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ABSTRACT 

We present the results of searches for periodic pulsations in the X-ray emission from four 
globular cluster sources, NGC 1851, NGC 6441, NGC 6624, and NGC 6712. The data were 
obtained by the Monitor Proportional Counter aboard HEAO 2 (Einstein Observatory). The 
methods of analysis are presented in some detail because we have correctly accounted for several 
effects which have been routinely overlooked by others. The periods searched cover the range 
from ~1 ms to ~500 s. No pulsed emission was detected, and the (90% confidence) upper 
limits for the pulsed fraction are presented. 
Subject headings: clusters: globular — pulsars — X-rays: sources 

I. INTRODUCTION 

The exact nature of the globular cluster X-ray sources 
remains a mystery. They are believed to be accreting 
neutron stars in binary systems which undergo 
occasional nuclear flashes on their surfaces (see, e.g., 
Fujimoto, Hanawa, and Miyaji 1981 for a recent review 
and references). Presently known neutron stars are either 
radio pulsars or X-ray pulsars in binary systems. In 
general, these possess strong magnetic fields (~1012 

gauss) and are rotating so that the X-ray emission is 
pulsed at the rotation period. The detection of periodic 
pulsations from the globular cluster X-ray sources would 
provide conclusive evidence that the bursters are also 
neutron stars. 

In this paper we present the results of searches for 
pulsed emission from the four cluster X-ray sources 
NGC 1851, NGC 6441, NGC 6624, and NGC 6712. 
These four were detected as part of a survey of globular 
clusters made with the Einstein Observatory (Grindlay 
1979a, 1981). The cluster parameters are summarized in 
Table 1 and can be seen to encompass a wide range 
of cluster types. All of these clusters are known to be 
burst sources, and all of the observations were made 
when the sources were in their “high” or nonbursting 
phases. 

The observations and the spectral information are 
discussed in § II. In § III we present the method of 
analysis used to search the data for periodic pulsations. 
This section is somewhat detailed because we have been 

careful to take into account several effects which arise 
either from the discrete binning of the data or from the 
fact that the pulsed signal need not be precisely at one 
of the frequencies searched. Both these effects are 
important but seem to have been ignored or overlooked 
by others in establishing their sensitivity to pulsed 
emission. The results and the upper limits to pulsations 
are given in § IV. 

II. OBSERVATIONS 

The data were recorded by the time interval processor 
(TIP) of the monitor proportional counter (MPC) during 
the spring of 1979. The instrument is described by 
Gaillardetz et al (1978) and Grindlay et al (1980). 
Briefly, the TIP records the time intervals between 
photons detected by the 667 cm2 argon-gas-filled 
proportional counter in the bandwidth from 1 to 22 keV. 
The accuracy of the time intervals is 1 gs or 1.6%, 
whichever is greater, and the minimum time between 
events is 10 gs. The data readout is telemetry limited. 
The TIP utilizes a buffer memory to attempt to cope 
with high count rates. When the memory is full, however, 
no data are recorded until all the stored information is 
read out. This results in either 2.56 s or 0.852 s gaps in 
the data stream when the count rate exceeds ~30 or 
~100 counts s'1, respectively, depending on which of 
two telemetry modes is utilized. Longer gaps are, of 
course, also present because of the passage of the 
satellite through the South Atlantic Anomaly and Earth 
occultations. 

The MPC is also equipped with eight logarithmically 
spaced pulse-height channels, which enable us to perform 
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TABLE 1 
Cluster Parameters 

Central Relaxation 
Distance Density Concentration Time Spectral Metallicity Extinction 

Cluster (kpc) (104 M0 pc 3) (log rf/rc) (107 yr) Type (Fe/H) (1021 cm 2) 

NGC 1851   10.8 8.5 1.8 3.7 F7 -1.29 0.4 
NGC6441   10.0 13 1.7 8 G2 -0.24 3.0 
NGC6624   8.5 11 2.2 5 G5 -0.34 1.6 
NGC 6712   7.3 0.15 1.2 35 G5 -0.43 2.3 

Note.—Cluster data are from Arp 1965, Peterson and King 1975, Peterson 1976, Grindlay 1979/?, and Harris and Racine 1979. 

crude spectroscopy in the energy range 1-22 keV. 
Spectral analysis is accomplished by folding simple 
trial models through the energy response of the detector 
and then adjusting relevant parameters until a 
satisfactory fit to the data is achieved. In Table 2, we 
have provided an ephemeris of the observations along 
with our constraints on the spectrum derived in this 
manner. For the globular clusters, we have chosen to 
fit a thermal bremsstrahlung spectrum (exponential with 
a Gaunt factor), although satisfactory fits can also be 
obtained with power-law models. The relevant param- 

eters are the spectral temperature kT and an absorption 
energy EA, which is approximately related to the 
absorbing column density by 

Nh = 5.08 x 1021E2a72 . 

Absolute 90 % confidence regions for these parameters 
are given in the table. Also quoted is the approximate 
2-6 keV intensity for each observation in Uhuru flux 
units. The uncertainty in these numbers is roughly a 
few percent and is dominated by systematic effects 
associated with the choice of a particular spectral model. 

TABLE 2 
Spectral Parameters 

Cluster 
Julian Day 

(2,443,000 + ) 
TJT/ 

(s) 
Rh 

(counts s-1) 

2-6 keV 
Intensity 
(UFU) 

Range 
in kT 
(keV) 

Range 
in Ea 
(keV) 

NGC 1851 

NGC 6441 

NGC 6624 

NGC 6712 

926.882 
936.065 

937.680 
937.932 
937.937 
937.949 

946.913 
947.830 
947.902 
968.570 
969.236 
969.305 

956.079 
970.132 
970.139 
970.201 
970.266 
970.333 
970.398 
980.151 
980.217 

1145.289 
1145.295 
1145.339 
1145.353 

2496/2446 
1720/1423 

1426/792 
425/264 
970/497 
946/585 

5897/228 
5721/343 
671/47 

2800/1493 
6032/1942 
5826/1870 

1698/1696 
303/303 

1213/1088 
2061/2061 
2077/1694 
2047/1633 
2113/2030 
1304/1303 
2375/2332 

324/242 
810/726 

1102/1060 
1182/1181 

32.3 
29.8 

68.4 
59.9 
58.1 
59.5 

520.5 
464.4 
487.9 
395.2 
373.6 
340.9 

25.4 
24.1 
25.1 
25.1 
25.5 
26.0 
27.3 
28.8 
27.6 
25.9 
26.9 
27.4 
27.4 

9.55 
6.78 

29.48 
25.58 
25.48 
25.92 

288.19 
262.53 
273.59 
220.38 
219.28 
212.75 

4.59 
4.90 
4.86 
4.87 
4.82 
4.90 
4.97 
4.71 
4.87 
6.09 
6.79 
5.98 
6.77 

8.7- 11.6 
6.8- 9.2 

>19.3 
9.4- 13.6 
9.0-11.7 
7.9- 11.7 

17.1- 29.2 
11.1- 16.3 
11.8-18.3 
11.4-17.1 
12.3- 17.1 
10.4- 14.9 

3.9- 4.7 
3.4- 4.6 
3.9- 4.6 
3.9- 5.2 
3.9- 5.2 
3.9- 5.1 
3.9- 4.7 
3.8- 4.5 
4.5- 5.4 
3.6- 5.5 
4.8- 6.3 
4.8- 6.1 
4.8- 5.5 

0.00-0.60 
0.00-0.60 

0.60-1.20 
0.58-1.08 
0.70-1.19 
0.80-1.23 

0.00-0.86 
0.00-0.85 
0.00-0.79 
0.00-0.75 
0.00-0.74 
0.00-0.71 

0.00-0.67 
0.00-0.77 
0.00-0.68 
0.00-0.71 
0.00-0.67 
0.00-0.88 
0.00-0.75 
0.00-0.72 
0.00-0.53 
0.00-1.15 
0.00-0.73 
0.00-0.64 
0.00-0.62 

a Ti is the total elapsed time, and T2 is the actual integration time. 
b R is the total count rate including background, which is nominally 17.5 counts s-1. 
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III. DATA ANALYSIS 

The TIP data were converted to a series of photon 
arrival times. Two methods of analysis were used to 
examine these data for evidence of periodic pulsations. 
These were the fast Fourier transform (FFT) and epoch 
folding. 

In general, both techniques have certain advantages 
and disadvantages in their application. These are 
exacerbated both by the presence of gaps in the data 
and the large number of statistically independent 
frequencies which could, in principle, be examined. 
Epoch folding is more sensitive to the nonsinusoidal 
pulse shapes encountered in X-ray astronomy. Further- 
more, the technique is relatively insensitive to randomly 
occurring gaps in the data so long as the net pulse phase 
coverage is reasonably uniform. Epoch folding is, how- 
ever, extremely time-consuming on the computer. 
(However, there are techniques to optimize the sensitivity 
given a limited amount of computer time, as discussed 
later.) The FFT, on the other hand, is extremely 
efficient. However, the FFT is difficult to interpret in 
the presence of gaps in the data unless some ad hoc 
technique such as “whitening” of the gaps is introduced. 
Although such techniques are viable in certain contexts 
(see, e.g., Groth 1975), we limited the use of the FFT 
to the examination of short continuous stretches of data. 

a) The Fast Fourier Transform 
The FFT has long been in existence and the algorithms 

are well documented and will not be repeated here (see, 
e.g., Jenkins and Watts 1968). In our case, a continuous 
segment of length T is binned into N = 2m bins, the 
kth bin containing mk counts. The m is calculated and 
subtracted from the number of counts in each bin. The 
FFT is then performed on the resulting data set, yielding 
a power spectrum Pj at 2m_ ^values corresponding to 
the statistically independent frequencies coj (coj = 2nj/T, 
7 = 1, 2, ..., 2m~l), where 

2m 
Pj = 2|dj12!Ny, cij = L xk exp (iojj tk), (1 ) 

fc= 1 

and fk is the time label of the kth bin, xk is mk — m, 
and Ny is the total number of photons. This procedure 
is then repeated for all continuous segments of length T, 
resulting in M power spectra. 

Even in the absence of periodic or secular variations 
in the data, the power will have a nonzero mean and 
exhibit variations about this mean, due to statistical 
fluctuations in the raw data. In Appendix A, we show 
that, when these fluctuations are governed by the Poisson 
distribution, the ensemble averaged power will be 2 
(given our particular normalization, see eq. [1]), with 
variance 

Var (Pj) = 4(1 + \/Ny), ; = 1, 2, ..., N/2 - 1 , (2) 

which, in the limit of large Ny, simply reduces to 4. 
In Appendix A we also show that in this limit, the 
power in a single spectrum is distributed as a x2 random 
variable with 2 degrees of freedom. We note 
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parenthetically that the result that the mean and variance 
are 2 and 4, respectively, is a necessary, but not 
sufficient, condition that the power is xi distributed. 
The power spectra calculated from the M data segments 
of length T are summed to yield a total power spectrum. 
As discussed in Appendix A, this spectrum is distributed 
as a x2 random variable with 2M degrees of freedom. 

From the preceding, it follows that the probability 
that the observed power at any particular frequency 
(in the total power spectrum) will exceed by chance 
a level P0 is given by the integrated x2 distribution Q, 

Q2m(Xo = Po) =\ P2M(x2)dx2 , (3) JY2 

where p2M is the familiar x2 probability density for 2M 
degrees of freedom. In order to perform a period search, 
we must establish the power level P0 which has a small 
probability of being exceeded by chance. In this we must 
account for all the potentially interesting frequencies that 
have been examined. We therefore define P0 by choosing 
a (percent) confidence level c, such that P0 has not 
been exceeded by chance given Np periods, 

1 - c/100 = iVi,e2M(xo = ^o). (4) 

In the absence of any significant power, one is left with 
the problem of converting this knowledge into a 
meaningful upper limit. This step involves (1) adopting 
an assumed pulse shape; (2) accounting for the binning 
of the data; (3) accounting for all possible pulse phase 
relationships with respect to the binning; and (4) 
accounting for the possibility that the pulse period need 
not be precisely at any of the values of the statistically 
independent periods examined by the FFT. It is worth- 
while noting that points (2) and (4), although they 
impact the upper limit (adversely), seem to be routinely 
overlooked, as evidence by the absence of any mention 
of them (see, e.g., Cominsky et al. 1980; Córdova, 
Garmire, and Lewin 1979). 

It is customary to assume a sinusoidal pulse shape, 
so that the instantaneous count rate as a function of 
time is given by 

r(t) = r0[l + A sin (cot + (/>)] . (5) 

The binned signal with mean subtracted is then 

with /c = 1, 2, ..., N = 2"1. We calculate the power 
spectrum and average over </> (and ignore momentarily 
the fluctuations due to counting statistics) to find that 

I sin2 [{T/2)(mj + co)] sin2 [(T/2)(mj - oj)] | 
|sin2 [(T/2N)(a>j + co)] sin2 [(T/2N)(cOj - co)]| ’ ' 

It is important to note that even if we restricted our- 
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selves to considering only co = (Oj = 2nj/T, equation (7) 
reduces to 

I Oil2 = ('•o AT/2)2[(N/nj)2 sin2 (nj/N)], (8) 

which is frequency dependent. The “diffraction” term in 
square brackets approaches unity at low frequency and 
falls to a value of (4/tt2) = 0.405 at the Nyquist 
frequency co = Nn/T Thus, even in this simple case, there 
is no single number independent of frequency that 
characterizes the sensitivity to pulsations. This frequency 
dependence is a direct consequence of the binning of the 
data. Of course, co need not at all be precisely some coj. 
We take this into account by letting co = coj + ô/T, 
— n<ö<n9 and averaging over all ô. This leads to 

Thus, the frequency spacing is 1/27^ and the periods are 
searched in steps of the frequency resolution divided by 
two. The statistic S used to determine the presence of 
pulsations is calculated for each trial period from Pmin 

to Pmax and is 
n 

s= I 
7=1 

(Rj - R)2 

_2 (12) 

where R = Ny/T, aj = K/7}, and 7} is the total integra- 
tion time for the ;th pulse phase bin, and T is the 
sum of the 7}’s. The quantity Rj is the counting rate in the 
7th pulse phase bin. Periodic pulsations are manifest 
by large values of 5. In Appendix B, this choice of 
statistic is discussed, and we note that in the limit of large 
Ny, S is a xi-1 random variable in the absence of periodic 
or secular variations. 

At this point, one would proceed along the lines of the 
discussion of the FFT, i.e., establish a threshold S0 
corresponding to “detection” at a percent confidence 
level c, with S0 and c such that 

(l-C/m) = NpQn-1(x2o = S0), (13) 

The expected power is obtained by (1) adding to 
equation (9) the additional term resulting from statistical 
fluctuations; and (2) converting this sum to a power 
through equation (1). The ensemble averaged power 
obtained after summing M FFTs is 

<Pj> = 2M 1 + 0.773 
y42 sin2 (nj/N) 
4 (nj/N)2 

%noise F Xsignal • 

The sensitivity to pulsations can now be established (at 
a confidence level c') by determining the amplitude A 
such that the power exceeds the detection threshold, 
i-e., Signal + Xnoise > Xo, C percent of the time. The 
amplitude A is determined by the solution of 

C'/IOO = 62M(Xo - Xsignal) , (11) 

where xo is the solution of equation (4). 

b) Epoch Folding 
The technique of epoch folding data to search for 

periodic pulsations is particularly useful with X-ray 
astronomical observations for a variety of reasons. These 
include the higher sensitivity to nonsinusoidal pulse 
shapes characteristics of X-ray pulsars. Additionally, 
epoch folding provides a straightforward approach to 
handling gaps which routinely appear in satellite data 
due to telemetry dropouts, passage through the South 
Atlantic Anomaly, Earth occulations, and, in the case of 
the TIP, the design of the electronics. Thus one keeps 
track, not only of the number of events placed in each 
pulse phase bin but also of the actual integration time 
per phase bin. 

Our basic approach to epoch folding considers a data 
set of total length (including gaps) of T seconds, folded 
into n pulse phase bins at trial periods ranging from 
Pmin = 2T/il tO Pmax = 2T/i2, with / = i2, (2 + 1, ..., iv 

where Np is the total number of periods searched. It is 
worth pointing out, however, that period searches, in 
general, involve establishing a boundary in a multi- 
dimensional space whose coordinates include the 
minimum period,3 the sensitivity to pulsations, and the 
computer time required to perform the search. In the 
course of our work, we have found that it may be 
advantageous if, rather than searching one data set of 
length T one considers M data sets of length 
7m = T/M and proceeds to (1) search all periods from 
Pmin and Pmax < T/M in the first set, noting all periods 
with S>S0; (2) search the second set at only these 
periods and note any periods which continue to have 
S > So; and (3) continue this culling through all M data 
sets. The detection threshold S0 is now set by a 
generalized version of equation (13), 

l-c/m = NpQ“1(x2o), (14) 

where Np is now the total number of periods searched 
in the first data set, and the superscript M indicates 
raising Q to the Mth power. 

The primary advantage of using M steps rather than 
one is that the number of statistically independent 
periods in a fixed period range is reduced, effecting a 
savings in computer time. The price one has paid for 
this savings is a reduced sensitivity. The “extra” 
computer time, however, can be used to extend the range 
of periods, effectively the minimum period, as discussed 
in the footnote. 

Once again we consider (following custom) a 
sinusoidal pulse shape in order to establish the sensitivity 
and set upper limits. We note that the effects of binning 
the data, and the possibility that the pulse need not be 

3 To be precise, this coordinate is the total number of periods 
searched; but, because of the ever increasing number of trial periods 
per unit period as one goes to shorter periods, the minimum period 
is the principal consideration. 
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precisely at one of the periods searched, must again be 
taken into account. As before, we set œ = coj + ô/T 
with I <51 <n/2 and calculate the mean value for S and 
then average over d. We find 

<S> = (n-l) 1 + 
0.935 

2(n - 1) 
A2Ny 

sin2 (n/n) 
{n/n)2 

Xnoise "b Zsignal (15) 

where n is the number of phase bins. In arriving at 
equation (15), we have assumed the 7} in equation (12) 
are identical. This result appears not to have the 
frequency dependence exhibited by the power spectrum 
approach. This is a consequence of working with a 
fixed number (n) of phase bins, independent of frequency. 
In the power spectrum approach the equivalent number 
of phase bins is simply N/j (where j is the frequency 
label). 

The sensitivity to pulsations is determined by the 
same general procedure as that used for the power 
spectrum. The amplitude of modulation A, which would 
be detected c' percent of the time at confidence c', is 
determined by the solution of 

c'/m = q^-Axo - (16) 

where Xo is determined through equation (14). 

c) Simulations 
Monte Carlo simulations were performed as a check 

on the calculations described in the preceding sections 

and to ensure that any subtle effect produced by the 
peculiar nature of the MPC/TIP was recognized and 
accounted for. These simulations used Monte Carlo 
techniques to produce photon arrival times which were 
then processed by a computer version of the TIP. A 
second simulator, which avoided the TIP entirely and 
generated either a binned light curve or binned data 
for the FFT, was also used. Two categories of simulations 
were performed. The first considered only steady sources 
at both high and low count rates. Two typical results 
are shown in Figures 1 and 2, where we show the 
distribution of the power (the statistic S). In both cases 
the mean value of the power (the statistic S), its variance, 
and its distribution are (within statistical fluctuations) 
what was expected. The second category of simulations 
utilized an input signal consisting of a sinusoidal pulsa- 
tion on a steady background in order to check the 
validity of equations (9) and (15). Figures 3-5 show 
typical results. Once again, there was excellent agreement 
between theory and the simulations. 

d) Search Strategy 
For any given set of observations there are 

innumerable ways of carrying out a period search: 
FFT over some range of periods, M-step epoch folding 
over another range, etc. In choosing a particular search 
strategy, the aim, of course, is high sensitivity over a 
wide period range within the practical limitations of the 
computing facilities. Unfortunately, there are a large 
number of free parameters to consider. The data fix the 

Fig. 1.—The observed (solid line) and expected (dotted line) distributions of power using the FFT. This simulation is based on a mean 
count rate of 404 counts s- \ an experiment length of 0.5 s, 8192 bins, 4096 periods, and 192 experiments. 
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Fig. 2.—The observed (solid line) and expected (dotted line) distributions of the statistic S. This simulation is based on a mean count rate 
of 33.9 counts s-1, an experiment length of 319 s, 1000 periods, and a 16-bin light curve. 

1 

Fig. 3.—A comparison of [(Pj/2M) — l]4/A2Ny with (sin 7ij/N)2/(nj/N)2 as a function of input signal frequency. The error bars are ± 1 <r. These 
simulations were based on a mean count rate of 23 counts s_1, an experiment length of 128 s, 256 bins, 128 periods, 10-12 experiments, and 
A = 0.5. In all cases the input signal was precisely at one of the statistically independent frequencies. 
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6/27T 
Fig. 4.—A comparison of the observed and expected power as a function of input frequency with the input frequency fs related to the 

statistically independent frequency/) through/} = fs + ô/2nT These simulations used a mean count rate of 29.9 counts s-1, 256 bins, 10-11 s 
experiment lengths, 142-157 experiments, A2 = 0.5, and fs = 1.0 s'l. The error bars are ± 1 o\ 

Fig. 5.—A comparison of the observed and expected values of the statistic S as a function of the input frequency with the input frequency 
related to the folding frequency / through / = /s + ô/2nT This simulation was based on a mean count rate of 404.4 counts s“1, a 16-bin light 
curve, an experiment length of 159 s, ,42 = 0.25, and /s = 10 s" ^ A typical ± 1 <r error bar is shown. 
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mean count rate, and we have adopted c = c' = 90 % 
in performing our searches. For the FFT, the principal 
remaining free parameters are T, M, N, and Np, which, 
in turn, determine A, Pmin, Pmax, the computing time 
(CPU), and P0. M-step epoch folding has as free 
parameters M, TM, Pmin (or Pmax), and Np, which, in 
turn, determine Pmax (or Pmin), CPU, and S0. Given our 
fragmented data sets, we have not been able to devise an 
optimum search strategy. We do note that, in the unique 
case in which one is dealing with continuous data, it is 
far better to use the FFT as opposed to epoch folding; 
i.e., one can cover the same period range with better 
sensitivity with less computer time, although it should 
be further noted that even this conclusion is biased by 
choosing a sine wave as the signal for determining the 
sensitivity. 

IV. RESULTS 

Table 3 lists the results of the searches for period 
pulsations. The results are tabulated according to the 
source, the type of search performed, and the range of 
periods covered. There are two listings for NGC 6624, 
corresponding to a mean count rate of 480 counts s_1 

(high rate) and 390 counts s-1 (low rate). In all cases, 
a nominal 17.5 counts s-1 background signal has been 
taken into account. 

Two values of an amplitude of modulation are given 
for each source and search. The first amplitude Ax is 
that which would have been considered a detection at 
the 90 % confidence level considering only the number of 
periods searched for that particular search. The second 
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amplitude A2is the upper limit which takes into account 
all the periods searched for a given source. Note that 
the sensitivity has only changed slightly despite the larger 
number of periods. A third amplitude could also have 
been added, that which took into account all of the 
periods searched. However, this result would change 
every time a new source was examined, and, furthermore, 
its value would differ little from A2 because of the weak 
dependence on the number of periods. 

We note here that our upper limits are based on 
confidence levels (c = c' = 90%) such that the given pulse 
amplitude would lead to a threshold value of the 
relevant statistic, or greater, 90 % of the time and that 
this threshold value has only a 10 % probability of being 
equaled or exceeded by chance. 

v. DISCUSSION 

We have derived, in detail, the prescription for both 
searching for the presence of periodic pulsations and, 
if absent, the algorithms for setting upper limits. In so 
doing, we have taken into account all effects arising from 
the discrete binning of the data and the possibility that 
the input pulse need not be precisely at one of the 
frequencies searched. Both effects tend to reduce the 
sensitivity to pulsations independent of the method used, 
and, in the case of the FFT, the binning leads to 
frequency-dependent upper limits. 

We wish to emphasize that the formal calculations 
presented here assume that, in the absence of pulsations, 
the only noise present in the data is that due to counting 
statistics. Other noise, produced by the X-ray source, has 

TABLE 3 
Upper Limits to Periodic Pulsations 

Upper Limits 

Source Search r(s) Period Ranges Nn 

NGC 6712. 

NGC 6441. 

NGC 1851. 

5-step EF 
FFT 
FFT 
FFT 

1-step EF 
7-step EF 
FFT 

1-step EF 
FFT 
FFT 
FFT 
FFT 

2060 
236 

41.0 
8.9 

1430 
425 

3.50 

2500 
486 

44.0 
15.0 
4.10 

2060-101 
101-0.0707 

0.0707-0.0100 
0.0100-0.00200 

357-75.0 
75.0-2.56 
2.56-0.000855 

2500-29.6 
29.6-0.199 

0.199-0.0142 
0.0142-0.00434 

0.00434-0.00100 

40 
3330 
3512 
3278 

31 
314 

4095 

168 
2441 
2889 
2400 
3153 

0.060 
0.075 
0.101 
0.196 

0.063 
0.085 
0.102 
0.131 
0.180 

0.073 
0.078 
0.104 
0.201 

0.044 0.055 
0.054 0.058 
0.116 0.116 

0.074 
0.091 
0.105 
0.135 
0.185 

NGC 6624: 
r = 480 ... 

r = 390. 

6-step EF 
FFT 
10-step EF 
FFT 

341 
0.410 

280 
900 

114-0.410 
0.410-0.000200 

70.0-0.900 
0.900-0.000439 

1658 
2048 

615 
2048 

0.035 
0.056 
0.020 
0.052 

0.035 
0.067 
0.021 
0.052 

a The number of periods in the FFT searches differs from a power of 2 because, where overlap in period 
between different searches occurs, we have taken the results from the most sensitive searches. 

b The quantities Ai and A2 are discussed in the text. For the FFT searches, the quoted amplitude is 
A sin (nj/N)/(nj/N), where N is the total number of bins which is twice the nearest power of 2 greater 
than or equal to Np. 
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not been taken into account. Examples of this include 
shot noise as is present in Cygnus X-l or long-term 
aperiodic variations as have been observed in many 
X-ray sources. These will appear in the power spectrum 
or the distribution of the S statistic as deviations from 
the distribution expected from counting statistics. (We 
note here that all of the distributions obtained from 
our observations were consistent with those expected 
from counting statistics.) If such effects are present, our 
analysis would have to be altered. It is thus extremely 
important to verify the nature of the observed distribu- 
tion functions before applying our formalism. There are 
other effects which also serve to impact the sensitivity 
to pulsations. These include the effects of binary motion 
and/or a period derivative. These reduce the sensitivity, 
in our case, more for epoch folding than for the FFT, 
because in epoch folding we used longer stretches of 
data. All the potential effects on period searches which 
may arise from the physics of the X-ray source itself 
cannot be included in a general analysis such as ours, 
but they should be kept in mind when applying our 
formal calculations to a particular observation. 

No periodic pulsations were detected in the flux of 
any of the sources examined. The sensitivity, in all 
cases, was sufficiently high to have easily detected 
pulsations at those levels usually observed in any of the 
known X-ray pulsating binaries. Moreover, the period 
ranges covered include, for the most part, the range of 
observed pulse periods. 

Vol. 266 

There are several arguments that would indicate that 
the globular cluster X-ray sources are, indeed, close 
binary systems in which matter is accreted by a neutron 
star. Among these are (1) the results of the analysis 
of the observed blackbody spectra during X-ray bursts 
(Swank et al 1977; van Paradijs 1978; Inoue et al 1981), 
which indicate a characteristic region the size of a 
neutron star; (2) the results of a statistical analysis of 
the positions of the X-ray sources with respect to the 
center of the clusters, which indicate a 2-11 M0 system 
(Grindlay et al. 1982); (3) the recently discovered 
evidence for binary motion of 4U 1915—05 (White and 
Swank 1982; Walter et al 1982), which, like the globular 
clusters, is an X-ray burster. If we accept the picture of 
accretion onto a neutron star as the source of energy 
for the persistent X-ray emission and thermonuclear 
flashes on the surface of the star as the explanation 
for the X-ray bursts, then why is it that no pulsations 
are detected in any of the systems we have examined? 
The simplest answer would be to attribute a weak 
magnetic field to the neutron star. As pointed out by 
Lewin and Joss in their recent review (1981, and 
references therein), it is precisely those neutron stars 
whose magnetic fields are too weak to adequately funnel 
the accreting matter that can undergo thermonuclear 
flashes. If this is the case, then it is even less surprising 
that no pulsations are detected when these sources are 
in their high states, when accretion has increased and 
the funneling is even weaker. 

LEAHY ET AL. 

By definition 

APPENDIX A 

I. THE MEAN POWER 

Ny Pj/2 = £ e2nij{k l)/N(mk - m)(mi - m). 
k,l 

It is straightforward to show that the ensemble average is 

NyiPj}/! = Nm — (m/N) £ e
2nij{k-l)IN , 

k,l 

where we have made use of the fact that, for a Poisson process, 

(mk m¡) = m2 + m , k = l, 

= rh2 , k ^ l, 

and where m is the true (as opposed to the sample) mean. Since 

= N2, 7 = AT, 

(Al) 

(A2) 

(A3) 

(A4) 

then 
NyiPj}/! = 0 , j = N, 

= Nm, j ^ N . 

In performing the FFT we examine all frequencies from j = 1 to AT/2, for which the <P;> are equal. Thus, 

(A5) 

(A6) <P) = (Pj> = 2Nm/Ny = 2, 

where the bar indicates an average over the relevant frequencies, and we have substituted the sample mean, (Ny/N% 
as the best estimate for m. 
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II. VARIANCE OF THE POWER 

First we must calculate 

(Ny
2P?/4)= £ e2nij{k + m-l-n)lN 

k,l,m,n 
mk mt mm mn - 2(mk ml mm + mk m, m„)(l/N) ^ mr 

r 

+ (m/c mm + 4mfe Ml + nil mn){l/N2) Y, mr ms 
r,s 

— 2(mk -h mi)(l/N3) Y mr ms mt + (V^4) Y ^rmsmtmu (A7) 

Now as Yk e2mjklN = 0, ; ^ 0, and there is such a sum in all terms except the first in equation (A7), these terms 
vanish. Next we note that the ensemble average 

(mkm,mmmn} = ôklmn /i4 + (ôn
klm + d'£ln + ôl

km„ + ôlm)n3 + (ôklôm„ + ôkmô,„ + ôknölm)ß2
2 

+ (ôZn + til + à'k: + óti + + <5" K fil + ôk,myi. 

Here (5|Jfe means i = j = k =£ l, ô\km means l = m ^ i ^ k, k ^ l, etc., and 

= <to) = m , H2 = <w2> = m2 + m , 

= (m3) = m3 + 3m2 + m , = <m4) = m4 + 6m3 + lm2 + m , 

for a Poisson process. Using equations (A8) and (A9), we find, after some computation, 

(N2(P2y/4) = mN + 2m2N2 , j # N/2 

= mN + 3m2N2 , j= N/2 . 

Thus, the variance is 

Var (Pj) = (Pf} - (Pj)2 

— 4(1 + 1/Ny), jïN/2 

= 4(2 + 1/iVy), j = N/2. 

(A9) 

(A10) 

(All) 

III. THE DISTRIBUTION OF THE POWER 

Having derived the mean and variance of the power, it now remains to derive the underlying probability 
distribution. To do so, we write 

cij = 2 e2n,JklN(mk — m)= Aj + iBj, 

where Aj and Bj are real. It is straightforward to show that 

(Ajy = (Bjy = o, bN/2 = o, 

Var (Aj) = Ny/2 , ; = 1, 2,..., 1V/2 - 1 , 

= Ny, ; = N/2 , 

Var (B,.) = ^y/2 , ; = 1, 2,..., iV/2 - 1 , 

= 0 , j= N/2, 

and therefore, 

Pj = 21aj\2/Ny = Aj/Var (Aj) + Bj/Vzr (Bj) 

and 

(A12) 

(A13) 

(A14) 

Pm/2=\a2
NI2\/Ny = A2,2/VM(Am). (A15) 

At this point we appeal to the central-limit theorem, which implies that the Aj and Bj are normally distributed 
since they are the sum of a set of random variables. In this case the right-hand side of equation (A14) is, 
by definition, a yj random variable, and the right-hand side of equation (A 15) is yl. If we now sum over M 
experiments, there will be 2M terms on the right-hand side of equation (A 14) and M terms on the right-hand side 
of equation (A15). Thus the PjJ = 1, 2,..., N/2 — 1 will be xlM and PN/2ß will be We emphasize that one must 
be careful to treat the / = N/2 term separately. 
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APPENDIX B 

In the absence of pulsations, or any secular trend, the counts in each bin of a light curve obtained by folding 
at a given pulse period are Poisson distributed, with mean and variance best estimated by the mean number of 
counts per bin, m. Typically in our experiments m is quite large, of the order of 2000 or more. In this case, the 
number of counts in the ith pulse phase bin m* can safely be assumed to be normally distributed with their mean 
equal to their variance. If the are normally distributed, then the statistic S, 

n 
S ^ {mi ^expected) /^expected 9 

i=l 

is ^-squared with n — 1 degrees of freedom. In our data, although the mean count rate should be constant in the 
absence of pulsations, the integration time might vary from bin to bin because of the gaps. Thus, Ri = mi/Th and 
^expected = ^7], where R = Ny/T, with T the total integration time. Substitution of these relationships into equation 
(Bl) leads directly to equation (12) in the text. 
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