THE ASTROPHYSICAL JOURNAL, **267**:35–51, 1983 April 1 © 1983. The American Astronomical Society. All rights reserved. Printed in U.S.A.

## EFFECTS OF ENVIRONMENT ON NEUTRAL HYDROGEN DISTRIBUTION FOR DISK GALAXIES IN THE VIRGO CLUSTER AREA

C. GIOVANARDI

Osservatorio Astrofisico di Arcetri, Firenze, Italy GEORGE HELOU AND E. E. SALPETER Center for Radiophysics and Space Research, Cornell University

AND

NATHAN KRUMM University of Cincinnati Received 1982 January 18; accepted 1982 August 19

## ABSTRACT

A statistical analysis is carried out on H I observations of galaxies, which include mapping with the Arecibo beam (reported in previous papers), both inside and outside the direction of the Virgo cluster core (radius  $5^{\circ}$  or  $6^{\circ}$ ). The galaxies were classified both according to the revised Hubble (RH) scheme and the RDDO scheme suggested by van den Bergh. S0 galaxies on the RH scheme have a larger detection probability outside than inside; "true S0" galaxies on the RDDO scheme have a small detection probability everywhere; "anemics" have a larger detection probability and are more common outside the cluster core.

Anemic and spiral galaxies of all types have an average H I mass content  $M_{\rm H}$  which is smaller inside the Virgo cluster core by a factor of about 2 to 2.5 than galaxies of the same type outside the core. This result agrees with that obtained by Chamaraux *et al.*, using different methods, and seems now firmly established. H I diameters  $D_{\rm H}$ , defined in terms of a scale length, are also smaller inside the core than outside so that the surface density  $\sigma_{\rm H} \propto M_{\rm H}/D_{\rm H}^2$  is almost the same inside and outside (always comparing galaxies of the same morphological type). Ram pressure stripping of an outer galactic disk by intracluster gas predicts just such results. By contrast, "anemics" have almost the same  $D_{\rm H}$  as "true spirals" (or even larger) but smaller  $\sigma_{\rm H}$ , suggesting they lost hydrogen gas by some means other than stripping.

Subject headings: galaxies: clusters of - interstellar: matter - radio sources: 21 cm radiation

## I. INTRODUCTION

Two observational facts about the Hubble sequence of galaxy morphological types are uncontroversial: (1) Early type galaxies (ellipticals and S0's) predominate over late-type spirals in the high-density environment of a rich cluster core, whereas the opposite is the case in the low-density environment (loose groups and field galaxies); (2) the neutral hydrogen content, expressed as ratio of hydrogen mass  $M_{\rm H}$  to optical luminosity L, is much smaller for early-type galaxies than for late-type spirals. However, questions of a causal connection between (1) and (2) are very controversial; two rival views in their extreme forms are (A) galaxies are born as late-type spirals, but recurring ram pressure stripping in a dense cluster environment eventually removes all the hydrogen gas from a galaxy, which results in an S0 galaxy (and somehow eventually in an elliptical?); (B) the environment determines the Hubble type of a galaxy only during the formation process, and the small hydrogen content of an early-type galaxy is due to internal causes, such as a more complete process of star formation and/or a galactic wind from the nuclear bulge. Model A in its extreme form can already be excluded (Sandage and Visvanathan 1978; Dressler 1980; Farouki and Shapiro 1980), but it is of interest to compare the neutral hydrogen content for galaxies of the *same* Hubble type in a dense cluster environment with those in less dense regions.

The Virgo cluster provides a particularly interesting case because its core is only moderately dense and contains some late type spirals (as well as early types). For S0 galaxies a preliminary study (Krumm and Salpeter 1979a, b indicated a hydrogen deficiency in the Virgo Cluster core; earlier papers (Davies and Lewis 1973; Huchtmeier, Tammann, and Wendker 1976) had already indicated similar results for Virgo Cluster spirals, but some doubt remained (Bottinelli and Gouguenheim 1974). More recent Virgo studies have now been carried out with the Nançay and Arecibo radio telescopes, and the Nançay work has been analyzed by Chamaraux, Balkowski, and Gerard (1980); the new basic Arecibo<sup>1</sup> data were presented by Helou et al. (1981; hereafter Paper I) and are analyzed in the present paper.

<sup>1</sup> The Arecibo Observatory is part of the National Astronomy and Ionosphere Center which is operated by Cornell University under contract from the National Science Foundation.

| Ċ      |
|--------|
| LL)    |
| $\sim$ |
| •      |
| •      |
| •      |
|        |
| 9      |
| 01     |
|        |
|        |
| •      |
| . •    |
| 2      |
| Q,     |
| 4      |
| $\sim$ |
| 00     |
| 5      |
|        |

| $D_{\rm H}$ (arcmin) (14)                                         | ÷                  | ÷                | 4.4                     | :                     | 4.6              | 3.7                             | 8.1              | 5.5              | ÷                    | ÷                    | ÷                | ÷                | 4.6                                                       | ÷                | ÷                | ÷                                                       | 6.7                 | ÷                | ÷                | ÷                   | :                | 4.9              | ÷.                   |
|-------------------------------------------------------------------|--------------------|------------------|-------------------------|-----------------------|------------------|---------------------------------|------------------|------------------|----------------------|----------------------|------------------|------------------|-----------------------------------------------------------|------------------|------------------|---------------------------------------------------------|---------------------|------------------|------------------|---------------------|------------------|------------------|----------------------|
| $egin{pmatrix} M_T \ (10^{11}M_\odot) \ (13) \end{pmatrix}$       | :                  | :                | ÷                       | :                     | 0.12             | :                               | 0.91             | 0.48             | ÷                    | ÷                    | :                | :                | (1.24)                                                    | ÷                | :                | ÷                                                       | 0.19                | ÷                | ÷                | :                   | :                | (3.38)           | :                    |
| $egin{matrix} M_{ m H} \ (10^8 \ M_{\odot}) \ (12) \end{pmatrix}$ | <1.3               | < 0.5            | 13.3                    | <0.6                  | 1.9              | 15.2                            | 3.3              | 1.4              | <1.9                 | <7.2                 | <11.3            | < 3.8            | 5.6                                                       | <2.7             | <7.3             | < 3.7                                                   | 5.1                 | < 4.0            | <2.0             | <2.7                | < 2.2            | 111.6            | <2.6                 |
| M <sub>H</sub> /L*<br>(solar<br>units)<br>(11)                    | < 0.02             | < 0.01           | 0.14                    | < 0.02                | 0.08             | 0.32                            | 0.03             | 0.02             | < 0.04               | <0.09                | < 0.07           | < 0.11           | 0.15                                                      | < 0.04           | < 0.08           | < 0.03                                                  | 0.16                | < 0.07           | < 0.03           | < 0.04              | < 0.07           | 0.44             | < 0.07               |
| d<br>Group<br>(Mpc)<br>(10)                                       | 10.4<br>N3368      | 10.4)<br>N3368   | $\left\{ F \right\}$    | 8.2)<br>N3627         | 8.2)<br>N3627    | $\left[ \frac{19.8}{F} \right]$ | 8.2)<br>N3627    | 14.9<br>N3607    | $\left\{ v \right\}$ | $\left\{ v \right\}$ | 30.1<br>N4261    | 15.0<br>V        | $\left\{ \begin{array}{c} 15.0 \\ V \end{array} \right\}$ | 15.0<br>V        | 30.1)<br>N4261   | $\left\{ \begin{array}{c} 15.0\\V \end{array} \right\}$ | 15.0<br>V           | 15.0<br>V        | 15.0<br>V        | 15.0<br>V           | 15.0<br>V        | 34.4<br>F        | 15.0<br>V            |
| $\binom{V_{\rm VC}}{({\rm km~s^{-1}})}$                           | - 323              | -230             | 1967                    | -415                  | -510             | 393                             | -331             | 367              | - 102                | LL                   | 1005             | 652              | 212                                                       | 92               | 1151             | - 386                                                   | 480                 | 73               | 38               | - 191               | 147              | 1366             | 20                   |
| $\binom{V_{\rm LG}}{({\rm km~s}^{-1})}$                           | 634                | 731              | 2929                    | 563                   | 489              | 1385                            | 674              | 1369             | 937                  | 1105                 | 2050             | 1695             | 1260                                                      | 1141             | 2193             | 658                                                     | 1522                | 1120             | 1085             | 859                 | 1196             | 2407             | 1068                 |
| $\Delta_{\rm vc}$ (deg) (7)                                       | 24.3               | 23.7             | 23.6                    | 21.4                  | 17.9             | 19.1                            | 16.8             | 17.4             | 8.3                  | 11.7                 | 5.8              | 9.9              | 3.2                                                       | 2.0              | 7.2              | 6.2                                                     | 7.2                 | 4.5              | 4.4              | 1.0                 | 2.5              | 7.5              | 3.3                  |
| Opt. Size<br>(arcmin)<br>(6)                                      | 5.2 × 2.3          | $3.4 \times 1.9$ | $1.1 \times 0.9$        | $3.4 \times 2.0$      | $4.9 \times 2.1$ | $2.4 \times 2.0$                | $8.1 \times 2.7$ | $3.0 \times 2.1$ | $3.9 \times 1.7$     | $3.4 \times 1.0$     | $3.2 \times 0.8$ | $2.3 \times 1.2$ | 2.3 × 2.1                                                 | $3.6 \times 3.4$ | $1.9 \times 0.9$ | $5.4 \times 2.6$                                        | $2.2 \times 1.1$    | $4.0 \times 3.2$ | $2.7 \times 1.0$ | $3.6 \times 2.3$    | $1.9 \times 1.6$ | $3.4 \times 3.2$ | 2.1 × 1.9            |
| $\frac{(B-V)_{T}^{0}}{(5)}$                                       | 0.84               | 0.83             | ÷                       | 0.74                  | 0.64             | 0.49                            | 0.76             | 0.75             | 0.71                 | 0.80                 | 0.87             | 0.82             | 0.87                                                      | 0.85             | 0.80             | :                                                       | :                   | 0.91             | 0.80             | 0.93                | 0.82             | ÷                | 0.91                 |
| $B_T^{0}$ (4)                                                     | 10.60              | 11.15            | 13.38N                  | 10.81                 | 11.24            | 12.52                           | 9.59             | 11.41            | 11.71                | 11.35                | 11.93            | 12.20            | 12.18                                                     | 11.59            | 12.72            | 10.73                                                   | 12.19               | 11.74            | 11.52            | 11.57               | 12.42            | 11.91            | 12.40                |
| RDDO Type<br>(3)                                                  | S0b                | S0a*             | 80.?*                   | S0a*                  | Ab               | Ab                              | SbnII:           | AbIII:           | ABb:                 | SOb                  | Ab               | ABbIII:          | SB0a                                                      | SOb:             | S0a              | Ac:III:                                                 | Sa/SbIII:           | SB0b/ABb         | S0:a             | SBa                 | S0a              | Abil:            | S(B)0a               |
| RH Type<br>(2)                                                    | SB(s)0 <sup></sup> | SB(s)0           | (R)SAB(r)0 <sup>+</sup> | SAB(rs)0 <sup>+</sup> | SA(s)0/a         | SA(s)a, P                       | SAB(rs)a         | $(R)SA(rs)0^+$   | SB(s)a:P             | S0, sp               | SA(s)a, sp       | SB(s)a           | SB(s)0 - 3                                                | SB(s)0 - ?       | SO               | (R)SB(s)0/a                                             | SA(r)0 <sup>+</sup> | SB(r)0+          | SA0, sp          | SB(r)0 <sup>+</sup> | SA0-             | (R)SA(s)a        | S0 <sup>-</sup> , P? |
| NGC (1)                                                           | 3384               | 3412             | 3419                    | 3489                  | 3593             | 3611                            | 3623             | 3626             | 4064                 | 4179                 | 4235             | 4260             | 4262                                                      | 4267             | 4270             | 4293                                                    | 4324                | 4340             | 4350             | 4371                | 4377             | 4378             | 4379                 |
|                                                                   |                    |                  |                         |                       |                  |                                 |                  |                  |                      |                      |                  |                  |                                                           |                  |                  |                                                         |                     |                  |                  |                     |                  |                  |                      |

| NGC<br>(1) | RH Type<br>(2)          | RDDO Type<br>(3) | $\stackrel{B_{T}^{0}}{(4)}$ | $\frac{(B-V)_T^0}{(5)}$ | Opt. Size<br>(arcmin)<br>(6) | $\Delta_{\rm VC} \ ({\rm deg}) \ (7)$ | $V_{LG} (km s^{-1})$<br>(8) | $\binom{V_{\rm VC}}{{\rm (km \ s^{-1})}}$ | d<br>Group<br>(Mpc)<br>(10)                             | M <sub>H</sub> /L*<br>(solar<br>units)<br>(11) | $egin{array}{c} M_{ m H} \ (10^8M_{\odot}) \ (12) \end{array}$ | $egin{pmatrix} M_T \ (10^{11} M_\odot) \ (13) \end{pmatrix}$ | $D_{\rm H}$ (arcmin) (14) |
|------------|-------------------------|------------------|-----------------------------|-------------------------|------------------------------|---------------------------------------|-----------------------------|-------------------------------------------|---------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|---------------------------|
| 4382       | SA(s)0 <sup>+</sup> , P | S0t?             | 9.82                        | 0.81                    | $6.9 \times 5.1$             | 5.8                                   | 674                         | -371                                      | $15.0 \\ v$                                             | < 0.01                                         | < 3.3                                                          | :                                                            | *                         |
| 4385       | $SB(rs)0^+$ :           | A:Bb             | 12.69                       | 0.60                    | 2.2 × 1.4                    | 11.8                                  | 1967                        | 939                                       | 28.1<br>F                                               | 0.13                                           | 9.6                                                            | 0.05                                                         | 3.1                       |
| 4417       | SB0:, sp                | S0a              | 11.63                       | 0.80                    | $3.2 \times 1.3$             | 2.8                                   | 617                         | - 432                                     | 15.0<br>V                                               | < 0.07                                         | < 4.5                                                          | ÷                                                            | :                         |
| 4419       | SB(s)a, sp              | AbIII:           | 11.42                       | 0.88                    | $2.8 \times 1.1$             | 2.7                                   | - 69                        | -1118                                     | 15.0<br>V                                               | 0.02                                           | 1.0                                                            | ÷                                                            | 4.9                       |
| 4421       | SB(s)0/a                | SB0b             | 12.18                       | 0.80                    | $2.8 \times 2.3$             | 3.1                                   | 1588                        | 540                                       | $\left( \begin{array}{c} 15.0 \\ V \end{array} \right)$ | < 0.04                                         | < 1.6                                                          | ÷                                                            | :                         |
| 4425       | SB0:, sp                | Ab               | 12.41                       | 0.87                    | $2.8 \times 1.0$             | 0.4                                   | 1766                        | 716                                       | 15.0<br>V                                               | < 0.05                                         | <1.4                                                           | :                                                            | ÷                         |
| 4429       | SA(r)0 <sup>+</sup>     | S0a/Aa           | 10.69                       | 0.84                    | $4.9 \times 2.3$             | 1.3                                   | 686                         | - 61                                      | 15.0<br>V                                               | < 0.02                                         | < 3.2                                                          | *                                                            | ÷                         |
| 4438       | SA(s)0/a:P              | Irr*             | 10.39                       | 0.72                    | $8.0 \times 3.3$             | 0.6                                   | -47                         | - 1097                                    | 15.0)<br>V                                              | 0.02                                           | 2.8                                                            | 0.87                                                         | :                         |
| 4442       | $SB(s)0^{0}$            | SB0a             | 10.93                       | 0.84                    | $4.1 \times 1.7$             | 2.6                                   | 449                         | - 600                                     | 15.0<br>V                                               | < 0.03                                         | < 3.0                                                          | ÷                                                            | ÷                         |
| 4457       | (R)SAB(s)0/a            | Ab               | 11.38                       | 0.78                    | $3.0 \times 2.5$             | 8.8                                   | 725                         | -313                                      | 15.0)<br>V                                              | 0.04                                           | 3.0                                                            | ÷                                                            | 3.3                       |
| 4459       | SA(r)0 <sup>+</sup>     | S0a:             | 11.07                       | 0.88                    | $3.7 \times 2.8$             | 1.6                                   | 1000                        | - 50                                      | 15.0)<br>V                                              | < 0.02                                         | < 2.3                                                          | ÷                                                            | :                         |
| 4461       | $SB(s)0^+$ :            | S0at?            | 11.68                       | 0.75                    | $3.2 \times 1.4$             | 0.8                                   | 1772                        | 722                                       | 15.0)<br>V                                              | < 0.03                                         | < 1.6                                                          | ÷                                                            | :                         |
| 4469       | SB(s)0/a?, sp           | A(B)b            | 11.73                       | :                       | $3.2 \times 1.2$             | 3.7                                   | 329                         | - 719                                     | 15.0)<br>V                                              | < 0.05                                         | <2.2                                                           | :                                                            | ÷                         |
| 4474       | S0, P:                  | S0:a             | 12.28                       | 0.87                    | $2.2 \times 1.2$             | 1.7                                   | 1416                        | 366                                       | 15.0<br>V                                               | < 0.06                                         | <2.1                                                           | ÷                                                            | ÷                         |
| 4476       | SA(r)0 <sup>-</sup>     | S0a              | 12.90                       | 0.76                    | $1.9 \times 1.3$             | 0.5                                   | 2110                        | 1060                                      | 15.0)<br>V)                                             |                                                | continuun                                                      | n source                                                     |                           |
| 4477       | SB(s)0:?                | S(B)0b           | 11.12                       | 0.87                    | $4.2 \times 3.7$             | 1.3                                   | 1151                        | 101                                       | 15.0)<br>VJ                                             | < 0.01                                         | <1.2                                                           | ÷                                                            | ÷                         |
| 4479       | SB(s)0°:?               | S0a              | 13.21                       | 0.87                    | $1.9 \times 1.5$             | 1.3                                   | 710                         | - 340                                     | 15.0<br>V                                               | < 0.07                                         | <1.1                                                           | ÷                                                            | ÷                         |
| 4503       | SB0 <sup>-</sup> :      | S0a/b            | 11.77                       | 0.92                    | $3.2 \times 1.6$             | 1.6                                   | 1260                        | 210                                       | 15.0<br>V                                               | < 0.13                                         | < 7.0                                                          | ÷                                                            | :                         |
| 4526       | SAB(s)0 <sup>0</sup> :  | S(B)0b           | 10.18                       | 0.85                    | $5.9 \times 1.9$             | 4.9                                   | 311                         | -735                                      | 15.0<br>V                                               | < 0.02                                         | < 3.8                                                          | ÷                                                            | ÷                         |
| 4550       | SB0 <sup>+</sup> ?, sp  | S0a              | 11.90                       | 0.79                    | $2.8 \times 0.9$             | 1.9                                   | 233                         | -816                                      | 15.0<br>V                                               | < 0.05                                         | < 2.2                                                          | ÷                                                            | ÷                         |
| 4570       | S0, sp                  | S0a/b            | 11.27                       | 0.84                    | $3.3 \times 1.0$             | 5.6                                   | 1590                        | 545                                       | 15.0)<br>V                                              | < 0.02                                         | <1.7                                                           | ÷                                                            | ÷                         |
| 4578       | SA(r)0 <sup>0</sup> ?   | S0b              | 11.99                       | 0.84                    | $3.6 \times 2.8$             | 3.7                                   | 2153                        | 1105                                      | 15.0<br>V                                               | < 0.06                                         | < 2.7                                                          | ÷                                                            | ÷                         |
| 4586       | SA(s)a:, sp             | (¿III)qY         | 12.05                       | 0.88                    | $3.6 \times 1.3$             | 8.5                                   | 647                         | - 391                                     | $\left( v \right)$                                      | < 0.06                                         | <2.1                                                           | ÷                                                            | ÷                         |
| 4596       | $SB(r)0^+$              | SB0/ABb          | 11.16                       | 0.91                    | $3.9 \times 2.8$             | 3.7                                   | 2040                        | 992                                       | 15.0)<br>V                                              | < 0.04                                         | < 3.5                                                          | ÷                                                            | ÷                         |
| 4608       | $SB(r)0^{0}$            | SB0b             | 11.83                       | 0.89                    | $3.2 \times 2.7$             | 4.0                                   | 1715                        | 699                                       | 15.0)<br>V                                              | < 0.06                                         | < 3.0                                                          | •                                                            | :                         |
| 4623       | SB0 <sup>+</sup> ?, sp  | S0:a             | 12.72                       | ÷                       | $2.2 \times 0.8$             | 5.9                                   | 1889                        | 845                                       | 15.0<br>V                                               | < 0.11                                         | <2.3                                                           | :                                                            | ÷                         |
| 4638       | $S0^-$ , sp             | Sa, p            | 11.74                       | 0.78                    | $2.7 \times 1.5$             | 3.8                                   | 962                         | -86                                       | 15.0<br>V                                               | < 0.04                                         | <2.2                                                           | :                                                            | ÷                         |
| 4643       | SB(rs)0/a               | ABb              | 11.25                       | 0.87                    | $3.4 \times 2.7$             | 11.1                                  | 1185                        | 155                                       | 15.0<br>V                                               | < 0.02                                         | <1.5                                                           | :                                                            | ÷                         |

# 1983ApJ...267...35G

TABLE 1A—Continued

 $egin{array}{c} M_T & D_{
m H} \ (10^{11}\,M_\odot) \ ({
m arcmin}) \ (13) \ (14) \end{array}$ 9.3 3.2 ÷ 0.03 2.03 ÷  $egin{array}{c} M_{
m H} \ (10^8\,M_{\odot}) \ (12) \end{array}$ 38.6 1.6 < 2.3 < 7.9 <1.4 < 2.7  $M_{\rm H}/L^*$  (solar units) (11) < 0.09 0.04 < 0.03 < 0.02 < 0.02 0.18 d Group (Mpc) (10) 15.0 V 15.0 15.0 5.0 15.0 27.0  $V_{\rm vc} ({\rm km \, s^{-1}})$ (9) -214-403 -17 302 848 21  $V_{LG} (km s^{-1})$ (8) 1067 1027 830 1888 1346 630 TABLE 1A-Continued  $\begin{array}{c} \Delta_{\rm VC} \ (deg) \ (7) \end{array}$ 5.2 6.0 6.2 7.9 10.3 6.1 Opt. Size (arcmin) (6)  $3.2 \times 1.5$  $4.8 \times 1.1$  $4.2 \times 3.5$  $3.9 \times 1.1$  $4.4 \times 2.4$  $6.3 \times 1.2$  $\begin{pmatrix} B-V \end{pmatrix}_{T}^{0} \\ (5)$ 0.70 0.88 0.78 0.70 ÷  $\begin{pmatrix} B_T^{0} \\ (4) \end{pmatrix}$ 11.25 11.34 11.83 11.17 10.61 11.41 RDDO Type (3) SB0b/ABb S0a/Aa S(B)0b S0bt? AbIII Ab SA(r)0<sup>+</sup>?, sp SA(r)0<sup>+</sup>: sp RH Type (2) SB(r)0<sup>0</sup>?, sp SB(r)0<sup>-</sup>: SB(s)0/a SB0, P 4762 ..... 4866 ..... 4710 ..... 4754 ..... 4665 ..... 4694 ..... (E)

÷

< 1.6

< 0.04

15.0 F

127

1048

28.7

 $3.2 \times 2.8$ 

0.80

12.20

S0a\*

SA(s)0

5273 .....

E

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society • Provided by the NASA Astrophysics Data System

Our study differs from the Nançay study in two respects: (1) we choose for the comparison "low-density region" mainly galaxies in the surroundings of the Virgo Cluster (the Local Supercluster). This has the advantage that the two samples of galaxies "inside" and "outside" the cluster core have nearly the same mean values for redshift, apparent and absolute magnitudes. Our reference sample, like the one by Balkowski (1973), mainly contains members of groups and few real "isolated galaxies" (Balkowski and Chamaraux 1981). (2) With a half-power beam width of 3.'3, the Arecibo 21 cm beam can resolve most of the galaxies we observed, and we compare neutral hydrogen diameters  $D_{\rm H}$  for the two samples (as well as total hydrogen masses  $M_{\rm H}$ ).

Measuring  $D_{\rm H}$  is particularly important because external rampressure stripping and most internal effects make opposite predictions for  $D_{\rm H}$ , if  $D_{\rm H}$  is defined as twice a scale length radius (and not as an isophotal radius): Ram pressure stripping is most effective in stripping gas from an outer galactic disk (where surface density  $\sigma_{\rm H}(r)$  is low), thus decreasing  $D_{\rm H}$  without affecting the central surface density  $\sigma_{\rm H,c}$  much. On the other hand, a central galactic wind and/or many generations of star formation mainly decrease the interior density  $\sigma_{\rm H,c}$  but have little effect on the hydrogen radius or may even increase  $D_{\rm H}$  by decreasing the logarithmic derivative of  $\sigma_{\rm H}(r)$ .

Also of interest is the relation of hydrogen content and distribution to the two-dimensional RDDO classfication scheme for morphological types (van den Bergh 1976), especially to the class of "anemic spirals" (A). One has to distinguish two questions: (a) the predictive power of the classification scheme, based on optical criteria, to estimate total hydrogen content  $M_{\rm H}$ ; and (b) the theoretical basis for the scheme, in particular the question of whether the sequence from "true spiral" through anemics to "true So" is really caused by the increasing importance of ram pressure stripping or by some other phenomenon. For (a) the determination of total hydrogen mass  $M_{\rm H}$  is sufficient, and this was already studied by Bothun and Sullivan (1980) and, for a related class of "smooth-arm spirals," by Wilkerson (1980); for (b) the determination of hydrogen diameters  $D_{\rm H}$  is again important (since ram pressure stripping predicts smaller diameters for anemics than for spirals but most other causes do not). We shall see that anemics are not like spirals in the cluster core.

Section II summarizes the basic data and gives various definitions. In § III we discuss the detection statistics (but not detailed hydrogen properties) for early-type galaxies. In § IV we discuss optical data and hydrogen masses; in § V we analyze hydrogen radii, followed by a summary in § VI and a general discussion in § VII.

## II. THE DATA

The data refer to a number of 21 cm spectra, obtained at the 305 m radio telescope of Arecibo, of galaxies in an area of the sky centered on the Virgo Cluster. More details about the observations and the selection of the samples will be found in Paper I and in Krumm and Salpeter (1979a, b, c).

To obtain a homogeneous set, some of the oldest data were reworked; the standard reduction procedure assumed here is the one described in Paper I. In total we observed 133 galaxies, including a number of ellipticals, of which 59 were detected and mapped. Morphological types are assigned in the Revised Hubble (RH) and in the RDDO classification systems. RH types are taken from the Second Reference Catalogue of Bright Galaxies (de Vaucouleurs, de Vaucouleurs, and Corwin 1976, hereafter RC2). RDDO types were taken from the original list (van den Bergh 1976) and from Krumm and Salpeter (1979a); if not included there, the galaxy was tentatively classified in this scheme by the authors,<sup>2</sup> in which case the RDDO type is followed by an asterisk. We do not discuss the elliptical galaxies in the present paper, and we treat early-type disk systems and spirals separately.

Early-type disk systems.—We include in this sample the galaxies classified from S0<sup>-</sup> to Sa in the RH scheme. The data are listed in Table 1A, where column (1) gives the NGC name; column (2), RH type; column (3), RDDO type; column (4), apparent magnitude  $B_T$ (references in the previously mentioned papers); if followed by N,  $B_T^0$  was derived from other kinds of magnitudes according to de Vaucouleurs and Pence (1979); column (5), corrected color  $(B-V)_T^0$  from RC2; column (6), optical size in arcmin derived from  $D_0$  and  $R_{25}$  listed in the RC2; column (7), angular distance, in degrees, from the center of the Virgo Cluster,  $R.A. = 12^{h}25^{m}4$ , decl. =  $12^{\circ}40'$  (van den Bergh 1977); column (8), radial velocity reduced to the centroid of the Local Group according to Yahil, Tammann, and Sandage (1977) (velocities are derived from the 21 cm data or, for the undetected objects, from recent optical data); column (9), Virgocentric velocity, according to Hoffman, Olson, and Salpeter (1980); column (10), distances in Mpc (upper entry) and group membership (lower entry); the group is identified by the NGC number of the brightest member except for F (field galaxy) and V (Virgo cluster) (the group membership was assigned following de Vaucouleurs 1975 and Turner and Gott 1976; distances are derived from the average recession velocity of the group and  $H_0 = 75$  km s<sup>-1</sup>  $Mpc^{-1}$ ); column (11),  $M_H/L^*$  ratio (in solar units) or upper limit; L\* is the blue luminosity derived from the blue magnitude  $B^* = \frac{1}{2}(B_T + B_T^0)$ ; for more details see Paper I and Krumm and Salpeter (1979b); column (12), hydrogen mass  $M_{\rm H}$  (or upper limit) at the assumed distance, in  $10^8 M_{\odot}$ ; column (13), total mass  $M_T$  in  $10^{11} M_{\odot}$ , calculated as in Krumm and Salpeter (1980), for the inclination we use a modified Holmberg formula:  $\cos^2 i = (R_{25}^{-2} - 0.04)/(1 - 0.04) - 0.04$ , the last term being a tentative correction for face-on systems (if the inclination is less than  $30^\circ$ ,  $M_T$  is enclosed in parentheses); column (14), hydrogen diameter  $D_{\rm H}$  in

 $^{2}$  By C. G. and N. K. independently, using plate copies of the blue POSS.

| TABLE 1B | OPTICAL AND 21 CENTIMETER DATA FOR Sab THROUGH IM (RH) |
|----------|--------------------------------------------------------|
|----------|--------------------------------------------------------|

| Name<br>(1) | RH Type<br>(2) | RDDO Type<br>(3)        | $B_T^0$ (4) | $\frac{(B-V)_{T}^{0}}{(5)}$ | Opt. Size<br>(arcmin)<br>(6) | $\begin{array}{c} \Delta_{vc} \ (deg) \ (7) \end{array}$ | $\binom{V_{\rm LG}}{({\rm km~s^{-1}})}$ | $V_{V_{C}} (km s^{-1})$ (9) | d<br>Group<br>(Mpc)<br>(10) | M <sub>H</sub> /L*<br>(solar<br>units)<br>(11) | $egin{array}{c} M_{ m H} \ (10^8 \ M_{\odot}) \ (12) \end{array}$ | $egin{pmatrix} M_T \ (10^{11}M_\odot) \ (13) \end{pmatrix}$ | $\begin{array}{c} D_{ m H} \ ({ m arcmin}) \ (14) \end{array}$ |
|-------------|----------------|-------------------------|-------------|-----------------------------|------------------------------|----------------------------------------------------------|-----------------------------------------|-----------------------------|-----------------------------|------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|
| NGC 3239    | IB(s)m, P      | Irr*                    | 11.92N      | ÷                           | 4.9 × 3.5                    | 30.0                                                     | 644                                     | - 265                       | 10.4                        | 09.0                                           | 13.4                                                              | 0.10                                                        | 3.6                                                            |
| NGC 3338    | SA(s)c         | Sc*                     | 10.97       | 0.47                        | $5.3 \times 3.6$             | 25.8                                                     | 1175                                    | 230                         | 10.4 10.4                   | 0.63                                           | 32.3                                                              | 0.55                                                        | 9.7                                                            |
| NGC 3367    | SB(rs)c        | ScI                     | 11.81       | 0.50                        | $2.4 \times 2.2$             | 24.7                                                     | 2917                                    | 1963                        | 41.7                        | 0.15                                           | 62.1                                                              | (1.20)                                                      | 3.7                                                            |
| NGC 3368    | SAB(rs)ab      | Sbp                     | 9.79        | 0.78                        | $6.8 \times 4.9$             | 24.7                                                     | 768                                     | - 186                       | 10.4                        | 0.14                                           | 22.5                                                              | 0.79                                                        | 10.4                                                           |
| NGC 3370    | SA(s)c         | Sb*                     | 11.91N      | :                           | $2.9 \times 1.7$             | 24.8                                                     | 1171                                    | 218                         | 16.7                        | 0.36                                           | 18.9                                                              | 0.27                                                        | 4.1                                                            |
| NGC 3389    | SA(s)c         | Sc?*                    | 11.95       | 0.45                        | $2.5 \times 1.4$             | 24.3                                                     | 1166                                    | 209                         | 10.4<br>N3368               | 0.27                                           | 5.7                                                               | 0.13                                                        | 3.2                                                            |
| NGC 3455    | (R')SAB(rs)b   | ¥b?∗                    | 12.35N      | :                           | $2.6 \times 1.7$             | 23.1                                                     | 1014                                    | 48                          | 14.5<br>N3457               | 0.27                                           | 7.0                                                               | 0.14                                                        | ≤2.0                                                           |
| NGC 3627    | SAB(s)b        | Sb <sup>+</sup> (t?)II: | 9.26        | 09.0                        | $7.8 \times 3.9$             | 16.5                                                     | 576                                     | -431                        | 8.2)<br>8.2)                | 0.04                                           | 5.8                                                               | 0.66                                                        | ≤9.5                                                           |
| NGC 3628    | SbP, sp        | Sb*                     | 9.47        | 0.64                        | $11.2 \times 2.8$            | 16.5                                                     | 161:                                    | - 288                       | 8.2)                        | 0.49                                           | 55.2                                                              | 1.02                                                        | 12.5                                                           |
| NGC 3681    | SAB(r)bc       | Aa*                     | 12.20       | 0.65                        | $2.6 \times 2.5$             | 15.5                                                     | 1133                                    | 121                         | 14.9                        | 0.49                                           | 18.4                                                              | (0.39)                                                      | 7.8                                                            |
| NGC 3684    | SA(rs)bc       | Sb*                     | 12.00       | 0.56                        | $3.2 \times 2.3$             | 15.3                                                     | 1048                                    | 35                          | 14.9                        | 0.36                                           | 15.5                                                              | 0.20                                                        | 3.7                                                            |
| NGC 3686    | SB(rs)bc       | Sb*                     | 11.73       | 0.51                        | $3.2 \times 2.6$             | 15.3                                                     | 1047                                    | 34                          | 14.9                        | 0.11                                           | 6.2                                                               | 0.22                                                        | 4.0                                                            |
| NGC 3800    | SAB(rs)b:, P   | ₩¢ 4P                   | 12.82N      | . :                         | $1.7 \times 0.5$             | 12.0                                                     | 3194                                    | 2167                        | 45.6                        | 0.07                                           | 12.5                                                              | :                                                           | ≤2.0                                                           |
| NGC 3810    | SA(rs)c        | ScI                     | 10.94       | 0.47                        | $4.1 \times 3.0$             | 11.5                                                     | 862                                     | -167                        | 15.0                        | 0.21                                           | 24.1                                                              | 0.39                                                        | 4.0                                                            |
| NGC 4178    | SB(rs)dm       | Sc*                     | 11.38       | 0.38                        | $4.2 \times 1.7$             | 4.0                                                      | 246                                     | -801                        | 15.0<br>V                   | 0.37                                           | 26.1                                                              | 0.25                                                        | 3.2                                                            |
| NGC 4192    | SAB(s)ab       | Ab/Ac*                  | 10.29       | 0.66                        | 7.8 × 2.6                    | 4.3                                                      | -246                                    | 1293                        | 15.0)                       | 0.16                                           | 29.9                                                              | 1.39                                                        | 8.8                                                            |
| NGC 4212    | SAbc?          | Sa ?*                   | 11.54       | 0.61                        | $2.9 \times 2.0$             | 3.3                                                      | - 198                                   | -1245                       | 15.0                        |                                                | See                                                               | e text                                                      |                                                                |
| NGC 4216    | SABb:          | SbII                    | 10.26       | 0.84                        | $6.3 \times 1.7$             | 3.0                                                      | 19                                      | - 1030                      | 15.0<br>V                   | 0.08                                           | 13.9                                                              | 1.39                                                        |                                                                |
| NGC 4254    | SA(s)c         | ScI                     | 10.18       | 0.51                        | 5.5 × 4.9                    | 3.0                                                      | 2293                                    | 1244                        | 15.0)<br>V                  | 0.17                                           | 40.7                                                              | 0.78                                                        | 4.4                                                            |
| NGC 4274    | (R)SB(r)ab     | SbII:III                | 10.69       | 0.81                        | $5.9 \times 2.4$             | 17.3                                                     | 895                                     | - 107                       | 15.0)<br>V                  | 0.05                                           | 4.6                                                               | 0.95                                                        | 4.2                                                            |
| NGC 4321    | SAB(s)bc       | ScI                     | 9.86        | 0.67                        | 7.1 × 6.3                    | 3.6                                                      | 1471                                    | 423                         | 15.0<br>V                   | 0.08                                           | 25.9                                                              | 1.08                                                        | 5.5                                                            |
| IC 3258     | SB(s)m:, P     | Irr*                    | 13.51       | 1                           | $1.6 \times 1.4$             | 1.0                                                      | - 547                                   | - 1597                      | 15.0)<br>V                  | 0.18                                           | 2.0                                                               | 0.03                                                        | :                                                              |
| NGC 4351    | SB(rs)ab:, P   | Ab*                     | 12.47       | 0.30                        | $2.0 \times 1.4$             | 1.0                                                      | 2203                                    | 1153                        | 15.0<br>V                   | 0.08                                           | 2.2                                                               | 0.03                                                        | ≤2.0                                                           |

| 1B—Continued |
|--------------|
| TABLE        |

| NGC 4380SA(rs)br.;A(b)1138 $3,4 \times 20$ $2,4 \times 11$ $0,6$ $2,4 \times 10$ $0,6$ $4,5$ $0,06$ $4,5$ $0,06$ NGC 4380SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b).SA(b). <th>Name<br/>(1)</th> <th>RH Type<br/>(2)</th> <th>RDDO Type<br/>(3)</th> <th><math>{B_T}^0</math> (4)</th> <th><math display="block">\frac{(B-V)_{T}^{0}}{(5)} \approx</math></th> <th>Opt. Size<br/>(arcmin)<br/>(6)</th> <th><math>\Delta_{\rm vc}</math> (deg) (7)</th> <th><math>V_{L_G} (km s^{-1})</math> (8)</th> <th><math>\binom{V_{V_{C}}}{(\ker s^{-1})}</math></th> <th>d<br/>Group<br/>(Mpc)<br/>(10)</th> <th><math display="block">\begin{array}{c} M_{\rm H}/L^{*} \\ ({\rm solar} \\ {\rm units}) \\ (11) \end{array}</math></th> <th><math>egin{array}{c} M_{ m H} \ (10^8M_{\odot}) \ (12) \end{array}</math></th> <th><math>egin{matrix} M_T \ (10^{11}M_\odot) \ (13) \end{pmatrix}</math></th> <th><math>D_{\rm H}</math> (arcmin) (14)</th> | Name<br>(1) | RH Type<br>(2)                                  | RDDO Type<br>(3) | ${B_T}^0$ (4) | $\frac{(B-V)_{T}^{0}}{(5)} \approx$ | Opt. Size<br>(arcmin)<br>(6) | $\Delta_{\rm vc}$ (deg) (7) | $V_{L_G} (km s^{-1})$ (8) | $\binom{V_{V_{C}}}{(\ker s^{-1})}$ | d<br>Group<br>(Mpc)<br>(10) | $\begin{array}{c} M_{\rm H}/L^{*} \\ ({\rm solar} \\ {\rm units}) \\ (11) \end{array}$ | $egin{array}{c} M_{ m H} \ (10^8M_{\odot}) \ (12) \end{array}$ | $egin{matrix} M_T \ (10^{11}M_\odot) \ (13) \end{pmatrix}$ | $D_{\rm H}$ (arcmin) (14) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------|------------------|---------------|-------------------------------------|------------------------------|-----------------------------|---------------------------|------------------------------------|-----------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|---------------------------|
| NGC 438SA(b), $q_{1}$ A(b')11170.62 $40 \times 111$ 0.62 $237$ 134715000.05 $37$ 0.68NGC 439SB(1)I1510.76 $41 \times 31$ 58 $82$ $-222$ 1500.092.50.01NGC 4430SB(1)I1511263 $2.3 \times 16$ 0.74 $41 \times 31$ 58 $80$ 1170.071170.07NGC 4430SA(p)bSb*Ab110820.74 $41 \times 31$ $41 \times 134$ 2000.022.50.01NGC 4517SA(p)bSb*10300.54 $7.2 \times 13$ 2.32.32019.032.52.3NGC 4537SA(p)bSb*10300.54 $7.2 \times 13$ 2.31231231231232.3NGC 4537SAB(p)bSb*10310.73 $5.4 \times 41$ 2.81031032.32.3NGC 4537SAB(p)bSb*9.910310.73 $5.4 \times 41$ 2.31031030.32.32.3NGC 4537SAB(p)bSb*9.90.412.3123112113113113113113113113113NGC 4537SAB(p)bSb*9.90.412.31432.3143123113113113113113NGC 4537SAB(p)bSb*9.91031121231242.3114129129<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NGC 4380    | SA(rs)b:?                                       | Ab               | 11.98         | •                                   | $3.4 \times 2.0$             | 2.5                         | 832                       | -217                               | 15.0                        | 0.10                                                                                   | 4.5                                                            | 0.26                                                       | 3.6                       |
| NGC 4344(R5R(t))SBØI111.510.76 $41 \times 31$ 588.23 $-222$ 1590.042.5(0.3)NGC 431S8(s)bAb1110.62 $$ 2.3 \times 160.4 $-13$ $-1063$ 1590.071.70.07NGC 430SA(s)bShAb1110.62 $0.74$ $4.7 \times 34$ 4.7186118611870.071.70.07NGC 430SA(s)bSh*9.8*0.36 $6.5 \times 3.2$ 2.32.0129.6515970.038.22.3NGC 451SA(s)bSh*0.390.54 $5.2 \times 13$ 2.122.130.254.100.07NGC 453SA(s)bSh*0.390.54 $5.2 \times 13$ 2.122.130.254.100.25NGC 453SA(s)bSh*0.34 $5.2 \times 13$ 2.121.150.252.350.01NGC 453SA(s)bSh*0.34 $5.2 \times 13$ 2.121.150.252.350.01NGC 453SA(s)bSh*0.34 $5.2 \times 13$ 2.122.300.350.350.35NGC 453SA(s)bSh*0.34 $5.2 \times 13$ 2.312.300.350.350.35NGC 453SA(s)bAb16-110.310.311.121.131.131.131.131.13NGC 453SA(s)bAb16-110.31S.42.32.42.32.351.232.35<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NGC 4388    | SA(s)b:, sp                                     | ¥∂p*             | 11.17         | 0.62                                | $4.0 \times 1.1$             | 0.6                         | 2397                      | 1347                               | 15.0                        | 0.05                                                                                   | 3.7                                                            | 0.48                                                       | 4.0                       |
| NGC 4413B(s)b, pA(B)b11: $1261$ $2.3 \times 1.6$ $04$ $-13$ $-1065$ $150$ $07$ $17$ $007$ NGC 4430S(s)abAb11 $1062$ $0.74$ $4.7 \times 3.4$ $47$ $1861$ $815$ $150$ $002$ $22$ $061$ NGC 4430SA(s)bicSb* $986$ $056$ $63 \times 3.3$ $23$ $23$ $202$ $963$ $150$ $002$ $22$ $001$ NGC 451SA(s)bicSb* $1030$ $024$ $2.7 \times 13$ $123$ $23$ $202$ $963$ $150$ $022$ $230$ $037$ NGC 4530SA(s)bicSb* $1070$ $031$ $037$ $23\times 13$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$ $123$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NGC 4394    | $(\mathbf{R})\mathbf{SB}(\mathbf{r})\mathbf{b}$ | SBbII            | 11.51         | 0.76                                | $4.1 \times 3.7$             | 5.8                         | 823                       | - 222                              | 15.0                        | 0.04                                                                                   | 2.5                                                            | (0.33)                                                     | 2.0                       |
| NGC 4490         S4(a)b         Abil         1062         074         47 × 34         47         1861         815         15.0         0.22         2.3         0.01           NGC 4501         S4(a)b         Se*         936         0.53         32         2012         963         15.0         0.33         2.3         2.0           NGC 451         S4(a)b         Se*         10.30         0.54         7.2 × 13         12.3         952         -74         15.0         0.35         2.3           NGC 453         S4(a)b         S*         10.30         0.54         5.2 × 13         12.3         952         -74         15.0         0.3         8.2         2.30           NGC 453         S4(b)b         S*         10.31         0.74         5.2 × 13         16.3         6.4         15.0         0.3         7.3         2.30           NGC 453         S4(b)b         S*         9.3         16.3         6.4         13.0         0.3         7.3         0.3         7.3         0.3           NGC 453         S4B(a)b         S*         9.3         17.3         17.3         1.3         0.3         7.3         0.3         7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NGC 4413    | SB(rs)b:, P                                     | A(B)bIII:        | 12.63         | :                                   | $2.3 \times 1.6$             | 0.4                         | -13                       | - 1063                             | 15.0                        | 0.07                                                                                   | 1.7                                                            | 0.07                                                       | 4.8                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NGC 4450    | SA(s)ab                                         | IIdA             | 10.62         | 0.74                                | $4.7 \times 3.4$             | 4.7                         | 1861                      | 815                                | 15.0                        | 0.02                                                                                   | 2.5                                                            | 0.61                                                       | 3.3                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NGC 4501    | SA(rs)b                                         | Sb*              | 9.86          | 0.65                                | $6.3 \times 3.5$             | 2.3                         | 2012                      | 963                                | 15.0                        | 0.03                                                                                   | 8.2                                                            | 2.30                                                       | 3.4                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NGC 4517    | SA(s)cd:sp                                      | Sc*              | 10.30         | 0.54                                | 7.2 × 1.3                    | 12.3                        | 952                       | - 74                               | 15.0                        | 0.25                                                                                   | 41.0                                                           | 0.59                                                       | 7.9                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NGC 4527    | SAB(s)bc                                        | Sb*              | 10.73         | 0.74                                | $5.2 \times 1.9$             | 9.6                         | 1579                      | 545                                | 15.0                        | 0.29                                                                                   | 35.3                                                           | 0.64                                                       | 6.2                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NGC 4536    | SAB(rs)bc                                       | Sb*              | 10.50         | 0.48                                | $6.5 \times 3.0$             | 10.3                        | 1637                      | 604                                | 15.0                        | 0.18                                                                                   | 29.0                                                           | 0.75                                                       | 5.6                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NGC 4548    | SB(rs)b                                         | A(B)bII          | 10.71         | 0.73                                | $5.4 \times 4.4$             | 2.8                         | 378                       | -671                               | 15.0                        | 0.03                                                                                   | 4.1                                                            | 0.57                                                       | 4.4                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NGC 4559    | SAB(rs)cd                                       | Sc*              | 9.84          | 0.34                                | $8.9 \times 4.2$             | 15.7                        | 773                       | - 238                              | 11.0                        | 0.36                                                                                   | 57.6                                                           | 0.42                                                       | 9.3                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NGC 4565    | SA(s)b?, sp                                     | SbI              | 9.49          | 0.64                                | $11.2 \times 1.9$            | 13.7                        | 1179                      | 159                                | 13.0)                       | 0.30                                                                                   | 77.2                                                           | 2.03                                                       | 11.3                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NGC 4569    | SAB(rs)ab                                       | Ab/AcI-II        | 9.80          | 0.65                                | 8.3 × 4.1                    | 2.3                         | - 348                     | - 1397                             | 15.0                        | 0.01                                                                                   | 4.1                                                            | 0.96                                                       | :                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NGC 4579    | SAB(rs)b                                        | A/S(B)bII        | 10.33         | 0.76                                | $5.4 \times 4.4$             | 2.5                         | 1402                      | 353                                | 15.0                        | 0.02                                                                                   | 4.7                                                            | 1.38                                                       | 3.5                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NGC 4631    | SB(s)d, sp                                      | Sc               | 9.03          | 0.37                                | $10.7 \times 2.3$            | 20.4                        | 599                       | - 385                              | 10.4                        | 0.40                                                                                   | 105.9                                                          | 0.55                                                       | 15.0                      |
| NGC 4651SA(rs)c $A(?)b^*$ $10.99$ $0.50$ $3.6 \times 2.6$ $5.5$ $703$ $-342$ $15.0$ $0.28$ $31.1$ $0.68$ NGC 4654SAB(rs)cd $S(?)a^*$ $10.75$ $0.55$ $4.4 \times 2.8$ $4.0$ $929$ $-118$ $15.0$ $0.40$ $54.2$ $0.46$ NGC 4656SB(s)m, PSctt $10.00$ $0.25$ $10.0 \times 2.4$ $20.1$ $621$ $-365$ $10.40$ $54.2$ $0.46$ NGC 4656SB(s)m, PSctt $10.09$ $0.77$ $3.9 \times 1.1$ $6.4$ $878$ $-165$ $19.4$ $43.6$ $0.17$ NGC 4698SA(s)abAbII $10.99$ $0.77$ $3.9 \times 1.1$ $6.4$ $878$ $-165$ $19.4$ $43.6$ $0.70$ NGC 4826(R)SA(rs)abAbII $8.96$ $0.77$ $3.9 \times 1.1$ $6.4$ $878$ $-165$ $19.0$ $71$ $43.6$ $0.70$ NGC 4805SAB(rs)bcSb^TI $10.19$ $0.71$ $4.8 \times 2.4$ $26.5$ $970$ $30$ $13.8$ $0.03$ $11.9$ $0.71$ NGC 5605SAB(rs)c?, P $A(?)b(?)^*$ $12.39N$ $\ldots$ $20 \times 1.4$ $30.9$ $2127$ $1226$ $72$ $72$ $\ldots$ NGC 5665SAB(rs)c?, P $A(?)b(?)^*$ $12.39N$ $\ldots$ $20 \times 1.4$ $30.9$ $2127$ $1226$ $72$ $72$ $\ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NGC 4639    | SAB(rs)cd                                       | Sc*              | 11.90         | 0.62                                | $2.8 \times 2.0$             | 3.7                         | 939                       | - 109                              | 15.0)                       | 0.18                                                                                   | 8.6                                                            | 0.32                                                       | 3.4                       |
| NGC 4654SAB(rs)cd $S(?)a^*$ $10.75$ $0.55$ $4.4 \times 2.8$ $4.0$ $929$ $-118$ $15.0$ $0.40$ $542$ $0.46$ NGC 4656SB(s)m, PSctt $10.00$ $0.25$ $10.0 \times 2.4$ $20.1$ $621$ $-365$ $10.4$ $43.6$ $0.17$ NGC 4656SB(s)m, PSctt $10.00$ $0.25$ $10.0 \times 2.4$ $20.1$ $621$ $-365$ $10.4$ $43.6$ $0.17$ NGC 4698SA(s)abAbII $10.99$ $0.77$ $3.9 \times 1.1$ $6.4$ $878$ $-165$ $15.0$ $0.13$ $13.2$ $0.70$ NGC 4826(R)SA(rs)abAbII $8.96$ $0.77$ $3.9 \times 1.1$ $6.4$ $878$ $-1684$ $4.5$ $0.03$ $1.9$ $0.71$ NGC 5005SAB(rs)bcSb <sup>-</sup> II $10.19$ $0.71$ $4.8 \times 2.4$ $26.5$ $970$ $30$ $13.8$ $0.03$ $8.1$ $1.19$ NGC 5665SAB(rs)°, P $A(?)b(?)*$ $12.39N$ $\ldots$ $2.0 \times 1.4$ $30.9$ $2127$ $1226$ $30.4$ $7.2$ $\ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NGC 4651    | SA(rs)c                                         | *d(?)b           | 10.99         | 0.50                                | $3.6 \times 2.6$             | 5.5                         | 703                       | - 342                              | 15.0                        | 0.28                                                                                   | 31.1                                                           | 0.68                                                       | 4.6                       |
| NGC 4656 SB(s)m, P Sctt 10.00 0.25 $100 \times 2.4$ 20.1 621 -365 $10.4$ 0.41 43.6 0.17<br>NGC 4698 SA(s)ab AbIII 10.99 0.77 3.9 × 1.1 6.4 878 -165 15.0 0.13 13.2 0.70<br>NGC 4826 (R)SA(rs)ab AbII 8.96 0.75 8.7 × 5.0 11.6 345 -684 4.5 0.03 1.9 0.41<br>NGC 5005 SAB(rs)bc Sb <sup>-</sup> 1I 10.19 0.71 4.8 × 2.4 26.5 970 30 1.338 0.03 8.1 1.19<br>NGC 565 SAB(rs)c?, P A(?)b(?)* 12.39N 2.0 × 1.4 30.9 2127 1226 30.4 0.05 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NGC 4654    | SAB(rs)cd                                       | S(?)a*           | 10.75         | 0.55                                | $4.4 \times 2.8$             | 4.0                         | 929                       | - 118                              | 15.0                        | 0.40                                                                                   | 54.2                                                           | 0.46                                                       | 6.0                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NGC 4656    | SB(s)m, P                                       | Sctt             | 10.00         | 0.25                                | $10.0 \times 2.4$            | 20.1                        | 621                       | -365                               | 10.4                        | 0.41                                                                                   | 43.6                                                           | 0.17                                                       | 17.3                      |
| NGC 4826 ( <b>R</b> )SA(rs)ab AbII 8.96 0.75 8.7 × 5.0 11.6 345 $-684$ 4.5 0.03 1.9 0.41<br>NGC 5005 SAB(rs)bc Sb <sup>-</sup> II 10.19 0.71 4.8 × 2.4 26.5 970 30 13.8 0.03 8.1 1.19<br>NGC 5665 SAB(rs)c?, <b>P</b> A(?)b(?)* 12.39N 2.0 × 1.4 30.9 2127 1226 30.4 0.05 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NGC 4698    | SA(s)ab                                         | IIIdA            | 10.99         | 0.77                                | $3.9 \times 1.1$             | 6.4                         | 878                       | - 165                              | 15.0                        | 0.13                                                                                   | 13.2                                                           | 0.70                                                       | 7.1                       |
| NGC 5005 SAB(rs)bc Sb <sup>-</sup> II 10.19 0.71 $4.8 \times 2.4$ 26.5 970 30 $\frac{14730}{1308}$ 0.03 8.1 1.19<br>NGC 5665 SAB(rs)c <sup>2</sup> , P A(?)b(?)* 12.39N 2.0 × 1.4 30.9 2127 1226 30.4 0.05 7.2 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NGC 4826    | (R)SA(rs)ab                                     | IIdA             | 8.96          | 0.75                                | 8.7 × 5.0                    | 11.6                        | 345                       | - 684                              | 4.5                         | 0.03                                                                                   | 1.9                                                            | 0.41                                                       | 13.3                      |
| NGC 5665 SAB(rs)c?, P A(?)b(?)* 12.39N $2.0 \times 1.4$ 30.9 $2127$ 1226 $30.4$ 0.05 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NGC 5005    | SAB(rs)bc                                       | II_qS            | 10.19         | 0.71                                | 4.8 × 2.4                    | 26.5                        | 970                       | 30                                 | 13.8)                       | 0.03                                                                                   | 8.1                                                            | 1.19                                                       | 5.9                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NGC 5665    | SAB(rs)c?, P                                    | A(?)b(?)*        | 12.39N        | ÷                                   | 2.0 × 1.4                    | 30.9                        | 2127                      | 1226                               | 30.4<br>F                   | 0.05                                                                                   | 7.2                                                            | :                                                          | ≤2.0                      |

arcmin defined as the full width at the  $\frac{1}{3}$  level with respect to the central value of the integrated flux.  $D_{\rm H}$  is measured along the major axis; in the face-on cases we report the average of the measurements in the N-S and E-W directions. These estimates are corrected for sidelobe contamination and the size of the main beam. The overall rms accuracy is around 1' (see § V and Paper I).

Spirals.—These are all the RH types Sab or later. These galaxies are listed in Table 1B; the format is the same as in Table 1A. NGC 4212 was listed as "undetected" in Paper I, partly because of an erroneous published optical redshift, and partly because of masking by Galactic emission. We detected this galaxy in the course of a new systematic survey, at  $V_{\rm LG} = -198$  km s<sup>-1</sup>, in agreement with a more recent optical redshift (Stauffer 1981).

## **III. DETECTION STATISTICS FOR EARLY-TYPE GALAXIES**

An earlier survey for Virgo ellipticals and S0 galaxies was reported by Krumm and Salpeter (1979a). The survey described in Paper I was carried out with similar sensitivity, although it covered a somewhat more complete sample. However, we also carried out a subsidiary survey to investigate a possible detection bias in the main survey which used only a single beam direction per galaxy centered on the optical image. Some of the detected S0 galaxies mapped by Krumm and Salpeter (1979b) have rather large hydrogen radii compared to the Arecibo beam, and it was conceivable that other galaxies have a hydrogen distribution with "a hole in the middle." For that reason undetected S0 and elliptical galaxies from our main survey were reobserved (with the same integration time per point) at +2' and -2'from the galaxy center along the optical major axis (a linear separation of  $\sim 20$  kpc at the Virgo distance). We have the unequivocal negative result that these additional 58 observations did not lead to any additional detections! This does not eliminate the possibility of "holes in the middle" but speaks in favor of detection

TABLE 2

|        | In <sub>5</sub> | •    | Ου   | T <sub>5°</sub> |
|--------|-----------------|------|------|-----------------|
| System | Obs             | Det. | Obs. | Det.            |
| RH:    |                 |      |      |                 |
| S0     | 24              | 1    | 18   | 6               |
| S0/a   | 3               | 1    | 5    | 2               |
| Sa     | 1               | 1    | 7    | 3               |
| RDDO:  |                 |      |      |                 |
| S0     | 20              | 1    | 12   | 1               |
| Α      | 13 (15)         | 10   | 24   | 15              |
| S      | 10 (8)          | 8    | 23   | 23              |

surveys which concentrate on the central beam area (of course, for samples with a comparable or larger beam/galaxy size ratio). We are in the process of a more sensitive Arecibo survey of this type, but give here a short summary of the detection statistics from Paper I.

The numbers of galaxies observed and those actually detected are given for S0, S0/a, and Sa galaxies in Table 2, counting separately those inside a circle of 5° radius, centered on  $\alpha = 12^{h}25^{m}4$ ,  $\delta = 12^{\circ}50'$  (van den Bergh 1977), and those outside. These data are also presented in Figure 1. The results are similar to those found by Krumm and Salpeter (1979a) but with slightly better statistics: including the few Sa galaxies with SO and S0/a gives a lower detection probability in neutral hydrogen inside the Virgo Cluster circle than outside, reliable at a confidence level of 0.03. If only SO galaxies (on the RH Hubble classification system) are considered, the total numbers are smaller but the detection probabilities are even more disparate and the statistical significance of the difference is improved (confidence level 0.02). Both the apparent and absolute mean blue magnitudes of the "inside" and "outside" S0 are almost the same ( $\sim +11.8$  and -19.2 mag, respectively), so the difference cannot be due to luminosity effects. Nor is there any significant systematic difference in the



FIG. 1.—Space distribution of lenticular galaxies. The two circles (5° and 6° radius) are centered on the center of the Virgo Cluster core (van den Bergh 1977).

## © American Astronomical Society • Provided by the NASA Astrophysics Data System

42

1983ApJ...267...35G

No. 1, 1983

| TABLE 3                                               |   |
|-------------------------------------------------------|---|
| DISTRIBUTION OF THE SAMPLE IN THE RH AND RDDO SYSTEMS | 3 |

|          |         |    | RH                         |                             |
|----------|---------|----|----------------------------|-----------------------------|
|          | S0-S0/a | Sa | S <sub>E</sub><br>(Sab–Sb) | S <sub>L</sub><br>(Sbc–Irr) |
| RDDO:    |         | 1  | -                          |                             |
| S0(RDDO) | 32      | 0  | 0                          | 0                           |
| A        | 14      | 7  | 13                         | 3                           |
| S(RDDO)  | 3       | 1  | 8                          | 22                          |

inclination or observing procedure (zenith angles, integration times, etc.) between the two samples. We conclude that SO galaxies on the RH system, SO(RH), really have a much smaller probability of having an appreciable neutral hydrogen mass if they are situated inside the high-density environment of the Virgo Cluster core.

As seen in Table 3, galaxies of Hubble type S0 (RH) are classified on the RDDO scheme partly as "true S0," SO(RDDO), and partly as anemics, A (and many Hubble Sa types as type A). The second half of Table 2 retabulates the detection statistics according to the RDDO scheme. There are three striking features of these results (compatible with the conclusions of Bothun and Sullivan 1980): (1) the neutral hydrogen detection probability for S0 (RDDO) galaxies is much smaller than for A and is also smaller than for SO(RH), if "inside" and "outside" are combined; (2) for a given RDDO type [in contrast to the case for SO(RH)] the detection probability is not much smaller inside the Virgo Cluster core than outside; but (3) the ratio of numbers of A to SO(RDDO) present (whether detected or not) is appreciably larger outside than inside [on the other hand, the number of spirals S(RDDO) to A is only slightly larger outside than inside]; (4) since SO(RH) shows a rather strong positional effect and S0(RDDO) and A's do not, it is an intriguing possibility that other parameters (delineating a more complex classification scheme) might also show some correlation with the distance from the cluster center. Unfortunately, the present sample is too small to test for such a possibility, so we defer the question until the analysis of the already mentioned new survey (Giovanardi, Krumm, and Salpeter 1982).

Because of its detection after the main survey, NGC 4212 is not included in Table 2. Two additional galaxies, NGC 4371 and 4638, were initially classified as S(RDDO), but reexamination on the POSS plates (after the Arecibo results were known) showed that this was probably a misclassification. If these two galaxies are reclassified as A, the numbers in parentheses in Table 2 result. Statistics on hydrogen masses for A and spiral galaxies of various kinds are given in the next section, but a discussion of S0's will require a more sensitive survey.

## IV. H I CONTENT

The first few entries in Table 4 refer to mean<sup>3</sup> optical data, in particular apparent and absolute magnitudes  $B^*$  and  $\mathfrak{M}^*$  and color indices  $(B-V)_T^0$ . S<sub>E</sub> denotes early spirals (Sab and Sb), S<sub>L</sub> denotes later types (Sbc to Im) on the RH classification scheme; A and S(RDDO) denote anemics and spirals on the RDDO classification scheme. For many of the galaxies in Table 1 we have velocity widths and hence "indicative values"  $M_T$  for the total gravitational mass and the average of  $(M_T/L^*)$  for those galaxies is also given in Table 4. The notation "IN<sub>6</sub>" and "OUT<sub>6</sub>" refers here to a circle of radius  $6^{\circ}$ (centered as before). In fact, due to the more spread distribution of spirals in the cluster, if compared to ellipticals and S0's, the definition of  $6^{\circ}$  (instead of  $5^{\circ}$ ) as the "critical" radius allows a better balance in numbers of objects between the inner and outer samples. As already mentioned, the mean apparent absolute magnitudes for each morphological class are almost the same for the  $IN_{6^{\circ}}$  and  $OUT_{6^{\circ}}$  groups. For S(RDDO) galaxies the color index is slightly bluer for the OUT<sub>6°</sub> than the  $IN_{6^\circ}$  group [the difference is slightly smaller than that between all S(RDDO) and all A], but there is no such effect for the other morphological classes, and it is not clear if the difference is physically significant or a statistical fluctuation. For both  $S_E$  and A classes the mean ratio  $M_T/L^*$  is slightly larger OUT<sub>6°</sub> than IN<sub>6°</sub>.

<sup>3</sup> The means and their uncertainties are linear when referring to logarithmic quantities (like magnitudes and colors) and logarithmic in all other cases.

 TABLE 4

 Mean Values of Optical and 21 Centimeter Data for the Various Subsamples

|                                 |    | *                |                   |                 | <br>М <sub>т</sub> /L*  | 10 M <sub>H</sub> /L* |                  |                         | $10 \sigma_{\rm H}/\sigma_{\rm opt}$ |
|---------------------------------|----|------------------|-------------------|-----------------|-------------------------|-----------------------|------------------|-------------------------|--------------------------------------|
|                                 | n  | <b>B*</b>        | M*                | $(B-V)_T^0$     | (solar units)           | (solar units)         | u <sub>MHL</sub> | $D_{\rm H}/D_{\rm opt}$ | (solar units)                        |
| $S_{r}(IN_{e^{2}})$             | 11 | 11.24 + 0.29     | $-19.64 \pm 0.29$ | $0.67 \pm 0.05$ | $4.40 \pm 0.55^{\circ}$ | $0.42 \pm 0.08$       | $0.62 \pm 0.13$  | $0.84 \pm 0.12$         | 0.59 ± 0.13                          |
| $S_{r}(OUT_{\epsilon})$         | 10 | 10.67 + 0.41     | $-19.78 \pm 0.22$ | $0.71 \pm 0.03$ | $6.62 \pm 0.44$         | $1.17 \pm 0.34$       | $1.83 \pm 0.54$  | $1.16 \pm 0.11$         | $0.88 \pm 0.33$                      |
| $S_{I}(IN_{\epsilon})$          | 7  | 11.38 + 0.46     | $-19.50 \pm 0.46$ | $0.54 \pm 0.04$ | $4.00 \pm 0.52$         | $2.10 \pm 0.44$       | $0.90 \pm 0.17$  | $1.00 \pm 0.11$         | $2.16 \pm 0.53$                      |
| $S_{I}(OUT_{\epsilon^{\circ}})$ | 17 | $11.30 \pm 0.24$ | $-19.53 \pm 0.22$ | $0.50\pm0.04$   | 4.29 ± 0.42             | $2.40 \pm 0.48$       | $1.17 \pm 0.22$  | $1.27 \pm 0.10$         | $1.49 \pm 0.33$                      |
| $A(IN_{co})$                    | 16 | 11.60 + 0.20     | $-19.28 \pm 0.20$ | $0.71 \pm 0.05$ | $3.24 \pm 0.68$         | $0.32 \pm 0.08$       |                  | $1.09 \pm 0.12$         | $0.43 \pm 0.12$                      |
| $A(OUT_{\alpha})$               | 21 | 11.81 + 0.20     | -19.38 + 0.16     | $0.73 \pm 0.03$ | $5.75 \pm 0.74$         | $0.69 \pm 0.19$       |                  | $1.41 \pm 0.14$         | $0.62 \pm 0.19$                      |
| S(RDDO)(IN <sub>6</sub> )       | 13 | 11.17 + 0.23     | $-19.72 \pm 0.23$ | $0.68 \pm 0.05$ | $4.90 \pm 0.55$         | $0.78 \pm 0.25$       |                  | $0.80\pm0.11$           | $1.94 \pm 0.45$                      |
| S(RDDO)(OUT <sub>6°</sub> )     | 21 | $10.90 \pm 0.22$ | $-19.71 \pm 0.18$ | $0.56 \pm 0.04$ | $4.79 \pm 0.36$         | $1.94\pm0.38$         |                  | $1.22\pm0.08$           | $1.30\pm0.29$                        |

| COMPARISON OF HYDROGEN PROPERTIES |                                              |                       |                                                    |                  |  |
|-----------------------------------|----------------------------------------------|-----------------------|----------------------------------------------------|------------------|--|
|                                   | $\frac{10 M_{\rm H}/L^*}{\rm (solar units)}$ | $D_{ m H}/D_{ m opt}$ | $10 \sigma_{\rm H}/\sigma_{\rm opt}$ (solar units) | u <sub>MHL</sub> |  |
| $[S_{\rm F} + S_{\rm L}]$ :       |                                              |                       |                                                    |                  |  |
| ÎN <sub>6°</sub>                  | $0.79 \pm 0.18$                              | $0.90\pm0.09$         | $0.99 \pm 0.23$                                    | $0.72 \pm 0.11$  |  |
| OŮT <sub>6°</sub>                 | $1.84 \pm 0.32$                              | $1.23 \pm 0.07$       | $1.22 \pm 0.24$                                    | -1.38 + 0.23     |  |
| [A + S(RDDO)]:                    |                                              |                       |                                                    | _                |  |
| IN <sub>6°</sub>                  | $0.48 \pm 0.10$                              | $0.96\pm0.09$         | $0.80 \pm 0.21$                                    |                  |  |
| OUT <sub>6°</sub>                 | $1.16 \pm 0.21$                              | $1.29 \pm 0.07$       | $0.98 \pm 0.19$                                    | • • • •          |  |
| Α                                 | 0.49 ± 0.10                                  | $1.26 \pm 0.10$       | $0.53 \pm 0.11$                                    |                  |  |
| S(RDDO)                           | $1.37 \pm 0.25$                              | $1.10 \pm 0.08$       | $1.43 \pm 0.26$                                    | ·                |  |

TABLE 5



FIG. 2.—The hydrogen content  $M_{\rm H}/L^*$  vs. the absolute blue magnitude  $\mathfrak{M}^*$ . Solid lines are the regressions fitting the luminosity dependence of the IN<sub>6</sub> and OUT<sub>6</sub> samples ( $\frac{1}{2}$  of the upper limit in parentheses). Dashed lines are the mean values from Table 5.

# $\odot$ American Astronomical Society • Provided by the NASA Astrophysics Data System

One of the two main results of this paper is the statistics on hydrogen masses  $M_{\rm H}$ . Table 4 gives the (distance independent) mean ratio  $M_{\rm H}/L^*$  for each group (using half the upper limit for  $M_{\rm H}$  of an undetected galaxy).  $M_{\rm H}/L^*$  is larger OUT<sub>6°</sub> than IN<sub>6°</sub> for each of the four morphological classes, more strongly for early types. Table 5 summarizes the data: with A and S(RDDO) combined,  $M_{\rm H}/L^*$  is again larger for OUT<sub>6°</sub> than IN<sub>6°</sub> by a significant factor,  $2.42 \pm 0.67$  (with S<sub>E</sub> and S<sub>L</sub> combined, the factor is  $2.33 \pm 0.67$ ); with IN<sub>6°</sub> and OUT<sub>6°</sub> combined,  $M_{\rm H}/L^*$  is larger for the "true spirals" S(RDDO) than for the anemics A by a factor  $2.80 \pm 0.77$ .

The relative hydrogen content  $M_{\rm H}/L^*$  varies greatly from case to case, may depend on the absolute luminosity (Bottinelli and Gouguenheim 1974; Fisher and Tully 1975; Huchtmeier, Tammann, and Wendker 1976), and does depend on morphology (Roberts 1975; Bothun and Sullivan 1980). As suggested by Huchtmeier, Tammann, and Wendker (1976) and by Chamaraux, Balkowski, and Gerard (1980), the scatter can be decreased somewhat (and biases tested for) by taking some of this dependence into account: In Figure 2 the individual galaxy values of log ( $M_{\rm H}/L^*$ ) (for both S<sub>E</sub> and S<sub>L</sub> Hubble types) are plotted against absolute magnitude  $\mathfrak{M}^*$ . Also shown are two linear regression lines of the form:

$$\log_{10} (M_{\rm H}/L^*) = 0.4 \alpha \mathfrak{M}^* + \log_{10} \beta$$
,

fitted separately for all  $IN_{6^{\circ}}$  and all  $OUT_{6^{\circ}}$  galaxies, with the slope  $\alpha$  forced to be the same but  $\beta_{IN_{6^{\circ}}}$  and  $\beta_{OUT_6^\circ}$  fitted separately. We obtained  $\alpha = 0.39 \pm 0.22$ ,  $\gamma \equiv \beta_{OUT}/\beta_{IN} = 2.53 \pm 0.71$ . With IN<sub>6°</sub> and OUT<sub>6°</sub> combined, average values  $\langle M_{\rm H}/L^* \rangle$  for four Hubble types are given in Table 6. Defining  $u_{MHL}$  for an individual galaxy as  $(M_{\rm H}/L^*)/\langle M_{\rm H}/L^* \rangle$ , the data in Figure 2 are replotted as  $u_{MHL}$  against  $\mathfrak{M}^*$  in Figure 3. The equivalent regression lines give  $\alpha = 0.27 \pm 0.12$ ,  $\gamma = 2.53 \pm 0.71$ . The equivalent to Figure 2, but for RDDO types A and S(RDDO) combined, is shown in Figure 4 and gives  $\gamma = 2.17 \pm 0.48$ . Note that the improvements derived from Figures 2 and 3 have decreased the statistical error in  $\gamma$ , the "excess factor for  $M_{\rm H}/L^*$  OUT versus IN," but have hardly altered the value of  $\gamma \approx 2.5$  itself. Whether the positive values of  $\alpha$  are real or due to a selection effect, the positive value of  $\gamma - 1$  is certainly real.

## V. H I DISTRIBUTION AND DIAMETERS

For most of the detected galaxies, the neutral hydrogen distribution is resolved by the Arecibo beam and we can obtain a measure of the hydrogen extent along the major axis. It is important to adopt a "scale length" measure rather than an "isophotal" one (which would depend strongly on central surface density). We adopt as our definition for hydrogen diameter  $D_{\rm H}$  twice the distance from the center of the galaxy to the point on the major axis where the flux (integrated over velocity) is one-third of the flux at the center. These estimates are corrected for the sidelobe contribution and finite size of

TABLE 6

| Iean Hydrogen Content of Dif | FERENT RH TYPES |
|------------------------------|-----------------|
|------------------------------|-----------------|

| RH Type | n. IN <sub>6°</sub> | n. OUT <sub>6°</sub> | $\langle M_{ m H}/L^{*} \rangle$ |
|---------|---------------------|----------------------|----------------------------------|
| Sab-Sb  | 11                  | 10                   | $0.07 \pm 0.02$                  |
| Sbc-Sc  | 4                   | 12                   | $0.20 \pm 0.04$                  |
| Scd-Sd  | 2                   | 3                    | $0.30 \pm 0.09$                  |
| Sdm-Im  | 2                   | 2                    | $0.36 \pm 0.09$                  |

the main beam (Paper I), but not for self-absorption or inclination effects (Shostak 1978). It is worth noting that  $D_{\rm H}$  is not obtained by model fitting. We derive it by simply interpolating the flux measurements, usually 5, at different locations along the major axis after removing sidelobe contributions. Despite the crudeness of the procedure, the resulting estimates should have an rms accuracy of ~ 1' and be largely insensitive to inclination, and to details of the gas distribution and rotation curve. In Tables 4 and 5 we present mean values for the ratio  $D_{\rm H}/D_{\rm opt}$  which is independent of distance (for galaxies which have only upper limits to  $D_{\rm H}$ , this was used in evaluating the mean). We also give mean values for the ratio<sup>4</sup> of the mass and optical surface densities,  $\sigma_{\rm H}/\sigma_{\rm opt} \equiv$  $(M_{\rm H}/L^*)(D_{\rm H}/D_{\rm opt})^{-2}$ .

The dependence of  $D_{\rm H}/D_{\rm opt}$  on morphological type (with IN<sub>6°</sub> and OUT<sub>6°</sub> combined) is unclear at the moment: The ratio appears to be slightly larger for A (which include some Hubble types S0 and Sa) than for S(RDDO), but slightly smaller for S<sub>E</sub> (which does not include S0 and Sa) than for S<sub>L</sub>. For different collections of galaxies (and different definitions for  $D_{\rm H}$ ) Bottinelli (1971) and Krumm and Salpeter (1979c) reported different results. Surveys over a larger range of morphological types, with careful mapping, will be necessary to settle this controversy, but one important point is already clear: while  $M_{\rm H}/L^*$  and  $\sigma_{\rm H}/\sigma_{\rm opt}$  depend strongly on morphological type,  $D_{\rm H}/D_{\rm opt}$  does not.

The most important result of the present paper is the fact that  $D_{\rm H}/D_{\rm opt}$  is systematically larger OUT<sub>6°</sub> than IN<sub>6°</sub>, verified separately for each of A, S(RDDO), S<sub>E</sub>, and S<sub>L</sub>. With the morphological classes combined, the OUT<sub>6°</sub>/IN<sub>6°</sub> ratio is 1.36 ± 0.14. We also obtained linear regression lines of log ( $D_{\rm H}/D_{\rm opt}$ ) against log  $D_{\rm opt}$  (Fig. 5) for the OUT<sub>6°</sub> and IN<sub>6°</sub> groups (forced to have a common slope). It is not clear whether the negative slope,  $-0.30 \pm 0.10$ , is a real effect<sup>5</sup>, but the fit gives an OUT<sub>6°</sub>/IN<sub>6°</sub> ratio of 1.40 ± 0.14, in good agreement with the value above. It is important to note that the smaller area  $\propto D_{\rm H}^2$  for the IN<sub>6°</sub> group accounts almost fully for the smaller value of  $M_{\rm H}/L^*$ , i.e.,  $\sigma_{\rm H}/\sigma_{\rm opt}$  is *not* appreciably smaller IN<sub>6°</sub> than OUT<sub>6°</sub>.

<sup>&</sup>lt;sup>4</sup> The quantity  $\sigma_{\rm H}/\sigma_{\rm opt}$  is a "reduced face-on" parameter, whereas  $D_{\rm H}$  is usually measured only along one direction across the galaxy; because of the strong asymmetries often observed in the gas distribution, this ratio might be more uncertain than a straightforward error propagation formula would suggest.

<sup>&</sup>lt;sup>5</sup> A bias could be introduced by the finite size of the beam, in the sense of an overestimate of the small  $D_{\rm H}$ 's.



FIG. 3.—Same as in Fig. 2 but corrected for the dependence of the gas content upon the morphology. The correction is applied dividing by the mean values of Table 6.

For many galaxies we have at least a very rough distribution for the velocity integrated flux F(r) as a function of distance r from the galaxy center along the major axis (corrected for the sidelobe contribution but not for the spread of the main beam). In Figure 6 we plot the ratio of F(r) to F(0) against  $y \equiv 2r/D_{opt}$  for the individual galaxies ( $S_E$  and  $S_L$ ). With  $S_E$  and  $S_L$  combined, but separately for IN<sub>6°</sub> and OUT<sub>6°</sub>, we fitted the data to a simple one-parameter function,

$$\frac{F(r)}{F(0)} = \begin{cases} 1 & \text{if } y < \alpha \\ \exp\left(-\frac{y}{\alpha} + 1\right) & \text{if } y > \alpha \end{cases},$$
(2)

which seems to fit the data slightly better than a straight exponential. We obtained  $\alpha_{IN_6} \approx 0.60$  and  $\alpha_{OUT_6} \approx 0.81$  so that the ratio  $\alpha_{OUT_6}/\alpha_{IN_6} \approx 1.35$  is close to the  $OUT_{6^\circ}/IN_{6^\circ}$  diameter ratio given above.

### VI. SUMMARY OF RESULTS

The present paper gives a statistical analysis of a 21 cm neutral hydrogen survey reported in Paper I. The survey involved mainly galaxies in the direction of the Virgo Cluster core as well as its surroundings. The main aim of the survey was to compare the neutral hydrogen properties of galaxies (of various morpho-

## © American Astronomical Society • Provided by the NASA Astrophysics Data System



FIG. 4.—The hydrogen content  $M_{\rm H}/L^*$  vs. the absolute blue magnitude  $\mathfrak{M}^*$  when the galaxies are classified in the RDDO system. Regression lines, mean values and data in parentheses as in Fig. 2.

logical types) inside the relatively dense environment of the Virgo Cluster core with those outside. Two separate comparisons were carried out, one of the mere detection statistics and the other of means of various galaxy properties, especially of hydrogen mass  $M_{\rm H}$  and hydrogen diameter  $D_{\rm H}$ . The morphological classification of all the galaxies was considered both according to the revised Hubble scheme (RH) and according to the van den Bergh (1976) scheme (RDDO), but keeping only the distinction between true S0's, anemics A, and true spirals. Our Table 3 is compatible with the more detailed findings of Bothun and Sullivan (1980) that RH type S0(RH) corresponds partly to S0(RDDO) and partly to A and that RH type Sa has considerable overlap with A. The Bothun and Sullivan (1980) study referred to a sample of noncluster galaxies whereas about half of our galaxies reside in the cluster core; this can be an important point per se, and speaks in favor of a certain uniformity of the RDDO classification scheme, irrespective of the particular environment.

The main results of the detection survey (in agreement with, but slightly more reliable than, Krumm and Salpeter 1979a) are: (1) Hardly any ellipticals are detected (because of the modest sensitivity, upper limits

# © American Astronomical Society • Provided by the NASA Astrophysics Data System

were usually around 4.5 Jy  $\times$  km s<sup>-1</sup>). (2) Both for ellipticals and for S0's the detection probability is not improved by observing  $\pm 2'$  away from the galaxy center. (3) For RH type S0 galaxies the detection probability is appreciably larger outside the Virgo Cluster core (circle radius 5°) than inside. (4) For RDDO type S0, the detection probability is very small both outside and inside [most of the detected S0(RH) outside galaxies correspond to A]. (5) The number ratio of galaxies outside to inside (whether detected or not) increases from S0(RDDO) to A to S(RDDO).

For comparison of mean properties,  $IN_{6^\circ}$  and  $OUT_{6^\circ}$  refers to a circle of radius 6°. For the Hubble classification we omitted S0 to Sa entirely and divided Sab and later into  $S_E$  (early) and  $S_L$  (late). A future survey for Sa galaxies as sensitive as Bottinelli, Gouguenheim, and Paturel (1980) would be useful. For RDDO we omitted only S0(RDDO) and kept A and S(RDDO). Our main results regarding total hydrogen mass  $M_{\rm H}$  corroborate the results of Chamaraux, Balkowski, and Gerard (1980), but with slightly different procedures. (6) The result found by a number of previous authors that the mean hydrogen mass  $M_{\rm H}$  is larger OUT<sub>6°</sub> than IN<sub>6°</sub> is confirmed, separately for each morphological class tested, and is not due to any selection bias. (7) The distance-independent ratio  $M_{\rm H}/L^*$  is larger OUT<sub>6</sub>° than  $IN_{6^{\circ}}$  by a factor 2.5 overall; the factor seems to be slightly larger still for earlier types than for late, but this may not be significant. (8)  $M_{\rm H}/L^*$  varies greatly from galaxy to galaxy, but increases from anemics A to true spirals S(RDDO) (see also Bothun and Sullivan 1980). as it does from early to late Hubble spirals. (9) There is an indication that the hydrogen-deficient  $IN_{6^\circ}$  galaxies are, on the average, not redder than  $OUT_{6^{\circ}}$  and are slightly overluminous (especially the early types), but it is not clear whether this effect is real. Our most important results concern the distribution of hydrogen, especially the distance-independent ratio  $D_{\rm H}/D_{\rm opt}$ . (10) Unlike  $M_{\rm H}/L^*$ ,  $D_{\rm H}/D_{\rm opt}$  does not depend strongly on the morphological type. (11) For each type  $D_{\rm H}/D_{\rm opt}$  is larger  $OUT_{6^{\circ}}$  than  $IN_{6^{\circ}}$  to such a degree that (12) the relative hydrogen surface density  $\sigma_{\rm H}/\sigma_{\rm opt} = (M_{\rm H}/L^*) (D_{\rm H}/D_{\rm opt})^{-2}$ is almost the same  $IN_{6^\circ}$  and  $OUT_{6^\circ}$ , at least for the later types.

## VII. DISCUSSION

We have already stressed that the smaller neutral hydrogen content and extent for galaxies inside the Virgo Cluster core is a real effect, but the "missing mass of gas" could still reside in the individual galaxies but be in ionized form due to the proximity of M87, a powerful source of soft X-rays. The emission from M87 (Fabricant, Lecar, and Gorenstein 1980) is approximately  $2 \times 10^{43}$  ergs s<sup>-1</sup> with a color temperature of ~3 keV. Even as close as 1 Mpc to M87, an outer portion of a galactic disk with column density  $2 \times 10^{20}$  H cm<sup>-2</sup> and a scalelength as large as 500 pc would have only about the outer 2% of its mass ionized. The "missing mass of gas" could not therefore have been ionized by M87; if it

resides as intergalactic gas in the Virgo Cluster core one may ask if it has observable effects. Assuming the typical deficiency observed here, the gas removed from all the spirals in Virgo contributes only  $\sim 10^{61}$  cm<sup>-3</sup> to the (volume integrated) X-ray emission measure of the core, compared with an observational limit of  $10^{65}$  cm<sup>-3</sup> (Lea *et al.* 1981). It is not therefore directly observable.

Before discussing other implications of our neutral hydrogen results, we summarize the considerable body of evidence against Model A described in § I (each galaxy is born as a late type spiral but is successively turned into earlier Hubble types by ram pressure stripping of gas due to cluster gas, by tidal disruption and by galaxy mergers). Not only the bulge-to-disk ratio but the absolute bulge sizes are larger for S0 galaxies than for spirals (Sandage and Visvanathan 1978; Dressler 1980), whereas ram pressure (and tidal) stripping can alter only outer layers but not the central regions (Toomre and Toomre 1972; Farouki and Shapiro 1980). Furthermore, ram pressure could give complete stripping only in a very high density environment, especially for the gas-rich late-type spirals (Gisler 1980), contrary to the observations of large numbers of S0's in loose Virgotype clusters (see aso Bothun et al. 1982). Galaxy mergers cannot be the main agent "manufacturing" S0 galaxies because, at a given density, they would be more effective in small groups with small velocity dispersions than in large clusters with large dispersions; observations (Bhavsar 1981) give the opposite tendency, compatible with ram pressure.

We therefore must accept "at birth" a full range of morphological types along at least a one-dimensional sequence (not counting absolute luminosity), e.g., the bulge-to-disk (B/D) ratio. However, this still leaves lots of controversy since present-day galaxies show at least one more variable parameter (for given B/D), e.g., the hydrogen content  $M_{\rm H}/L$  and/or the hydrogen size ratio  $D_{\rm H}/D_{\rm opt}$  and/or the optical disk surface brightness and/or the distinctness (or clumpiness) of the spiral arms. The RDDO classification scheme into "true spirals S," "anemics A," and "true S0," suggested by van den Bergh (1976), is an attempt at a classification scheme with only one additional variable. It is reasonably successful in predicting the hydrogen content from the optical appearance of the disk, although there are large variations. However, this presumably is due to the hydrogen content affecting the present rate of star formation and the abundance of young stars affecting the optical appearance, whatever the cause of the differences in the hydrogen content. We shall argue that more than one additional variable is required and that the RDDO sequence is not caused by ram pressure stripping.

We have seen that the overall H I mass to blue light ratio  $M_H/L^*$  is smaller for "anemics" than for "RDDO spirals" (with  $IN_{6^\circ}$  and  $OUT_{6^\circ}$  locations combined) by a factor of about 0.4;  $M_H/L^*$  is smaller for the  $IN_{6^\circ}$  location than for  $OUT_{6^\circ}$  (for the same Hubble type) by about the same factor (although this factor would presumably have been more extreme if IN referred to the



FIG. 5.—The hydrogen extent normalized to the optical diameter  $(D_H/D_{opt})$  vs. the absolute linear diameter (optical) in kpc, for S<sub>E</sub> and S<sub>L</sub> only. Solid lines are the regression lines fitting the data referring to the IN and OUT samples (upper limits in parentheses). Dashed lines are the mean values from Table 5.



FIG. 6.—The integrated flux, measured at a distance r from the optical center of a galaxy ( $S_E$  and  $S_L$  only) normalized to the central value F(0), vs. the normalized distance from the center. The two solid lines refer to the (truncated) exponential distributions fitted to the  $IN_{6^{\circ}}$  (lower fit) and  $OUT_{6^{\circ}}$  (upper fit) data.

# © American Astronomical Society • Provided by the NASA Astrophysics Data System

core of a denser cluster<sup>6</sup> and/or OUT referred to true field galaxies instead of the supercluster environment). There are at least four possible causes for a decrease in  $M_{\rm H}/L^*$ : two "internal" ones [(a) an enhanced galactic wind and (b) an overall increase in the rate of star formation (Strom 1980)], and two "external" ones [(c) tidal encounters (or collisions with dwarf systems) disturbing galactic gas and giving a local enhancement of star formation (Larson and Tinsley 1978) and (d) ram pressure stripping by extragalactic gas (and, possibly, tidal disturbances leading indirectly to local gas ejection)]. Fortunately the internal and external mechanisms make different predictions for the central value  $\sigma_{Hc}$  of the hydrogen surface density and the scale length diameter  $D_{\rm H}$ . A galactic wind (originating in a central bulge) and star formation (whose rate per unit gas mass, in the most naive picture, increases with gas density) both depress the gas density most in the inner regions of a galactic disk. Thus (a) and (b) strongly depress  $\sigma_{\rm Hc}$  but actually increase the scale length  $D_{\rm H}$ by depressing the logarithmic density gradient (whereas an "isophotal" hydrogen radius would be increased slightly).7 On the other hand, tidal disturbances and ram pressure stripping are most effective on an outer disk where the gas column density is already smaller. Thus (c) and (d) leave  $\sigma_{Hc}$  almost unchanged (although secondary redistribution of the remaining gas decreases  $\sigma_{\rm Hc}$  slightly; see Gunn and Gott 1972; Gisler 1976; Lea and De Young 1976; Shaviv and Salpeter 1982) but decreases  $D_{\rm H}$  strongly if this is defined at a level low enough for the sweeping to be effective, and our  $\frac{1}{3}$  level is perhaps the lowest feasible if a large sample

of galaxies is to be analyzed. We saw (results 11 and 12 in § VI) that our observational data for the  $IN_{6^\circ}/OUT_{6^\circ}$  comparison of

type. <sup>7</sup> Isophotal sizes will also convey information regarding the depletion mechanism, but we do not have a substantial and/or homogeneous sample of isophotal sizes: isophotal measurements imply longer observing time, and are more sensitive to instrumental effects; data reduction is more involved, and inevitably more error prone.

 $\sigma_{\rm H}$  and  $D_{\rm H}/D_{\rm opt}$  are just as predicted by (c) and (d), assuming our estimates of  $\sigma_{\rm H}$  are representative of  $\sigma_{\rm Hc}$ .<sup>8</sup> The scatter in  $D_{\rm H}/D_{\rm opt}$  (Fig. 5) is large, but since (a) and (b) make the opposite prediction, there is little doubt that (c) or (d) (or "something else"), rather than (a) or (b), causes the gas depletion in the Virgo Cluster core. Fortunately, (c) and (d) make opposite predictions for the absolute values of  $D_{opt}$ : For (c) the depression in gas in the outer disk leads to larger star density and optical surface brightness there, hence increasing  $D_{opt}$ , whereas (d) leads to a slight loss of the outer stellar disk and hence a slight decrease in  $D_{opt}$ . Dressler (1980) reports that absolute disk sizes (unlike bulge sizes) decrease slightly in environments of higher density, thus favoring (d) over (c). For anemics (in comparison with RDDO spirals), on the other hand, Table 5 shows that  $\sigma_{\rm H}$  is appreciably smaller and  $D_{\rm H}/D_{\rm opt}$  the same or slightly larger as predicted by (a) or (b). We therefore feel that anemic galaxies are not produced by ram pressure stripping but by some internal cause; other statistical arguments (Bothun and Sullivan 1980) also point in this direction. There is also some evidence for the possibility of mechanism (b) with the opposite sign, since a (rare) class of spiral galaxies with anomalously low optical disk surface brightness  $\sigma_{opt}$  tend to have anomalously large values of  $M_{\rm H}/L$  (Romanishin et al. 1982). Variations of  $\sigma_{opt}$  with class are likely to be important; measurements of scale-length optical diameters (and  $\sigma_{opt}$ ) would be very useful in the future, since isophotal diameters depend too much on  $\sigma_{opt}$ .

We are grateful to G. de Vaucouleurs, A. Dressler, R. Farouki, J. Felten, R. Giovanelli, M. Haynes, G. Hoffmann, A. Sandage, S. Shapiro, S. Strom, S. Tugaz, S. van den Bergh, and N. Visvanathan for interesting discussions, and to an anonymous referee for useful suggestions.

This work was supported in part by NSF grant AST 81-16370 and by Italian CNR contract 78.01835.63, in the framework of the Arcetri-Cornell Cooperation Agreement.

<sup>8</sup> We tested the variations of the proportionality constant  $K \equiv \sigma_{\rm Hc}/\sigma_{\rm H}$  for a variety of simple models (exponential, Gaussian, and variously truncated distributions of convenient size) when observed with an Arecibo-sized beam. These variations turn out to be confined within  $\pm 10 \%$ .

#### REFERENCES

- Balkowski, C. 1973, Astr. Ap., 29, 43.
- Balkowski, C., and Chamaraux, P. 1981, Astr. Ap., 97, 223.
- Bhavsar, S. P. 1981, Ap. J. (Letters), 236, L5.
- Bothun, G. C., and Sullivan, W. T. 1980, Ap. J., 242, 903.
- Bothun, G. C., et al. 1982, preprint.
- Bottinelli, L. 1971, Astr. Ap., 10, 437.
- Bottinelli, L., and Gouguenheim, L. 1974, Astr. Ap., 36, 461.
- Bottinelli, L., Gouguenheim, L., and Paturel, G. 1980, Astr. Ap., 88, 32.
- Chamaraux, P., Balkowski, C., and Gerard, E. 1980, Astr. Ap., 83, 38. Davies, R. D., and Lewis, B. M. 1973, M.N.R.A.S., 165, 231.
- de Vaucouleurs, G. 1975, in *Galaxies and the Universe*, ed. A. Sandage, M. Sandage, and J. Kristian (Chicago: University of Chicago Press), p. 557.
- de Vaucouleurs, G., de Vaucouleurs, A., and Corwin, H. 1976, Second Reference Catalogue of Bright Galaxies (Austin: University of Texas Press) (RC2).
- de Vaucouleurs, G., and Pence, W. D. 1979, Ap. J. Suppl., 40, 225.
- Dressler, A. 1980, Ap. J., 236, 351.
- Fabricant, D., Lecar, M., and Gorenstein, P. 1980, Ap. J., 241, 552.
- Farouki, R., and Shapiro, S. L. 1980, Ap. J., 241, 928.
- Fisher, J. R., and Tully, R. B. 1975, Astr. Ap., 44, 151.
- Giovanardi, C., Krumm, N., and Salpeter, E. E. 1983, in preparation. Giovanelli, R., Chincarini, G. L., and Haynes, M. P. 1979, *Bull. AAS*, 11, 667.
- Gisler, G. R. 1976, Astr. Ap., 51, 137.
- ——. 1980, *A.J.*, **85**, 623.
- Gunn, J. E., and Gott, J. R. 1972, Ap. J., 176, 1.

<sup>&</sup>lt;sup>6</sup> The studies now available of the gas content of spirals in other clusters (e.g., Sullivan, Bothun, and Bates 1981; Schommer, Sullivan, and Bothun 1981; Giovanelli, Chincarini, and Haynes 1979) show that H I properties of the members correlate with the morphology and X-ray properties of the cluster. In this respect Virgo, with an overall deficiency factor of  $\sim 2-2.5$ , could be considered of an intermediate type.

Vol. 267

- Helou, G., Giovanardi, C., Salpeter, E. E., and Krumm, N. 1981, Ap. J. Suppl., 46, 267 (Paper I).
- Hoffman, G. L., Olson, D. W., and Salpeter, E. E. 1980, Ap. J., 242, 861. Huchtmeier, W. K., Tammann, G. A., and Wendker, H. J. 1976, Astr. Ap., 46, 381.
- Krumm, N., and Salpeter, E. E. 1979a, Ap. J., 227, 776.
- –. 1979*b*, *Ap*. *J*., **228**, 64. –. 1979*c*, *A.J.*, **84**, 1138.

No. 1, 1983

- -. 1980, A.J., **85**, 1312.
- Larson, R. B., and Tinsley, B. M. 1978, Ap. J., 219, 46.
- Lea, S. M., and De Young, D. S. 1976, Ap. J., 210, 647.
- Lea, S. M., Reichert, G., Mushotzky, R., Baity, W. A., Gruber, D. E., Rothschild, R., and Primini, F. A. 1981, Ap. J., 246, 369.
- Roberts, M. 1975, in Galaxies and the Universe, ed. A. Sandage, M. Sandage, J. Kristian (Chicago: University of Chicago Press), p. 309.

- Romanishin, W., Krumm, N., Salpeter, E. E., Knapp, G., Strom, K., and Strom, S. 1982, Ap. J., 263, in press.
- Sandage, A., and Visvanathan, N. 1978, Ap. J., 225, 742.
- Schommer, R. A., Sullivan, W. T. and Bothun, G. D. 1981, A.J., 86, 943.
- Shaviv, G., and Salpeter, E. E. 1982, Astr. Ap., 110, 300.
- Shostak, G. S. 1978, Astr. Ap., 68, 321.
- Stauffer, J. R. 1981, Ph.D. thesis, University of California, Berkeley.
- Strom, S. E. 1980, Ap. J., 237, 686. Sullivan, W. T., Bothun, G. D., and Bates, B. 1981, A.J., 86, 919.
- Toomre, A., and Toomre, J. 1972, Ap. J., 178, 623.
- Turner, E., and Gott, J. 1976, Ap. J. Suppl., 32, 409.

- Yahil, A., Tammann, G. A., and Sandage, A. 1977, Ap. J., 217, 903.
- Wilkerson, M. S. 1980, Ap. J. (Letters), 240, L115.

C. GIOVANARDI: Osservatorio Astrofisico di Arcetri. Largo E. Fermi 5, 50125 Firenze, Italy

GEORGE HELOU and E. E. SALPETER: Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853

NATHAN KRUMM: Physics Department, University of Cincinnati, Cincinnati, OH 45221