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Summary. An ephemeris of the Moon and nine planets has been
numerically integrated from 1411BC to 3002 AD. The initial
conditions for the simultaneous integration were based on fits to
modern position measurements of the eight major planets and
the Moon. The data include optical meridian transits, radar
ranges, planetary spacecraft positions, and lunar laser ranges. The
acceleration model for the integration is described and it is shown
that the stability of the lunar integration depends upon simul-
taneously integrating the physical librations. A long ephemeris
has utility for comparison with both historical observations and
analytical theories. Comparison with numerical representations
permits the equinox and obliquity of the ephemeris to be re-
covered. At B1950.0 we find ¢=23°26'44"816+07015, which is
07039 smaller than the presently adopted IAU value. Among the
other determined parameters are the length of the astronomical
unit, 149, 597, 870.68 +0.03 km. As newer, short ephemerides will
continue to improve upon the accuracy of DE102, analytical
corrections can be provided over the long span of DE102.

Key words: ephemerides

I. Introduction

The 1960’s were a turning point for the generation of lunar and
planetary ephemerides. All previous measurements of the po-
sitions of solar system bodies were optical angular measurements.
Useful radar ranges to the surfaces of the terrestrial planets have
been measured since 1964. The first laser ranges to the lunar
corner cube retroreflectors were obtained in 1969. In 1976 the
Viking landers on Mars began returning ranges with accuracies
better than 10m. In a relatively short time the transition from
optical angles to Viking ranges improved the accuracy of Mars
positions by more than four orders of magnitude, and the change
from lunar angular measurements to laser ranges achieved nearly
as great an improvement. These immense changes in obser-
vational accuracy due to modern technology have driven com-
parable improvements in the accuracy of the planetary and lunar
ephemerides. While the fitting of optical data was long accom-
plished with analytical theories for the Moon and planets, the
newer data types required the development of numerical in-
tegration techniques and more comprehensive physical models.
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The numerical integrations are necessary to match the accuracy of
the modern data types. They are commonly extended back a few
decades or centuries to allow the inclusion of the more recent
optical data in the fits. We announce here the first integrated
ephemeris, DE 102, which covers the entire span of the histori-
cal astronomical observations of usable accuracy which are
known to us. The fit is made to modern data. The integration
spans 1411 BC to 3002 AD.

The first use of a long integration is for comparisons with
historical observations. In addition to the fruitful historical work
that has been performed with analytical theories, we note that
there are historical observations of fine accuracy which can
usefully be linked with modern data types. Among these obser-
vations are the transits of the sun by Mercury as studied by
Morrison and Ward (1975) and Shapiro (1980), and solar eclipses,
of which the subset of Muller (1975) and Muller and Stephenson
(1975) and the well observed 1715 eclipse (Dunham et al., 1980)
are particularly useful. Linking historical optical data to modern
ephemerides will provide valuable information on the irregular-
ities in the earth’s rotation at long time scales. DE 102 has
estimated errors in the motions of the earth and Mars of 0704 cy ™!
(cy =century) with respect to an inertial frame. Venus, Mercury,
and the outer planets have progressively larger errors. The Moon
has a quadratically growing error of up to 172cy”? in longitude.

The second use of a long integration is for comparisons with
analytical theories. Such comparisons serve two purposes: they
provide a check on the solutions of the equations of motion, and
they provide a means of adjusting the independent constants of
the theories to the accurate fits to the modern data types. Long
integrations are a valuable check because the long period terms
are frequently the most troublesome in analytical solutions. One
of the early motivations for this project was the discovery that
solar eclipse data are sensitive to the lunar node rate, which has a
poor value in the j=2 lunar theory (Martin and Van Flandern,
1970; Muller, 1975 ; Muller and Stephenson, 1975). It is gratifying
that DE 102 has already been compared with Newcomb’s theory
of the earth’s orbit (Van Flandern, 1982), a modified Newcomb’s
theory (Stumpff, 1981), Tuckerman’s tables (Stephenson and
Houlden, 1981), and a new theory for the earth (Bretagnon and
Chapront, 1981). Such comparisons permit the recovery of the
equinox offset and obliquity of DE 102. A theory for Mercury’s
orbit has been compared with the DE 102 orbit by Lestrade (1981)
and Lestrade and Bretagnon (1982). The lunar orbit in DE 102
can be separately referred to as LE 51. It has been compared with
a modified j=2 lunar ephemeris (Van Flandern, 1982) and a new
lunar orbit theory (Chapront and Chapront-Touzé, 1981-1983).
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Because of their expense, long integrations of the solar system
are rare. The integration of this paper used nine days of computer
time on a Univac 1100/81 and took six million steps. The 300,000-
year integration of the five outer planets (Cohen et al., 1967) had a
step size two orders of magnitude larger and took three million
steps.

In this paper, Sects. II-IV describe the mathematical model
used for the numerical integration of DE 102; the numerical
integration program itself, including estimates of its accuracy ; and
the numerical representation of the resulting coordinates.
Sections V-VII give the choices of the adopted constants, the
observational data used in the least squares fits, and the least
squares solutions themselves. Section VIII presents methods for
modifying DE 102 in order to improve the approximation to more
recent ephemerides. Comparisons of DE 102 with the latest (1981)
JPL ephemeris are given in Sect. IX. Section X describes the
export procedure for use by outside requestors.

II. Mathematical model

The dynamical evolution of the solar system throughout the span
of the ephemeris was obtained from a simultaneous numerical
integration of the equations of motion for the nine planets, the
Moon and the lunar physical librations. The mathematical model
includes contributions from (A) point-mass interactions, (B) figure
effects, (C) earth tides, and (D) lunar librations. Each will be
discussed in turn.

A. Point-mass interactions

The principal gravitational force on the nine planets, the sun, and
the Moon is modeled by considering those bodies to be point
masses in the isotropic, Parameterized Post-Newtonian (PPN)
n-body metric (Will, 1974) with Newtonian gravitational per-
turbations from the asteroids (1) Ceres, (2) Pallas, (4) Vesta, (7) Iris,
and (324) Bamberga. These were the five asteroids found to have
the most pronounced effect on the Earth-Mars range in an
integration from the standard 1969 epoch of initial conditions to
1985. The n-body equations were derived from the variation of a
time-independent Lagrangian action integral formulated in a
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nonrotating solar-system barycentric Cartesian coordinate frame.
The reference plane is the Earth’s mean equator of B 1950.0. The
x-axis coincides with neither the dynamical equinox nor the
equinox of the FK 4 catalogue. In the DE 102 system the right
ascension of the FK 4 equinox is about +0740; the right ascen-
_sion of the dynamical equinox, defined in the rotating sense, is
—07136 (Standish, 1982).
For each body i, the point-mass acceleration is given by

where r,, i, F; are the solar-system barycentric position, velocity,
and acceleration vectors of body i; u;=Gm; where G is the
gravitational constant and m; is the mass of body j; r,;=|r;—r/|; p
is the PPN parameter measuring the nonlinearity in superposition
of gravity; y is the PPN parameter measuring space curvature
produced by unit rest mass (In this integration, as in general
relativity, B=y=1.); v;=|#|; and c is the velocity of light.

In the last term on the right side of (1), quantities employing
the index m refer to the asteroids. The positions of the asteroids
are not integrated but are obtained from polynomials represent-
ing heliocentric Keplerian ellipses. The polynomials give good
representations for perturbations on the planets at the present
time. At times in the distant past the polynomials will drift from
the real asteroid orbits, but the perturbations are smaller (0702 for
Mars) than any ancient optical measurement accuracy.

The quantity #; appearing in two terms on the right side of (1)
denotes the barycentric acceleration of each body j due to
Newtonian effects of the remaining bodies and the asteroids.

B. Figure effects

Long-term accuracy of the integrated lunar orbit requires the
inclusion of the figures of the earth and Moon in the mathematical
model. In DE 102 the gravitational effects due to figures include :

1. The force of attraction between the zonal harmonics
(through fourth degree) of the earth and the point-mass Moon and
Sun.

2. The force of attraction between the zonal harmonics
(through fourth degree) and the second- and third-degree tesseral
harmonics of the Moon and the point-mass Earth and Sun.

The mutual interaction between the figures of the Earth and
Moon is ignored.

The contribution to the inertial acceleration of an extended
body arising from the interaction of its own figure with an
external point mass is expressed in the &y{ coordinate system,
where the &-axis is directed outward from the extended body to
the point mass; the -axis is directed east (lying in the selenographic
xy-plane, perpendicular to the &-axis); and the {-axis is directed
north, completing the right-hand system (see Fig. 1). In that system
(Moyer, 1971),
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where u is the gravitational constant G times the mass of the point
body; r is the center-of-mass separation between the two bodies;
n, and n, are the maximum degrees of the zonal and tesseral
expansions, respectively; P,(sin¢) is the Legendre polynomial of
degree n; Pl(sin¢) is the associated Legendre function of degree n
and order m; J, are the zonal harmonics for the extended body;
C,» S, are the tesseral harmonics for the extended body; a is the
equatorial radius of the extended body; ¢ is the latitude of the
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point mass relative to the body-fixed coordinate system in which
the harmonics are expressed; 4 is the east longitude of the point
mass in the same body-fixed coordinate system.

The primes denote differentiation with respect to the argument
sin¢.

The accelerations are transformed into the solar system bary-
centric Cartesian system by application of appropriate rotation
matrices: first by a rotation from the &n{ system to the seleno-
graphic system, followed by the application of the inverse libra-
tion-angle matrix.

The interaction between the figure of an extended body and a
point mass also induces an inertial acceleration of the point mass.
If i, denotes the acceleration given in Eq. (2) when expressed in
solar system barycentric coordinates, then the corresponding
acceleration Fpy of the point mass is
. Hpig ..

Fpy= — u—:;d_g Frig
where g, and up are the gravitation constant G times the masses
of the extended body and point mass, respectively.

C. Earth tides

The tides raised by the Moon on the Earth appear as a bulge
leading the Earth-Moon line by a phase angle 6. The resulting
geocentric acceleration of the Moon is given by the expansion

x+yo

3k 3
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rem ‘ue rem

z
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where k, is the potential Love number of the earth; q, is the
radius of the earth; r,,, is the geocentric lunar distance; x, y, z are
the geocentric Cartesian coordinates of the Moon expressed in the
true of-date system [The rotation to mean equator and equinox
of B 1950.0 is performed by the application of an inverse nutation
matrix followed by an inverse precession matrix. The nutation
matrix is evaluated using only the leading (18.6 yr) term.]; u,, is
the gravitation constant times the mass of the Moon; p, is the
gravitation constant times the mass of the Earth.

The inertial accelerations follow from the conservation of the
center of mass. For further discussion, see Williams et al. (1978).

D. Lunar librations

A previous attempt at a long-term solar system integration
yielded a secular runoff in lunar orbital longitude. The problem
was traced to the use of an analytical theory for the computation
of lunar librations, acting as a forcing function for the system
through figure perturbations. When the differential equations for
the physical librations were implemented and integrated, the
secular instability disappeared.

It was necessary to form a matrix transforming between the
coordinates with a fixed equator and equinox of B 1950.0 and the
selenographic system. The Euler angle definitions and their
differential equations were taken from Goldstein (1950). ¢ is the
angle along the earth’s fixed equator from the fixed equinox to the
line of nodes with the Moon’s true equator; 6 is the inclination of
the Moon’s true equator to the earth’s fixed equator; and v is the
angle along the Moon’s equator from the line of nodes to the
reference meridian of the selenographic system. Following cus-

Fig. 1. The én coordinate system, in which figure-induced accel-
erations are calculated

tomary procedures, we define

Cc-4
p=—22
and

_B-4
L= C

where A, B, and C are the three principal moments of inertia of the
Moon, and C> B> A. The relationship between B, y;, J,, C,,,
and C/ma® (where m is the mass of the Moon and a is the lunar
radius) is described in Ferrari et al. (1980).

Let Fg,;, be the force on the Moon due to the gravitational
interaction of the lunar figure and an external point-mass earth or
sun. Fg, is derived from Eq. (2). Then the torque N on the Moon
is given by

N=erFig

where r is the vector from the lunar center of mass to the point
mass. In the selenographic principal-axis system the equations for
the angular velocity vector @ are related to the Euler angles
through

wx=¢;§sin6 siny +6 cosy
, = ¢ sinf cosy—Osiny
, =¢cosO+1p.

The differential equations for the angular velocity come from
Euler’s equations

. yL_ﬁL X
w,= w,o,+ —
1—Byr A
N
cuy—ﬁsza)x—i-fy
NZ
w,= chuxcuy-i-E—.
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Finally, the differential equations for the three Euler angles are

@, siny + @, cosy +6(ip— ¢ cosb)
sinf

é=
6 =, cosp— o, siny— P sind 3)
P=ad,— P cosh+Phsin.

The above second-order differential equations for the Euler angles
of a rigid body Moon are integrated numerically, considering
torques induced by the Earth and Sun.

Discussions of numerically integrated physical librations are
given by Williams et al. (1973) and Cappallo (1980, 1981).
Nonrigid-body effects are described by Yoder (1978) and
Cappallo (1980). The numerically integrated physical librations
used to fit the lunar laser data came from the program described
by Williams et al. (1973) rather than from the program described
here.

E. Solar system barycenter

In the n-body metric, all dynamical quantities are expressed with
respect to a center of mass whose definition is modified from the
usual Newtonian formulation. The solar system barycenter is
given by (Estabrook, 1971, private communication):

where

1 1
*=y .2——— 5
W ,u,{l 26201 32 g } (5
In (5),

U, is defined as before
v; is the barycentric speed of body i
r=lr—r].

During the process of numerical integration only the equa-
tions of motion for the Moon and planets were actually evaluated
and integrated. The barycentric position and velocity of the sun
were obtained from (4). It should be noted that each of Egs. (4)
and (5) depends on the other, requiring an iteration during the
evaluation of the solar position and velocity.

III. Numerical integration

The numerical integration of the equations of motion (1) and (3)
was carried out using a variable step-size, variable-order Adams
method (Krogh, 1972). The maximum allowable order of any of
the thirty-three equations is 14 ; the actual order at any instant is
determined by a specified error bound and by the behavior of
backward differences of accelerations.

A. Force model evaluation

The calculation and arrangement of accelerations at each in-
tegration step is as follows:

1. The integrator subroutine provides new states (positions
and velocities) for the nine planets, the Moon, and the libration
angles.

2. The asteroid states are evaluated from fixed polynomials.

3. Equations (5) for the relativistic masses are evaluated for
the planets, Moon, asteroids, and sun, using current states for all
bodies except the Sun. (The barycentric state of the sun calculated
at the end of the previous step is retained for this evaluation.)

4. The present approximate state of the sun is obtained from
the constraint Eq. (4).

5. Equations (5) are evaluated again, using this new estimate
of the solar state.

6. Equation (4) is evaluated a second time to provide the
current state of the Sun.

7. Equations (1) are evaluated to obtain the accelerations of
the nine planets and the Moon.

8. It has proved numerically more suitable to integrate the
lunar ephemeris relative to the earth rather than to the solar
system barycenter. The solar system barycentric Earth and Moon
states are replaced by the quantities r,,, and rg, given by

P =ty T, ©)
and

¥, +

Het thy,

where the subscripts e and m denote the Earth and Moon,
respectively. Note that r,, is the difference of solar system
barycentric vectors and is distinguished from a geocentric vector
by the relativistic transformation from the barycenter to geocen-
ter. (The vector r can be interpreted as representing the coor-
dinates of the Newtonian Earth-Moon barycenter relative to the
solar system barycenter. It has no physical significance and does
not appear in force calculations; it is solely a vehicle for improv-
ing the numerical behavior of the differential equations.)

9. The equations for the libration angle accelerations are
evaluated.

B. Estimated integration error

The method of error control used in the integration puts a limit on
the absolute value of the estimated error in velocity of each
equation at the end of every integration step. Step size and
integration orders are adjusted on the basis of estimated error.
The limits selected for DE 102 are 210" *%aud ™! in each com-
ponent of the equations of motion for the planets and Moon, and
2107 '*radd ! for each component of the libration equations.

The effects of error control are most pronounced in the lunar
ephemeris. For comparison, a twenty-year integration with the
DE 102 initial conditions was performed with the absolute error
tolerances decreased by a factor of ten. The geocentric lunar
distance, latitude, and longitude were compared. The latitude
showed no significant difference. The longitude difference exhi-
bited a secular, exponential-like drift, comfortably fit by the
expression

rdA=—10"°t""km,

where r44 is the standard lunar position minus the position from
the comparison integration, projected onto the direction of in-
creasing longitude, and ¢ is the time in days from the start of the
integration (JED 2440400.5). Extrapolating this formula, the
longitudes will differ by about one meter after ten years, a
kilometer after 500 yr, and by about 23km at the earliest epoch
(1411 BC) achieved by the integration. For comparison, the
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uncertainty in the lunar longitude due to uncertainties in the
secular acceleration is one to two orders of magnitude larger.

The difference in the radial direction shows an uneven oscil-
lation about zero. The oscillation has an envelope given approxi-
mately by the expression 510711 ¢!-7, in kilometers. As this is
smaller than the longitude difference by a factor of the lunar
eccentricity, it is clear that it is just the mean anomaly runoff
showing in the radius.

Similar comparisons for Mercury are a factor of ten less than
those for the Moon; differences for the remaining planets and for
the librations are negligibly small.

It should be stressed that such an empirically derived estimate
is at best qualitative and indeed may be unduly pessimistic. More
reliably quantitative analyses of the numerical behavior of the
integration process are not so easily undertaken.

C. Stability of the lunar integration

Our first long integration (DE97/LE47) generated a lunar
ephemeris which was adequate to fit the lunar ranges but deviated
considerably in orbital longitude after three centuries when
compared to the analytical lunar theory (Van Flandern, 1977,
private communication). This unexpected situation was traced to
the modeling of the orientation of the lunar body in the in-
tegration and the resultant accelerations due to the lunar gravi-
tational harmonics. The difficulty was not mistaken programming
but rather an instability in the equations of motion of the orbit
which arises if the physical librations are modeled analytically.
Related difficulties have appeared in the literature, and it seems
worthwhile to present calculations illustrating the instability.

Consider first the expression for the disturbing function due to
lunar gravitational harmonics C,,, and S, (Kaula, 1966), where
{—m is even

14
R(m = g(%) Z F(mp(i) Z Glpq(e)

A{C,cos[(£—2p)w+({—2p+q)M+m(§1—0)]
+Sm Sin[(/—2p)w+(/—2p+q)M+m(Q—9)]}, (8)

where a,, is the equatorial radius of the Moon and g, ¢, 1,§, @, and
M are the osculating Keplerian elements (semimajor axis, eccen-
tricity, inclination, node, argument of perifocus, and mean anom-
aly) of the orbit of the Moon about the Earth. The orientation
angles i, §), and w are referred to the instantaneous lunar equator.
In this expression for perturbations of the relative Earth-Moon
orbit, u is the gravitational constant times the sum of the masses
of the Earth and Moon. The angle 6 describes the angle of
rotation of the lunar zero meridian from the vernal equinox. The
functions F and G are given by Kaula.

Let us examine the simplest case needed to illustrate our
runoff. We restrict this exposition to the second degree terms
(¢ =2) for a triaxial Moon, C,, and C,,, with the major axis in the
mean direction of the earth (S,,=0). The instability arises from
the physical libration terms in longitude, so the latitude terms will
be ignored and i will now be taken to be the mean inclination of
the lunar orbit to the lunar equator. Since 6 has the same mean
rate as M +w+§1, we retain only the slow terms by setting 2—2p
+g=m. Further, since the C,, term is independent of 0, only the
C,, terms are retained. With these restrictions the one component
of the disturbing function becomes

3uC,,n

R22=T(1+cosi)2(1—§e2>cos[2(M+w+cQ—0)] )

where terms of higher degree in e and sini have been discarded.
Define the mean motion, n, according to Kepler’s third law,
u=n2a3. Since

. 3 0R,,

- - 10
= S22, (10)
one obtains

KZ
r'z=+—2—sin[2(M+a)+Q~9)], (11)
where
a 5 \\'?
K=3n<—aﬂ)(1+cosi)(c22 (1— 5e2)> . (12)

The first derivative of the epoch term for the osculating mean
anomaly or mean longitude (L=M +w+§?) involves only the
partial derivatives of R,, with respect to g, e, and i. The Moon
keeps one face oriented toward the Earth so that L — 8 is nearly 7.
Consequently, the first derivative of the epoch term is pro-
portional to the cosine of a small angle while 7 is proportional to
the sine of a small angle. The epoch term contributes primarily to
a constant shift in the first derivative of L and only little to its
second derivative. We set L=M=n and ignore the constant
offsets and rapid periodic variations in the mean longitude rate
due to the lunar figure, which may be found in Henrard (1980) and
Chapront-Touzé (1983). Now we have the relatively simple
approximation
L=K¥L-6+m). (13)
Physically, the mean orientation of the Moon is locked onto L so
that L—6+=n has only periodic terms. When the angle 6 is
modeled analytically it is represented as a polynomial in time, plus
a sine series. The parameter L represents the mean longitude as it
comes from the numerical integration of the equations of motion.
If the initial values of L and I, which are derived from fits
of the ranging data, are not precisely compatible with the mean
values of @ and 6, then there will be a nonperiodic difference
which will grow exponentially, since (13) has exponential solu-
tions to its reduced equation. Taking a/a,=221.17, i=6.69°,
e=0.055, n=13.368 rev/Julianyr, and C,,=22.310"° gives 1/K
=588 yrrev '=93.6yrrad"* or K?=1"14cy” 2 An initial mis-
orientation of 1” in 0 causes an instantaneous acceleration of
1”14 ¢y~ 2, and if the misorientation is a bias rather than a periodic
term the acceleration grows monotonically.

There is a simple explanation for the stability of the real
physical case. The lunar orientation swings toward alignment
with the orbit for orbital longitude variations which are slow
compared to the 2.9yr free libration period in rotation. This
response is enough faster than the tendency of the orbit to drift
from alignment that there is no instability. In terms of (13), 6
adjusts to L faster than L drifts away from 6. It follows that the
solution to the problem of the numerical model instability is to
numerically integrate a simple physical libration model simul-
taneously with the orbits, as was done for the ephemeris in this
paper.

To explore further the consequences of the instability, we
consider 6 to be modeled by a quadratic polynomial plus a sine
series for the physical libration in longitude 7:

0=C+n+Dt+Et*+1
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and include a tidal secular acceleration I, in the differential
equation (13). We first consider the differential equation using the
nonperiodic part of 6:

L-K?L=1,—K*C+Dt+Et?. (14)
The solution is
L(t)=AeX + Be X+ C— (L, — 2E)/K*+ Dt + Et?, (15)
where

=1{L(0)— C+(L(0)- D)/K + (L, —2E)/K?} 6

B=1{L(0)— C—(i(0)— D)/K + (L. —2E)/K?}.

If there is an error in a term of frequency ¢ and amplitude F in the
series for 1, it introduces errors of amplitude FoK/2(K?+ ¢?) and
FK?%/2(K?+0?) in the coefficients 4 and B. Several useful con-
clusions can be drawn from the above. The orbit is significantly
affected only by the long-period terms (> 6 centuries) of physical
librations and is insensitive to short-period terms. Any difference
between the initial values, rates, and accelerations of the actual
orbit and the analytical expression for 8 will yield an exponential
error in the integrated mean longitude with an exponentiating
time scale of 93yr. Differences of 17, 1707cy !, and 1714¢cy~2,
respectively, give similar sized errors.

At the time of our integration, limitations in the lunar theory,
especially the long period additive and planetary terms, prevented
the modeling of 6 with an accuracy better than a few tenths
arcsecond. Recent improvements in these long period terms
(Standaert, 1980 ; Chapront-Touzé and Chapront, 1980) as well as
the improvements in the main problem by several researchers,
have now permitted analytical theories to be fit to numerical
integrations over two decades with errors of less than 0701
(Chapront and Chapront-Touzé, 1981-1983). It thus becomes
practical to again consider modeling 6 analytically for inte-
grations of a few centuries as the physical libration calculations
become available for these new theories (Eckhardt, 1982). Earlier
physical libration calculations are given by Williams et al. (1973),
Migus (1980), Eckhardt (1981), and Moons (1981). The long
period errors can be expected to increase by an order of magni-
tude for each twe- centuries of integration if 6 is modeled
analytically. For numerical integrations over the decade that
lunar laser data are available, modeling is acceptable since the
time is short compared to 93 yr and the first two (or three) terms in
the expansion of the runoff are compensated by fitting the lunar
orbital elements (and secular acceleration).

We relate the above model instability to several comments in
the literature. When Oesterwinter and Cohen (1972) used a
nonzero S,, but did not include the necessary compensating
nonzero offset in 6 (see Eckhardt, 1972; Kaula and Baxa, 1973;
and Williams et al., 1973), they got an anomalous acceleration in
longitude. As a consequence they chose a final integration without
Iunar harmonics. JPL lunar ephemerides prior to LE 37 did not
include the physical librations in longitude in the modeling of 6. At
that time (1974) the arc of lunar laser data was too short to detect
the resulting accelerations. The anomalous acceleration in LE 25
was detected by Van Flandern (1975) by comparing three ephe-
merides, from different sources, integrated for several decades.
Calame and Mulholland (1978b) noticed changes in both the
secular acceleration and a periodic term when they added the
1473, 271 yr Venus-driven term to the model value of 6 in their
numerical integration.

The foregoing exposition has concentrated on the errors which
can result from injudicious modeling. It is of interest to investigate
the analytical solution of the coupled equations for the orbit and
physical librations. We write =L +n+1 and L=L,+ 6L, where
oL is the perturbed part of the mean longitude. The first approxi-
mation to the orbital and librational equations becomes

8L =K*0L—1)— Ho%"

(17)
=3y, n*(6L—1).

The parameter v, is a function of the moments of inertia of the
Moon, (B— 4)/C in conventional notation. The differential equa-
tion for 6L follows from (13), except that a forcing term has been
added which would generate a periodic term He" in the orbit in
the absence of the coupling through C,,. A derivation of the
differential equation for t is given by Eckhardt (1967). A solution
can be obtained by subtacting the two differential equations
resulting in

3y, n?—g? ) )
OL=|—F—5——|He"
(3yLn2—K2—02 ¢
(18)
( 3?Ln2 )Heicrt
T=|—
3y n*—K?—g?

for the forced terms. The ordinary resonant frequency for physical
librations in longitude, (3y;)"/?n (corresponding to a period of
2.9yr), is shifted downward by one part in 10° to (3y n*— K?)'2.
There is introduced in the orbit an extremely narrow resonance at
the same frequency. The amplitudes of some terms in the lunar
theory would shift a few centimeters. The solution of the reduced
equation is now oscillatory rather than exponential so that the
equations of motion are stable during integration.

IV. Numerical representation

The numerical integration program produces a file of positions,
velocities, and accelerations at equally spaced times for each
component being integrated. Subsequent use of the ephemeris
requires an interpolation scheme for recovering any quantity at
arbitrary times. Chebyshev polynomials were selected, as they are
stable during evaluation and provide an estimate of interpolation
error.

The construction and arrangement of the interpolating poly-
nomials is as follows: The entire 4400yr span is divided into
contiguous 64-d intervals. Within each interval the various celes-
tial bodies have their solar system barycentric positions (geocen-
tric position for the Moon) expressed as Chebyshev polynomials,
one polynomial representing each Cartesian component.
Positions are obtained by polynomial evaluation, velocities by
differentiation and evaluation.

Many ephemeris applications require continuity of interpo-
lated position and velocity at the common boundary of adjoining
intervals. An algorithm was developed that will accept a set of
integrator-supplied positions, velocities, and accelerations of a
given component at the end points and at uniformly-spaced
interior points of a 64-d interval. The algorithm furnishes the set
of coefficients of a Chebyshev polynomial which will provide
interpolated position values of the component being represented.
This polynomial has the desirable features that (1) when evaluated
at any point at which a position value was originally supplied, the
polynomial yields the exact original position value; and (2) when
once or twice differentiated and evaluated at those same points,
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Table 1. Maximum expected position error due to interpolation

Body Error
Mercury 60 km
Venus 1073
E — M Barycenter 1074
Mars 5107%
Jupiter 1073
Saturn 10-¢
Uranus 1077
Neptune 1077
Pluto 1077
Moon (geocentric) 21073
Sun 1073

original velocities and accelerations, respectively, are exactly
reproduced. Because the Chebyshev polynomials in adjoining
intervals share a common end point during their generation, the
interpolated positions and velocities at that end point will be
identical (to each other and to the original values supplied by the
integrator), regardless of which of the two polynomials is
evaluated.

The algorithm makes exhaustive use of the symmetry of
Chebyshev polynomials and is comparatively fast, generating
about 150,000 coefficients per second on the Univac 1100/81.

This method of producing the coefficients is not a true
Chebyshev fit in the minimax sense; however, comparison with
actual minimax fits and other interpolation error studies have
shown that the polynomials generated by this method comfort-
ably satisfy the most stringent requirements on the ephemeris.

It is important to establish the maximum interpolation error
expected when a Chebyshev polynomial is evaluated at arbitrary
times. Table 1 shows the comparison of interpolated positions
with positions derived directly from the original integration.

The unduly large estimate of Mercury’s error is not indicative
of a defective integration or of improperly formed Chebyshev
coefficients. The 8 d spacing between the input values of position,
velocity, and acceleration does not enable the resulting poly-
nomials to provide better agreement with the original integration
near Mercury’s perihelion. It should be stressed, however, that the
representation is exact at the mesh points (times that are an
integral multiple of 8d from JED 2440400.5).

These error estimates are applicable to DE 102 only. Other
JPL ephemerides exhibit significantly smaller maximum errors.

V. Adopted constants

The integration requires the numerical values of a number of
parameters to be input. Some of these, such as the initial positions
and velocities of the planets and Moon, result from the least
squares fits and are different in each fit. Other parameters, such as
most of the masses and the earth’s zonal harmonics, come from
outside sources and are only rarely changed. Some parameters,
such as the mass of the Earth-Moon system, can be derived from
the data, but for convenience are changed only when statistically
significant improvements can be made over the standard values.

Table 2 presents the input constants which were not derived
from the least-squares fits for DE 102. The masses for Mercury,
Venus, and Mars are values obtained from spacecraft tracking

Table 2. Adopted constants for DE 102

Defining

Gravitational Constant, k2 [ =G]
Speed of light, ¢

(0.01720209895) au® d 2
299792.458 kms™!

Mass ratios
Earth/Moon 81.3007
Sun/Mercury 6023600
Sun/Venus 408523.5
Sun/(Earth + Moon) 328900.53
Sun/Mars 3098710
Sun/Jupiter 1047.355
Sun/Saturn 3498.5
Sun/Uranus 22869
Sun/Neptune 19314
Sun/Pluto 3000000

Asteroid masses [k* m,]

0001 Ceres 1.746 10" au®d 2
0002 Pallas 3.847107 14
0004 Vesta 35511074
0007 Iris 1.580107 1%
0324 Bamberga 2.576 107 1%
Terrestrial
Equatorial radius a, 6378.156 km
J, 1082.63710~¢
Js —  2541107°
Js —  1.618107°
Potential love number k, 0.29
Lag angle é 0.04635 rad
Lunar
Radius a,, 1738.09 km
BL 631.26 107°
Y 227.37 107°
J, 203.82210°¢
C,, 22396 10°°
S22 0.0
Js 1044 107°
Cs, 286 107°
S 88 10°°
Cs, 482 107¢
Si, 1.71 107°
Cs; 27 1079
Si3 - 1.14 107°

during planetary encounters. The mass ratio Sun/(Earth + Moon)
is discussed below. For the remaining planets the 1976 IAU values
have been retained. The masses for Ceres and Pallas come from
Schubart (1974); that for Vesta is from Hertz (1968). For Iris and
Bamberga, we have assumed a density equal to that of Ceres
(diameter = 1003km) and diameters of 209km and 246km,
respectively.

The Earth’s radius and zonal harmonics were taken from the
SAO Standard Earth 3 model by Gaposchkin (1973, 1974). The
radius was adjusted to the newer value of the speed of light used
here. At the time of the creation of this ephemeris (1977) the lunar

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1983A%26A...125..150N

10\

FTOB3ACA - 12571

X X Newhall et al.: DE 102: a numerically integrated 44-century planetary and lunar ephemeris

secular acceleration in longitude, n, was not determined well from
the laser data, so we chose the value (— 26" cy ~2) of Morrison and
Ward (1975) and derived the value of & given in the table.
Transforming from 7 to the product of the physical parameters k,
and 6 requires a theoretical calculation of the constant of
proportionality. Our calculations have been subsequently im-
proved and, based on the expression in Williams et al. (1978), we
now estimate the secular acceleration in LE51 to be —26"21
+0713cy~2, the error being in the theoretical constant of pro-
portionality. The calculations of Chapront and Chapront-Touzé
(1981, 1982a) would give —26”30cy 2. Other than 6, the same
terrestrial constants were used in the LURE 2 lunar ephemeris
(Williams, 1977). ]

The lunar constants in the table are also the same as used in
the earlier LURE2 ephemeris and LLB 5 libration integrations.
The values of f;, y;, J5, C5,, S3,, and S5 came from fits to the
lunar laser data made at the time of their generation. The
sensitivity of the fits to these six parameters comes predominantly
through the physical librations, not the orbit, so we have de-
veloped partial derivatives of the range data with respect to these
parameters only through the physical librations. In the solutions
for the new ephemeris these parameters were adjusted, but during
the integrations they were fixed at the LURE2 values and the
simultaneously integrated physical librations were not used to fit
data. The remaining third-degree harmonics were taken from
averages of values (Williams et al, 1973) derived by several
investigators from Lunar Orbiter tracking data. The values of J,
and C,, were derived from fB;, y,, and a value of C/ma*=0.394
using the constraints in Williams et al. (1973) and Ferrari et al.
(1980). The number of digits is for consistency. The values of J,
and C,, in Table2 are the values also used in the LURE2
ephemeris. The apparently discordant values in Williams (1977)
were from an auxiliary table which was unfortunately edited
together with the table of LURE 2 values.

The mass ratio Sun/(Earth+Moon) is the LURE2 value
rounded to two decimal places and was originally derived from
analyzing the lunar laser data. The Earth/Moon mass ratio was
adopted in the LURE?2 set as a weighted average of spacecraft
results from Null (1970), Jordan et al. (1972), and Wong and
Reinbold (1973).

Since the adoption of the constants given in this section, many
improvements have been made. For slightly improved earth
harmonics we refer the reader to the 1979 IUGG set. For lunar
constants and mass ratios the results of Ferrari et al. (1980),
Cappallo (1980), and Dickey et al. (1982) are recommended. Lunar
laser data now yield a good determination of the lunar secular
acceleration (Calame and Mulholland, 1978 ; Williams et al., 1978;
Dickey et al., 1982; and Dickey and Williams, 1982), the last
reference giving n=—25"1+173cy 2

For the lunar orbit, the quantity most sensitive compared to
its uncertainty and dependent on Table 2 is the secular accelera-
tion. Orbit accuracies will be discussed in VIL.D, VIILB, and IX.

VI. Observational data
A. Lunar laser range data

The lunar laser range (LLR) data consist of time-of-flight
measurements from McDonald observatory to any one of four
retroreflectors on the Moon and back again. The retroreflectors
are at the Apollo11, 14, and 15 landing sites and on the
Lunakhod 2 vehicle. These 2085 range points are distributed from
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August 1969 to January 1977. The normal points through 1973
have been published by Abbot et al. (1973), Shelus et al. (1975),
and Mulholland et al. (1975). The LLR data are deposited in the
National Space Science Data Center. During the least squares fit
the ranges have been weighted according to the instrumental
errors which accompany each point. The general trend is toward
improving accuracy with time. The simple post-fit rms residual is
2.78 ns, equivalent to 42cm in one-way range.

B. Planetary data

There were 48,479 observations used in the planetary solution for
DE 102. These come from six major sources which are described
below. For the solution, each observational equation was normal-
ized by multiplying it by the factor, 1/0,, where g, is the a priori
standard deviation of one observation. From previous experience,
we were able to assign values to these o, which were approximate-
ly equal to their post-fit rms residuals.

In actuality, the rms residuals quoted in Tables 3a— were
taken from the fits for DE 96 (Standish et al., 1976). The corre-
sponding values for DE 102 differ by less than 1%.

1. Optical

The optical observations come from the Six- and Nine-Inch
Transit Circles of the U.S. Naval Observatory (USNO). They
cover the time span 1911-1971 and have been discussed by
Oesterwinter and Cohen (1972) and by O’Handley et al. (1969).

All of the optical observations have been reduced to the FK 4
Catalogue system using the tables given in the Second Series of the
Publications of the U.S. Naval Observatory, Vol. XIX, Part II.

Three types of systematic trends have been noticed in the
optical residuals with previous ephemerides. These trends were
removed empirically in the solution for DE 102 and are given here.

a) The optical data covering the years 1962-1971 have not
had day corrections applied for the Sun, Mercury, and Venus (the
three bodies observed during daylight). Consequently the cor-
rections applied in DE 102 use coefficients determined in the
solution itself. The forms of the correction are

Aa=A,+A,sind+A;coshg
46=D,+D,siné+D,coshg,

where ¢ is the declination and h, is the hour angle of the Sun (i.e.,
time of day). The corrections da and 46 are to be subtracted from
the observed values of o and 9.

b) Secular-like drifts, due among other things to an inaccurate
value of precession and an equinox motion in the FK 4, have been
removed using the corrections

Aa=(4k+ Ansino tand) Ty,

A46=AncosaTy,,

where T, is the time in centuries since 1950. The factors 4k and
An are applied to all optical observations of the planets and Sun,
and they are determined empirically in the solution. If one

assumes that these parameters come from precession error and
equinox drift exclusively, the following relations apply:

Ak=—E+ Apcose,
and

An=Apsing
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where E is the equinox drift, 4p is the correction to precession,
and ¢ is the value of the earth’s obliquity. The corrections da and
A9 are subtracted from the observed values of a and 6.

c) A systematic trend, called the “Phase Effect”, is noticeable
when the residuals are displayed with respect to time near
planetary opposition (or superior conjunction for Mercury and
Venus). They evidently arise from observational difficulties in
relating the measured portion of the partially illuminated disk to
the center of mass of the planet.

There are three types of measurements of a planetary disk : (i)
the center of light of the complete object, used usually for
Mercury, sometimes for Venus and always for Uranus, Neptune
and stars; (ii) the illuminated edge only, in right ascension and
declination, used sometimes for Mercury and usually for Venus;
and (iii) both the illuminated edge and the terminator, each in
right ascension and declination, used always for Mars, Jupiter and
Saturn. The USNO has applied corrections for each of these three
types of observations ; those for type (i) are empirical while those
for types (ii) and (iii) are rigorously derived from geometric
considerations. These formulae are given in Appendix II,
Volume IV of the USNO publications.

For DE 102, the empirical corrections were removed from the
observations of type (i), while the corrections for types (i) and
(iii) were retained. In addition, the following three corrections
were respectively applied to the three types of observations, with
the coefficients being determined in the solution for DE 102:

Ao s [sin®@ 2
. -2 I3
(i) {Aé} Q{COS@}[CO+CII+C21 +C,I°]

4 in®
(ii) {“}:{S‘“ }[LO+LII+L212+L3I3]

A6 cos@

Ao sin®@
_ B sin2i
(iii) {Aé} {cos@} . sin2i,

where k=4,...,8 for Mars, ..., Neptune, s is the planet’s semi-
diameter at unit distance, g is the planet’s geocentric distance, i is
the phase angle (Earth-Sun separation angle subtended at the
planet), @ is the position angle of the midpoint of the illuminated
edge of the planet’s visible disk (measured eastwards from north),
and where I=i/90°. The forms of these formulas were chosen
arbitrarily to fit the observed residuals. For Uranus and Neptune,
formula (iii) was used even though their measurements were of
type (i). In any case, the phase effect for these two planets is
negligible.

The a priori standard deviations in right ascension and
declination were taken as 170secd and 170, respectively, for the
Sun, Mercury, and Venus, and 0”5secd and 05, respectively, for
Mars through Neptune.

The number of observations for each body and the rms post-fit
residuals about the mean for the optical data are shown in
Table 3a.

2. Radar

Radar time-delay measurements from Mercury, Venus, and Mars
have come from six sources: Arecibo Ionospheric Observatory,
Haystack (MIT), Millstone Hill (MIT), Goldstone Deep Space
Station (DSS) 13 (JPL), Goldstone DSS 13/DSS 14 Bistatic (JPL),
and Goldstone DSS 14 (JPL). The a priori standard deviation
assigned to these data varied according to source, planet, and
year. The number of radar data points for each planet and their

Table 3a. Optical observations

Planet o o Totals
N Orms N Orms
Sun 8223 0781 7930 0783 16153
Mercury 2412 0.98 2339 0.85 4751
Venus 3566 1.17 3386 0.89 6952
Mars 830 0.63 804 0.55 1634
Jupiter 1068 0.50 1030 0.51 2098
Saturn 1091 0.53 1040 0.54 2131
Uranus 1048 037 1034 0.45 2082
Neptune 1037 0.40 1015 0.50 2052
Totals 19275 18578 37853
Table 3b. Radar observations
Source Mercury Venus Mars Totals
N o[ps] N ofus] N o [ps]
Arecibo 106 17.1 248 8.1 30 83.3° 384
Haystack 217 100 219 92 2745 128 3181
Millstone 101 94.8° 101
Goldstone 13 294 3822 4 100 298
Goldstone 13/14 9 92 14 176 300 114 323
Goldstone 14 22 8.6 44 134 699 10.7 765
354 920 3778 5052

2 These data are mostly pre-1967 and are therefore of lower quality
than later data. They were severely down-weighted in the solution
for DE 102

Table 3c. Mariner 9 range points

N Julian date o [ps]
77 2441272-2441361 0.25
81 2441389-2441540 0.29

487 2441541-2441555 0.78

2441577-2441602
158 2441556-2441575 2.50
803

post-fit rms residuals are shown in Table 3b. One microsecond of
time delay is equivalent to 150 m of one-way range.

Occultation measurements of the Martian surface by
Mariner 9 have shown that the shape of the surface can be
approximated by a triaxial ellipsoid. This determination and its
implications for radar ranging have been discussed by Standish
(1973). The radar time delays from Mars have been computed
using this triaxial model. The whole ellipsoid is scaled according
to the mean equatorial radius of the planet, the only figure-related
parameter estimated in the solution for DE 102. The shape and
orientation of the ellipsoid are unaltered.
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The surfaces of Mercury and Venus are approximated by
spheres.

3. Mariner 9 range points

The Mariner 9 Navigation Team combined 803 range points to
the Mars Orbiter with positions of the orbiter relative to the
center of mass of Mars in order to produce accurate Earth-Mars
ranges from November 1971 to October 1972. These data, sum-
marized in Table 3c, exist in four sets according to their proximity
to the Martian solar conjunction (JD2441568), when the
2200-MHz ranging signal passed within 4 solar radii of the sun at
heliographic latitude +79°. The uncertainties in the propagation
of the signal through the corona are reflected by the post-fit rms
residuals.

Besides the standard relativistic time delay in the radar signals
between the Earth and a planet (Shapiro, 1964), there is a delay
caused by the electron density in the solar corona. This has been
discussed by Muhleman et al. (1977). The following formula for
corona delay At (us) was used in processing the radar and
Mariner 9 data in DE 102:

40.3 P2
= 2 j N e dS,

cf Py
where c is the speed of light (cms™?), f is the frequency (MHz) of
the radio carrier signal, N, is the electron density (cm ™ 3), and the
integration is carried out over the linear distance (cm) from point
P, to point P, in space. The electron density was assumed to have
the following form:

4 B

N =

— 4+ —
e r6 r2+e

At

with the solar distance r expressed in units of the solar radius.
The values of the constants used for DE 102 are

A=1310%cm™3
B=0.510°cm™3
e=0.0.

These values are consistent with the corona derived from Mariner
6 and 7 data by Muhleman et al.

4. Pioneer 10 and 11

The Pioneer Navigation Teams at JPL provided Earth-Jupiter
ranges by combining Earth-spacecraft ranges with positions of the
spacecraft relative to Jupiter’s center of mass at the times of
encounter (JD 2442020 and JD 2442385). The a priori standard
deviations were 50 us for each.

5. Mars radar closure

There were 306 “closure points” from the Mars radar data taken
during the oppositions of Mars in 1971, 1973, and 1975. These
closure points are pairs of days, each spanning at least two years,
during which the observed points on the surface of Mars are
nearly identical with respect to Martian longitude and latitude.
Since the same topographical features are observed during each
day, the uncertainty introduced by the topography of Mars may
be eliminated by subtracting the residuals of one day from those
of the other day. The remaining difference is then due only to the
ephemeris drift between the two days. These points had a priori
standard deviations of about 1 ps.
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6. Viking orbiter range points

The Viking Navigation Team at JPL provided Earth-Mars range
measurements by combining Earth-spacecraft ranges with po-
sitions of the spacecraft relative to the center of mass of Mars.
These data encompass 242d, commencing on June 20, 1976
(JD 2442949.6-2443191.0). Since the measurements were taken at
two frequencies, the Navigation Team was able to calibrate the
effect of the solar corona electron content and thereby remove its
effect on the data. As such, no modeling of the corona was
necessary for using these data in the solution for DE 102.

There were 2498 points from Orbiter I and 1965 points from
Orbiter II. The a priori standard deviation of these data were
computed from

5=[0.0038 +0.0062 (280033 D] 1/2 g,

where D is the number of days on either side of Mars’ solar
conjunction (JD 2443108). For D> 160, 6=0.1s was used.

VII. Data fits

In discussing the creation of DE102/LE 51 it is stressed that
though there were separate least squares fits to the planetary and
lunar data, the integration of the lunar and planetary orbits was
done simultaneously. First, the planetary data were fit; then the
resulting new planetary starting conditions were integrated with
old lunar starting conditions to produce a preliminary ephemeris
(DE 101). Then, the planetary initial conditions were held fixed
and several iterations of lunar fits and joint integrations were
performed until the orbit had converged. As a part of one of the
intermediate iterations, a simultaneous rotation of the lunar and
planetary orbits was carried out to bring the earth’s equator into
consistent alignment with the ephemerides. This rotation will be
described later (VILC).

A. Planetary least squares solution

There were 71 parameters in the full rank solution for the planets
in DE 102. 46 of these parameters were used to adjust the initial
conditions of the planets Mercury through Neptune. Those for
Pluto were taken from DE 69 (O’Handley et al., 1969). In addition,
the plane of the Earth-Moon barycenter’s heliocentric orbit was
left unchanged from DE 96 (Standish et al., 1976) by not solving
for its two defining parameters. Subsequently, after the solution,
the entire set of planetary initial conditions was rotated into
alignment with the lunar solution, as mentioned above.

As described before (VLB.1b), the parameters 4k and 4n are
introduced into the solution in order to account for observed
secular-like drifts in the optical data. They arise mainly from the
fact that the mean motions of the inner planets, being determined
primarily from the strength of the ranging data, are not consistent
with those implied by the optical observations. It is tempting to
attribute the resulting values solely to a precession correction Ap
and to an equinox motion E, especially since the solution values of
0726y~ ! and 17426 cy ! are reasonably close to those (Fricke,
1968, 1982) of 17100cy ™! and 17275cy !, respectively. However,
it must be realized that the optical observations could very well be
subject to further systematic errors, such as catalogue offsets and
seasonal errors, which would also influence the derived values of
4k and 4n.

The list of values resulting from the planetary least squares
solution is given in Table 4.
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Table 4. Parameters from the planetary data fits for DE 102

Orbital parameters
(Corrections for all planets except Pluto; Earth-Moon barycenter
orbital plane held fixed at epoch)

Scale factor
AU 149597870.684 km au™*
Optical drift parameters
Ak —07760cy !
An +07289cy !
implying
Ap=+0726cy™!
E= 11426cy™!
Optical day/night corrections
A, 0712 D, —0"36
A, +0.20 D, —1.38
A, +0.18 D, +0.50
Optical phase corrections
Co —0.03 L, —0713 B, 0142
C, +0.45 L, 2.69 B; 0.98
C, +0.39 L, —225 B, 0.84
C, —-0.24 L, 0.65 B, 0.39
Bg 1.21
Planetary radii ( from radar ranges)
Mercury 2439.958 km
Venus 6051.813
Mars 3396.644°

2 Mean equatorial radius of triaxial ellipsoid

Table 5. McDonald observatory coordinates used in DE 102
(cylindrical coordinates)

Spin radius ry, = 5,492,414.39+0.28 m
East longitude 4 = 25529781805 4020000067
Equator height z = 3,235,697.45+0.48 m

B. Lunar least squares solution

After choosing the constants an initial integration of the Moon
and planets was performed. Between the initial and final in-
tegrations were several cycles of fits and integrations which served
to fit the lunar orbit to the laser data and to rotate the whole lunar
and planetary system about three orthogonal axes. The weighted
least squares fits to the lunar ranges had 39 parameters: 6 lunar
orbital elements, 2 parameters to orient the equator of the earth
with respect to the ecliptic, 6 initial conditions for the lunar
physical librations (3 angles and 3 angular rates), 6 parameters of
the lunar gravity field (8;, y;, C5o, C35, S35, S33), 12 selenocentric
coordinates for the four retroreflectors, 3 geocentric coordinates
for McDonald Observatory, and 4 parameters modeling UT 1 (a
rate, a pair of annual terms, and a long-period term). This choice
of parameters is a conservative set; solving for 6 additional
parameters [the three remaining third degree lunar harmonics, the
secular acceleration of the Moon, the Nordtvedt term, and the
gravitational constant times the mass (Gm) of the Earth-Moon
system] reduced the rms residual by 0.12 ns (2 cm). The first four

of the additional parameters were considered too uncertain in the
solution to provide a significant improvement; the Nordtvedt
term was set to zero since it represents a violation of the
equivalence principle of general relativity which has not been
observed (Williams et al., 1976; Shapiro et al.,, 1976); and Gm of
the Earth-Moon system was left unchanged, since its small change
would also have required a change in the planetary starting
conditions. These 45-parameter solutions were performed to
provide comparisons, but the smaller set of parameters was felt to
be more compatible with our primary objective of generating a
new ephemeris. The final 39-parameter solution using LE 51 gave
a 2.78 nsrms residual (42cm) and a 45-parameter solution gave
2.66 ns (40 cm). The coordinates of the intersection of axes of the
McDonald Observatory 2.7 m telescope are taken from the former
solution and presented in Table 5. The derived longitude depends
on the equinox offset of the ephemeris (Williams and Melbourne,
1982) and is consequently shifted from other published values by
the 0767 rotation of Sect. VIII.A.1. A more recent solution for
masses, lunar gravity field, and observatory and retroreflector
coordinates is presented and discussed by Ferrari et al. (1980).

C. Combined orientation

As part of the iterations of the lunar fits and integrations, a
rotation was applied to the planetary starting conditions which
had been generated by fitting the planetary data alone. Range
data to the planets are sensitive to the relative orientations of the
planets, but the absolute orientation in the planetary fits is
controlled solely by the optical data. The few-decimeter fits of the
lunar range data contain a surprising amount of orientation
information. Projected onto the surface of the Earth, 1arcs in
orientation is 31m in displacement. Though this sensitivity is
reduced when projected into the lunar direction, the range data
implicitly contain orientation information of order 0”01. Since the
ranging station sits on a spinning Earth, the true terrestrial
equator of data can be sensed as a reference plane. The orbit plane
of the Moon effectively precesses about the ecliptic in 18.6yr,
implying that the lunar range data contain information on the
orientation of both the lunar orbit and the Earth’s heliocentric
orbit with respect to the equator. The fact that the lunar data
cover less than half of the precession time means that there is
incomplete separation of the orientations during the solution. The
expression for the radial distance to the Moon also contains solar
perturbation terms sensitive to the alignment of the lunar node
and inclination with respect to the ecliptic. (Note that the
orientations of the ecliptic and lunar orbit are determined with
respect to the true equator of date.) The relation with the equator
of B 1950.0 depends upon the adopted time-varying model for the
precession, obliquity, and nutation from the weighted mean time
of our observations (about 1974) to B1950.0. The lunar data
analysis used the conventional (pre-IAU 1976) expressions for the
general precession and obliquity change. If the new (1976 IAU)
expressions (Lieske et al., 1977; Lieske, 1979) are to be used the
ephemeris should be adjusted to preserve the orientations at 1974.
We believe that at present the relative orientations of the three
planes are determined to an uncertainty of about 07015.

The lunar range fits include parameters (6, and 6,) for right-
handed rotations of the earth about two axes at «=0°, 6 =0°, and
a=90°, 6=0° while holding the planetary ephemeris, and hence
the ecliptic, fixed. The solution values of 6,=—07084 and
6,= 407177 with respect to the initial planetary ephemeris were
applied as rotations of opposite sign to the whole system of lunar
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Table 6a. Heliocentric planet states, geocentric Moon state, and solar system barycentric Sun state at selected epochs. The units are au

and aud™!?
x z x y z

JDb = 2440000.50 1968 MAY 24 00:00:00

MERCRY -e356131898316646 -«079923616931072 -e002105034672280 ~+000650606969612 -«023344965640621 -e012435101883681
VENUS +513143484551837 +475694506541018 «181951575578733 -+014303994571041 «012689940711713 «006621793762 169
EMBARY ~s4€5602695066 752 -+825201166429926 -+357836102451260 «014997038811555 -+007311441230445 -o003170601480761
MARS «379€616473387926 1.357046616627028 «612718066677804 ~+013009572479121 «004090125563618 «002226646439 465
JUPITR -5.003201204907751 1.826864769523217 «906019138038051 ~e002930176019319 -+006130655617238 -+002558438769 334
SATURN B8e9€7421164152340 2.645579909524743 «706191309448817 -+001919249880525 «004893473966354 «002106222174576
URANUS -18.279812801846174 «5512437397654€9 +499839838126083 -+000186069616241 -e003773324031039 -+001650648835 062
NEPTUN =17.4(5827756069245 =23.128533031031773 -9.036208583689424 «002547542835049 -«001632113173717 -+000732800107223
PLUTO -30.5420749773%6 260 «728360972156998 9.485336035964553 «000166968206885 -+003151291523364 -e001047414721253
MOON «002415066854972 +001096%22837270 «000516582280778 -.000240377381614 «000443996805375 «000247146429290
SUN «003919321270926 -+001324616245090 -+000622788929937 .000003211870019 +000004692709701 «000001943365 000
Jb = 2440400.50 1969 JUN 28 00:00:00

MERCRY +355792583292400 -+.095534548515480 -«087713219145494 «003708702223901 «024849789709197 «012926880605116
VENUS +603351526104238 ~+3559044873173172 -e198487669529248 «011156875320646 +015488930738822 «006275166193051
EMBARY «103696319474665 -e927833598248090 -+402340007890888 «016833529266915 «001555077255782 «000674240852369
MARS ~¢132473821913757 =-1.326985054158883 -+605554764685246 «014482202982455 «000075394335056 ~«000354111057 25¢
JUPITR -54354193291553878 -«7710081200472€8 -+198915059073805 «001005654748533 -+006535020682084 ~.002828109099 %922
SATURN 70948243636719564 4,507187023227101 1.519958994654949 -.003159200139015 +004366270522430 «001941907786670
URANUS -18.282750855798804 -e958434031884277 -e161586773687624 +000171380264953 ~e003769850775359 ~«001654199462 772
NEPTUN ~16¢371633528829260 =-234761703783929610 -9.321653368565120 «002622812028382 -«001532924450898 -+000654062397851
PLUTO -30,452355966380919 ~e5325496136973170 9.059463360111604 «000282060048511 -¢003152131875254 -e001081645825637
MOON -e000835696144214 -+«001985441942846 -«001083269200246 +000598752743373 -«000174151775434 ~+0000£8476864 467
SUN +004527775417440 «000723365869243 «000243736732666 -+000000283960641 «0000051R3018054 «0000C2231362297
Jb = 2440800450 1970 AUE 02 00:00:00

MERCRY ~¢347281920716391 ~+253820790418240 -+100252977982116 «011643568001284 -«017968873793638 -.01081911406¢t 169
VENUS -e2172923962286769 -+619188066470830 ~¢261789347211002 «018600749299038 -«006590455348420 ~-.004144650979 231
EMBARY «628824863056050 -e723464449022686 -e313719906075961 «013086989741705 «009880617382417 «0042P4477300128
MARS -1.043278045088229 1.149606436844376 «555691494879293 -+010285734779613 -+007076402922278 -«002972130224 440
JUPITR -4,241128326947548 <+3,149119618291823 -1.,247309466117799 «004626328984462 -«005059611156843 ~e002203652292%40
SATURN 6.459592864736689 60101147983100087 24243389283768249 -.004252245269350 «003559252961775 «001655564203 679
URANUS -184143115258806633 ~-2.460584248417711 -e821739877441121 «000526204163907 -e003735779666599 ~-.001644318363017
NEPTUN «1543C8270983774163 -24,354331906136272 =-9.591216965150027 +002693305697018 -.001429470425948 -«000653427179519
PLUTO -30.316286814236456 =-1.792529991905536 8.620226640260410 «000398622952872 -e003146652697593 -.001114236167781
MOON -+0C01601309026202 «001957203235842 +000968482143504 -+000458407901440 -+000278698567938 ~«000170697508693
SUN «0C3793062435931 «0026318163247€0 «001079306784696 -+000003443608740 «000004037830291 «000061810724573

Table 6b. Libration Euler-angle states at selected epochs, in rad and radd ™!

JD=2440000.5 1968 May24  0:00:00
¢ = —2.02126089300823206 10~ 2 t
6= 3.83103602337437716 10~ * 0=
p=242325263496018642 10~ 2 Pp=

JD=2440400.5  1969Jun28  0:00:00
¢ =5.93464084784960331 1073 <f>=
6 =3.82409065087238434 10! 0=
p=0.0

JD=2440800.5 1970 Aug2  0:00:00

0= 3.85226644196030775 10!

¢=3.27032335106893298 10> b=
p=—2.51161735346522412 102 j

= —4.72630701310065239 10~°
4.20077869488481184 10~ °
5.61707911515954610 10~

1.05662466745666694 104
2.30262134992888838 103
Y= —1.24093888386235919 10~ *

; 9.90208595640356422 103
6 = —7.23251966664739728 10>
= —7.88484391951160019 10~ °

and planetary starting conditions for the next integration while
holding the equator fixed. As an attempt to achieve a dynamical
equinox, a rotation of +07683 was applied to the right ascensions.
This latter number was the equinox offset determined by
Van Flandern (1977, private communication) for DE97/LE47.
This latter rotation failed to achieve a dynamical equinox by 0”1
because the addition of new planetary data, after the generation of
DE97, caused changes in the planetary orbits which, when
coupled with the lunar derived rotations, resulted in the offset.
Table 6a lists the positions and velocities of the planets, Moon,
and Sun at the epoch of solution, JED 2440400.5, and at the

neighboring epochs 2440000.5 and 2440800.5. The solar system
states at these adjoining epochs may prove useful for comparison
with other integrations. The states of the nine planets are heliocen-
tric; the lunar state is geocentric; and the solar state is with
respect to the solar system barycenter. The units are au and
aud™ 1.

The libration states at the same three epochs are given in
Table 6b. From the nature of its definition the angle v (denoting
the angular displacement of the selenographic meridian from the
earth’s equator) grows rapidly with time, changing by 2x radians
per lunar revolution. To limit the magnitude of the numbers
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carried by the numerical integrator, a linear polynomial was
removed from the initial conditions for w presented to the
integrator. In all calculations the actual values of v and 1 used
are:

PO =)ty +w;t ‘
1~su(t) = d’im(t) + v,

where ,,,(¢), ¥, denote the angle and rate provided by the
integrator;

P, =1.28196362980467391 rad ;
P, =0.229970890283347893radd " * ;

t is the time in days from the epoch of initial conditions.

D. Orbit accuracies

The discussion of accuracies is given in three parts, according to
the dominant data type used: the four inner planets have very
good relative orbits, due largely to the ranging data; the orbits of
the more distant planets depend on optical data and are less
accurate; and the lunar orbit is well determined by the laser
ranging data. In all cases the accuracy of the ephemerides will
degrade as one extrapolates outside the span of observed data. It
is convenient to describe the accuracy of the ephemeris in terms of
the orbital elements implicit in the initial positions and velocities
of the integration. Osculating elements can be easily derived from
initial conditions, but the recovery of mean elements requires
comparisons with theories (see the Introduction for references).
This section interprets the accuracies and relations between the
range-dominated orbital parameters. Much of this interpretation
is known in the analysis community but has not been published.

For the four inner planets the range data dominate the
accuracy of the semimajor axes, eccentricities, mean anomalies,
and mean motions, as these parameters enter directly into dis-
tance calculations. Well determined in a relative sense are the
ecliptic mean longitudes, perihelion directions, and the orien-
tations of the orbit planes. The system of the four inner planets
can be rotated as a unit by three constant arbitrary angles (though
not by arbitrary angular rates) without changing the relative
distances. Some combination of other data types and adopted
conventions sets the absolute orientation of the system. It is a
result of the geometry of planetary ranging that the difference
between the mean heliocentric longitude of a planet and that of
the Earth is well determined and, after a span of time, so are the
relative mean motions. At a distance of one astronomical unit,
725 km subtends an angle of 1”, so that the kilometer-sized radar
ranging accuracies previously given imply accuracies (1) for the
relative longitudes of a few marcs and (2) for the relative mean
motions of a marcsyr~! or less. Relative longitudes for Venus,
Earth and Mars show realistic accuracies of 07003 or less at the
1969 epoch ; that for Mercury, somewhat larger. A contribution to
the error arises from the displacement of the epoch from the center
of the data spans.

Since the orbits of the planets are elliptical, there are periodic
displacements from circular motion of amplitude ae in the radius
and 2ae in the longitude direction, where a is the semimajor axis
and e is the eccentricity. These displacements will have measur-
able projections into the range direction so that both the ampli-
tude and phase can be determined. The uncertainties in ae are less
than 1km for Mercury and Venus, and less than 100 m for Earth

and Mars, the latter pair being better determined by the ranges to
spacecraft orbiting Mars. As the phase of these terms gives the
mean anomaly, the accuracy of the mean anomaly should scale
directly as the accuracy of the range data and inversely as the
product ae. Of the four planets Mars has the most accurately
determined mean anomaly. In order of increasing mean anomaly
uncertainty the earth, Mercury, and Venus follow. Given the mean
anomaly [the difference between the mean longitude and the
perihelion longitude (/;=L;—&;)], and the differential mean
longitudes L;— L, it follows that the differences between all
sixteen combinations of mean longitudes and longitudes of peri-
helia I, —®; and the six combinations of perihelia @;—@, are
known. Since the mean anomaly error is proportional to 1/e, while
the differential longitudes are better determined, the accuracies of
the last two differences above are limited by the mean anomaly
errors; hence the differences with Mars’ perihelion are the most
accurate and those with Venus’ perihelion the least accurate.

Since ranges give mean anomalies, the mean anomaly rates
will result after a span of time. A system of four inertial (sidereal)
mean motions is yielded by the combination of (1) the precise
differential mean motions, (2) the most accurate of the individual
planetary mean anomaly rates, and (3) the expectation that the
perihelion precession rates are given well by the modeling of
accelerations in the integrator. Mars has the most accurate mean
anomaly rate so that the connection of the four inner planets to an
inertial system rests on the Mariner 9 and Viking orbiter range
data. During the time spanned by these blocks of data the
observational noise on the mean motions of the earth and Mars is
about 0701 cy~*. The error in the longitude of perihelion rate for
Mars, about 07013 cy ", is dominated by the errors in the masses
of the Jovian planets. Because of the two short spans of spacecraft
data, errors which cause short-period signatures will also corrupt
the mean motion. Thus the error of Jupiter’s mass contributes
0703 cy ™! to the mean motion error. For longer time scales the
limiting error (about 07025 cy ~ !) for inertial mean motions results
from long period terms in the Martian longitude induced by
asteroids of uncertain mass (Williams, 1984). Thus the resulting
error in the long-time, inertial mean motions for the earth and
Mars is about 0704cy~!. For Venus this uncertainty is about
0706 cy ! and for Mercury about 0714 cy L.

The product of the gravitational constant and the solar mass
is a fundamental constant of the solar system and is defined in
units of aud =2 (Table 2). With accurate mean motions it follows
from Kepler’s third law that the planetary semimajor axes will be
well determined in astronomical units. The “range” measurements
are really roundtrip light times, but since the speed of light is a
second fundamental constant these are equivalent to measure-
ments in kilometers. The geometry of ranging also gives infor-
mation on the semimajor axes in kilometers, and the ratio to the
values in astronomical units gives the value of the astronomical
unit in kilometers, [equivalent to determining Gmy,, in laboratory
units (km3s~2)]. The spacecraft ranging data to Mars again
dominate the accuracy of this scaling factor; the less accurate
radar data adjusts the planetary radii. At the time that the Viking
orbiter range data were first added to the older data, the
determinations of the mean motions of the inner four planets
decreased 075cy™!, the au shrank by 700m, and the planetary
radii shrank by several hundred meters. More than an order of
magnitude improvement in the accuracy of the mean motions and
the au (now +30m) was made in a single step.

The relative orientations of the orbit planes of the inner four
planets are less well determined than many of the above orbital
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parameters because they enter the ranging equations at second
degree, but they still improve upon determinations based on
optical data alone by an order of magnitude. The estimated errors
with respect to the ecliptic are a few hundredths of an arcsecond
for Mercury, a hundreth arcsecond or less for Venus, and a few
marcs for Mars. As previously described (Sect. VII.C) these orbit
planes were collectively oriented with respect to the earth’s
equator and the lunar orbit plane during the fits to the lunar laser
data. It is estimated that this orientation is accurate to 07015 at
1974, with corrections for the precession constant needed at other
times as described.

For the Moon the mean orbital elements which affect its
geocentric distance will be strongly determined by the laser
ranging data. The eccentricity is implicitly determined to-a few
parts in 10° and the mean anomaly to a few marcs. There is a
_strong determination of the differential geocentric lunar and solar
ecliptic longitudes resulting from strong solar perturbations on
the lunar distance (amplitudes of about 3000 km and 4000 km for
the two leading terms). During the span of the observations the
differential longitudes are known to about 07005. Outside the data
span the error in the lunar longitude is dominated by the
uncertainty in the lunar tidal acceleration. Since the generation of
LE 51, better values of the secular acceleration have been de-
termined. The most recent value of —25”1+173cy~? (Dickey and
Williams, 1982) would indicate that in LE51 a correction of
07554 0765cy 2 is needed to the lunar longitude. For historical
observations the accuracy of the ecliptic longitude of the Moon is
still inferior to that of the four inner planets. The mean distance of
the Moon is set by the adopted value of the Sun/(Earth + Moon)
mass ratio in Table 2. Improved values (Dickey et al, 1981)
indicate that a correction of —8+6m is needed. The large
uncertainty compared to the decimeter laser data itself results
since one of the selenocentric reflector coordinates is nearly
parallel to the Earth-Moon vector, and hence separates from it
only weakly.

1. DE 102 to 1950.0 FK 4

VIII. Adjustments to DE 102

As mentioned in the previous section, the orientation of the
reference frame of DE 102 does not coincide with any of the
standard reference systems commonly used in astronomy, such as
the FK 4 at 1950 or the dynamical equinox of 1950 or of 2000.
Furthermore, since the creation of DE 102, there have been a
number of improvements incorporated into the more recent
ephemerides produced at JPL. These improvements have been the
result of newer and more extensive sets of observational data as
well as more refined data reductions. Such improvements have led
to revised values of some of the constants used in the integrations
as well as adjustments to the lunar and planetary orbital initial
conditions. However, none of the newer ephemerides has been
integrated more than two centuries in time and so it is not possible
to replace DE 102 with a newer ephemeris for use at times which
are very far from the present epoch. It is possible, however, to
directly modify DE 102 so that it closely approximates what a
newer ephemeris would give if it were to be integrated over the
time span of DE102. This is possible, especially, since the
equations of motion described in Sect. II have remained un-
changed for ephemerides created since DE 102.

This section discusses how one may re-orient the reference
frame and/or improve the positions and velocities of DE 102 in
order to better approximate those of the more recent JPL
ephemerides. It was, however, the analysis of the obliquity and
equinox offset from the long span of DE 102 which permitted
these parameters to be determined for the shorter, more recent
ephemerides.

A. Re-orientation of axes

The simplest change to DE 102 is a constant rotation applied to
the positions and velocities at each time. The rotation may be
expressed in the form of a 3 x 3 matrix, the result of successive
rotations about the coordinate axes.

The most recent (1981) JPL ephemeris is DE 118 which is observationally adjusted to the FK 4 equinox at B 1950.0 (+0705). One may
approximately align DE 102 with the FK 4 at B 1950.0 by adjusting it to DE 118 at this epoch. The following rotation was determined
by comparing the coordinates of the Earth-Moon barycenter at B 1950.0:

[r,#])1050.0rxa =¥ Flpgy 15 =R (—0700029) R (—0711718) R (+0766583) [r, Fl5g 1 6,

0.9999999999946285 0.0000032280349329
= | —0.0000032280349321 0.9999999999947899
—0.0000005681046761 0.0000000014041258

0.0000005681046715

- 0.0000000014059587j| [r,¥]pE102

0.9999999999998386

R(x) indicates a rotation about the designated axis through the angle a.

2. DE 102 to 1950.0 dynamical equinox

The offset of DE 118 from the dynamical equinox at 1950.0 has been determined by Standish (1982) to be ER)(1950.0)= +0753155. One
may combine this rotation with that above, a process which will preserve the 1950 obliquity as determined by DE 118:

[7,#11950.00yn=R.(—0"53155) [, Flpg, 15

0.9999999999966795

= |: 0.0000025770271219

0.0000000000000000
0.9999999999996267 0.0000006510078110
= [ —0.0000006510078102  0.9999999999997881
—0.0000005681046761 0.0000000014041258

—0.0000025770271219 0.0000000000000000
0.9999999999966795 0.0000000000000000 | [#, #1pE, s
0.0000000000000000 1.0000000000000000

0.0000005681046751

-0.0000000014044957} 7, #Ipg1oz-

0.9999999999998386
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Note: The above offset from the dynamical equinox is defined in the “rotating” sense (see Standish, 1981) which is compatible with
traditional usage. For the “inertial” sense of the definition, one has E{), = +0762518.

The above offset from the dynamical equinox of DE 118 was actually determined from an analysis of DE 102 spanning an interval of
more than 1400yr (Standish, 1982). This gave E{},,(1950.0)= 40722955, and correspondingly E$9,(1950.0)= +0713591. One relates
these to the corresponding values for DE 118 by the formula AE=6, +6, ctng, where the &s are the rotational angles relating the two
ephemerides and € denotes the mean obliquity.

Also found in the analysis is the value of the mean obliquity, {},(1950.0)=23°26'44"813 and, correspondingly, £%),(1950.0)
=23°26'44"816. This latter number should represent a significant improvement (+07015) over the 1976 IAU value evaluated at 1950.0
of 23°26'44"855 (Lieske et al., 1977). The value for DE 118 supports the DE 102 value since &, ;4 —£,,, = —0,= 40700029, and the
expected obliquity error for DE 118 is half that of DE 102. A similar value for DE 102 was found by Bretagnon and Chapront (1981).

The rotation angle §, = —0.11718 is almost entirely due to the difference between the old and new precession constants (1'1cy™ ")
over the interval 1974 to 1950.0. The reduction of the lunar data in DE 102 used the old precession constant (see Sect. VII.C) while the
lunar data were reduced in DE 118 using the new value (6,~ 1.1x0.24 sine).

3. DE 102 to 2000 dynamical equinox

One may further transform to the J 2000 system by using the matrix (Standish, 1982) which was actually used to create DE 200 from
DE 118. This is
70.9999256791774783 —0.0111815116768724 —0.0048590038154553
[, #l,000pyn=| 0.0111815116959975 0.9999374845751042  —0.0000271625775175 |[¥, ¥lpg11s
L 0.0048590037714450 —0.0000271704492210 0.9999881946023742

[0.9999257180268403 —0.0111782838886141 —0.0048584357372842
= 0.0111782838782385 0.9999375206641666 —0.0000271576311202 | [, #1pg10z -
1 0.0048584357611567 —0.0000271533600777 0.9999881973626738

While the above matrices do align the Earth-Moon barycenter coordinates to those of DE 118 at 1950.0, they will be less precise for
any other body or any other time due to the differences in the orbital motions between the two ephemerides. For more precise
approximations to each body over extended periods of time, the formulation of Sect. VIIL.B is recommended.

B. Orbital improvements Table 7. Set III corrections for DE 118-DE 102, with

One may quite closely approximate DE 118 by using the positions T' = UED-2433282.5)36525,
> A =2n36 .36, B = 27136525/3231.48
and velocities of DE 102 and by modifying these using the Set III ™ 36525/6798.36, and ™ 36525/

formulation of Brouwer and Clemence (1961, p. 241). The cor- 4fy+4Ar  dp Aq edr daja  Ade
rections to the elements have been determined by matching  MERcury 1oee3997 -o18676 -.10567 -.13231 00000 -.00020,
DE 102 to DE 118 over two hundred years (1850-2050) and then Tss2 200010 00002 -.00001  .00000 .00000  +00000
by fitting these corrections with quadratic polynomials in time. ¢y 1 cu65261 -415210  +08000 -.00422  +00000  +00033
i i i i T -.04294 =-.00026 400000 .00005 00000 +00000
For' the Moon, two pairs of trigonometric terms were added with B B g 0 S I O
periods of the node and perigee precession (18.6 and 8.85 yr). In
. . . E-M BARY 1 -.65706 =-415399 «03253 ~.01080 +«00000 +00013
using these expressions, one must use t=0 in the SetIII for- T -003791 .0003%  .00093  .00008  .00000 -.00007
mulation; we have found this to be more accurate than the T++2  .00036  .00000  ,00000  .00000  .0000D  +00000
Keplerian assumption of constant elements referred to a single  #srs 1 oa6el0s .08275 -.10208 -.06178 00000 00000
epoch. Table 7 gives the Set III element corrections for each body Tes2 200000 00000  .00007  .00000  .00000  .00000
in units of arcs; for use with the formulas, they should be divided 5 ;1¢5 1 —u67338  -402460 -.15128 -.06013 <0055  +02466
. T 1 appli i T -.39304 =-.00143 =-.00070 00000 00000 00000
by 206’265 he corrections are pp ed using Tee2 «.00000 «00000 «00000 «00000 «00000 «00000
arDEloz sz + SATURN 1 -.68056 =-.08530 +06382 <-.05454 «02418 «00000
r = ¥, T =-419254 =-400252 =.00388 =-.05626 00000 «00000
DE118 aS"l m DE102> Txa2 «04676 «00242 =-.00316 «03115 «00000 «00000
. . . . . URANUS 1 -.60940 « 04462 «10435 «00000 «00000 +01286
where the partial derivatives are given in Brouwer and Clemence T -.37558 -.04178 -.01306  .19064  +03943  .00000
(1961, p. 241), using t =0 in the matrix, using osculating Keplerian Te#2 -.24203 -402195 =-.00938  .14047  .03814  .05512
elements at each time point, and using the definitions on pages 35  NEPTUNE 1 -.52662 =-.05354 =.10839 =-.26007 =-.52933 31788
T 2.70019 « 03764 +«01100 29747 «04393 -
and 237. Te+2 =1.11469 =.03502 =.03346 =.11951 =-.14544 -
. : : P «31296 -e.14721 «32918 «09530 -459697 «55239
Caution: Because of the coarse-grained representation of "-UT° L I NS hanee lhiear i
Mercury’s coordinates in DE 102 (see Sect. IV), this process will Tes2  .00000 00000 400890 -.11620 12534  .14817
work accurately for Mercury only at the mesh points of the  The moon 1 -.57722  .00000 L0000 -.03745 -.01621 00000
. . . . T  -e62624 00000 «00000 +00000 . .
Chebyshev polynomials; ie, only at times for which T++2 1.18544  ,00000 00000 00000 +00000 00000
= 1 7 COSCA+T) «01289 «00000 «00000 «00000 «00000 00000
JED_24404005_8k’ Where k Is an lnteger. SINCA*T) «00000 «00000 «00000 «00000 «00000 «00000

14760
19803

. . . . . . C0S(B:T) «00000 « 07427 014255 «00000 «00000 «00000
The differences in Table 7 illustrate the discussion of orbit SIN(B#T)  .00000 +13866 =.07364 00000 00000 00000

accuracies (VILD). The mean motions of the inner three planets
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shift together, because the radar data determine the differences
better than they do the inertial rates. The differential and inertial
mean motion shifts for Earth and Mars result from two mass
differences in the two ephemerides. The change in Jupiter’s mass
introduces a short-period (1.12 yr) periodicity in Mars’ longitude.
The Mariner 9 and Viking data blocks occur four cycles apart and
are nearly centered on the phase of maximum rate. The rate
change averages about 0703 cy~! over each block separately. A
15% change in Vesta’s mass causes a long period change of
07007 cy " .

It is reassuring that the 17185¢cy~2 coefficient of T2 for the
Moon’s element 4¢,+Ar compares well with the 1720cy~?2
difference expected from the change in the Love number and
phase angle.

The improvements resulting from the above adjustments are
discussed in the following section.

IX. Comparison of DE 102 with DE 118

At the present time, DE 118 represents JPL’s best ephemeris. One
may get an idea of how well DE 102 approximates DE 118 by
comparing the two at a number of time points covering the
interval 1850-2050.

The most obvious difference between DE 102 and DE 118,
during the present century at least, is the difference in the
orientation of axes as discussed in Sect. VIIL.A.1. This rotation
produces signatures in the heliocentric coordinates of the form

Aa(102-118)~ + 0767+ 0”12 sina tand
and
46(102-118)~ + 0”12 cose.

Superposed on these signatures, however, are other trends due to
the orbital adjustments of each body.

One may compare the ephemerides after the rotation of
Sect. VIIL.A.1 is applied. The improvement is remarkable for the 4
innermost planets. However, secular trends in o remain, up to
0705 cy,” *. The 5 outer planets show only slight improvement. For
the Moon, the quadratic term of 172 cy~ 2 is in evidence. Table 8a
gives the maximum deviation for each body in heliocentric
coordinates for this comparison over the time 1850-2050.

One may also compare DE 118 with DE 102 after the Set I1I
corrections of Sect. VIILB have been applied. The inner planets
show remarkable agreement (better than 07001); and the discrep-
ancy between the values of the Moon’s secular acceleration has
disappeared. Table 8b gives the corresponding maximum de-
viations for these comparisons. The four inner planets and the
Moon show no further evidence of secular trends. The outer
planets are less well fit by this process and still exhibit evidence of
impending run-off, possibly due to the fact that the masses of these
bodies have changed between the ephemerides, therefore weaken-
ing the validity of the SetIII formulation. Unquestionably the
differences between the two ephemerides could be further im-
proved for the outer planets and Moon by fitting analytical
theories in place of Set III parameters. The changes in masses and
perturbations would then be accommodated.

These statements have been supported by a further com-
parison. DE 118 was integrated backward another 50yr to 1800,
the SetIIl adjustments were applied to DE 102 over this time
period, and the comparison was made over this “extrapolated”
interval. The statements above remain valid.

Table 8a. Maximum deviations in heliocentric coordinates over the
interval 1850-2050 between DE 118 and DE 102 after the applica-
tion of the rotation in Sect. VIILA.1

|Aa|max |A5|max IAQ|max
Mercury 0705 0702 22km
Venus 0.05 0.02 04
E — M Barycenter 0.04 0.02 0.7
Mars 0.02 0.02 1.6
Jupiter 0.5 0.16 150
Saturn 0.3 0.16 600
Uranus 1.2 0.50 5,000
Neptune 36 13 15,000
Pluto 4.0 12 30,000
Geocentric Moon 2.0 0.8 03

Table 8b. Maximum deviations in heliocentric coordinates over
the interval 1850-2050 between DE 118 and DE 102 after the appli-
cation of the Set III corrections given in Sect. VIIL.B

|40t o |40] max |40 max
Mercury 070002 070001 0.03 km
Venus 0.0003 0.0003 0.05
E — M Barycenter 0.0003 0.0005 0.09
Mars 0.0020 0.0006 0.8
Jupiter 0.10 0.03 120
Saturn 0.15 0.05 400
Uranus 0.25 0.07 1100
Neptune 0.60 0.25 7000
Pluto 0.20 0.05 7000
Geocentric Moon 0.04 0.11 0.05

X. DE 102 export tapes

In the past five years, JPL has released for export more than 100
copies of its various ephemerides to users throughout the world.
We now have the capability of providing direct, machine-
readable, nonformatted tapes for a number of different types of
computers including IBM, Modcomp, CDC Cyber, PDP 11,
VAX, Honeywell, and UNIVAC. We also provide reading and
interpolating software, character-coded in Field data, BCD,
ASCII, or EBCDIC.

All 44 centuries of DE 102 can be written onto two 2400 ft
magnetic tapes at a density of 6250 bpi. Users wishing a copy are
asked to contact E.M. Standish; JPL, 264-664; Pasadena,
CA91109, USA.

XI. Conclusion

The 44-cy span of DE 102 makes it an ideal test for analytical
theories of the planets and Moon. The published comparisons are
listed in the Introduction. Given the long span either the analyti-
cal comparisons or Fourier analysis (Standish, 1982) can be used
to recover the obliquity and equinox offset which are implicit in
the data fits and integration. These are parameters fundamental to
accurate coordinate systems. We find an obliquity 07039407015

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1983A%26A...125..150N

rIYB3AZA T 125 JI50N!

166

smaller than the recently adopted (1976) IAU value. The long
span should also prove useful for comparison with historical
observations. The improved parameters from the planetary fits
are given in Table4. Notable among these is the
AU=149597870.68 +0.03km. The lunar ephemeris (LES51) in
DE 102 has been used for lunar laser predictions for the past
several years. Though the accuracy of DE 102 has been super-
seded by subsequent ephemerides, its length will give it unique
value for some years to come.
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