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ABSTRACT 

The formation and dynamical evolution of flat superclusters (SCs) out of adiabatic perturbations 
of the ZeTdovich type are studied by means of V-body simulations in an Einstein-de Sitter universe, 
and by an approximate model in an open universe. A nondissipative formation scenario, in which 
galaxies or other substructures form prior to the collapse of SCs from small-scale perturbations, is 
found to be compatible with the observed flattening of the Local Supercluster (LSC) and of external 
SCs, and with their pancake-halo structure. In the best fitting model the LSC has collapsed in one 
dimension only recently, where 20-50% of the galaxies have crossed the plane by now, corresponding 
to a caustic at 0 < z < 0.5. The flattening is found to be nontransient even with no dissipation, and is 
expected to become even more pronounced for quite a few collapse times until rich clusters 
determine the thickness of the pancake or until possible turnaround in the SC plane. The dissipative 
pancake scenario, in which galaxies form due to the SC collapse (possibly inside a halo of massive 
neutrinos), leads to a too flat distribution of galaxies, but this may be an artifact of the idealized 
initial conditions assumed here. 

An approximate model which is based on the formalism of Zel’dovich before the first collapse, and 
makes use of adiabatic invariants at later stages, agrees well with the numerical simulations, and 
provides a useful tool for the study of the postcollapse evolution of SCs. 
Subject headings: cosmology — galaxies: clusters of — galaxies: formation 

I. INTRODUCTION 

Observations indicate that galaxies and clusters are 
embedded in 1015-1016 M0 superclusters (SCs), which 
commonly consist of flat central components that ex- 
tend to a few tens of Mpc along their long axes, but are 
only a few Mpc thick (see an extensive review by Oort 
1982). The progenitors of SCs are believed to be primor- 
dial, adiabatic density perturbations in which radiation 
and matter are perturbed alike. Adiabatic perturbations 
on scales smaller than a critical mass, A/^ ~ lO15 M0, 
have been damped out either by photon diffusion and 
viscosity prior to the plasma recombination if the uni- 
verse is dominated by baryons (cf. Silk 1968; Peebles 
and Yu 1970), or alternatively by collisionless damping 
of relativistic neutrinos if they have a mass of - 30 eV 
and they dominate the universe (cf. Bond, Efstathiou, 
and Silk 1980; Doroshkevich etal 1981). The smallest 
among the adiabatic perturbations that have survived 
the damping, which presumably had the highest ampli- 
tudes, were the first to grow and eventually form large- 
scale SCs. The collapse of such a proto-SC was likely to 
proceed in one dimension first, because of initial aniso- 
tropies (Zel’dovich 1970; Doroshkevich 1970) and their 
strong amplification during the collapse (Lynden-Bell 
1962; Lin, Mestel, and Shu 1965; Oort 1970; Icke 1973), 
leading to a thin, highly dense sheet of material (caustic) 

at some finite time, tc, which may still be expanding in 
the orthogonal directions. 

The study of the formation and dynamical evolution 
of SCs is guided here by the question of the origin of 
galaxies and other substructures: were they formed as a 
result of the collapse of SCs, or independently, prior to 
that collapse? The former is advocated by Zel’dovich 
and his colleagues (cf. Sunyaev and Zel’dovich 1972; 
Doroshkevich, Shandarin, and Saar 1978) who suggest 
the formation of pancakes that stay thin due to gas 
dissipation. The pancakes, accreting more gas and being 
compressed and heated by shocks, eventually frag- 
mented, and galaxies were formed in a very thin layer 
with very low normal velocities. A fashionable version of 
this scenario assumes that these dissipative pancakes 
form in the potential wells of dissipationless halos made 
of ~ 30 eV neutrinos (cf. Doroshkevich etal. 1981). The 
alternative picture suggests that galaxies were formed 
independently, i.e., from isothermal perturbations in the 
baryon density on smaller scales (cf. Peebles and Dicke 
1968; Peebles 1974; White and Rees 1978), or, as may 
be suggestive in recent theories of the early universe, 
from adiabatic perturbations that may arise on galactic 
scales if the universe is dominated by exotic ~ 1 keV 
collisionless particles such as gravitinos, photinos, or 
right-handed neutrinos (Bond, Szalay, and Turner 1982; 
Blumenthal, Pagels, and Primack 1982). If a collapsing 
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SC was already made of such discrete bodies that inter- 
act mostly via gravitation, there was much less dissipa- 
tion associated with the collapse, and the resultant galaxy 
distribution is expected to be somewhat thicker, with 
higher normal velocities. Note further than if galaxy 
formation was triggered by the SC collapse, it should 
have happened before z ~ 3 as required by lower limits 
on the ages of galaxies (e.g., from the range of quasar 
redshifts, and from evolutionary models of galaxies and 
star clusters), while there is no such requirement on the 
dynamical age of SCs in the nondissipative scenario. 
Hence, the observed properties of SCs may help us to 
distinguish between the theoretical scenarios for galaxy 
formation. 

The approximate formalism of Zel’dovich (or alterna- 
tively the homogeneous ellipsoid approximation; see 
White and Silk 1979) allows one to follow the evolution 
semianalytically with a reasonable accuracy through the 
linear growth and up to tc, but it breaks down after tc 

when mixing occurs (cf. Doroshkevich et al. 1980). In 
order to study the postcollapse evolution, we have per- 
formed a series of numerical experiments based on a 
three-dimensional V-body code, which we then compare 
with a simple analytical model. This model is used to 
generalize the results. The experiment simulates a dis- 
sipationless scenario, but it can as well (but with some 
caution) be interpreted as simulating the dissipative 
scenario by identifying a proper dissipative pancake 
component at tc (when galaxies are assumed to form 
dissipatively), and following its subsequent dissipa- 
tionless evolution inside a massive halo (of neutrinos?). 

In the present paper we focus on the global shape of 
SCs, which is their most reliably observed property. It 
becomes clear at a first glance that the disk-halo struc- 
ture of SCs (e.g., 60% of the galaxies are in a flat 
component and 40% are in an extended, spherical halo 
in the Local Supercluster [LSC], according to Tully 
1982) poses a difficulty to the pure dissipative pancake 
scenario; i.e., where do the halo galaxies come from? A 
scenario in which galaxies precede SCs provides a natu- 
ral explanation, but the dissipative scenario can still be 
modified to allow galaxy formation in smaller pancakes 
during the large-scale collapse, and hence remove that 
difficulty. 

The two scenarios are confronted here with the ob- 
served flattening of the LSC (cf. de Vaucouleurs 1978) 
which has been measured by Yahil, Sandage, and 
Tammann (1980) and by Tully (1982), and with pre- 
liminary estimates of apparent flattening in external 
SCs. It is found that a nondissipative scenario, which 
starts off with probable initial conditions, provides a 
pancake flat enough that it is not transient but rather 
stays very flat as long as expansion goes on in the 
pancake plane. In the best fitting model the LSC is 
young: it has collapsed to a caustic between z = 0.5 and 
now, and will become flatter in the future. The dissipa- 

tive pancake scenario would have led to too flat systems 
if the initial conditions assumed here are not too far 
from reality. 

In § II the formalism of Zel’dovich is summarized, 
and a simple estimate for the postcollapse evolution is 
suggested. The experiment is described in § III, and the 
evolution of flattening is studied in comparison with 
observations in § IV. The analytical model is checked in 
§ V and is applied to an open universe. The results are 
discussed in § VI and summarized in § VII. Further 
aspects of the evolution of SCs, such as the velocity 
fields, the clustering and correlation functions, and the 
influence of the flattening on pecuhar motions, overden- 
sity, and forces in regard to derivations of Œ0, are 
studied in associated papers (see § VII). 

II. EVOLUTION OF ADIABATIC PERTURBATIONS 

a ) Zel ’ dovich ’ s Formalism 

We first summarize the formalism developed by 
ZeLdovich (cf. 1970, 1978) to treat the growth of non- 
spherical, adiabatic perturbations in a Friedmann 
universe. The formalism converges to the conventional 
linear theory in the linear regime, but remains a good 
approximation in the nonlinear phase as well until the 
collapse to a plane. 

The position of every particle in space (i.e., Eulerian 
coordinates), r, is given as a function of its comoving 
position (i.e., initial or Lagrangian coordinates), q, and 
of time, 7, by 

r = a{t)[q-b(t)-ill(q)]. (l) 

The first term corresponds to a Hubble expansion, while 
the second term describes the displacement of the par- 
ticle from its unperturbed position. The split to a spa- 
tial-dependent part, \K0), and a time-dependent part, 
b(t), is found to be a good approximation during a 
one-dimensional (ID) collapse. The spatial perturbation 
is assumed to be of the potential type, ^ with no 
rotation. The function b{t) characterizes the growing 
amplitude of the perturbation in the growing mode. On 
requiring mass-conservation and Poisson equation, one 
obtains from the zeroth-order equation and the conven- 
tional rate of change of the universal, dimensionless, 
length scale a(t), and from the first-order equation an 
approximate expression ior b(t)\ 

bcc [l +2.5ñ0z/(l + 1.5fí0)]
_1, (2) 

where ti0 is the present universal density parameter and 
z is the cosmological redshift. This expression reduces to 
the familiar linear growth rate in an = 1 universe, 
b<x t2/3, and it approaches a constant in an open uni- 
verse after 1 + z ~ £2(7!. The velocity of each particle is 
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derived from equation (1) to be 

ir={a/a)r- ab^iq), (3) 

in which the first term corresponds to the Hubble flow 
and the second term describes the pecuhar velocity 
(which does not exist in an isothermal perturbation). 
The local density at the neighborhood of each particle is 
given by the reciprocal of the Jacobian 

p{q,t)cc[àei{dr/dq)]~\ (4) 

which is related to the deformation tensor <7/y = 
d^/idqidqj) via dr^dqj = a^ij - b d^). The as- 
sumption of a shear perturbation with no rotation im- 
plies that the deformation tensor is symmetric and 
therefore can be diagonalized with principal axes q¿, 
z = 1,3. In the diagonalizing coordinates one obtains 

p(?, 0 = p(0[i-*(0^1(9)] ~l 

x [i-6(OM0)r1[i-í>(OM0)r,> 

(5) 

where p is the mean density in the universe, and = 
d2<p/dq? are the eigenvalues. A positive corresponds 
to an eventual collapse in the zth direction. Assume 
À! < X2 < A3. If À3 is positive and has a local maximum 
X3 max at some particle, the local density at this particle 
grows to infinity at a finite time tc defined by 1- 
6(/c)A3 max =:: 0. This is due to intersection of trajecto- 
ries of neighboring particles along the q3 axis. The time 
tc is referred to as the moment of caustic formation, or 
focusing. If X2<X3, the perturbation along the other 
two axes is still finite at tc. If the eigenvalues are indeed 
correlated over the coherence length of the perturbation, 
one expects the formation of a planar structure on that 
scale, normal to the r3 axis, which can be expanding, or 
contracting more slowly, along the orthogonal axes. It is 
highly probable that X3 is indeed large enough relative 
to X2 and so that the collapse would be essentially 
one-dimensional (Doroshkevich 1970; see § VI). The 
density profile at early stages is then 8p/p ^ b(t)X3(q3). 

b) Adiabatic Invariants 

After a particle crosses the plane, it goes on oscillat- 
ing about it in the r3 direction, which we refer to as Z 
hereafter. We would like to estimate how the amplitude 
of this oscillation, Zw, changes in time due to the 
expansion in the orthogonal directions. When the period 
of oscillation, T, becomes small in comparison with the 
time scale associated with the expansion, there is an 

adiabatic invariant given by 

fT • 
/ Z1 dt^ const., (6) 

•'o 

which can guide us to a rough estimate. 
In order to calculate it, let us assume for simphcity 

that the system is symmetric such that p(r) = p(|Z|). 
The gravitational field is directed toward the plane and 
is given by 

p(Z) = ±2t7G (Z p(Z) dZ. (7) J-z 

A simple scaling argument is as follows: if h, v, and p 
are some mean values of Z, Z, and p(Z) at a time t, 
equation (6) requires that v2T~ const.; i.e., hv - const, 
because T~h/v. Since v~p,T, the thickness is ex- 
pected to behave in time like 

/z oc p-1/3 cc jR2/3, (8) 

where R is the length scale in the plane. When the 
pancake expands, it becomes thicker, but the relative 
flattening h /R) becomes more pronounced. 

More precisely, consider now two simple limiting 
cases for the distribution of matter in the region |Z| < 
\Zm\ that creates the potential well under which our test 
particle oscillates. 

i) The matter is concentrated in a thin disk: p(Z) = 
aôDirac(Z)- In that approximation the field is constant 
in each side of the plane, i.e., p = ±27ro. The maximal 
velocity and the period of oscillation are related to Zm 

via Z(Z = 0) = ( —2pZw)1/2 and T= 4(-2Zw/p)1/2, 
and the adiabatic invariant is 

const. = fT[z(0)-\- pt] 2 dtcc Z^/2<x1/2. (9) Jo 

The surface density, a, varies in time like 

a(t)cxR(t)-2M(Zm,t), (10) 

where M(Zm,t) is the mass in the region |Z|<|Zm|, 
which varies during the gradual collapse due to mixing 
of layers. Hence, the height scale varies like 

Zm(t)«R(t)2/3M(Zm,ty
v\ (11) 

ii) The matter is spread in a homogeneous cylinder: 
p(Z) = const. Here the gravitational field p(Z) = 
±477-(jpZ induces a motion of a harmonic oscillator 
with an angular frequency co = (47rGp)1/2. The adiabatic 
invariant is then 

const. = fT(Zmœ cos ot)2 dt cc Z„pl/2. (12) Jo 
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The density p varies in this case like 

p{t)*R{ty2Zm{t)-'M{Zm,t), (13) 

so that again, as in the previous case, 

Zm(0ccJR(/)2/3M(Zm,0'
1/3- (14) 

At some stage after tc we expect the above approxi- 
mation to hold, and M(Z) to reach a constant asymp- 
totic value. Thus, as long as the pancake expands, the 
axial ratio is expected to decrease slowly in proportion 
to 

Zm(t)/R(t)xR(ty'/3. (15) 

If the expansion in the pancake plane is unperturbed, 
one has R(t) o: a(t), which reduces to R(t) cc /2/3 in an 
Einstein-de Sitter universe, such that Zm/R<x t^2/9. 
We shall come back to this approximation in § V, after 
presenting the numerical experiment and results. 

The estimate (15), which explains the long-lived flat- 
tening that shows up in the Af-body system when it is 
“observed” in a cosmologically expanding frame of ref- 
erence (see Fig. 1 below), gives the illusion that the Z 
velocities have been suppressed by some fictitious dis- 
sipation. Indeed, if = r/a is the position of a particle 
in the expanding frame, the acceleration in this frame, r\, 
has a cosmological drag term, —là/ai], which tends to 
suppress the peculiar velocity, i.e., make the particle 
comove with the general Hubble expansion at some new 
position. In the case of a one-dimensional adiabatic 
perturbation, this drag acts preferentially along the Z 
direction, where the pecuhar velocities are substantial. 
Because of the fact that the initial peculiar velocities 
point toward the X-Y plane, the particles eventually 
settle down closer to it. 

III. THE NUMERICAL EXPERIMENT 

a) The N-Body Code 

The A-body code is based on the integrator developed 
and kindly made available to us by Aarseth (1972). It 
integrates the equations of motion of N particles which 
interact via the softened Newtonian potential 

<p,7 = - - rj)
2+ e]'/2, (16) 

in which ml and r¿ are the mass and the position of the 
i th particle and e is the softening parameter. A fourth 
order polynomial predictor-corrector method is com- 
bined with the scheme developed by Ahmad and Cohen 
(1973) for the separate treatment of the force field due 
to nearby and to distant particles. A detailed description 

Vol. 264 

of the integration method can be found in the two 
references mentioned above. 

N is less than 1000 in our experiments. If we want 
each particle to represent a tightly bound galactic-size 
object in a SC of less than 1000 members, the softening 
parameter imitates the effect of the finite spatial dimen- 
sions of the interacting objects in penetrating colhsions, 
and should therefore be relatively small. On the other 
hand, when using less than 1000 particles to simulate the 
evolution of a physical system with many more particles 
(e.g., massive neutrinos), substantial softening is essen- 
tial in order to suppress the artificial two-body relaxa- 
tion effects that arise in the experiment due to the small 
number of particles. The softening parameter in that 
case should be at least of the order of the mean distance 
between nearest neighbors (see a discussion of two-body 
relaxation under a softened potential in White 1978, and 
references therein). 

The units of the experiment are defined such that 
<7 = 1, the time unit is tc, and the length unit is /c/18, 
where /c is the critical damping length scale dX t = tc {Ic 

is the radius of an unperturbed expanding sphere en- 
compassing the critical damping mass). We have tried 
values of e in the range 0.5 < e < 2. For N = 250 and 
8=2 the two-body relaxation is unimportant until t - 
10ic. 

Integration time steps were chosen so that the range 
of variation of the total energy of the system over tc was 
less than \% of its absolute value. The experiment was 
run on the VAX of the Physics department at Caltech, 
where the first collapse of a 250-body system lasted 
5-10 minutes of computer time. 

b) Initial Conditions 

We start with a small-amphtude, adiabatic perturba- 
tion, originally inside a spherical volume of the critical 
damping scale, which is embedded in an Einstein- 
de Sitter universe. We have in equation (1) 

ö(t) = Z>(t) = t2/3, T = t/tc, (17) 

where the units are chosen such that a(l) = b(\) = 1, and 
the Hubble constant is H(t) = à/a = 2/(3r). 

We consider a first-order perturbation of the form 

'/',(?/) = A;(/c/w) sin (w?,//c), i = 1,2,3, (18) 

for comoving coordinates in the range 

— ^ <7/ ^c- (19) 

Perturbations on other scales are ignored at the initial 
stage (note that similar initial conditions were assumed 
by Doroshkevich et al 1980). The three parameters Kx 

< A2 < A3 determine the perturbations along the three 
principal axes. They coincide with the eigenvalues X^g,) 
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of the deformation tensor for q¿ = 0. Their ratios de- 
termine the asphericity of the perturbation, while their 
absolute values just scale the times of collapse. We chose 
A3 = 1 for the Z perturbation, and try two alternatives 
in the plane: an unperturbed case with Aj = A2 = 0, and 
a slightly bound case with Ai = A2 = 0.125. In both 
cases tc is much smaller than the mean crossing time in 
the plane. 

On defining Qi = ^qi/lc, one finds in equation (1) 
that for T < 1 the perturbation evolves according to 

>•, ( 0 = (4 A) t2/3(6, - A,-A3 sin g,), (20) 

and according to equation (3) the velocity field varies as 

'ri(T) = 2/(3t)[/-3(t)- A,(/c/w)t4/3 sin Qi], (21) 

The initial density perturbation has the quite general 
shape 8p/p = A3t

2/3 cos ß3 for — tt < ß3 < 77. 
We follow the perturbation analytically until rin = 0.25 

(^inÄ 0.4), when the numerical simulation starts. N 
identical particles are distributed homogeneously in a 
sphere of a comoving radius q = lc. Their comoving 
positions are determined at random or, alternatively in 
some cases, on a cubic grid in order to suppress Poisson- 
ian clustering on small scales. The initial perturbation at 
rin is set by perturbing the positions and the velocities 
according to equations (20) and (21). 

In an £2 = 1 universe the mass of the system should be 

M=(4‘n/3)pctil(t)[a(t)lc]\ (22) 

where pcrit(0 = 3H(t)2/($7rG) is the critical density at 
time t. In the units of the experiment we have m = 2Pc/9. 
We choose arbitrarily /c = 18 and have M = 1296. The 
mass unit of the experiment corresponds to 

m = 4.82 1012 MQh2l¡s, (23) 

where = a0lc/\S Mpc corresponds to the comoving 
damping length scale normalized to the present. 

Various cases were simulated, in which the initial 
parameters were chosen as in Table 1. The situation 
X1,X2«:X3 is highly probable (see § VI), and was 
therefore chosen to be our standard study case with 
A1 = A2 = 0, A3 = 1. Exceptions are cases N, O, and P 
that were constructed to resemble the observed devia- 
tion from a Hubble expansion in the plane of the LSC 
(cf. Aaronson et al. 1982 and references therein), in 
which the systematic infall velocity at the Local Group 
toward Virgo (in comoving coordinates), vp, is between 
0.1 and 0.5 of the Hubble velocity there, t>H. In those 
cases one has at the edge of the disk « 0.1,0.5 at 
t = 1,5, respectively, and at the half mass radius vp/vH 

«0.2,0.8, respectively. Case O had initially an addi- 
tional density perturbation of 6% of the mass spread at 
random inside the central 0.17 lc radius sphere, which 
was introduced in order to cause the formation of a rich 
cluster at the center of the SC, à la the Virgo Cluster in 
the LSC. For the purpose of the present paper we 
mostly make use of case M, which has 500 particles and 
an initial Poissonian spectrum of subfluctuations. We 
find that the variations of the initial conditions have 
only marginal effects on the eventual global shape in the 
cases studied, so that case M can indeed serve here as a 
study case. 

The various cases were followed till r = 5 or r = 10. 
The positions and the velocities of the particles were 
recorded every At = 0.25, where checks for numerical 
errors were done. These data are later analyzed. 

c) A Dissipative Pancake in a Nondissipative Halo 

The V-body system as a whole provides a natural tool 
for the study of the nondissipative scenario of SC for- 
mation. We can use the same simulations, however, to 
study the dissipative model as well, because after galax- 
ies are formed as discrete objects in a thin pancake, the 
overall dynamics becomes dissipationless. One should 
carefully choose the initial conditions for the pancake 
galaxies right after their formation, and let them evolve 
as an V-body system which is embedded in an V-body 
halo (neutrinos?). Technically, we simply identify the 

TABLE 1 
Initial Conditions 

Model N e Distribution Aj A2 A3 rend 

J .....  250 1 random 0 0 1 10 
K..  250 2 random 0 0 15 
L    250 0.5 random 0 0 1 2.25 
M   500 2 random 0 0 1 5 
N ........ 250 2 random 0.125 0.125 1 5 
O  250 2 grid + core 0.125 0.125 1 5 
P   250 2 grid 0.125 0.125 1 5 
R......... 250 2 grid 0 0 1 10 
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X (Mpc ^|8) 

Fig. \b 

Fig. \d 
Fig. 1.—Edge-on and face-on snapshots of case M at various stages of evolution. The plots are comoving with the Hubble flow. Units are 

those of the experiment. The 20% “dissipative” pancake is displaced to the bottom (*). 

20% particles which have the minimal values of | r31 +1 r31 
at T — 1, and refer to them as dissipative pancake par- 
ticles thereafter. Their evolution is studied separately 
and compared to the evolution of the system as a whole. 
The dissipative pancake initial conditions that are set in 
this way are somewhat arbitrary; the actual degree of 

gas dissipation associated with the collapse and galaxy 
formation, and hence the initial thinness of the pancake 
and its Z velocity dispersion, at r = 1, are unknown a 
priori. By defining the pancake as above we just pick up 
an illustrative example which corresponds to substantial 
dissipation. 
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Fig. 1/ 

IV. FLATTENING IN THE NUMERICAL EXPERIMENT 

Edge-on and face-on projections of model M at vari- 
ous time stages are shown in Figure 1 in cosmologically 
comoving coordinates. Slight flattening is already visible 
at T = 0.25. At T = 1, when about 20% of the particles 
have collapsed to the plane, the “galaxies” of the dis- 
sipative pancake are identified and marked by an 
asterisk. The dissipative component is displaced from 
the center to the bottom of the picture. The subsequent 
snapshots illustrate the remarkable flattening of the 
system (even with no dissipation!) as it expands in the 
plane. Note that the absolute thickness of the pancake 
grows after the first collapse, as is expected from a 
nondissipative system. It is the relative flattening (i.e., 
the axial ratio) that becomes more and more pro- 
nounced. 

Local clustering develops on a time scale which de- 
pends on the model parameters. Two rich clusters and 
several groups develop in case M, in a qualitative simi- 
larity to known SCs. At late stages, the sizes of the rich 
clusters may become comparable to the thickness of the 
pancake so that they affect the global flattening. 

a) A Comparison with the LSC 

i) Flattening by Latitude 

First, we measure the flattening in our V-body sys- 
tems according to the method used by Yahil, Sandage, 
and Tammann (1980 [hereafter Y ST], their Fig. 13) for 
the LSC. “ Galaxies” are counted in bins of A sin ß = 

0.05, where ß is the latitude as measured from the center 
of the SC. YST sample of bright galaxies ( ~ 13th mag) 
is based on the Revised Shapley-Ames Catalog (Sandage 
and Tammann 1981). Based on the low, mean peculiar 
velocities in the LSC (see also Rivolo and Yahil 1982; 
Tully 1982, in support of this assumption), they were 
able to deduce the approximate three-dimensional posi- 
tions of the galaxies, directly from their redshifts, on 
assuming a pure Hubble flow and excluding galaxies 
with high peculiar velocities in the 6° core of the Virgo 
cluster (87 galaxies) and in Fornax (13 galaxies). The 
sample which is analyzed in their Figure 13 contains the 
416 galaxies with Virgocentric velocities of less than 
1000 km s-1, which is the typical radius of the flat 
configuration in the LSC. 

The V-body system is analyzed in a similar way, and 
the corresponding histograms are shown in Figure 2 
{solid lines) at various time stages. They are normalized 
to the total number of 416 particles in YST. The possi- 
ble dissipative pancake component is shown at late 
stages {shadowed area). The observed histogram of YST 
is shown in the background for comparison {dashed 
line). The V-body system itself develops a bicomponent 
structure which is typical of most SCs (cf. Tully 1982): a 
thin, condensed sheet and an extended, dilute halo. This 
structure is formed with no dissipation, and is preserved 
for a long time. Even if one adds (unrealistically) all the 
100 excluded galaxies of the Virgo core and Fornax to 
the central bin of YST, it is clear that after r = 1, the 
flattening of the simulated system becomes more pro- 
nounced than that of the observed SC. The nondissipa- 
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Fig. 2.—Counts of particles in latitude intervals as measured from the center of the SC at various time stages (solid line). The counts of 

YST in the LSC are shown for comparison (dashed line). 
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381 SUPERCLUSTERS AS NONDISSIPATIVE PANCAKES 

live histogram seems to be comparable to the observed 
one near r = 1, but the dissipative pancake is always 
much flatter (at r = 5, the central bin of the pancake 
would contain 300 galaxies by itself when normalized to 
416 total!). 

A simple parameter that quantifies the flattening is 
the half-width of a normal curve that is fitted to the 
histogram, i.e, the latitude ß that encompasses 68% of 
the mass. This parameter has a value of sin ß « 0.5 in 
Figure 13 of YST, and it reduces to sin ß « 0.4 if the 
Virgo core and Fornax are added to the central bin. The 
values of sin ß in four of the numerical experiments are 
shown in Figure 4 a as a function of the expansion 
parameter a. They are evaluated separately for the non- 
dissipative system as a whole and for the dissipative 
pancake. The flattening of the nondissipative system 
resembles YST between 0.5 < a < 1, i.e., slightly before 
the first caustic forms. It drops below the observed value 
at later times. No significant difference shows up be- 
tween the global flattening of the different cases—for 
example, neither the strength of local interactions and 
the degree of clustering (compare cases R, M, J) nor the 
small peculiar infall velocity in the LSC (case N) has an 
important effect on the above conclusion. On the other 
hand, local clustering enhances the thickness of the 
originally very thin dissipative pancake (compare J and 
N with M and R), but it never grows above sin ß = 0.1. 
As a prediction for the dissipative theory we can specify 
that the flattening, sin ß, of the pancake relative to that 
of the halo is typically 0.025 before local clustering 
becomes important, but it finally grows above 0.05 due 
to strong clustering. 

In order to make a more realistic comparison, one 
should take into account the fact that the flat compo- 
nent of the LSC is not as perfect a plane as our 
simulated one. Tully (1982) estimates, however, that the 
local thickness is roughly two-thirds of the global thick- 
ness, so that the warping of the pancake is not too large. 
Hence, our numerical flattening should be modified only 
by a factor smaller than 1.5. Our quahtative conclusion 
would not be affected, but the range for the preferred 
age of the LSC would become 1 < a < 1.5. 

Another complication is due to the fact that the count 
of galaxies in latitude bins is affected by the density 
profile along the plane. The LSC has the Virgo Cluster 
as a density enhancement at its center (approx. 20% in 
mass)—a feature that is not pronounced in the simu- 
lated system except in case O. The resultant steeper 
density gradient in the LSC may be responsible for some 
smearing of the peak in the latitude histogram of YST. 
The alternative measure of flattening which is discussed 
next is not directly affected by that density gradient 
along the plane. 

ii) Flattening by Parallel Layers 

Here, we measure the flattening in a way which is 
comparable to that used by Tully (1982, Fig. 4) in his 

detailed study of the shape of the LSC which is based on 
the Atlas and Catalog of Nearby Galaxies (Tully and 
Fisher 1982). Tully, like YST, has reproduced the three- 
dimensional distribution of galaxies directly from their 
redshifts, on assuming low-velocity dispersion out of the 
6° radius core of the Virgo Cluster. Galaxies are counted 
in layers of constant thickness AZ, which are parallel to 
the plane of the supercluster. The histogram in his 
Figure 4 is based on those galaxies in the catalog which 
are brighter than —18 mag+ 5log/*, and are confined 
by the Cartesian SC coordinates (in Mpc h~x) |SGX| < 
10; 0 < SGY < 15 (where the Milky Way is at the origin 
and the center of the Virgo Cluster is roughly at 
-2.6; 10.7;-0.4). There are 334 such galaxies inside 
|SGZ| < 10, but the 62 galaxies in the 6° radius core of 
the Virgo cluster are excluded from his histogram. For 
the comparison with our numerical results we add them 
in Figure 3 {dashed line) to the four bins centered on 
SGZ = —0.5 (24 galaxies to each of the two inner bins, 
and 7 to each of the two outer bins). 

The corresponding histograms that describe the flat- 
tening of our V-body system in various stages of evolu- 
tion are shown in Figure 3 {solid lines). Recall that the 
length unit of the experiment, /, corresponds to 1 Mpc 
/c/18 Mpc, where amlc is the initial radius of the system 
at ain = t¿/3. The present radius of the flat component 
of the LSC is roughly 10 Mpc h~x (cf. YST). If we 
assume an unperturbed Hubble flow in the plane, it 
indicates that a0/c « 10 Mpc h~x, so that 7« 0.56 Mpc 
h - xaQ 1 when the experiment is applied to the LSC at 
present, at a stage of evolution given by a0. The V-body 
histograms are here normalized to the total number of 
334 galaxies. The 20% dissipative pancake component is 
shown at late stages {shadowed area). 

It is evident here, as it was in the fit to YST, that the 
flattening of the V-body system is comparable to that of 
the LSC for a~\, and becomes much flatter at later 
stages. This conclusion is not changed if we assume 
instead a higher value for the unperturbed disk radius 
ciqIc (we have tried aQlc = 20 Mpc h~x). 

We define the parameter / to be the axial ratio 

/ = Z(68%)/R, (24) 

where Z(68%) is the normal width of the histogram, i.e., 
the height that encompasses 68% of the mass out to 
a0lc, and R is the radius of the system in the plane 
{R = a0/c if the plane is unperturbed). Figure Ab shows 
the variation of /with the expansion parameter a. From 
the histogram of Tully we deduce the values/ = 0.27,0.21 
for R = 10,20 Mpc h~x, respectively, which are shown in 
Figure 4b. Such values are obtained by the V-body 
system a little before the caustic formation at a = 1. The 
numerical values of /drop below 0.1 at later stages, and 
the flattening obtained for the dissipative pancake is 
again much more pronounced. Thus, our conclusion in 
favor of the nondissipative scenario is confirmed by the 
fits to both YST and Tully. 
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Fig. 3.—As in Fig. 2, where counts are made in parallel layers, and a comparison is made with the counts of Tully (dashed line) 
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SUPERCLUSTERS AS NONDISSIPATIVE PANCAKES 383 

Fig. 4.—Time evolution of flattening as measured by: (a) the 
latitude ß that encompasses 68% of the particles; (b) the axial ratio 
/ that correspond to 68% of the particles; and (c) the rms axial 
ratio of the 60% flat component. 

A third possible measure of the flattening may be the 
rms axial ratio of the system, /rms. Tully finds that 
roughly 60% of the mass in the LSC is confined to a flat 
component which has an rms axial ratio of 1:6. The 
axial ratios /rms of the 60% component of our V-body 

systems are shown in Figure 4 c. The fit to the observed 
value is achieved at a « 1, and the systems maintain a 
much lower value of /rms « 0.07 for a long time there- 
after. 

Here, as in the latitude-bins method, the global flat- 
tening is not sensitive to the variation of the parameter 
values in our different models. In particular, the pres- 
ence of a dominant cluster at the center of model O, 
which is included in Figure 4 c, does not have a signifi- 
cant effect on the axial ratio. (Note that in the grid case, 
R, /rms drops to ~ 0.04 a little before a « 2, where the 
60% component is at maximum collapse, and only later 
recovers the value achieved by the other cases. This is a 
result of the high coherence of the initial perturbation at 
this case, where in the other cases the field is less regular 
and local clustering plays some role.) 

A modification of the simulated values by a factor of 
1.5, trying to account for the warping of the LSC 
pancake, would not affect our qualitative conclusion, 
and would bring the preferred age of the LSC to the 
range 1 < a < 1.5, as before. 

It is worth noting that the high central peak of the 
count in parallel layers is partly due to a radial density 
gradient. If the Virgocentric number density of galaxies 
decreases radially like r~2 (cf. YST), it contributes a Z 
gradient of N(Z) oc AZln (1 -F R2/Z2) to the number 
counts in parallel layers of thickness AZ and radius R. 
Hence, although quite flat, the LSC is not as flat as it 
seems from a first look at Tully’s peak. 

b) A Comment on External SCs 

Quite a few SCs have been identified by now (see 
Oort 1982), but our knowledge of their detailed spatial 
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structures is still poor. We make an attempt here to 
estimate their flattenings from available, incomplete data 
in a very crude way, but keep in mind that this is not 
more than an illustration of what should be done when 
better data become available. This crude estimate is still 
worth doing in order to get a feeling of how flat the 
external SCs are in comparison with the LSC, and to 
make sure that they do not pose a clear stronger require- 
ment on the flattening. The data that have been gathered 
usually consist of the apparent distribution on the sky of 
neighboring galaxies or clusters with similar redshifts, 
and of their radial velocities which are derived directly 
from the redshifts. The interpretation of the latter is 
ambiguous because they may reflect either a Hubble 
expansion, or any other coherent relative expansion or 
contraction, or even a virialized distribution of veloci- 
ties, so that their scatter does not give a straightforward 
indication for the spatial thickness of the SG along the 
Une of sight. We therefore use here only the apparent 
distribution on the sky, which has a straightforward 
interpretation. 

The apparent axial ratio,/ap, is estimated by eye for 
the compact, elongated component which usually shows 
up (probably due to a selection effect where face-on SCs 
do not show up easily on top of the background). The 
long axis is determined first, and the short axis is the 
minimal width that contains a given fraction of the 
objects in a circle which encompasses the compact com- 
ponent. The estimated values of/ap are given in Table 2, 
where the number in the next column corresponds to the 
fraction of objects used to estimate /ap. The estimates of 
Oort (1982) for the flattenings are given for comparison. 
The apparent 70% values for Hercules, 1615+43, and 
1451+22 are similar, with respect to the roughness of 
the estimates, to the /-value deduced from Tully for the 
LSC. Perseus has no halo coverage, so that the estimated 
value of /ap corresponds to a not-well-defined elongated 
component which seems to be pretty flat, although still 
compatible with our nondissipative values of / after the 
collapse (Fig. Ab). The data on Centaurus-Hydra is too 

poor for measuring the 70% /ap. Thus, a rough compari- 
son of our theoretical flattening with the observed ap- 
parent values is tentatively consistent with the general 
conclusion from the fit to the better-studied LSC; i.e., a 
nondissipative scenario can account for the flattening of 
SCs in general. 

When better knowledge of the structure of external 
SCs becomes available, it may become necessary to 
consider a variety of initial conditions in the theoretical 
models, e.g., in order to allow prolate SCs as well. Then 
one should consider projection effects among other 
complications in order to make realistic fits. The present 
stage is much too early for such a detailed study of 
external SCs. 

V. AN APPROXIMATE MODEL 

a) In an Einstein-de Sitter Universe 

Our intension here is to construct a simple analytical 
model for the nondissipative evolution, based on the 
theoretical estimates of § II, that will approximate the 
results of the numerical experiments for Q0 = 1. Such a 
model will enable us to extrapolate the results to other 
cases such as an open universe. We assume that each 
particle behaves according to the formalism of Zel’dovich 
until it crosses the plane at a time tp(q) that corresponds 
to ap(q) (the simulations of Doroshkevich et al. 1980 
indicate that the formalism of Zel’dovich remains a 
reasonable approximation until roughly 70% of the par- 
ticles have crossed the plane), and that thereafter it 
oscillates between ± Zm(a) subject to the adiabatic 
invariant. When averaging over many particles after ap, 
we simply consider each particle as if located at the 
mean height of its oscillation, i.e., Z = fZm or Z = 
(2/tir)Zm if the gravity is induced, respectively, by a thin 
disk or by a homogeneous cylinder as in § II 

At early stages the height is given by equation (1), i.e., 

Z(<h,a) = (lc/”)a(q3-a\l'3), (25) 

TABLE 2 
Apparent Flattening of External Superclusters 

SC Source Objects Remarks (%) /ap Oort 

Centautus-Hydra ... Chincarini and Rood 9 galaxies ... 100 0.2 0.25 
1979, Fig. 3 

Perseus   Grzgovy et al. 141 galaxies Compact, elongated ... 0.1 
1981, Fig. 1 component only 

Coma  ... ... ... ... ... 0.25 
Hercules   Tarenghi et ai 126 galaxies Elongated component 60 0.2 

1979, Fig. 2 and halo 70 0.3 
1451+22   Ford et al. 17 clusters ... 100 0.4 0.5 

1981, Fig. la and groups 70 0.25 
1615+43..  Ford et al. 11 clusters ... 100 0.4 0.2 

1981, Fig. 16 and groups 70 0.15 
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until reaching maximum height at an epoch 

am = 0.5q3/xp3. (26) 

Later, the particle crosses the plane at 

ap = ^3/^3 ? (27) 

with a normal velocity 

Zp=-jqY2^Y2. (28) 

The amplitude of the oscillation at that moment, 
Zm p, can be evaluated in the two Hmiting cases dis- 
cussed above. A lower limit is obtained on considering a 
maximal infall situation in the thin disk approximation, 
i.e., on assuming that all the mass is in a disk. This limit 
is 

Zm,p = Zp/(2p,p) = Zp/(4irGap), (29) 

with the surface density limited by 

aP<Ppap2lo (30) 

with pp being the mean density of the universe at ap. An 
upper limit is obtained in the homogeneous cylinder 
approximation with no infall, i.e., on considering only 
the mass that was originally interior to our test particle. 
This limit is now similar: 

Zm,p = Z/,/wp = Zp
2(4wC7a;,), (31) 

with the effective surface density limited by 

°P
> PpUpW/2- (32) 

The flattening parameter / = Z(6%%)/R is then 
evaluated on substituting q3 = 0.5/c and choosing = 
(lc/*n) sin(7rg3//c) as in the experiment. One obtains 

0.065tf-1/3 </< 0.157a~1/3. (35) 

The model values of / as derived from equation (25) 
before ap(6S%), and the limits of equation (35) there- 
after, are plotted as dotted lines in Figure 5a, in com- 
parison with the results of the numerical experiments. 
_ In order to calculate the latitude flattening parameter, 
ß(a) in the model, one needs the fraction of mass in 
latitudes lower than ß, i.e., 

M(ß,a) = (/c4w/3) 1 ('cdqu2iTqnq3(qn,ß,a), 
Jo 

(36) 

where ql2 = (qf + ^2)1/2 is the comoving radius in the 
plane, and q3 is the comoving height which corresponds 
to a latitude ß at qn, at an epoch a. The quantity q3 is 
obtained by solving numerically the equation 

tan ß = Z(q3, a), (37) 

in which the right-hand side is given by equation (25) if 
a< ap, or by either side of equation (33) if a > ap. The 
normal width, ß(a), which is obtained for M(ß,a) = 
0.68, is plotted in Figure 5b, in comparison with the 
results of the numerical experiments. 

Figures 5 a and 5 b show a pleasant agreement be- 
tween the limits obtained by the approximate model and 
the simulation results in all cases. The simple model is 
hence found to be a useful approximation which can be 
applied to other cases as well. 

Hence, the subsequent evolution of the mean height of 
each particle, which obeys equations (11) and (14) based 
on the adiabatic invariant, is limited by equations 
(29)-(32) to 

2 #3 #3 
9 lc ^ 

(33) 

Recall that the long, unperturbed axis expands like 
R = lca, so that the axial ratio for particles with comov- 
ing height smaller than q3 decreases like 

2 
9 

Z(g3,a) 

*(«) 

b) In an Open Universe 

In Appendix A we calculate /(a) by the approximate 
model in an open Friedmann universe. The results in the 
two Hmiting cases are shown in Figure 6, where no 
specific value has been assumed for the present value of 
£20. The cosmological time is expressed alternatively by 
the expansion parameter a or by the density parameter 

= fi^l + z)/(l + Œjz), which is normalized arbitrarily 
to ßj when a = 1. Each of the five curves is characterized 
by its collapse epoch ac which is given by the value of a 
at the intersection of the curve with the horizontal Hne 
that marks the flattening at tc (from eq. [A4]): 

(38) 

< JLii 
3iir2 K 

(34) 

Each curve can alternatively be associated with the 
amphtude of the perturbation b(z) at some given epoch 
[e.g., bx/{\4- £lxZr), where zr corresponds to the plasma 
recombination epoch]. 
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Fig. 5.—Limits on the flattenings that are derived by the analytical model are compared with the results of the numerical experiments 

ii (t) IT) 

log a(t) 

Fig. 6.—Model flattening,/, in an open universe 

A way to fit a model to an observed value of flatten- 
ing,/0, is as follows: Draw a horizontal line/ = f0. Then, 
for any given value of £20, draw a vertical Une íl = Ü0 

(i.e., a = a0). A model curve which passes through the 
intersection point of those Unes indicates the fitting 
model. 

The flattening observed by Tully (f0 > i) and by YST 
indicate that f0~fc. Hence, the fitting model is still 
collapsing near its first caustic formation for any value 
of Œ0, where models which are in a later stage of 
evolution are much flatter. For a smaller value of Q0, 
the observed flattening f0 is obtained by a SC in 
a shghtly earUer stage of evolution; i.e., the present 
flattening in a given stage of evolution is a Uttle 
more pronounced if the universe is open, in agreement 
with the results of White and Silk (1979) and of 
Doroshkevich et al. (1980). Intuitively, this is due to the 
fact that the pancake expands faster at late stages in an 
open universe [tf(/) oc í after l + z-fij-1], where un- 
bound perturbations stop growing and are rather 
“ frozen” relative to the rapidly expanding background. 
It is possible in this case that only part of the proto-SC 
is bound and has collapsed to a pancake prior to 1 + z ~ 

while the rest, now in the SC halo, is expanding 
with the Hubble flow forever (see Dekel 1982/?). Thus, 
the general conclusions which were derived from the 
numerical experiment in an Einstein-de Sitter universe 
are vaUd in an open universe as well. Simulations of 
superclusters in an open universe are in progress (Aarseth 
and Dekel 1983). 
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VI. DISCUSSION 

a) Simplifying Assumptions 

i) Tidal Interactions 

The system was treated as isolated from its surround- 
ings. It is pretty clear, on the other hand, that the 
universe is not yet homogeneous on the scale of SCs (cf. 
Davis, Frenk, and White 1982; Kirshner etal 1981), 
and therefore mutual tidal interactions between SCs 
may have some dispersive effects on the individual 
systems. The fractional change of \|/(g) due to a tidal 
interaction with a comparable object at a distance d is of 
the order of ZR2/d3. Since we usually expect Z< R< 
2d, the effect should be small. In particular, there are no 
obvious neighbors close enough for their tidal fields to 
have had a strong effect on the LSC. 

Binney and Silk (1979) have shown that the resultant 
shape of systems which were subject to tidal interactions 
in their linear stage is prolate. Tully (1982) indeed 
identifies clouds of galaxies in the halo of the LSC that 
are prolate and point toward the Virgo Cluster—a pos- 
sible indication for tidal interactions inside the LSC— 
but the main body of the LSC is oblate, supporting the 
assumption of no significant tidal interactions with ex- 
ternal objects. 

Cosmological simulations of a larger region of space 
that encompass a few SCs would make clear whether or 
not SCs may be approximated by isolated systems, but 
it seems to be at least a reasonable first-order approxi- 
mation. 

ii) Initial Spectrum of Perturbations 

The initial perturbation was assumed to be coherent 
on the proto-SC scale with no subcondensations apart 
from the y/Ñ Poissonian noise in the random distri- 
bution cases. This latter noise, although being quite 
pronounced in the cases with small N and e (e g., /), had 
no important effect on the final flattening, but it is to be 
noted that its initial amplitude did not reach that of the 
global perturbation near the SC scale in any of the 
models. Hence, the initial spectrum of perturbations is 
assumed to be truncated below this scale. The adiabatic 
component is indeed expected to have a sharp cutoff at 
the critical damping scale (cf. Peebles and Yu 1970; 
Press and Vishniac 1980; Silk and Wilson 1980; Peebles 
1981/?; and, for the case of massive neutrinos, Bond and 
Szalay 1981). The isothermal component, which may be 
responsible for galaxy formation, is assumed here to be 
still linear near the damping scale when the SC col- 
lapses. 

This latter assumption is supported by recent mea- 
surements (Press and Davis 1981; Kaastra and van 
Bueren 1981; Bahcall 1981), which indicate that the 
systematic variation of the present mean density in 
clusters of galaxies of various richnesses and sizes is 

small (our interpretation of the two first measurements 
are that MocR3orMaJR2, respectively, where M and 
R are the masses and radii of the clusters). This means 
that clusters of all sizes, from very small groups to rich 
clusters, have collapsed at roughly the same epoch, and 
hence had started as density perturbations of similar 
amplitudes at recombination. Thus, the contribution of 
the isothermal component, ôis, to the amplitude of the 
perturbations on galactic scale (MG ~ 1012 M0) was not 
much larger than that of the adiabatic component, ôad, 
on SC scale (MD ~ 1015 Af0). If ôis oc M~ ais (a = i + 
w/2, where the power spectrum is (ISJ2) oc &") right 
after the recombination epoch, the observed large-scale 
fluctuations of the microwave background radiation (di- 
pole and quadrupole) require that (Silk and Wilson 
1981) ais> \ (or ai& > j if the universe is dominated by 
massive neutrinos), so that Sís(Md) ^ad (Md) as has 
been assumed (for more about the possibility of a bi- 
component spectrum, see Dekel 1981 and references 
therein). 

The observed dipole in the background radiation indi- 
cates for the adiabatic spectrum aad > 1 (Silk and 
Wilson 1981), which implies that perturbations on scales 
larger than MD do not substantially affect the evolution 
of - Md SCs (in support of the assumption discussed in 
§ Via [ii] above). 

in) Likelihood of the Initial Anisotropic Configuration 

Statistical analysis (Doroshkevich 1970; Dekel 1981) 
has shown that if the initial distribution function of the 
local density perturbations, ô(r), is a Gaussian with a 
width a, and if the spectrum is truncated at a wavenum- 
ber kD (corresponding to a critical mass MD), the 
coherence mass of a perturbation near a density peak 
with £0 > a is of the order MD, and it grows with ô0/a. 
If the perturbation was less coherent over the proto-SC, 
it might have led to a somewhat warped structure, which 
could increase its apparent thickness; i.e., one should be 
aware of the possibility that the extreme flattening ob- 
tained here may be somewhat due to an overidealized 
choice of initial conditions. It was mentioned in § IV, 
however, that the flat component of the LSC seems to 
be confined to a well-defined plane, the local thickness 
of which is roughly two-thirds of its global thickness 
(Tully 1982). Other observed SCs (cf. Einasto, Joeveer, 
and Saar 1980) also indicate structures which are pretty 
much planar as the walls of huge cells. 

Our basic conclusions are valid for systems in which 
the initial perturbation in one direction is dominant 
(X3^>X1,X2). This is known to be the case in our own 
LSC (from the small deviation from Hubble expansion 
in the plane), and would be the case in any SC which is 
still expanding in two directions. Doroshkevich has 
shown that the conditioned probability to have the three 
values X3 > X2 > X!, given that ô/a = 00/a, is propor- 
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tional to 

p(X},\2,X3)o:e-N^’^so^ 

x(\3-\2)(X3-\1)(X2-X1), (39) 

where /j — (A] + A2 ^3)/^ âBd I2 ~ (A1A2 ^1^3 
A2A3)/a2. It means that the probability that two eigen- 
values of the deformation tensor will be similar is small. 
Furthermore, the ratio of the conditioned mean values 
A3 and A12 = + A2) is 

X3 T}(«)&o + 3a/\/2?r . ,75 / » +3 \1/2 

v(n)S0-3o/^ ’ 3 U + 5Í ’ 

(40) 

where n is the power index of the spectrum after recom- 
bination ((|£(A:)|2) & kny If ô0 « a and « < 0, the mean 
eigenvalue in the plane, A12, is negative. For any value 
of n, X3/Xn>\0. Thus, for a Gaussian process, the 
initial conditions assumed here, with A3 » Aj, A2 are 
highly probable. 

Note that the evolution of the proto-SC depends on 
the ratio A3/A12 but not on the absolute value of A3. 
The latter determines the time for the collapse but does 
not influence the resultant structure; we could therefore 
choose it arbitrarily to be A3 = 1, and have initial condi- 
tions which were quite general. 

Cosmological simulations on larger scales that start 
from a truncated adiabatic spectrum may tell more 
about the initial structure of the individual SCs. Two- 
dimensional simulations (Doroshkevich et al 1980; 
Melott 19836) have produced a cell structure that seems 
to confirm the theoretical ideas. Current three-dimen- 
sional simulations (Klypin and Shandarin 1982; Davis, 
Frenk, and White 1982) seem not to show pancakes very 
clearly, perhaps because of a poor resolution on the 
relevant scales. More extensive simulations are in pro- 
gress (Dekel and Aarseth 1983). 

iv) Small - Scale Fluctuations in the Microwave Background 

The isotropy of the microwave background radiation 
on scales of a few degrees is believed to constrain the 
possible amplitudes of adiabatic density perturbations at 
recombination on the scales of SCs. The Unear growth 
rate in the present scenario is similar to that in the 
conventional gravitational instabihty picture, i.e., 8 cc 
b(t)9 but here 8 on the scale of SCs has reached unity 
only recently so that the predicted anisotropies are 
8T/T s* 2X lO-4^1 on scales of a few degrees. The 
predicted fluctuations are larger in proportion to 1 + zc, 
which makes it harder to reconcile early SC collapse 
scenarios with the observed isotropy of the background 
on those scales, unless neutrinos dominate the mass in 

Vol. 264 

the universe and help reduce the required 8T/T by a 
factor of 5-10 (see Doroshkevich et al 1981). 

It is still possible, however, that substantial reioniza- 
tion at early epochs (e.g., by a first generation of mas- 
sive stars; cf. Rees and KashUnski 1982) and subsequent 
scattering of the background radiation have erased tem- 
perature fluctuations on scales of a few degrees (cf. 
Peebles 1981a). The proposed scenario in which galaxies 
(or halos) form early, prior to the SC collapse, gives rise 
to such a possibihty. 

v) On the Dissipative Pancake Picture 

The possible interpretation of our numerical experi- 
ment as simulating a dissipative pancake component in a 
dominant halo of massive neutrinos should be made 
with caution, because our choice of initial conditions for 
the pancake was somewhat arbitrary. The actual thick- 
ness of the pancake is sensitive to the detailed dynamics 
of the shock and thermal processes in the gas (Sunyaev 
and Zel’dovich 1972; Binney 1972). In fact, neutrinos 
might have collapsed before the gas (but after they 
became nonrelativistic at z - 104-105), and as a result 
the gas might not have formed a caustic in the way 
commonly assumed. Furthermore, the subsequent evolu- 
tion of a pancake is sensitive to the effectiveness of 
short-range encounters (see also Aarseth and Binney 
1977). 

Hence, one cannot exclude the dissipative scenario 
based on the present experiments. A version of this 
scenario in which galaxies were formed in small pan- 
cakes during the large-scale collapse is acceptable. What 
one may conclude, however, is that—contrary to the 
common belief—the dissipative scenario is not the only 
scenario that can provide highly flattened pancakes. 

b) Comparison with Results of Others 

An alternative, soluble approximation for the premix- 
ing stage is the collapse of a homogeneous ellipsoid (cf. 
White and Silk 1979). The evolution of our A-body 
system until tc is approximated better by the approxima- 
tion of Zel’dovich, in the sense that the collapse is 
slower and the flattening near tc is more pronounced 
than what is predicted by the homogeneous ellipsoid 
approximation. The latter breaks down early in the 
collapse because of a strong density gradient that devel- 
ops along the collapsing axis. It can still provide an 
upper limit for the flattening at early stages, which can 
be matched with our analytical upper limit at later 
stages. 

Related work in the nonlinear regime has been done 
by Doroshkevich etal. (1980) and by Melott (1983a) 
who simulated the evolution of a similar perturbation by 
means of the “cloud in cell” method in the pure 
one-dimensional approximation. Doroshkevich et al. find 
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that after the focusing (tc) the axial ratio of a contracted 
layer, whose boundaries q* are defined by dr3/dq3 = 0, 
is growing approximately like 

Z(<7* )/R = 0.38 [l — (ac/a)1/2], (41) 

when their equation (14) is translated to our notation. 
For a > ac, our simulations and our model estimates 
also predict a growth of the flattening of the layer inside 
<7* due to the rapid growth of q$ in time. When the 
formalism of Zerdovich is applied formally to the post- 
collapse epoch, this growth rate is given by cos (nq*/lc) 
= ac/a. If this is a good estimate for <7*, however, our 
results seem not to agree at late stages, when a » ac. 
Then, q% approaches the value 0.5/c that is used by us to 
define the flattening /, but still their flattening grows 
asymptotically to a constant - 0.38, while our / de- 
creases like a ~1/3 to smaller values. This discrepancy 
may be resolved if q* actually grows faster in their 
simulations, or else it may be due to the fact that their 
calculations are one-dimensional. Another difference 
which is probably related to the latter is the multicaus- 
tic, multistream configuration which is preserved after 
the collapse in the one-dimensional simulations but is 
smeared out in our three-dimensional one because of 
gravitational scattering. 

Aarseth and Binney (1978), and Klypin (1980) have 
simulated the evolution of N-body systems that started 
flat but nonexpanding, and therefore ended up with 
moderate flattening, of the order of 1:2 and 1:3, respec- 
tively. These simulations are meant to describe elhptical 
galaxies or rich clusters and are not relevant to expand- 
ing SCs. Nevertheless, they can give some additional 
insight into the local stellar dynamics. 

VII. CONCLUSION 

Our main conclusions from the global flattening of 
SCs are: 

1. A nondissipative scenario which starts from an 
adiabatic perturbation with probable initial conditions 
can explain the observed flattening of SCs, and no 
dissipation is required. This means that galaxies could 
have been formed before the collapse of SCs and not 
necessarily as a result of that collapse. 

2. A fit to the observed flattening of the LSC indi- 
cates that it has collapsed in one direction only recently, 
where 20-50% of the mass has crossed the plane and a 
caustic has occurred between z « 0.5 and now. The 
flattening is expected to be even more pronounced at 
later stages. 

3. A simple analytic model, which is based on the 
formalism of Zerdovich before the collapse and on 
adiabatic invariants afterwards, agrees well with the 
numerical experiment. It therefore provides a useful tool 
for studying the nonlinear evolution of flat, expanding 

systems under various conditions. For example, it has 
been used here to generalize our conclusions to an open 
universe. 

It may be of interest to mention here some pre- 
liminary conclusions concerning other aspects of the 
dynamics of SCs, which are discussed in associate papers: 

a) The Z velocities in the pancake may, in principle, 
provide important information about the formation of 
the pancake, on its present stage of evolution, and on 
ß0. Unfortunately, the observed velocities of pancake 
galaxies (low |SGZ|) are dominated by their fast expan- 
sion parallel to the X-Yplane, which makes the measure 
of the relevant Z velocities possible only for a few 
nearby galaxies at high |SGB|, and out of the Local 
Group. We find (Dekel 1983æ), in a sample of galaxies 
with redshift-independent measured distances, no evi- 
dence for anisotropies in the Virgocentric flow at |SGZ| 
larger than a few Mpc, and a weak evidence for an infall 
and excess Z velocities (positive and negative) closer to 
the plane. This indicates an early stage in the one- 
dimensional collapse, in agreement with the result 
obtained from the flattening, and possibly an open 
universe where the SC halo is “frozen” in the Hubble 
expansion. The simulations (with = 1) predict for the 
velocity dispersion in the 60% flat component az ~ 100 
km s“1 at tf~l, and az~175 km s-1 at 0 > 2, in 
agreement with the spatial flattening found by Tully 
(1982) and discussed here. 

b) The global overdensity in flat SCs can still be on 
the order of unity even though much higher densities 
occur locally. Spherical models and linear approxima- 
tions, which are commonly applied to SCs in order to 
derive the mean density in the universe, may lead to 
spurious results by factors of 1-3 (depending on the age 
of the SC) because of flattening and nonlinear effects 
(Dekel 1983 c). 

c) The two-point correlation function within the 
simulated SC, on scales of a few Mpc, grows in a 
non-self-similar way as a result of the large-scale col- 
lapse to a pancake rather than as a result of local 
clustering. A power-law f(r)oc/--15 that agrees with 
observations in the LSC (Rivolo and Yahil 1981, private 
communication) is obtained at a «1.5 (Dekel 1982, 
19836). 

d) The clustering of galaxies according to the nondis- 
sipative pancake scenario is still very weak at z > 1.7, 
and is compatible with the lack of measurable clustering 
among the Lyman-alpha absorption systems in quasars 
(Dekel 1982). 

Our basic conclusion is that the present data on the 
structure and dynamics of the LSC is consistent with a 
nondissipative pancake scenario which is a natural com- 
bination of the “eastern” pancake picture and the 
“western” clustering theory, where both adiabatic and 
isothermal perturbations play a role in the formation of 
structure in the universe. 
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APPENDIX A 

AN APPROXIMATE MODEL IN AN OPEN UNIVERSE 

Our intention here is to calculate/(a) by the approximate model in an open Friedmann universe. The density 
parameter £2(i) is normalized arbitrarily to 12! when the expansion parameter is a = \. Each cosmological epoch is then 
characterized by \ + z = a~]. According to equation (2) the perturbation grows like 

fc(z) = fc,/(l + Ö1z), (Al) 

where we have defined for convenience 

2.512^(1+ 1.512!)- (A2) 

On normalizing as before such that b = 1 at zc (caustic formation), we have 

Z?1 = l + fi1zc. (A3) 

We now calculate f(a) for a given perturbation which is characterized by its collapse epoch, zc or ac. 
At early stages the axial ratio is, by equation (1), 

Z{q„a)/R{a)=[q,-b{a)t,\/lc, 

until maximum height is reached at an epoch 

= ^ 
0,^3 \ 

+ 
1/2 

-Of1. 

If the particle is bound, i.e., Z?! > (1 - ^i)^3/<?3, it crosses the plane at 

ap={'[ + zp) '> or zp^(t'^3/q7,-\)/Üu 

with a normal velocity 

Zp = -Hp(q]/^){Ûx/bx), 

(A4) 

(A5) 

(A6) 

(A7) 

in which Hp is the Hubble constant at zp. Zm p can now be evaluated in the two limiting cases as in the 120 = 1 case, 
where here the mean density of the universe at that time is 

Pp _ 0 + ^) 3/ff 
(l + 121z;7) 877G 

(AS) 

The lower limit obtained for the axial ratio is 

Z(qr3,q) 2/<73 

R(a) 9 \ /c 
1- J?3_ (i-ñ,) i + <h 

¿>,^3 
(A9) 

and the upper limit is larger by a factor of \2lc/(ir2q3). The limiting values of / are obtained on substituting 
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q^/lc = 0.5 and <73/^3 ^ ^/2, as in the experiment. One obtains 

391 

•^> 18 
7T ( 1 — fíj) 

2bx 
1 + 

7t{Üx/Üx-\) 
2b, 

-1/3 
(A10) 

and an upper limit which is larger by a factor of 2.43. Note that expressions (A4)-(A10) reduce to the analogous 
expressions (25)-(35) in the limit tix-^>\ (Ûx->\). 
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