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ABSTRACT 
We describe the results of a study of the two-point correlations in the 14.5 mB CfA redshift survey. 

We use the distance information provided by the redshifts to estimate the two-point spatial 
correlation function £(r) in a way that is designed to be unbiased by peculiar velocities. The results 
agree well with what has been found from the deeper angular distributions. In the fiducial model 
£(r) = (ro/rY with Y = l-77 we fhrá ro = 5.4 + 0.3 /*-1 Mpc (/70 = 100 h km s-1 Mpc-1). At r > 10 
h~1 Mpc, £(r) seems to steepen and may in fact be negative at 2Q < hr < 40 Mpc. In existing «-body 
simulations £0) is poorly modeled by a power law, with more power on small scales and less power 
on large scales than the data. This confirms the visual impressions that the «-body clusters are too 
compact and the clusters too homogeneously distributed relative to the data. 

The rms line of sight peculiar velocity difference o(rp) of correlated galaxy pairs seen projected at 
separation rp is clearly detected at hr < 5 Mpc. The results fit quite well to a power law, 

a(/^) = 340±40(Är^/l Mpc)(°'13 ± 0 04) km s_ 1, 

at 10 kpc <hrp<\ Mpc. The slow variation of a with rp would not be expected on scales rp < 300 kpc 
unless the matter is considerably less concentrated than the light of bright galaxies. The mass could 
be in dark halos extending to this scale. Alternatively the mass could be clustered like the galaxies if 
matter loosely associated with the fainter galaxies deleted in our analysis carries the bulk of the mass 
density, so that M/L is a decreasing function of luminosity. We argue that the available evidence 
tends to favor the latter picture. We derive the cosmological density parameter Q = 0.2 e ± 04 for the 
component of matter clustered with the galaxy distribution on scales < 1 /z1 Mpc. 

Subject headings: cosmology — galaxies: clusters of — galaxies: redshifts 

I. INTRODUCTION 

During the past several years there has been consider- 
able work on large-scale redshift surveys in selected 
regions of the sky. The Harvard-Smithsonian Center for 
Astrophysics (CfA) survey is the largest presently avail- 
able sample and is complete to 14.5 mB in the regions 
(8> 0,b> 40°) and (8^ -2.5°,b< — 30°). Previous 
papers in this series have discussed data analysis proce- 
dures (Tonry and Davis 1979), the overall large-scale 
distribution and comparisons to existing «-body simula- 
tions (Davis etal. 1982, hereinafter DHLT), and the 
luminosity function, the mean density of galaxies, and 
the peculiar gravity of the Local Supercluster (Davis 
etal. 1980; Davis and Huchra 1982, hereinafter DH). 
Techniques of group assignment and virial analysis have 
been discussed by Press and Davis (1982) and by Huchra 

and Geller (1982). The catalog of redshift data is given 
in Huchra et al (1982). 

Part of the motivation for the survey was to provide a 
sample for studies of the general statistics of the galaxy 
distribution and motions. For this purpose the statistical 
sample should not be directed toward or away from rich 
clusters: it ought to contain a representative collection 
of the varieties of groups and clusters found in the 
universe. As the CfA sample contains three large clus- 
ters at well-sampled depths (Virgo, Coma, and A1367), 
it may for the first time approach this ideal in a redshift 
sample. We present here the results of an analysis of the 
two-point position and velocity correlation functions in 
the CfA sample. 

The CfA sample considerably improves our empirical 
understanding of several important aspects of the galaxy 
two-point correlation functions. It is known from angu- 
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466 DAVIS AND PEEBLES 

lar distributions that the spatial correlation function 
closely approximates a power law, £(r) = (rQ/r)y, at 
hr < 10 Mpc {Hq = 100 h km s”1 Mpc-1). That result is 
confirmed here by direct inversion of the observed func- 
tion (§ V; Fig. 3 below), where the bias due to peculiar 
motion is eliminated by integrating along the line of 
sight. The parameter r0 has been only crudely estimated 
(Groth and Peebles 1977), and the CfA sample yields a 
considerable improvement (Table 1 below). The shape 
of £(r) at r ~ 10 h~x Mpc is poorly known and is of 
considerable interest because this is the transition from 
strongly nonlinear clustering on smaller scales to linear 
fluctuations (8p/p < 1) on larger scales. A model of the 
expected behaviour of the position and velocity correla- 
tion functions at this transition has been derived from 
the BBGKY hierarchy equations (Davis and Peebles 
1977). The CfA results suggest that £(r) falls below the 
power law (r0/r)y at r> 10 h~x Mpc, as expected in 
this model, but the sample is not yet large enough for an 
unambiguous test (§ IV; Fig. 3 below). 

The pattern of relative motions of neighboring gal- 
axies is important as a measure of the nature of the mass 
distribution and of the amount of mass. One can esti- 
mate relative velocities by isolating physical associations 
or else by the use of statistics of the sort discussed here. 
Of course, each method has important limitations and 
so should be considered a complement of the other. The 
statistic studied here is the distribution of relative line- 
of-sight peculiar velocities of close pairs of galaxies. This 
distribution is clearly seen at projected separations hrp in 
the range 0.1-5 Mpc, and for the first time we can be 
fairly sure that the effect is not due to measuring errors 
or to bias in the catalog (§ VI). In § VII we use the 
velocity dispersion results to estimate the cosmological 
density parameter. As in previous papers of this series, 
we utilize the 20,000-body numerical simulation of cos- 
mological clustering by Efstathiou and Eastwood (1981) 
to test our procedures throughout and to contrast to the 
observations. 

The discussion in § VIII relates to the behavior of the 
velocity dispersion as a function of scale size, extending 
the range to studies of binary galaxies on small scales. 
We conclude that either isothermal halo mass distribu- 
tions extend to a scale of ~ 300 h~1 kpc about luminous 
galaxies, or that most of the clustered missing mass is 
associated with fainter galaxies. The evidence, though 
incomplete, favors the second picture. 

II. THE SAMPLE 

The CfA sample contains 2400 galaxies, of which 
1840 are in the North zone b11 > 40°, 8 > 0. The galaxy 
redshifts have been corrected for motion in the Local 
Group and for a peculiar velocity of 440 km s_ 1 toward 
the Virgo Cluster using procedures identical to those 
described in previous papers in this series. For the 
present purposes this is important only because of its 
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effect on the determination of galaxy absolute magni- 
tudes and the luminosity function (DH). 

We eliminate the intrinsically faint galaxies, 

M5>-18.5 + 5 log/*. (1) 

A galaxy with this absolute magnitude appears at the 
catalog magnitude limit at 40 h~l Mpc distance. 
Eliminating the fainter galaxies reduces the weight of 
the Local Supercluster, and the resulting catalog is closer 
to being volume limited. The remaining galaxies are a 
fairly homogeneous sample, which is an advantage be- 
cause the clustering statistics of bright and faint galaxies 
surely differ at some level. We also eliminate the gal- 
axies at distances greater than 100 h~l Mpc, where 
space sampling is sparse. This leaves 1230 galaxies in the 
Northern zone. 

Redshift measurement errors have been a serious 
problem in some earlier statistical studies but appear to 
be comfortably small here. Approximately 60% of the 
redshifts for this sample are from the CfA survey and 
have rms error of 35 km s_1. The remaining 40% are 
from the literature and have errors estimated at 70 
km s~1 in the mean, although many are high-quality 21 
cm observations and others are low-quality optical ob- 
servations. Only 55 of the 1840 Northern sample galaxy 
redshift have reported uncertainties of 100 km s-1 or 
larger. 

We need the relative probability <j>(r) that a galaxy is 
included in the sample. We assume that <f> is a function 
only of the galaxy distance r. With the absolute magni- 
tude cutoff (eq. [1]) we can set <í> = 1 at r < 40 /*"1 Mpc. 
For 40 < /*r < 100 Mpc we use the <j>(r) derived by DH 
in a way that is unaffected by spatial inhomogeneities. 
DH find <f> = 0.37 at hr = 60 Mpc, <¡> = 0.095 at hr = 80 
Mpc. Our distance limit gives <i> = 0 at /*/* > 100 Mpc. 

Though the depth of the sample is considerably larger 
than the characteristic length r0 ~ 5 h~ x Mpc where 
£ = 1 (§ V), one expects to find significant density 
fluctuations on scales greater than r0. Indeed, such 
fluctuations are very evident in the maps of the CfA 
sample (DHLT) and must be borne in mind in the 
choice of method of statistical analysis and in the assess- 
ment of the results. The method of analysis is discussed 
next. 

III. TWO-POINT CORRELATION FUNCTIONS 

a) Definitions 

The precision measures of galaxy positions and mo- 
tions are the angular position and the redshift of each 
galaxy. These are conveniently represented as a three- 
dimensional polar map in a redshift space. We assume 
that the cosmological redshift is directly proportional to 
distance and that the galaxy distributions and peculiar 
motions are a homogeneous and isotropic random pro- 
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cess. If peculiar redshifts are negligible, the redshift map 
is a true space map; peculiar motions distort positions 
along the line of sight. The two-point correlation func- 
tion in this redshift map is a function of two variables, 
the separations parallel and perpendicular to the line of 
sight: 

tt = V\ — v2,rp = [{vx + v2)/H0] tan (012/2), (2) 

with v j and v2 the velocities and 012 the angular separa- 
tion on the sky. The probability of finding a galaxy in 
the volume element ÔK at separation ^, it from a galaxy 
is 

8P = n[l +£(rp,iT)]8V<l>(r), (3) 

where n is the mean number density and £(7^, tt) is the 
two-point correlation function in this redshift space. 

When the separation is large, peculiar motions are 
expected to be unimportant. Here it is useful to ignore 
the anisotropy in redshift space and measure the two- 
point correlation as a function of the redshift separation 

s = (v^2 + v2
2—2vlV2COS0l2y

/2/HQ. (4) 

The correlation function in s is defined by the usual 
equation for the probability of finding a neighbor at 
distance s in any direction, 

ÔP = «[l + £(s)]<i>SK. (5) 

The statistic £(s) is useful because it is simple and can 
be estimated even when the signal is small [when, for 
example, the noise is too large to estimate £(^,77-)]. 
When H0s is large compared to peculiar velocities, £(5) 
approximates the true space correlation function £(r). 
The statistic £(^,77) is a convolution of £(r) with the 
peculiar velocity difference distribution. A model for 
this convolution is discussed in § VI. Davis, Geller, and 
Huchra (1978) introduced £(i). The statistic £(^,77) 
was used by Peebles (1976) as a formalized version of 
the statistical approach introduced by Geller and Peebles 
(1973). For further discussion of £(7^,77) see Peebles 
(1980<2,§ 76). 

b) Methods of Estimation 

The role of the apparent-magnitude limit must be 
carefully considered in the correlation function esti- 
mates. Also, there are appreciable density fluctuations 
on scales comparable to the depth of the CfA sample 
(DH) which cannot be ignored. We have used two 
weighting schemes in the estimates of the correlation 
function. The first counts each pair with equal weight. 
The second weights each pair ij by c^-1 ^ 1

> so each 
part of space is weighted in proportion to the number of 
pairs that would be present in a totally volume-hmited 

sample. The most distant pairs carry the most weight in 
the second scheme, and so we cut off the sample at 
r = 80 h~x Mpc, where <|>(r) ~ 0.1. The first weighting 
scheme gives considerably more weight to the fore- 
ground clustering. The second scheme is close to the 
minimum variance weighting for determination of £(r). 
(This follows from an analysis similar to that described 
in DH.) This is because the second weighting attempts 
to treat each volume element of the sample on an equal 
basis. The price paid is an increase in the background 
white noise level of the power spectrum due to the 
unequal weighting of pairs. Since £(r) is the Fourier 
transform of the power spectrum, and the small scale is 
most sensitive to the high-frequency end of the power 
spectrum, the second weighting scheme yields very noisy 
measures of £(r) on small scales. Another way of saying 
this is that the small-scale end of £(r) is determined by 
relatively few pairs, so that unequal weighting of the 
pairs causes very substantial fluctuations. On larger 
scales, there are many pairs per bin and the increased 
statistical noise of the discrete counts is more than 
counterbalanced by the increased effective number of 
independent spatial groupings averaged together. 

Given a suitable weighting scheme, one can count the 
total pairs in an interval (Ar^, A77) or As and compare 
them to what would be expected in the absence of 
clustering. If the sample were much larger than the 
clustering length the number density of galaxies ex- 
pected to be counted at a given distance r would be 
n^)(r). Unfortunately, as shown in Figures 5 and 6 of 
DH, the actual distribution [call it nc(r)] departs quite 
substantially from this curve. In counting pairs, we use 
the fact that equations (3) and (5) instruct us to count 
neighbors from the position of each galaxy, not from 
random locations in the sample. This is a distinction of 
no significance if the catalog has c(r) ^ <f>(r), but it 
should not be ignored in the samples currently available 
where density fluctuations on the scale of the sample 
depth are appreciable. 

Specifically, we form the sum of all pairs in a given 
interval As or (AA77), 

öd = X E w,wjn i nj > (6) 
i j 

where the n /, Uj are ô-functions giving the position of 
each particle, the sum over i sums over all particles in 
the sample, and the sum over j includes only particles in 
the proper interval As or (Ar^, A77) from particle i. The 
weights Wy, Wj are unity in scheme 1 of equally weighted 
pairs, and are w^l/^ in scheme 2, where we seek 
optimal weighting. 

To compute the expected background counts, we have 
generated randomly distributed data sets within the 
solid angle and depth of the survey and have given the 
points a luminosity distribution that matches <i>(r) as 
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determined by DH. These samples contain typically 
2000 points and are spatially homogeneous, satisfying 
(V/VM) = 0.5, and giving agreement in all methods of 
determining the mean background density n (see DH for 
details of three alternative methods for determination of 
n). 

Given this random data set, we compute the cross- 
count sum 

DR = US wiwj n i Mj, (7) 
' j 

where w,, w7, and nl are as before but now rrij represents 
the location of points in the random catalog. The result- 
ing correlation function, ¿(5), is given by 

nR DD{s) 
T DR{s) ’ (8) 

where nR/n is the ratio of the mean density in the 
random catalog to that of the real data set, and n has 
been determined using the minimum variance technique 
described in DH. The advantage of this procedure is 
that edge effects are automatically accounted for. Edge 
effects are substantial and otherwise difficult to model 
for scales r>10 Mpc. For ¿(5) we use vv^l/^. At 
hs <2 Mpc, DR has been smoothed to reduce the shot 
noise. 

To determine £(rpf7r)f which provides better informa- 
tion on small scales, we set w¿ = 1 and determine the 
background by a slight variation of equation (7), 

DR(rp,w) = YJnin^{ri±‘n/H0)2'nrp^p^-nf(ri,'n,rp). 
i 

(9) 

Here we sum over each galaxy nt and compute the total 
number of neighbors in the interval k7r,hrp expected if 
the sample were homogeneous. The fraction of back- 
ground objects expected to he within our observing 
window is /. It is a different function of rp and tt for 
each galaxy rcz, and its computation requires more time 
than all the rest of the calculation. The resulting esti- 
mate of i;(rpy 77) is then 

1 + 
DDjrpjn) 
DR(rp,v) ' (10) 

through zero, and at 30 <hs < 50 Mpc it averages - 0.05. 
This result is not required by our prescription for the 
determination of £(r). If we had required (see Peebles 
1980a, § 32) 

nfd3rÇ(r)=-\, (11) 

then in the range of 20-60 h~ l Mpc, ¿(5) would have to 
equal -8X 10-3 in order to balance the clustering on 
scales less than 20 Mpc. However, one should also 
recognize that the background density n is determined 
only to ~ 10% accuracy in a sample this size, so the 
estimates of £ below 0.1 have substantial uncertainty. 
The uncertainty in n is discussed by DH, and is larger 
than one might naively expect simply because of the 
fluctuations induced by the clustering of galaxies. 

As a check we have also estimated £(s) from the 273 
galaxies in the South sample b11 < -40°, 8 > -2?5. As 
there may be some systematic differences between the 
Zwicky magnitudes in the North and South samples, we 
use here the selection function <¡>(r) determined from the 
South sample. The results are shown in Figure 3 below. 
The logarithmic derivative of £(r) ai s <\0 h~l Mpc is 
systematically more negative in the South sample. We 
suspect this is only a fluctuation due to the small size of 
the sample. It is an important check that the North and 
South samples yield comparable values for £(5) at 3 < 
hs <\0 Mpc, and that in both samples £(5) passes 
through zero at s ~ 20 h ~1 Mpc. This agrees with the 
indication of a break from the power law £(r) cc r-Y at 
r - \0 h l Mpc found in the angular correlation studies 
(Groth and Peebles 1977). We see no evidence of the tail 
£(5)-0.7 at 30 <hs< 50 Mpc claimed by Kirshner, 
Oemler, and Schechter (1979). 

V. RESULTS FOR THE SPATIAL CORRELATION 
FUNCTION ON SMALL SCALES 

At small s, peculiar velocities may cause £(5) to differ 
from the space correlation function £(/*). To avoid this 
effect we use the integral of £(r/?, tt) over the redshift 
difference tt to obtain the projected function w(rp) and 
then either solve w(rp) for £(r) or else fit w(rp) to a 
power law model for £(r). 

The projected function is defined as 

w(rp) = -n-¡ L (12) n0J~vL 

In all the estimates, only pairs with 012 < 50° have been 
included in the computations of DD and DR. 

IV. RESULTS FOR £(5) 

Figure 1 shows the estimates of the redshift correla- 
tion function i(s) (eqs. [4] and [5]) for the North 
sample. At \ <hs < 10 Mpc, £(5) approximates a power 
law with index y — 1.8. At s' ~ 20 h~l Mpc, £(5) passes 

We use £>¿ = 2500 km s-1. If this is large enough to 
include almost all correlated pairs and peculiar veloci- 
ties, then the relation to the space correlation function is 

w(rp) = 2fo 
dyt\(rP

2 + y2)'/2\ 

-ifrdrHr^-r/y^2. (13) 
rP 
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Fig. 1.—Redshift correlation function £(s). Dots, £(s) on the logarithmic scale on the left; crosses, 1 + £(s) on the linear scale on the 
right. The dashed line is a power law s~LS. 

The inverse is the Abel integral 

t(r) = -^fr drpw'(rp)(rp
2 - r2) '/2. (14) 

Given w(rp), it is straightforward to numerically evaluate 
equation (14) for £(r), a procedure valid only for r 
vl/Hq, but certainly the preferred procedure for r < 10 
Mpc. This inversion is much simpler than the inversion 
of Limber’s equation required to derive £(r) from w(Q) 
(Fall and Tremaine 1977). 

Figure 2 shows w(rp) for the North sample. The thin 
line in Figure 3 shows the Abel solution £(r). To 
eliminate the major gradient of the correlation function, 
we have plotted the product r2£(r). Before the Abel 
integral is inverted, w(rp) is smoothed, and the oscilla- 
tions in r2£(r) at small scale are an artifact of this 
process. This curve is terminated at 7 Mpc where the 
procedure is becoming uncertain and affected by the 
choice of vL. Also shown are the redshift correlation 
functions ¿(5) for the northern and southern samples. 
At 5 < hr <\0 Mpc, where it is reasonable to compare 
£(r) and £(s), the results from the northern sample 
agree well. 

The dotted curve in Figure 3 is r2£(r) determined 
from w(rp) for the «-body simulation of Efstathiou and 
Eastwood (1981). The function closely matches that of 

Efstathiou and Eastwood who derived £(r) using the 
three dimensional position of each particle. This is a 
welcome check that the £(r) derived from the data is a 
useful measure of the true spatial correlation function, 

Fig. 2.—Projected correlation function w(rp) (eq. [12]). The 
solid line is the power law model (eq. [19]). 
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Fig. 3.—The spatial correlation function r2f(r) (eq. [14]) is the light line. The heavy line is s2£(s) from the northern sample, and the 
ragged dashed line is s2i(s) from the southern sample. A power law £ oc r"18 is indicated by the straight dashed line, while r2£(r) from the 
«-body simulation is shown as the dotted line connecting open circles. 

not unduly biased by redshift distortions or our in- 
version procedure. 

Figure 3 shows that the galaxy spatial correlation 
function for the Northern sample is quite well ap- 
proximated by a power law, 

Ur) = (r0/ry, (15) 

at r < 10 h~' Mpc. At H0rp vL equation (13) yields 
for the power law model 

w(rp)=Ary\ 

a = vr(i/2)r[(y - i)/2]/r(y/2). (i6) 

The parameter y is best derived from Figure 2. A least 
squares fit to at rp< 2 h~x Mpc gives 

y = 1.74 + 0.04. (17) 

Equation (17) agrees well with the result from the angu- 
lar correlation studies (Groth and Peebles 1977), 

y = 1.77 + 0.04, (18) 

where the error comes from a choice by eye of the 
maximum and minimum slopes and so the stated error 
is perhaps two standard deviations. 

Table 1 shows the results of fits by eye to the range of 
reasonably acceptable values of r0 for two choices for y 

and using w(rp) and the Abel solution for £(r) at rp or 
r <2h~x Mpc. The results from the two methods agree 
well. Our fiducial estimate is 

r0 = 5.4+ 0.3 h~x Mpc, y = 1.77. (19) 

This is shown as the solid curve in Figure 2. 
An analysis along roughly similar lines yielded r0 = 

4.23 + 0.26 h~x Mpc for the redshift sample of Kirshner, 
Oemler, and Schechter (1978) (Peebles 1979). As this 
sample was chosen to avoid rich clusters, the dis- 
crepancy with equation (19) is not unexpected. Groth 
and Peebles (1977) found >0 = 4.7 h'x Mpc from the 
angular data. Because this depends on a quite uncertain 
estimate of the luminosity function, the agreement with 
equation (19) is as good as one could have hoped. 

Integrals useful in the theory of clustering dynamics 
are 

J2(r)= f £(r)rdr, J3(r) = f £(r)r2 dr. (20) Jo Jo 

TABLE 1 
Clustering Length 

hr0
a 

y w(rp) Abel 

1.75... 5.5 + 0.25 5.7 + 0.3 
1.80 ... 5.2 + 0.25 5.2±0.3 

aUnit = Mpc. 
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TABLE 2 
Correlation Integrals 

hR* J? /3
C 

2...... 67 32 
5.  93 124 

10  112 277 
15  136 544 
20  142 698 
25  145 780 
30  142 684 
40  122 -162 
50  110 -540 

aUnit = Mpc. 
bUnit = 6 2 Mpc2. 
cUnit = /i3Mpc3. 

Table 2 shows estimates of these integrals based on the 
Abel solution for £(r) for /ir < 10 Mpc and on £(s) for 
hr > 10 Mpc. They agree well with estimates from the 
Lick sample (Clutton-Brock and Peebles 1981), 

J2 = 164e±0 15/r2 Mpc2, J3 = 596e±021/r3 Mpc3, 

hr - 30 Mpc. (21) 

As J3 approximates the second central moment of the 
counts of objects in a sphere of radius r, we do not 
expect J3 to be negative. The estimates at hr > 30 Mpc 
therefore are not to be trusted. However, they do dem- 
onstrate that J3 determined from galaxy clustering is 
highly uncertain at hr > 30 Mpc and cannot reliably be 
used to calculate expected anisotropies in the microwave 
background radiation due to the Sachs-Wolfe effect 
(Peebles 1981a). 

Fig. 4.—The two-point correlation as a function of separations 
rp and 77 perpendicular and parallel to the line of sight. The lines 
are contours of fixed £(^,77). The dashed semicircles show the 
expected shape of the contours if peculiar velocities were negligi- 
ble. 

h) Model for the Relative Velocity Distribution 

The statistic ^(^,77) is a convolution of the space 
correlation function £(r) with the distribution / of the 
relative line-of-sight peculiar velocity. As the second 
moment of / is found to vary only slowly with r, we use 
a model in which / is independent of r and of direction 
(relative to the line joining galaxies). Then 

VI. THE DISTRIBUTION OF RELATIVE VELOCITIES 

a) Results for £ ( jv , tt) 

A contour map of £(^, tt) is shown in Figure 4. The 
departures of the contours from mirror symmetry about 
the 77 = 0 axis are caused by differences in the 
background corrections for (ui + |t7|) and (u/ — |77|) in 
equation (9). The dashed semicircles show expected con- 
tours of £(^,77) if there were pure Hubble flow. The 
elongations in the 77 direction demonstrate quite con- 
vincingly that the redshift maps are distorted from true 
spatial distributions by an amount well in excess of what 
is expected from redshift measurement errors. This map 
is essentially unchanged if we delete the galaxies within 
6° of the Virgo core, and within 3 /z-1 Mpc of A1367 
and Coma and with velocity differences of less than 
1500 km s~1 from the cluster means. 

Figures 5a-5g show straight averages of the £(r/?, 77) 
estimates over intervals of rp spaced by successive fac- 
tors of 2. We turn next to a numerical analysis of these 
results. 

\ + Í{rp,TT) = H0l™Jy(\ + t,[(rp
2 + y2)]/2])f(V), 

V=‘n-H0y{\-h[(rp
1 + y2)X/2\). (22) 

The term 770y h{r) represents the mean streaming veloc- 
ity relative to the Hubble flow: if the clustering is 
statistically stable on the scale r, then h(r) = \\ if the 
clusters expand with the general expansion, /z = 0. Fol- 
lowing the similarity solution (Davis and Peebles 1977) 
we expect /z(r) is roughly of the form 

h{r) = F[\ + (r/r0Ÿ\ (23) 

with F = 1. The clusters in the «-body simulations of 
Efstathiou and Eastwood are slowly collapsing and 
would be consistent with equation (23) if F were roughly 
1.5. We test the sensitivity of the velocity dispersion 
estimates to the streaming correction h{r) by adjusting 
the parameter F. 
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Fig. 5a 

Fig. 5.—(a) The correlation function ^(rp, tt) for a < rp< 0.2. 
The dashed curve is the fit to the model equations (22)-(24) with 
F = 1 and a given in Table 3. The dotted curves correspond to the 
best fit with a constrained to be 2/3 or 3/2 of its best fit value, (b) 
Same as Fig. 5a, with 0.2 < rp<<)A h~x Mpc. (c) Same as Fig. 5a 
with 0.4 < rp< 0.8 /i-1 Mpc. (d) Same as Fig. 5a with 0.8 < < 1.6 
h~x Mpc. {e) Same as Fig. 5a with 1.6 < rp< 3.2 h~x Mpc. (/) 
Same as Fig. 5a with 3.2 < ^ < 6.4 /i~1 Mpc. (g) Same as Fig. 5a 
with 6.4 < /^ < 12.8 h~x Mpc. The dashed line is a model with 
a = 450 km s~x. 
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Fig. 5/ 

In agreement with previous analyses (Peebles 1976) 
we find better fits to the data if we use an exponential 
distribution for /(F), rather than a Gaussian or power 
law model. The curves in Figures 5a-5g show the 
model for ^(rpi7r) based on the power law model for 
£(r) (eq. [15]) with y = 1.8 and F = 1 in equation (23); 
and the exponential model 

/(F) oc exp ( —2I/2| F|/a), (24) 

and three choices for the rms dispersion. The model 
with the best fitting value of a (see next section) is 
plotted as the dashed curve, and the dotted curves are 
fits with a constrained to 2/3 or 3/2 of its best value. 
The quality of the fits is seen to be excellent with a well 
constrained, except in Figure 5g, and a slight trend of a 
with rp is apparent. The estimates of £ for |7r| > 1000 
km s_1 are seriously influenced by background correc- 
tions, and so little weight can be given to them. 

c) Estimates of the Relative Velocity Dispersion 
o(r) 

We could estimate the dispersion a from the integral 
of 77’2£(r/?, 77), but the integral depends sensitively on £ at 
|7r| > 1000 km s"1 where £(^,77) is poorly known. As 
the exponential model so closely matches the observed 
shape of £(7^, 77), we instead adjust a and a normaliza- 
tion constant in equation (24) to yield the least squares 
residuals of the model to £(7*^, 77), considering separately 
each of the rp intervals in Figures 5. The normalization 
constant is necessary to accommodate the small fluctua- 
tions of £ from a pure power law behavior. The results 
are given in Figure 6 and Table 3 along with representa- 

Fig. 5g 

tive formal errors for a with F= 0.1, 1, and 1.5 for data 
in the range |t7| < 1000 km s-1. We do not have the 
sensitivity to simultaneously fit for F and a. Tests with 
F = 1 indicate that a is quite insensitive to the weighting 
scheme of the fits (either equal weighting or Poisson 
noise weighting) or to incrementing the velocity limit to 
|t7| < 1500 km s-1. Again this is indicative of good fits 
to the model. The fits to the bin 6.4 <rp< 12.8 h~x Mpc 
are not listed, as the model is a poor match to the data 
for any a. Also Usted are results when galaxies in the 

Fig. 6.—The velocity dispersion as a function of projected 
separation. The filled squares are based on the model fit to £(7^, tt) 
with F= 1 (eq. [23]); the open squares, on the model with F= 0.1. 
The triangles are second moments of £(^,77). The circles are 
derived from the Turner sample. The curve is eq. (32). 
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TABLE 3 
Dispersion Fits 

Vol. 267 

hr (Mpc) F= 1 

Data: | tt | < 1000 km s 1 

F= 1.5 F= 0.1 
Delete 3 Clusters 

F= 1 

Simulation 
|7r| < 1500 km s_ 1 

F= 1.5 

0-0.2 
0.2-0.4 
0.4-0.8 
0.8-1.6 
1.6-3.2 
3.2-6.4 

226+15 
317 + 33 
358 + 22 
308+ 16 
369 + 22 
510 + 30 

231 
325 
375 
337 
418 
637 

211 
290 
308 
220 
204 
289 

229 
313 
337 
268 
345 
739 

602 + 70 
681+60 
808 + 71 
844 + 45 
580 + 40 
446 + 82 

cores of the Virgo, Coma, and A1367 clusters are de- 
leted from the sample as described above. Again the 
effect is minor, demonstrating that a is a measure of 
the typical pair dispersion, and is not heavily biased by 
the infrequent rich cluster. 

When the interval hrp < 200 kpc is divided into two 
parts, we get a = 206 km s -1 dXhrp< 100, but at 100 < 
hrp < 200 we get a value of a that we suspect is unrealis- 
tically large as a result of the noise in the £ estimates. 
The latter value is not shown in Figure 6. At small rp we 
can more directly estimate a as the second m moment of 
£ because the Hubble flow is small. On truncating £ at 
I Tr I == 750 km s~1 we find the second moments 

<7 = 194kms_1, hrp<\00kpc; 

= 265 km s“1, 100 < hrp < 200 kpc. (25) 

These are plotted as the triangles in Figure 6. They fit 
well onto the trend of o observed at larger rp. 

Results for the Efstathiou and Eastwood simulation 
are also indicated in Table 3 but are less satisfactory 
because of the poor match of £(r) to a power law model. 
The fits for the first two bins are good, but for the 
second two bins with high a, the fits are only fair. The 
behavior of o(rp) for the simulation is nonetheless con- 
sistent with the results given by Efstathiou and 
Eastwood who measured o(r) directly, with full knowl- 
edge of all six degrees of freedom for each point. This 
again is a welcome check on the validity of our proce- 
dure. Note that o(rp) for the simulation is considerably 
larger than for the real data, as is apparent upon com- 
parison of the redshift space maps of the two samples 
(DHLT). Recall that the points in the «-body simulation 
have been modified to have an rms one-dimensional 
velocity of 350 km s“ \ so that the one-dimensional rms 
pair difference velocity should be on the order of 500 
km s"1. More on this will be discussed below. 

On small scales the a estimates are quite independent 
of the model (eqs. [22]-[24]), but on larger scales the 
choice of the model, particularly the choice of F, sub- 
stantially influences the results. A small value of F 

implies that galaxies on all scales are expanding with the 
Hubble flow, so that on large scales the widths of the 
histograms of Figure 5 are dominated by this Hubble 
flow. Setting F = 0 is unreasonable because it says the 
observed clusters are not bound. By our prescription of 
equation (23), with F= 1, galaxies with separations of 5 
Mpc are expanding at only half the Hubble rate; the 
Hubble flow is cancelled by counterstreaming on small 
scales, and the counterstreaming drops rapidly beyond 
r = 5 h~x Mpc. This is intuitively as expected and 
suggests 0.8 < F< 1.5 for a variety of reasonable models 
of the clustering, a result consistent with both the pres- 
ent «-body simulations and the BBGKY hierarchy solu- 
tions, as discussed above. With F in this range the trend 
of a with rp is not very sensitive to the precise value of F. 

d) Estimates of o(rp) from the Turner Pairs 

We can extend the range of estimates of a as a 
function of rp by using the new redshift data for Turner 
binaries. Turner (1976) chose these galaxies from a 
deeper sample, m<15, so there are more close pairs 
than in the CfA sample. New accurate redshifts based 
on the methods of the CfA survey are reported by White 
et al (1982, hereafter WHLD). 

Though Turner chose pairs isolated on the sky, they 
may be expected to approximate a fair sample of all 
pairs because the typical number of bright galaxies near 
a close pair is small. The mean number of neighbors of a 
pair at separation r is given by the three-point correla- 
tion function f, 

AT= n£(/-)'~iyd3zf(/%z,|i--z|). (26) 

This equation applies at r r0 (£ » 1). An accurate 
model for f is (Peebles and Groth 1975) 

f = Ô<!(,-)£(U+!(k-2l)U('-)+£U)]}- (27) 

With equation (15) for £ we find that the ensemble 
average number of neighbors in a sphere of radius ar 
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centered on a pair at separation r is 

SURVEY OF GALAXY REDSHIFTS 475 

N » üirQnr^ar)3 y/(3-y)- (28) 

We are interested in bright galaxies, with mean space 
density « ~ 0.01 h3 Mpc"3. With Q - 0.7 (eq. [46] be- 
low) we get 

N ~ 2.8 (aAr)1'23, (29) 

with r in Mpc. With hr equal to the median projected 
separation -25 h~l kpc in the Turner sample and 
a = 5, N ~ 0.2. That is, most close pairs are well isolated 
in space. The Turner pairs were selected by a similar 
criterion for the projected distribution: no neighbors 
brighter than m = 15 appear in a circle of radius 50 
where 0 is the angular separation of the pair. This rejects 
a much larger fraction of pairs than is given by equation 
(29) because many neighbors only appear close in 
projection. However, if, as we will assume below, the 
relative velocity of a galaxy pair at separation r is 
statistically determined by the mass within distances on 
the order of r, then we would expect that the relative 
velocities in the Turner sample approximates a fair 
sample of all bright pairs. 

Figure 7 shows that this is so. The solid histogram is 
the distribution of relative velocities for all 131 Turner 
pairs with tt < 1000 km s~\ The dashed histogram is £ 
at hrp < 200 kpc normalized to the same area at tt < 1000 

7T km s’1 

Fig. 7.—The distribution of relative velocities. The solid histo- 
gram is the distribution for the full Turner sample. The dashed 
histogram is £(r/,, tt) for hrp < 200 kpc and scaled to the same area 
at tt < 1000 km s~\ 

km s-1. The two are very similar. For example, we 
expect from the normalized £ to find 5.0 pairs at 
600-1000 km s-1 and observe five Turner pairs; 
at 400-600 km s~ \ 6.1 are expected and nine observed; 
at 300-400 km s_1, 10.1 are expected and seven ob- 
served. 

To estimate o(rp) from the Turner pairs we must 
eliminate accidentals without unduly truncating the in- 
trinsic distribution. Our method is based on the fact that 
the distribution in tt looks like the exponential model 
(eq. [24]), which also proved successful for £(rp,7r). 
When this distribution's truncated at no, the second 
moment is 

(,2) = q2l-(»2 t 21/2« + 1 ) exp ( - Z1-'2« ) (30) 

1 - exp (-2l/1n) 

We compute (tt2) for the distribution truncated at tt0 

and then solve this equation for a. The results for three 
choices of tt0 are shown in Table 4. If there were serious 
contamination by accidentals, o would increase with 
increasing tt0 and increasing rp; if our model for the 
intrinsic distribution of tt had too broad a tail, a would 
tend to decrease with increasing ttq. No substantial 
trends with 7r0 or rp are seen, so we adopt a straight 
average of the three a estimates for each rp bin. They are 
plotted as the circles in Figure 6. 

e) Discussion of the Results 

We fit the estimates of a (r^) to a power law model, 

°(rp) = °o(hr)S. (31) 

We exclude the data at hr >1.6 Mpc because they are 
very sensitive to the clustering expansion model, and we 
use the two second moments of £ instead of the model 
fit at hrp < 200 kpc. A least squares fit of log a to log rp 

using the model fits to ^(rp,Tr) with F= 1, the second 

TABLE 4 
Velocity Dispersion in the Turner Sample 

Separation3 

5 < hrp<\5  

\5< hrp < 45 .... 

45 < hrp < \ 35 ... 

N <o 2x1/2 

35 
33 
30 
48 
47 
45 
30 
28 
25 

750 
500 
350 
750 
500 
350 
750 
500 
350 

217 
167 
119 
185 
167 
146 
245 
202 
146 

238 
198 
143 
193 
198 
223 
286 
292 
223 

aUnit = kpc. 
bUnit = km s~]. 
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moments of £, and the Turner sample results, with equal 
weight per point, gives a0 = 344 km s~1 (r in Mpc) and 
8 = 0.133 + 0.04. If we change from F= 1 to F= 0.1, we 
get a0 = 280, 8 = 0.07. Here the last point (0.8-1.6 Mpc) 
is well below the curve. If we eliminate this point, we get 
a0 = 333, 0 = 0.127 with the F =0.1 model. As was 
discussed above, F ~ 1 is more reahstic than F = 0.1 so 
the F = 1 results deserve more weight. Our fiducial best 
fit is then 

a=(340 + 40)(ArMpc)
0-,3±004 kms-'> 

10 kpc <hrp<\ Mpc. (32) 

Figure 6 shows that this curve fits the data quite well to 
hrp - 800 kpc and, if the F = 1 model is to be trusted, to 
- 6 Mpc. The stated uncertainty in a0 is our estimate of 
how far up or down it might be reasonable to move the 
curve. 

Using methods similar to what has been described 
here, Peebles (1976) found a - 200-600 km s_1 in the 
de Vaucouleurs Reference Catalog; Davis, Geller, and 
Huchra (1978) found a = 300 + 30 km s-1 from the 
F <13.0 redshift sample (roughly, the Shapley-Ames 
sample); Peebles (1979) found a - 450 km s"1 from the 
Kirshner-Oemler-Schechter (1978) sample, and Peebles 
(19816) found a = 450+100 km s-1 from the Rood 
(1982) compilation. As the CfA sample is considerably 
better suited to this purpose, equation (32) supersedes 
these earlier results. In an analysis similar to that de- 
scribed here of the deep AAT redshift survey which 
contains some 300 galaxies, Bean etal. (1982) found 
values of a in the range 200-250 km s~ \ and their data 
are consistent with no trend of a with r. The increased 
noise of their smaller sample decreases their ability to 
identify such a trend. 

Rivolo and Yahil (1981) found in the revised 
Shapley-Ames catalog (Sandage and Tammann 1981) 
a = 100+15 km s_1 at ^<0.35 h~x Mpc. They ob- 
tained quite similar results for isolated pairs and for the 
sample of all close pairs. This is significantly lower than 
our result. A possible reason is that Rivolo and Yahil 
found the background correction in the estimation of a 
statistic similar to ¿(r^, tt) by fitting the distribution in tt 
to a sum of two Gaussians, each with adjustable vari- 
ance and amplitude, one to represent correlated pairs, 
the other to represent the background. The background 
correction thus determined need not be a good estimate 
of the ensemble average background. As the revised 
Shapley-Ames catalog does not very closely approxi- 
mate a fair sample of the universe, that need not be a 
consideration, but it does make it difficult to judge 
whether the Rivolo-Yahil procedure unduly truncates 
the distribution of tt for physical pairs. Another point of 
disagreement is that we find f{V) in the CfA sample to 
be well approximated by an exponential model, while 

Rivolo and Yahil find a good fit with a Gaussian model. 
It seems likely that the Rivolo-Yahil procedure with 
exponentials rather than Gaussians would yield larger 
values of a because the broader exponential tail can take 
up more of the neighbors at large |7r| that are assigned 
to the background in the Gaussian model. 

VII. THE DENSITY PARAMETER 

We present two estimates of the cosmological density 
parameter, one based on the Irvine-Layzer cosmic en- 
ergy equation (Fall 1975; Davis and Peebles 1977; Davis, 
Geller, and Huchra 1978), the other on dynamic stabil- 
ity of the clustering at r<l h~x Mpc (Geller and 
Peebles 1973; Peebles 1976). 

a) Energy Equation 

The cosmic energy equation relates the single-galaxy 
one-dimensional velocity dispersion vp to the potential 
energy stored in fluctuations assuming £(r) measures 
the underlying mass distribution; the differential equa- 
tion can be approximated as an algebraic equation 
(Peebles 1980a, eq. [74.6]), 

tJ/MHo+MG. (33) 

If £(r) is negligibly small at r > 20 6“1 Mpc, then Table 
2 says /2/i2 ~ 150 Mpc2, which yields 

Qss^/óóO)2. (34) 

The chief difficulty with this test is the determination 
of vp from the measurements of a(r). Whereas a(r) is a 
pair-weighted dispersion that gives high weight to the 
rich groups, vp equally weights each galaxy. Further- 
more, vp includes large-scale coherent velocity fields that 
are unobservable from a(r) on small scales. If £(0 has a 
long-range positive tail, it increases J2 and /3, the latter 
increasing correlated motions and vp /a (Clutton-Brock 
and Peebles 1981). In linear perturbation theory these 
two effects just cancel, so a positive tail at r > 20 6“1 

Mpc might not seriously bias our estimate of £2. 
In the self-similar BBGKY solution (Davis and 

Peebles 1977) vp and o(r) are roughly equal to each 
other at a scale of 1 6"1 Mpc. On the other hand, in the 
«-body simulation of Efstathiou and Eastwood (1981) 
a(r) at r ~ 1 6 -1 Mpc is approximately twice vp, both in 
the £2 = 1 and £2 = 0.1 simulations, and o(r) decreases 
with scale size, as expected for the shape of £(/*) in the 
simulation. As long as the effective power law of £(r) is 
steeper than y = 2, o(r) must decrease with r if the 
behavior is self-similar. 

The simulation data are consistent with a roughly 
constant at 600 km s-1 for rp<\ Mpc, although a 
decreases on larger scales. If vp is half this value, then 
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from equation (34) we expect Q = 0.09 for the simula- 
tion, in complete agreement with the procedure used by 
DHLT to display this simulation, in which vp was 
constructed to be 350 km s - *. 

In the real data, if we assume a(l Mpc) = u/? as 
expected from the similarity solution, we find from 
equation (34) the estimate 

Q = 0.27. (35) 

This determination obviously is limited by the uncer- 
tainty in the relation of o(r) to vp. 

b) Statistical Stability Condition 

Our second estimate of Q is based on the assumption 
that the mass clustering on scales <1 h~\ Mpc is 
statistically stable, not expanding with the general ex- 
pansion and not collapsing. The balance condition at 
r < r0 is (Peebles 1976; Davis and Peebles 1977; Peebles 
1980a, § 75) 

drß 

= -ga(r)k{r) = -2Gpjdhïpz
a/z' 

« —2Gm(r)i¡,(r)ra/r3 —2Gm(r)n J i/3zfz“/z3. 

(36) 

The Cartesian components of the relative velocity of a 
pair of galaxies at separation ra are t>a, and (vavß) is an 
average over a fair sample of pairs at separation ra. The 
mean gravitational acceleration of one of the pair as 
seen by an observer at rest on the other is ga. This can 
be written as an integral over a mass correlation func- 
tion fp, where the ensemble average value of the mass in 
the volume element d3z at position za relative to one of 
a pair of galaxies at separation ra is 

dM = pl;(r,z,\r — z\) d3z, (37) 

where p is the mean mass density. Now we can imagine 
apportioning this mass among the bright galaxies, so 
that m(r) is the mean mass per bright galaxy within 
distance r; this mass could be in a smooth halo or it 
could be in the halos of faint companions. Then as 
indicated in the last of equations (36), ga can be written 
as the sum of the direct gravitational interaction of the 
pair and the mean effect of all the neighbors of the pair. 
If the mass is concentrated in and around bright gal- 
axies, then at hr > 300 kpc ga is dominated by neighbors 
of the pair so we can set ga equal to the second term in 
the last of equation (36) with p = mn (§ VIII c and eq. 
[29]). The same is true even at small r if mass is arranged 
in a scale-invariant clustering hierarchy. We adopt this 
approximation in the following analysis, and in § VIII c 

477 

we return to a discussion of the direct interaction term 
in the last of equations (36). 

We shall assume galaxies are good tracers of the way 
mass is clustered so f is given by the galaxy three-point 
function in equation (27). The main justification for this 
is that it implies o oc 115 (eq. [45] below), quite close to 
the observed behavior (eq. [32]). The first term in equa- 
tion (27) for f makes no contribution to g, the integral 
over the second term is easily evaluated, and the third 
term yields a complicated integral that makes a some- 
what larger contribution because of a peculiar feature of 
the model. At small z, £(z) is large, and as there is a 
nonzero gradient of £(|i* - z |) at z 0, these two factors 
with cos0 yield an appreciable contribution to the 
peculiar acceleration of the galaxy at z = 0 toward the 
galaxy at z = r by the mass concentrated around z = 0. 
As this seems unreasonable, we replace the third term 
with the second. This gives 

g{r)r = (,Q(Hr)2i(r)ü/(2-y). (38) 

As the estimates of a(r/;) have substantially improved, 
it is worthwhile to treat the left-hand side of the stability 
equation (36) in more detail than has been done hereto- 
fore. The velocity moment can be written as (Davis and 
Peebles 1977) 

(vavß) =A{r)(8aß + br^/r2). (39) 

Following White (1981) we assume b is constant and A 
varies as r28 (eq. [31]). Then with $ a r~y equation (36) 
becomes 

rg{r) = A{r)[{y-28){\+b)-2b], (40) 

where g = |ga|. The anisotropy parameter b is related to 
White’s parameter e by the equation 

e=(l + ¿>)/(3+¿>). (41) 

For isotropic orbits, £ = 0; for purely radial orbits, 
6 » 1 ; and for purely circular orbits, b = — X. 

If the orbits are radial, the gravitational acceleration 
can be quite small (e.g., Hartwick and Sargent 1978; 
Peebles 19806; Tremaine and Ostriker 1982; WHLD). 
The reason is easy to see: in a stationary state with zero 
gravitational acceleration, radial orbits yield £ocr~2, 
close to what is observed. However, this is a contrived 
situation (and impossible to maintain in a clustering 
hierarchy) so we suspect there is little reason to doubt 
the traditional assumption 6 ~ 0 in the present appli- 
cation. 

If Hubble flow can be neglected, the velocity disper- 
sion observed at projected separation rp is 

(dyt(r)A(r)(\ + by2/r2) 
o2 — -  -, (42) 

jdyi(r) 
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where r2 = r^2 + j>2. As White (1981) showed, if £ and A 
vary as powers of r, the integral can be reduced to 
tabulated functions. For the present case we obtain 

o2(r) = KA(r), 

Y-28 + fe r[(y-2fi-l)/2]r(-y/2) 
Y-2S r[(y —25)/2]r[(Y — l)/2] 

This is equivalent to White’s equation (16). With y = 1.77 
and 6 = 0, K = 1.456 if 0 = 0.15; *: = 1.306 if Ô = 0.115, 
the value used below; and A' = 1 if ô = 0. This analysis 
does not apply to the model used to estimate a at large 
rp, but it ought to give the general trend of the relation 
between a and A and so we adopt the correction factor 
K throughout. 

Equations (38), (40), and (43) give 

o2(r) = 6CQ(ff0r)2$(r)Q, 

C = K[(y — 28)(1 + b) — 2b]-'(3 — y) (44) 

Since £ cc r_Y, this model says 

0 = l-y/2 = 0.115, (45) 

which agrees with the fit in equation (32). 
Estimates of f in the Rood (1982) sample give Q = 

0.68 + 0.05 (Peebles 19816). Pending analysis of f in the 
CfA sample we adopt 

ß = 0.7 ±0.2. (46) 

With 0 = 0.115, a0 = 340 + 40 km s-1 (eq. [32]), and 
6 = 0, we get 

fi = 0.20c ±0-4. (47) 

This agrees with the estimate from the energy equation 
(eq. [35]). The stated error in equation (47) is about 
equally from a and Q. The accuracy of the latter cer- 
tainly can be improved by a three-point analysis of the 
CfA sample. We hope to be able to report on the results 
of that study in due course. 

The luminosity density in the Zwicky B magnitude 
system in the CfA sample is (DH) 

y = 1.1 X 108 hL0 Mpc-3. (48) 

With equation (47) we get 

M/L - 600 hM0 /L0. (49) 

VIII. DISCUSSION 

a) The Spatial Two-Point Correlation Function 

The estimates of the galaxy spatial correlation func- 
tion £(r) at r < 10 6“1 Mpc are well approximated by a 

power law, the index y agreeing with what was found 
from the statistics of angular distributions within the 
error - 3%, the value for r0 differing from the previous 
estimate by only 13%. This is an important check of two 
assumptions, that the CfA sample is a fair sample of the 
universe and that the angular distributions fairly reflect 
the spatial clustering of galaxies. If the CfA sample were 
not representative, we would not expect to find that £(r) 
agrees with the results from the deeper samples of 
galaxy angular distributions. Almost all estimates of 
£(r) from angular distributions have assumed that 
patchy obscuration may be neglected. Uson and Seldner 
(1982) have carefully examined the hypothesis that an 
appreciable part of the apparent clustering in the Lick 
and deeper samples is due to patchy absorption. They 
conclude that this would require a significant increase in 
y and decrease in r0, which would spoil the agreement 
with the CfA results. 

The redshift information in the CfA sample greatly 
reduces the chance of systematic errors arising from the 
luminosity function or variable obscuration. Thus, we 
believe equation (19) is the best available estimate of r0. 

The power law behavior of £(r) extending over three 
decades of length scale remains a most remarkable 
feature of galaxy correlations, a feature poorly modeled 
in existing simulations. There are hints of departures 
from a pure power law for r < 0.1 6-1 Mpc, where £(r) 
may be slightly steeper than the mean, and for 5 < r < 10 
h x Mpc, where £(r) is slightly shallower. However, 
even if the ensemble of galaxy clustering were describ- 
able as a pure power law, small departures would be 
expected in any relatively small sample such as the one 
under consideration here. The comparison of £(r) in 
Figure 3 to that of the «-body simulation is illuminating 
because it clearly demonstrates the differences between 
these two samples which are so apparent by visual 
inspection. Note how r2£(r) is larger in the simulation 
than in the data on small scales, r < 3.5 h~1 Mpc, but is 
smaller on larger scales. This confirms the impression 
that the simulation clusters are tighter and more central- 
ly concentrated, with the virial motion in the clusters 
easier to detect in the redshift maps. On the other hand, 
the individual clumps are more homogeneously distrib- 
uted than in the real data. 

As the characteristic length r0 is only - 5% of the CfA 
depth, one might wonder why there are such prominent 
density fluctuations in the CfA maps (DHLT). One can 
understand the significance of r0 as follows. Suppose 
£(r) = (/b/r)Y to very large r, and suppose a sphere 
with diameter 4r0 is placed at random. The rms fluctua- 
tion in the number of galaxies found in the sphere is 
8V/V=0.73 (Peebles 1980a, eq. [59.3]). That is, we 
expect that the density averaged over the scale ~ 4r0 ~ 
20 6-1 Mpc fluctuates by a factor of about 2, as is 
observed. 

If the sphere diameter is increased to the CfA depth 
~ 100 h~x Mpc, we get 8N/N- 0.2 for a pure power 
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law £(r), and 8N/N - 0.1 for a power law truncated at 
r = 20 h~l Mpc. Thus, the mean galaxy number density 
derived from the CfA sample may have an intrinsic 
uncertainty of about 15%. As the estimate of 1 + £ is the 
ratio of observed to expected numbers of neighbors, one 
might conclude that the £ estimates from the CfA sam- 
ple are uncertain to at least +0.15. That would be true 
if we normalized the counts of neighbors in the sample 
by the ensemble average number density. However, be- 
cause the number density also is estimated from the 
sample, the statistical noise in the £ estimates is reduced 
by a cancellation of effects: if the sample happens to 
contain an unusually large number of galaxies, the ob- 
served number of neighbors will tend to be larger than 
the ensemble average and the expected number used in 
the denominator also will be too big, which tends to 
cancel the fluctuation. This effect can be analyzed, but 
as it depends on the galaxy four-point correlation func- 
tion which is poorly known, the results are not very 
interesting. We only note therefore, that the expected 
fluctuations around the mean depend on the number of 
independent clumps present. Thus in our sample £ falls 
below zero at 20 < r < 40 h~x Mpc, which is a length 
scale sufficiently large compared to the sample volume 
for there to be only a few spatially independent group- 
ings. This negative correlation zone mainly reflects the 
fact that in the CfA northern sample there is an under- 
abundance of galaxies with velocities 3000 <V< 6000 
km s_l. This hole is quite real, but of course the 
problem is to decide whether the situation is typical, and 
the only true guide is the degree of reproducibility of 
results from independent samples. A similar behavior of 
£(r) has been reported by Shanks (1982) in an analysis 
of the Durham/AAT and Kirshner, Oemler, and 
Schechter (1978) redshift samples, which suggests that 
galaxies on average are anticorrelated on scales in excess 
of 20/T1 Mpc. 

The North and South CfA samples and the Lick 
catalog all indicate that £(r) breaks from the power law 
r~y at r ~ 10-20 h~l Mpc. The first and last of these 
samples are the best available for the detection of such a 
feature, and the coincidence of results is suggestive, but 
as we have noted, we cannot yet exclude the assumption 
that we are seeing only sampling fluctuations. If the 
break is real it is an important and highly suggestive 
effect because it occurs about at the transition between 
characteristically linear and nonlinear fluctuations. In 
particular, such a feature appears in the = 1 similarity 
solution (Davis and Peebles 1977; Davis, Groth, and 
Peebles 1977). 

b) Peculiar Velocities 

The continuing controversy over the galaxy rms 
peculiar velocity, whether derived from identification of 
physical associations or from statistical analyses of the 
ensemble, is in large part due to the difficulty of 

eliminating the accidental background and foreground 
galaxies. It is widely recognized that inclusion of acci- 
dentals can inflate the estimate of the velocity dis- 
persion; perhaps it is less widely emphasized that 
truncation of the high-velocity tail can artificially reduce 
the dispersion. The analysis used here has the advantage 
that we can specify a background correction that is 
known to be unbiased within our general assumptions. 
Of course, there is still the problem of sampling fluctua- 
tions. Within the present data the evidence that fluctua- 
tions have not grossly affected the estimates of the 
dispersion o(rp) is that £(^,77) is found to be quite a 
smooth function of tt and rp with a width in tt that is 
well in excess of what would be expected from the width 
of £(r) (Figs. 5). 

Since our analysis is based on counts of pairs, it 
weights dense regions most heavily and so one could 
wonder whether our a estimates only reflect the known 
high velocities in the richer clusters. There are several 
reasons for thinking that that is not so: (1) The width of 
£(0^, tt) is seen to be unchanged when the galaxies from 
the cores of the three richest clusters are deleted from 
the sample (Table 3). (2) The Turner sample of close 
pairs is biased against dense regions, but we have seen 
that the relative velocity distribution is indistinguishable 
from that of the CfA sample (Fig. 7). (3) If a were 
determined by the rare high-velocity pairs in rich clus- 
ters, £(^5 77) would have a sharp spike at small 77 and a 
very nearly flat tail extending perhaps to 2000 km s-1, 
which certainly does not match the observed exponen- 
tial distribution. (4) The density of pairs decreases rather 
rapidly with increasing separation, as r~177. As the 
crossing time at hr <\ Mpc is much less than the 
Hubble time, it is reasonable to assume that the density 
is statistically stable in a crossing time. This is possible if 
relative orbits are very nearly radial or else if the major- 
ity of pairs at separation r are gravitationally bound at 
mean separation on the order of r. As the first possibil- 
ity seems artificial, we conclude that most close pairs are 
bound and are not high-velocity objects only acciden- 
tally and temporarily seen close together. 

Our o(rp) estimates also depend on the accuracy of 
the exponential model for f(V) (eq. [24]). As the model 
fits the data quite well, the one thing we can imagine 
going wrong here is that f(V) may depart from the 
exponential model at K > 1000 km s_1. If / falls below 
the model, a is little affected; if / is above the model, it 
could substantially increase a. 

We have supplemented the CfA data with the larger 
number of close pairs in the deeper Turner sample. As 
these pairs were chosen not to have bright neighbors, 
they tend to be in less dense regions where the velocity 
dispersion may be expected to be less than the mean. 
Thus the circles in Figure 6 may be underestimates of o 
for a fair sample, but as close pairs in any case tend not 
to have many bright neighbors close in space, we suspect 
the error is not large. 
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Our estimates of the relative velocity dispersion o(rp) 
at small rp can be compared to what is expected from 
the typical velocity of stars in a galaxy. We will suppose 
that the mass distribution within a typical galaxy pro- 
duces a roughly flat rotation curve at hr ~ 10 kpc, which 
is about the minimum of the range of our estimates of a 
as a function of rp. We assume also that when two 
galaxies are close, the masses add so the mean relative 
acceleration is g= 2vc

2/r, where vc is the rms circular 
velocity in an isolated galaxy. The assumed flat rotation 
curve means ô = 0, so equations (40) and (43) yield 

2 y(y +2 

2(y + b) a- 

For isotropic orbits this says a = 0.94t>c. Our power law 
fit to o(rp) (eq. [32]) yields a = 187 km s-1 at hr = \0 
kpc, which would imply t>c = 176 + 21 km s_1. This is 
slightly lower than the expected rms circular velocity 
vc - 200-230 km s_ 1 for bright galaxies, which might be 
an indication that a has been underestimated, or it 
might reflect an error in the model for g or in the 
adopted orbit parameters. The discrepancy is reduced if 
8 is reduced, but that is not an attractive possibility 
because in isolated spirals the rotation curve is seen to 
increase slowly with increasing y, suggesting 8 > 0. Per- 
haps more likely is the point of WHLD that close binary 
orbits might be expected to tend to be circular. For 
example, b = —0.5 (which corresponds to rms radial 
velocity vr = 0.451>, compared to vr = 0.58u for isotropic 
orbits) yields vc = 214 + 25 km s_I, a quite reasonable 
value. Thus we conclude that within the uncertainty of 
the orbit parameters our estimate of a at small rp is not 
unreasonable. 

It is worth emphasizing finally that the o estimates are 
comfortably large compared to the measuring errors. 

Though we have reason to beheve our estimates of a 
at hr <\ Mpc are reliable measures of the Cf A sample, 
we cannot be sure this is a fair sample of the universe. 
An indication of the large-scale fluctuations to be ex- 
pected is provided by the Soneira-Peebles (1978) cluster- 
ing prescription where the one-dimensional peculiar 
velocity distribution approximates an exponential and 
the broad tail of this distribution is the result of the 
broad distribution of clump richnesses in this model. As 
the rare richest clumps make a large contribution to the 
velocity dispersion, we may expect to find appreciable 
sampling fluctuations even in large samples. For exam- 
ple, in the Soneira-Peebles prescription, half of a2 is due 
to the richest clumps with 12 levels. In a volume equal to 
the CfA sample region the expected number of these 
richest clumps is nV- 0.3. Thus, the true error in equa- 
tion (32) as a measure of the universal value of a may 
very well exceed the internal error we have quoted. 

The result a — 340 km s-1 atr~l h~l Mpc is surpris- 
ingly large by some measures. Particularly striking is the 

fact that the one-dimensional mean random velocity of 
very nearby field galaxies is of order 100 km s-1 

(Sandage and Tammann 1982). However, one should 
note two aspects of the peculiar velocities. In the ex- 
ponential model that we have seen fits the data quite 
well, 25% of the pairs have relative peculiar velocities 
I V\ < 0.2 a. That is, as the distribution has a fairly broad 
tail, a significant fraction of the galaxies have quite 
small velocities. Second, the high-velocity pairs are ex- 
pected to appear not at random but rather strongly 
concentrated in the denser spots. Thus, the 30 nearest 
galaxies do not represent 30 independent samples of the 
pecuhar velocity distribution. It therefore seems not 
unreasonable that these neighbors should have rms 
pecuhar velocity relative to us on the order of 0.3 a. 

c) The Nature of the Mass Distribution and the 
Mean Mass Density 

The mass distribution problem centers on the familiar 
result that the mass in galaxies is much less than what is 
implied by our estimate £2 ~ 0.2. For example, if the 
mass of the universe were dominated by bright galaxies, 
mean number density « = 0.01 h3 Mpc-3, each galaxy 
having a halo truncated at ^ = 50 /¡-1 kpc, which is 
about as far as flat rotations curves have been measured 
in isolated spirals, the rms circular velocity at rh being 
vc - 200 km s - \ which is typical for spirals (e.g., Rubin, 
Ford, and Thonnard 1980 and references therein), then 
£2 ~ 0.02. This is a factor —10 below the result from the 
last section. Thus if the estimate of £2 from the redshift 
data is to be believed, rh must be considerably increased 
or else the mass of the universe must be dominated by 
mass around the more numerous faint galaxies. 

We can examine this point in somewhat more detail 
by writing the mean relative pecuhar acceleration of 
galaxy pairs at separation r (eq. [36]) as the sum of the 
contributions from the mass clustered in and around 
each of the pairs and from the masses associated with 
neighbors, 

rg(r) - 2Gm(r)/r + \6‘irQGm(r)ni;(r)r2/(3 - y). 

(51) 

As in equation (36), the mean mass per massive galaxy 
within distance r of a massive galaxy is m(r), and we 
assume that this mass is statistically independent of the 
number of neighbors. With « = 0.01 h3 Mpc-3 this 
equation becomes 

rg(/-) ~ 2Gw(r)r-1[l+2.8(Ar)1 23] ~ U8a(/-)2. 

(52) 

The last equation follows from equations (40), (43), and 
(45) with b = 0. This equations says that if the mass of 
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the universe were in the high surface brightness parts of 
bright galaxies, then we should have seen a oc r-1/2 at 10 
kpc <hr < 300 kpc, which certainly does not accord 
with the observations. 

Since there seems to be little doubt that a is nearly 
constant at 10 kpc <hrp<\ Mpc, the mean mass around 
a bright galaxy must vary about as ra(r) oc r to /zr ~ 300 
kpc. This mass could be in smooth halos of the sort 
needed to account for the rotation curves of isolated 
spirals at hr < 50 kpc (Rubin, Ford, and Thonnard 1980 
and references therein), or it could be associated with 
the faint galaxies that tend to cluster around bright 
galaxies. There is some evidence for the latter picture. 

If only bright galaxies contribute substantially to the 
mass density, n is low and a coincidence is required so 
that m(r) becomes constant just as the second term in 
parenthesis dominates in equation (52). Otherwise a(r) 
would show substantial deviations from a power law 
over this region. If, on the other hand, the bulk of the 
mass is associated with fainter galaxies, then n is effec- 
tively larger, m(r) could converge at r ~ 50 kpc, and a 
power law behavior of a would be expected. Since faint 
and bright galaxies seem to have very similar clustering 
properties, the bright galaxies serve as tracers of the 
mass distribution in this picture, and the result Ô ~ (2 — 
y )/2 is understandable. 

Further evidence for this picture comes from the 
binary galaxy study. WHLD examined the field of each 
Turner pair in an attempt to find those that are “ truly” 
binaries. As Turner already had ehminated pairs with 
bright neighbors, WHLD mainly tested for faint com- 
panions. The culling narrowed the distribution of veloc- 
ity differences, which suggests the faint galaxies make a 
substantial contribution to the mass. 

There are some indications that galaxy masses are not 
very strongly correlated with their luminosities. WHLD 
considered the model m oc La, and tentatively proposed 
a = 0.25. From analysis of the IR-Tully Fisher relation 
for spiral galaxies, Burstein (1982) suggests that surface 
brightness varies as Au”, n - 2.7, where Au is the flat 
rotational velocity. Since L oc Aum, m ~ 4, then if the 
objects are rotationally supported we have a = 1/2 + (2 
- «/2)/m « 0.66. Similarly, Romanishin etal (1982) 
conclude that low surface brightness spiral galaxies have 
higher than normal M/L ratios, i.e., a < 1. The faint end 
of the galaxy luminosity function often is modeled as 
V( < M) oc dex (ßM). In this power law model with 

m oc La, the mass diverges at the faint end unless a > 
2.5/L Estimates of the slope of the faint end of the 
luminosity function range from ß = 0.25 (Abell 1962) to 
ß = 0.1 (Schechter 1976; Felten 1977) to ß = 0.04 
(Kirshner, Oemler, and Schechter 1979) and ß « 0 for 
the CfA sample (DH). These numbers put the critical 
value of a in the range 0-0.6, and certainly admit the 
possibility that the mass of the universe is dominated by 
matter associated with faint galaxies, although it cer- 
tainly is not confined within the optical boundaries of 
the faint galaxies. 

Within our data the strongest evidence that our result 
Ü = 0.2 may be seriously in error is the discrepancy 
between our estimate of ^(rpi7r) and the exponential 
model at large separations, hrp > 6 Mpc, where we see 
high-velocity tails not expected in the model (Figs. 5/, 
g). Larger samples of redshifts will be needed to decide 
whether this is an accidental fluctuation or an indication 
that we have missed a broad-spaced mass component. 

There are other indications that mass is more broadly 
distributed than galaxies. Press and Davis (1982) studied 
the masses of groups identified in the same CfA data set 
used here. They found that the mass per galaxy varies 
about in proportion to the cluster diameter up to scales 
of several megaparsecs. For groups with just two bright 
galaxies that is just the effect discussed above. Our 
result at hrp < 1 Mpc would have led us to believe that 
the mass per galaxy is constant when the groups contain 
several bright members. The Press-Davis result is most 
striking for the smaller clusters, while the larger clusters 
have more scatter. The Press-Davis correlation is an 
overall fit to the trend of clusters of all sizes, and is 
mostly determined by the behavior of the data on small 
scales. 

We note also that the Press-Davis estimate of Q, is 
consistent with our results £2 ~ 0.2. At still larger scales, 
estimates of the peculiar velocity field around the Virgo 
cluster suggest values for ti in the range 02-0.1 (DH; 
Aaronson etal. 1982; Davis 1982). Unless the Virgo- 
centric infall is less than 250 km s-1, this is not con- 
sistent with our result, suggesting the possibility that we 
have missed a weakly clustered mass component. 
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