to use nonzero lag values of p 
to infer that p(0) « 1, and from this fact we can put limits 
on the transverse separation of the emission regions. In 
principle we could also have used information contained 
in the temporal correlation function of the data (B. J. 
Rickett, private communication). That is, we could have 
computed the empirical correlation function of equation 
(5) with the /th spectrum of one pulse component 
multiplied by the (/ + A/)th spectrum of the other pulse 

component and then determining the time lag, Tmax = 
10A/ s, of maximum correlation. By further assuming 
that the scattering medium is “frozen” over a time 
> ^max and that the relative velocity of the medium with 
respect to the pulsar is v, it can be shown that the 
emission regions must have a transverse separation 
As1 = (v • As)Tmax/As. For Tmax < 10 s and velocities 
~ 100 km s_ 1 one obtains limits on As± that are similar in 
magnitude to those obtained below using the frequency 
correlation function. Use of the temporal lag method 
requires knowledge of the direction and magnitude of the 
velocity, which are uncertain, so therefore we have used 
only the frequency correlation function to limit the 
separations of emission regions. 

The correlation coefficients in Table 1 are consistent 
with values of unity, but we can define a 3 <7 lower limit 
on the correlation coefficient as 1 — e, where e æ 0.01. 
We have 

Tai(As, z) > 1 - £ . (14) 

For £ <^ 1 this becomes a limit on As, the spatial separa- 
tion of the emission regions: 

As<s/£
1/(a-2). (15) 

Table 2 lists the upper limits on As for a = 11/3. 
We note that the slope, a, of the electron-density 

irregularity spectrum is not known with certainty. How- 
ever, recent observations (Armstrong and Rickett 1980; 
Wolszczan, Bartel, and Sieber 1981) favor power-law 
spectra with slopes less than 4 and do not support a 
Gaussian spectrum with a single scale size for the 
irregularities. As far as observables are concerned, the 
Gaussian case is degenerate with an a = 4 power-law 
spectrum. 

a) Polar Cap Models 

The so-called polar cap models (Manchester and 
Taylor 1977) have as a common element a source of 
charged particles at the magnetic polar cap with radiation 
subsequently produced somewhere along the particles’ 
trajectories along the curved field lines of an approxi- 
mately dipolar magnetic field. 

Whereas there is no consensus as to how and where 
radiation is produced, there is compelling observational 
evidence in support of radiation being produced by a 
time-average hollow-cone beam centered on the dipolar 
axis (Komesaroff 1970; Cordes 1981). The model is 
shown schematically in Figure 5 where, for simplicity, 

TABLE 2 
Limits on Emission Region Geometry 

Polar Cap Model Light-Cylinder 
  — Model 

Z As ^em 
Pulsar e (kpc) (km) AQW (km) rcJrLC Aß Acc 

0525 + 21   0.01 2.0 850 14° < 10404 <0.06 <10"20 <0?6 
1133 + 16   0.01 0.2 1100 6?4 <104'5 <0.53 <10"13 <2?9 
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(Observers 
line of sight 

m 

Fig. 5.—Geometry of polar cap models. A magnetic moment m perpendicular to the spin axis is assumed. Emission regions 1 and 2 at radius 
rem produce pulse components 1 and 2. The emission regions radiate toward the observer from locations that have a transverse separation As. 

the dipole moment is assumed to be perpendicular to 
the rotation axis. A double-lobed average pulse shape is 
produced if the line of sight cuts through the beam 
sufficiently close to the magnetic pole (see, e.g., Fig. 1 of 
Backer 1976). The two lobes originate from opposite 
sides of the magnetic pole. Under the assumption that 
radiation is relativistically beamed along the particles’ 
trajectories (i.e., tangentially to the field lines), then it can 
be shown that the emission regions at the times they 
respectively beam toward Earth are separated by a 
distance (transverse to the line of sight) 

As = remAej3, (16) 

where rem is the emission radius and A6W is the observed 
separation of pulse components expressed in radians. 
Equation (16) follows by assuming dipolar field geometry 
for which the local tangent vector at position (r, 6) makes 
an angle 30/2 with respect to the dipolar axis. 

An upper limit on the radius of emission follows by 
combining equations (15) and (16): 

rem<(3Sl/Aew)e^-2K (17) 

Table 2 lists these upper limits for a turbulence spectrum 
with slope a = 3.7. 

The limits rem/rLC < 0.06 for PSR 0525 + 21 and < 0.53 
for PSR 1133 + 16 derived here can be contrasted with 
those derived from aberration-retardation effects (Cordes 

1978). The aberration-retardation limits are based on 
the polar cap models with one additional assumption: 
that the emission frequency is mapped into radius rem 
by virtue of a density-dependent plasma instability. Such 
emission causes a spread in arrival times of pulses at 
different frequencies over and above that caused by 
dispersion in the interstellar medium. Upper bounds on 
the aberration-retardation effect convert to limits on 
emission radii. These limits are rem/rLC < 0.03 for PSR 
0525 + 21 and reJrLC < 0.01 for PSR 1133 +16. Although 
these limits are superior to the scintillation-derived ones 
and have important consequences for the physics of 
pulsar magnetospheres (Mátese and Whitmire 1980; 
Ruderman 1981), they involve more assumptions than 
the ISS limits. The scintillations of PSR 0525 + 21 yield 
a strong limit on the growth rate of any instability that 
results in emission at the observation frequency. The 
instability must have caused significant plasma fluctua- 
tions in the travel time from the neutron star surface to 
the emission radius, which, for PSR 0525 + 21, amounts 
to ~ 36 ms. This conclusion holds regardless of whether 
emission frequency is mapped into radius. 

b) Light Cylinder Models 
Light cylinder models share the property that the 

primary source of particle acceleration is rotation of 
plasma coaxial with rotation of the neutron star. Double 
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pulse components may be produced by emission regions 
at different azimuthal angles in the equatorial plane or by 
emission regions above and below the equatorial plane 
(Gold 1974). In the latter case, the ISS observations imply 
that emission must be within a distance As rLC of one 
another. If both emission regions are in the equatorial 
plane (e.g., Ferguson 1981), then the constraints depend 
on the particular geometry that is assumed. Simple 
circular motion of two emission regions at the same 
radius involves no spatial separation at the retarded 
emission times, so the ISS measurements are uninterest- 
ing. For models in which the emission regions have 
additional velocity components, limits can be made on 
the difference in magnitude or direction of those 
components. Suppose the emission regions have radial 
velocities with a difference in magnitude, Aß = Av/c. The 
ISS limits on As then become 

Aß < yrßrAs/rLC , (18) 

where ßr = r/rLC and yr = (1 - ß?) 1,2. Light cylinder 
models with typical values 2 < yr < 3 imply Aß < 10“ 2 

for PSR 0525 + 21 and Aß < 10"13 for PSR 1133 + 16. 
Alternatively, the velocities in the corotating frame may 
be nonradial with the same magnitude. Letting the 
difference in orientation from the radial direction be Aa, 
we have 

Aa < yr As/rLC , (19) 

corresponding to angles Aa < 0?6 and Aa < 2?9 for 
0525 + 21 and 1133 + 16, respectively. 

We would like to thank J. Armstrong and B. J. Rickett 
for useful conversations. This research was supported by 
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CalTech President’s Fund, and by the National 
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APPENDIX 

PULSAR SIGNALS AND ONE-BIT AUTOCORRELATION SPECTROMETERS 

Let e(t) be the narrow-band signal from a receiver after passage through an intermediate-frequency bandpass filter 
and after being mixed to baseband [i.e., e(t) is proportional to the slowly varying part of the electric field selected by 
the polarization of the feed antenna and receiver bandpass; see Cordes 1976h for a further exposition]. The true 
spectrum is the Fourier transform of the autocorrelation function (ACF): 

= Z £(í)£(í + T) • (A1) 
t 

If e(t) is a stationary Gaussian random process, then the ACF of sgn e(i), 

Ri(r) = Z s8n e{t) sgn e(t + t), (A2) 
t 

is related to R* by the Van Vleck relation (e.g., Thomas 1969) 

<.Ri(0)> n 

where the angular brackets denote ensemble average. Although pulsar signals do not immediately satisfy the assump- 
tions that lead to equation (A3), we demonstrate here that a one-bit autocorrelation spectrometer yields a fairly 
accurate estimate of the true spectrum. 

An empirically accurate model for pulsar signals is (after Rickett 1975 and Cordes 1976h) 

e(í) = a(t)m(t) + n(t), (A4) 

where n(t) is zero-mean, band-limited Gaussian noise, m(t) is zero-mean Gaussian noise whose band-limited spectrum 
is the desired one, and a(t) is a positive semidefinite stochastic process that varies slowly with respect to both n(t) 
and m(t) and describes intensity variations which have decidedly non-Gaussian statistics. The additive noise, n(t\ is 
due to receiver and background sky noise. It is clear from equation (A4) that if n(t) = 0 (i.e., infinite signal-to-noise 
ratio), then 

sgn [e(t)] = sgn [m{t)] , (A5) 

and the spectrum of the pulsar signal can be accurately retrieved through the Van Vleck correction since, by hypothesis, 
m(t) is a stationary Gaussian process. Problems arise, however, if the signal-to-noise ratio is finite and time varying. 

If a bandwidth Av is analyzed then e(t) is sampled at intervals A = (2Av)_1 and the maximum lag is imax = NA. 
If the pulsar intensity is nearly constant over a time rmax, then the approximation 

a(t + t) « a(t) (0<T<Tmax) (A6) 

<^(0)> 
(A3) 
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can be made. This assumption is good because here N = 252 and Tmax = 0.4 ms for PSR 0525 + 21 and 13 /¿s for 
PSR 1133 + 16. Dispersion smearing alone over the respective bandwidths of 312 kHz and 10 MHz guarantees that 
the characteristic time scales of a(t) are respectively at least 1.7 ms and 5.1 ms. Using the approximation in equation 
(A6), we find that the ensemble-average one-bit ACF after summing over time is 

where 

CRíÍt)) = -2>rcsin 
TC t 

Ip(t)pnM + In(t)pn(
T) 

¡A*) + ¡At) 
(A7) 

is the instantaneous pulsar intensity, 

is the additive noise intensity, 

Ip(t) = <a2(t)m2(i)> 

¡n(t) = <n2(t)> 

(A8) 

(A9) 

Pmi-c) = <m(t)m(t + t))/(m2(t)) (A10) 

is the true ACF (cf. eq. [Al]) of m(i), and pn(r) is the true ACF of n(t). Normalization is such that pn(0) = pm(0) = 1. 
Note that we are also assuming that pm(r) is time independent. The physical situation we are modeling is one where 
the shape of the spectrum of the pulsar signal (which is determined by scattering in the interstellar medium) is constant 
over a 10 s integration time, so the assumption is warranted. 

Recall that the angular brackets denote ensemble averages which, here, are not identical to time averages because 
Ip(t) is not stationary. The sum over t describes both the integration over time within a pulse and over a set of pulses. 
Intensity variations are violent in the sense that Ip(t) can range from zero to values large compared to the noise level 
even within a single pulse period. Consequently, even though the average signal-to-noise ratio 

IM) 
L¡n(t) 

may be large, there will usually be times during the sum over t when it is zero. One therefore cannot take the large 
signal-to-noise limit of equation (A7). The additive noise is white, however, so we have (in the ideal case) 

Pn{T) — ^tO 5 
where ôx0 is the Kronecker delta and therefore 

(All) 

CMt)) Z1 (* = °) 

arcsin ( pMIAA I 
1[M0 + W]I 

(t ^ 0). (A12) 

It is clear that a finite signal-to-noise ratio will bias the derived ACF by an amount that depends on the frequency of 
occurrence of the signal-to-noise ratio. If this ratio is large all of the time or if it is constant, then the summation in 
equation (A12) can be replaced by a single term, 

- T arcsin 
71 

pj?) 
(1 + SN-1)J ’ 

(A13) 

where SN is the typical ratio and T is the integration time. In this limit the resultant estimate for pm, 

pm(r) = sin , (A14) 

differs from pm by only a scale factor and therefore the true pulsar spectrum can be obtained. In general, however, 
equation (A12) shows that the spectra derived from one-bit ACFs will have shapes that depend on the signal-to-noise 
ratio. The most important effect is the incorrect scaling of the resultant spectrum, as modeled by Weisberg (1978). 
This effect is unimportant in the present analysis where we subtract the mean from each spectrum. 

Biasing of spectra could be obviated if the one-bit ACF estimates and power information were recorded sufficiently 
often that a compensating weighting scheme could be applied. Sufficiently often means once every correlation time of 
the pulsar intensity (e.g., millisecond time scales). Such a scheme would involve obtaining Ri(t) and Pon = Ip(t) + In(t) 
over a small integration time. Estimates of off-pulse noise power and ACF could be made over a much longer integration 
time if the receiver is sufficiently stable; assume, therefore, that the off-pulse statistics pn and /„ are known exactly. 
Then estimates of pm computed according to 

PAA = {Pan sin [nR^Xyi] - Inpn}/(Pon - ¡n) (A15) 
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could be accumulated without the bias discussed above. Such processing would be tedious for any realistic total 
integration time. Moreover, hardware presently available at the Arecibo Observatory permits only integration times 
that are several to many pulsar periods. Consequently a given one-bit ACF, Ri(t), will be a linear combination of 
pm and pn with coefficients that depend on the frequency of occurrence of the signal-to-noise ratio. Since, apart from the 
receiver bandpass shape, the off-pulse spectrum is flat, this means that the primary effect is that the mean level of the 
spectrum will be unknown but the shape of the spectrum will be nearly correct. 
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