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ABSTRACT 

We examine the problem of detecting periodic signals in astrometric data, with specific emphasis 
on searching for a perturbation in a star’s motion due to planetary companions. It is shown how 
spectral analysis of such data by means of the periodogram provides an objective statistical basis for 
evaluating the reality and characteristics of suspected perturbations. A brief description of the 
properties of the periodogram is followed by a demonstration of the technique in an analysis of 12 
years of US Naval Observatory astrometric data for three stars with low-mass stellar companions. 
The periodogram is shown to provide a basis for both a comparison of the perturbation detection 
efficiencies of various astrometric systems and optimization of the efficiency of a given system. 

A quantitative discussion is given of an error source generally overlooked or ignored in analysis of 
perturbations in astrometric data, namely, absorption of the linear component of the necessarily 
finite sample of a perturbation into the proper motion. This error decreases less rapidly with the 
number of periods observed than one might guess (with a full period observed, the error leads to 
underestimation of the amplitude and period by as much as 47% and 25%, respectively). In a 
quantitative comparison of two idealized astrometric systems, it is found that the space-based one is 
vastly superior to the ground-based one for the purpose of searching for and studying other planetary 
systems. 
Subject headings: numerical methods — stars: stellar dynamics 

I. INTRODUCTION 

Observational evidence concerning the statistics and 
structural characteristics of other planetary systems is an 
important, perhaps essential, ingredient in understand- 
ing not only the processes by which such systems are 
formed but also the processes by which stars are formed. 
In spite of this importance there is currently no unam- 
biguous evidence for even the existence of another plane- 
tary system. 

There are, in principle, many observational tech- 
niques that could be used to search for other planetary 
systems. A review of those techniques and recent ad- 
vances in related instrumentation is given by Black 
(1980). One of the more promising approaches is 
astrometry, whereby planetary companions to other stars 
would be detected indirectly by observation of their 
effect on the apparent motion of those stars. A star 
without companions will appear to move linearly across 
the sky, whereas a star with companions will have an 
additional component of motion arising from its orbital 
motion about the barycenter of the star-companion sys- 
tem. A detailed discussion of this technique is given by 
van de Kamp (1967). 

The angular perturbation 0* due to a single com- 
panion in a circular orbit is given by 

0^ —0.98-^^-milh-arcsec, (1) 

where a is the semimajor axis of the companion’s orbit 
(in AU), D is the distance (in pc) between the observer 
and the star under study, and Mc and M* are, respec- 
tively, the masses of the companion (in Jovian masses) 
and of the star (in solar masses). Some appreciation for 
the difficulty of the detection problem can be gained by 
considering the magnitude of 0* for two examples, viz., 
the Sun and Jupiter, and the Sun and the Earth. Taking 
the Sun-Jupiter pair alone, 0*^5Z>_1 mas (1 mas = l 
milh-arcsec), whereas for the Sun-Earth pair alone, 0* — 
3X 10_3D_1 mas. 

Equation (1) does not include projection and ec- 
centricity effects. If the plane of a circular orbit lies in 
the plane of the sky, the x and y projections of the 
perturbation will be equal, with amplitudes given by 
equation (1). If the orbital plane is inclined with respect 
to the observer’s line of sight, there will always be some 
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projection of that orbit on the plane of the sky which 
has the amplitude given by equation (1), but the ampli- 
tude at other position angles will be less. If the orbit is 
highly eccentric (say e > 0.7), there could be cases where 
the orientation of the orbital plane with respect to an 
observer’s line of sight gives rise to significantly smaller 
apparent amplitudes than indicated by equation (1). In 
addition, if the orbit is eccentric, then the time depen- 
dence of the apparent displacement [0*(O] °f the star is 
no longer sinusoidal. Another potential complication 
concerns the possible presence of more than one (stellar 
or planetary) companion. The orbital motion of the star 
about the barycenter of a multicompanion system will 
contain components reflecting the orbital periods of 
each of the companions (e.g., eq. [2.12] in Black 1980). 
These complications will be discussed below (§ lie). 

The majority of astrometric observations employ pho- 
tographic plates as the detector, and the precision of a 
single night’s observation ranges from about 8 to 30 
mas, depending on the telescope being used and on 
observing conditions. Recent work by Gatewood and 
collaborators (Gatewood and Stein 1980) using a photo- 
electric detector has yielded nightly precision of about 4 
mas. The anticipated precision of the Space Telescope 
for astrometric purposes is about 1 mas (Black and 
Brunk 1980), while that of the European Space Agency’s 
proposed astrometric satellite (HIPPARCOS) is ~ 1-2 
mas (Black and Brunk 1980). Comparing the amplitude 
of possible signals with these figures, it is clear that the 
search for other planetary systems by astrometric means 
will involve data with low signal-to-noise ratios. One 
would like to have an objective means of assessing the 
statistical significance of any claimed detection. 

The purpose of this paper is to present an objective 
method for analyzing astrometric data for the presence 
of perturbations induced by a planetary companion to a 
star. The proposed method (1) minimizes subjectivity in 
the analysis and interpretation of astrometric data, (2) 
allows a quantitative comparison of the efficiencies of 
different astrometric systems for detecting planetary 
companions to stars, and (3) provides a guide to optimi- 
zation of the parameters in a planetary detection pro- 
gram. The method referred to is that of the periodogram. 
The general mathematical basis for and statistical prop- 
erties of the periodogram are discussed in a companion 
paper (Scargle 1982, hereafter S). 

A brief review of salient aspects of the periodogram 
as used in analysis of astrometric data for the presence 
of periodic signals is given in § II. The technique is 
applied to real astrometric data in § III. A comparative 
analysis of the detection efficiencies of two astrometric 
systems is presented in § IV, and a summary is given in 
§ V. Readers who are interested only in the general 
aspects of detecting other planetary systems using astro- 
metric data could skip §§ II and III. 

II. THE REDUCTION AND SPECTRAL ANALYSIS OF 
ASTROMETRIC TIME SERIES DATA FOR PERIODIC 

SIGNALS 

Consider a star with a planetary system such that the 
observed coordinates in a rectangular system are given 
by 

^obs “ “I" wy(0- (3) 

The C’s are constants which depend on the origin of 
coordinates, the /x’s are constants giving the proper 
motion of the star, tt is the parallax of the star, Px and 
PY are the parallax factors (van de Kamp 1967), x and y 
are the displacements in the star’s position due to its 
planetary companion(s) (i.e., the desired signals), and 
the «’s are the observational errors, assumed to be 
random. These equations can be elaborated to include 
effects such as the aberration of starlight, perspective 
acceleration, etc., but the simple form in these equations 
is more than sufficiently general to illustrate the con- 
cepts of interest here. The data are taken to consist of a 
set of N0 points [^WO^obsOi)]. í = 1,2,...,Aí

0, repre- 
senting the coordinate measurements at the observation 
times i,. The constants Cx, Cy, px, jay, and m are 
usually determined by fitting equations (2) and (3) to 
the data in a least-squares sense. Hence the problem of 
detecting the planetary-induced perturbations reduces to 
one of detecting the signals x and y in the presence of 
the noise nx and «y, based on the reduced observations 

x= Xobs-(Cx + pxt + 'ïïPx)=x + nx, (4) 

Y=Yobs-(CY + ßyt + nPr) = y + nY. (5) 

a) Preprocessing: Spurious Proper Motion 

There are several practical problems connected with 
this decoupling of the nonplanetary from the planetary- 
related stellar motions. For example, a planetary- 
induced perturbation with a period of approximately 1 
yr will tend to be confused with the annual terms 
comprising the parallax and aberration (although the 
latter is, in principle, exactly known). Similarly, the 
linear component of the perturbation will be erro- 
neously absorbed into the proper motion terms. This 
fact has been almost universally ignored, probably with 
the feeling that when the observations span more than a 
small fraction of an orbital period the resulting error is 
negligible. This feeling is incorrect; the effect can be 
large even if a full orbital period has been observed and 
becomes negligible only after several periods. To our 
knowledge the only published mention of this effect is a 
brief remark by Gatewood et al. (1980), although related 
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Fig. 1.—The least-squares slope (eq. [10]) of a sine wave of phase <j>, as a function of the number of full periods observed, rj/lv. The 
values of <f> are as follows: 0, tt/5, Itt/S, Stt/S, and 477-/5. 

general considerations have been discussed by Fimeis 
and Fimeis (1975). 

To demonstrate this proper motion effect, we evaluate 
the size of the error. Suppose that the motion of the star, 
after removal of the effects of parallax and aberration, is 

X(t,) =C0 + n0ti + Xq sin (/, + <i>), (6) 

where C0 + fi0t represents the actual motion, and time is 
measured in units of the period/27r. A least-squares 
estimate of the proper motion is obtained by minimizing 

D(C,ri = Z[X(ti)-C-vtl]
2 (7) 

i 

with respect to C and /x. If this summation over the 
observations is replaced with a continuous integral over 
the interval (0, tj), where (17/277) represents the fraction 
or multiple of a period observed, an elementary analysis 
gives the following least-squares estimates: 

(n)=li0 + Xoa4>(ri), (8) 

<c) = C0 + XoM1>)’ (9) 

where 

ß*( ^ ) = (V ){(2/) [sin( i]+ </>)-sin </> ] 

— COs(l) + <i>)—COS<i>}, (10) 

= (6/T)){7j“1[sin<i> -sin(T) + <(>)] 

+ 3 [cos(i] + <i>)+ 2 cos <|>]}. (ll) 

The quantity ¿4(17) represents the least-squares slope of a 
sine wave (of phase <i>) sampled over the range (0, rj) and 
is plotted in Figure 1 for a set of values of <f>. 

For 17 < 1 the sine wave is sampled over such a small 
range that it is effectively a linear segment, the slope of 
which is completely absorbed into the proper motion. 
But note that the slope error is still quite large for 
7] = 2 77, and not entirely negligible even for 17 — 4 77. 
Figure 2 shows the rms phase average of a^, which is 
perhaps more relevant, since one does not know ahead 
of time what phase a perturbation will have. 

The actual value of the slope error, XqO^, may be 
small compared to the true proper motion, but what 
matters is the effect of this error on the resulting residu- 
als. Figure 3 demonstrates the case 17 — 277 (one full 
period observed) and <¡> = 0. The line labeled “spurious 
proper motion” represents the perturbation which would 
erroneously be ascribed to proper motion. As the residu- 
als would be referred to this line, the period and ampli- 
tude of the perturbation would both be underestimated. 
The inset in Figure 3 shows that the erroneous residuals 
closely mimic a sine curve characterized by the under- 
estimated values of the period and amplitude, the major 
departure being that the residuals are of too large an 
amplitude near the ends of the observed interval. A 
similar analysis of the case 17 = 477 (two full periods), 
<í> = 0, shows that the slope error is 4 times smaller, the 
apparent period is 0.96 times the true period, and the 
apparent amplitude is 0.83 times the true amplitude. For 
these two values of 17, <i> = 0 yields the maximum slope 
error, but, as Figure 2 indicates, the phase-averaged 
error is only slightly less than for this worst case. 

Not only is the slope wrong (eq. [8]), but so is the 
intercept (eq. [9]). It is more convenient to deal with the 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
82

A
pJ

. 
. .

26
3.

 .
85

4B
 

No. 2, 1982 DETECTION OF PLANETARY SYSTEMS 857 

Fig. 3.—Example of how the spurious proper motion effect 
causes underestimation of the period and amphtude of a perturba- 
tion. The solid Unes represent the actual proper motion and 
perturbation. The dashed line has the slope which is erroneously 
attributed to proper motion, so that the apparent residuals are 
smaller than the true ones. The inset shows these residuals (dashed 
line) plotted with a sinusoid of the incorrectly deduced amphtude 
and period, demonstrating how well the erroneous residuals mimic 
a sinusoidal perturbation. 

error in the mean value of X(t): 

02^ = i?-1 cos<í>—cos (tj + <í>), (12) 

which has a phase (rms) average of 

<(ô*J2>1/2 = 21/V1|sin(T,/2)l- (13) 

This error drops even more slowly with tj ( than 
does the slope error (~rj~2). As expected, the mean- 
value error vanishes at integral values of yj/Itt and is 
maximum near half-integral values. 

To our knowledge, the slope error has not previously 
been corrected for in reductions of astrometric data. It is 
evident that such a correction can be accomphshed if a 
model of the perturbation is incorporated into the de- 
termination of the proper motion. (For example, a model 
of the form in equation [6] could be fitted directly to the 
data.) A rigorous analysis would involve not only a 
correction for slope error but a simultaneous reestima- 
tion of all parameters once it became apparent that the 
original estimation model was inadequate. 

There is an exception to this last statement: a run of 
historical astrometric data can be used to determine the 
proper motion over a long time baseline, and then the 
true proper motion can be eliminated from a shorter 
and more closely spaced set of observations, obtained 
specifically to detect perturbations. The point is that the 
value of Y] for the long run of data could be very large, 
even though y\ for the more concentrated (presumably 
more accurate and probably more closely spaced) run 
were relatively small. 

b) The Periodogram 

Consider now the problem of searching for the peri- 
odic signals X and y buried in noise (eqs. [4] and [5]). 
Because x and y are planetary-induced perturbations, 
they are, for the present purposes, exactly periodic. This 
is a particularly important point which derives from the 
fact that the time scales for changes in the parameters of 
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stable planetary orbits are very long compared with the 
periods of those orbits. We deal first with the simple 
case of a single planet in a nearly circular orbit. (In § lie 
we shall discuss more general cases.) This implies that 
the perturbations x and y will be purely sinusoidal—i.e., 
of the form suggested in equation (6). 

Most published observational work presents graphs of 
the residuals as functions of time, which are then in- 
spected for systematic quasi-sinusoidal trends. As shown 
in S, with sufficient data, perturbations which are small 
compared with the rms observational errors can be 
detected—whereas such signals will almost certainly be 
missed by visual inspection of the residuals. In addition, 
for a statistical analysis of detection efficiency it is 
necessary to introduce an objective and quantitative 
detection criterion. Some workers have used the increase 
in the variance of the residuals due to the perturbation 
for this purpose (e.g., Gatewood etal 1980). Such a 
procedure discards the information contained in the 
correlation structure of the perturbation and, for exam- 
ple, makes no use of the sinusoidal nature of the per- 
turbation and can therefore tell nothing about the period 
of disturbance. 

There are a variety of techniques for studying data as 
a function of the period of a possible periodic compo- 
nent. One example is folding (and then averaging) the 
data with respect to various periods and then examining 
the appearance of the resulting averaged curves. Another 
is the least-squares fitting of sine waves to the data and 
studying the variance of the residuals as a function of 
the period (Baming 1963; Lomb 1976). The technique 
advocated here is that of periodogram analysis, not 
because it is necessarily the best (e.g., most sensitive) 
technique, but because it has a well-developed and 
straightforward statistical theory. The practical impor- 
tance of this attribute of the periodogram will be devel- 
oped below. 

Scargle (1982) introduced the following modified form 
of the periodogram: 

I2 

22Çcosio(/y — t) 
J_  

2cOS2C0(/y-T) 
j 

and where the /y, y = l,2,3,...,V0, are the times of 
observation; V0 is the number of data points; and 
co = lirf is an arbitrary frequency. The motivation for 
modifying the usual form of the periodogram, as well as 
a full discussion of the properties of the periodogram, is 
given in the companion paper; here we only summarize 
those formulae and concepts which are germane to this 
discussion. 

If the Nq data points are evenly spaced in time, there 
exists a natural set of frequencies at which to evaluate 
the periodogram, viz., 

Inn 
(16) 

where T is the total time interval of the observations, 
and the integer « = 0, 1,2,..., iV = /2. The fundamen- 
tal frequency coj — 2*n/T corresponds to the lowest 
frequency about which there is information in the data. 
The so-called Nyquist frequency, viz., con^ttAo/T, 
corresponds to the highest frequency about which there 
is information in the data. Astronomical data are often 
not evenly spaced in time, in which case the fundamen- 
tal frequency remains well defined, but the concept of 
the Nyquist frequency is altered (see Appendix D in S). 

Using the statistical properties of the periodogram 
(see S) one can define a detection threshold z0 as 

z0=-ln[l-(l-jp0)
,/;v]. (17) 

The meaning of z0 is that, if the detection of a signal is 
claimed only when the observed power (signal to noise) 
exceeds z0, then the probability that such a signal is due 
to a chance fluctuation in the noise power is p{). In this 
sense p0 is a fais e-alarm probability. Another useful 
statistical property of the periodogram is that of detec- 
tion efficiency DE, given by 

DE = 1-/?*(#, P), (18) 
where 

p*(N,P) = (l—exp [-(zo + P^^izo.P)} 

X (1 ~ />o)1_(l/iV)- (19) 

+ 

2^sinw(iy-r) 
j 

2 ^ 

2 sin2 — t) 
j 

Here p* is the probability of missing a signal of power Ps, 
P is the signal-to-noise power ratio 

where r is defined by 

tan (2cot) = 

2 sin 2(0^ 
J_  

2 cos 2o)tj 
j 

(15) 

with xQ and a0 being, respectively, the signal amplitude 
and the noise variance, and 

<l>(zo>p) 1 I 
m = 0 k = 0 

-kjym ZQr 

k\m\' 
(21) 
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Fig. 4.—The classical spectral window for the 107 samples of the USNO study of G96-45. The dotted line is the (sine2) window which 
would obtain if the data were evenly spaced with the same average spacing as the actual observations. The strong alias peak at about 54 
rad yr-1 is absent in the real window, but the pseudoahas peaks at multiples of 277, due to the annual nature of the samples, are evident. In 
the inset, one can see that the near sidelobes of the real window are somewhat larger than those for even spacing, but the resolution (width of 
the main lobe) is essentially the same. 

The number of frequencies sampled in the periodogram 
is N<N0 /2. 

An important aspect of using any spectral analysis 
method, such as the periodogram, is understanding the 
way in which the analysis system responds to input data. 
(The term system is here taken to be the mathematical 
operation of transforming the data, as sampled in the 
time domain, into the frequency domain.) The normal 
way to calibrate this system is to determine its response 
to a known signal such as a DC signal or monochro- 
matic sine wave. The system output in this calibration is 
called the spectral window. A detailed discussion of 
spectral windows is given in S, but it is useful to indicate 
the main features of this important concept. 

Consider data which constitute a harmonic signal of 
frequency co0, and denote the Fourier transform and 
power spectral windows of the analysis system by ÍT(co) 
and G(co), respectively. As a consequence of imperfec- 
tions in the sampling (a finite-length data record and 
with finite intervals between samples), the spectral anal- 
ysis of the monochromatic input will generally lead to 
nonzero power (sidelobes) appearing at frequencies other 
than co0. The spectral window gives a full characteriza- 
tion of this spectral leakage effect. If the data format is 
one of even spacing (in time), then G(co) will also have 
large-amplitude peaks at frequencies well displaced from 
the input frequency. The displacement Aco is quantized 
in units of the Nyquist frequency, Aco^ = ±2/ccoN. This 
effect is referred to as aliasing, and it is due to periodic- 
ity in the data format (i.e., evenly spaced data). A type 
of pseudoahasing occurs if there is quasiperiodicity in 
the data format. This often happens in astronomical 

work where one finds diurnal, monthly, or annual ef- 
fects evident in the observational program. Such quasi- 
periodicity would lead to alias peaks displaced from the 
peak at <o = a)0 by multiples of 27t radians per day, 
month, or year. Another important issue concerns the 
ability of the analysis system to resolve multiple signals 
at various frequencies. Here again, the spectral window 
indicates the resolution of the analysis system. 

A graphic representation of the spectral window con- 
cept is shown in Figure 4. The window in this figure 
was generated using a DC signal that was sampled ac- 
cording to the format employed in a 12 yr study of the 
star G96-45 (data were kindly provided by Dr. R. 
Harrington). Various aspects of the spectral window are 
described in the figure legend. Due to the uneven sam- 
pling format there is no evidence of abasing; however, 
there is clear evidence of pseudoahasing due to the 
annual character of the observing program (i.e., parallax 
studies). 

A further point to note about the periodogram is that 
it is not linear in the input data, X(t) (see eq. [14]). As a 
consequence, the response to a sinusoidal signal of 
frequency ío0 will, in general, contain peaks located at 
to — — co0, as well as an overlap term (see Appendix D in 
S). The peak at w = — co0 and the overlap can be negligi- 
ble if co0 is large enough, but such is not always the case. 

c) Effects Due to Orbital Eccentricity and Multiple 
Companions 

The formulae given above describe the case of motion 
induced by a single companion in a circular orbit about 
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its star. The assumption of circular orbits assures the 
spectral purity of the signal one is trying to detect. That 
is, P(co) will have a large value at a single frequency. 
The motion for noncircular orbits is still accurately 
periodic, but the projections (x and y) of the planet’s 
motion are not sinusoidal functions of time—because of 
the ellipticity of the orbit and the fact that the planet 
does not move along the orbit at a constant speed. As is 
known from the theory of Fourier analysis, such non- 
sinusoidal, but periodic, motion can be represented as a 
series containing a sinusoidal term at the fundamental 
frequency (corresponding to the period of the motion) 
plus harmonics at multiples of this frequency. The effect 
for small eccentricities should be quite small, and, even 
if the eccentricity is of order unity, the motion is still 
largely harmonic and the fundamental should still 
dominate. Numerical results given by Jensen and Ulrych 
(1973) confirm these expectations. These authors find 
that even for e (the eccentricity) equal to 1, the ratio of 
the power in the first harmonic to that in the fundamen- 
tal does not exceed 16% (even for the worst case orienta- 
tion) and averages 12%. This ratio does not exceed 2.2% 
for e < 0.3. The corresponding values for the second and 
third harmonics, relative to the fundamental, are smaller 
by roughly one-half and a full order of magnitude, 
respectively. Although the effect of eccentricity is gener- 
ally small, it could be detectable. Once a planetary 
perturbation is suspected, the first harmonic (2 los) 
should be inspected for the presence of a possibly sig- 
nificant signal. (Note that the strict periodicity of the 
motion implies that any real signals at harmonics must 
occur at exactly integral multiples of the fundamental. 
There may be only the small shift due to the fact 
that cov may not lie exactly on one of the a>„.) 
One could possibly maximize sensitivity by inspecting 
the quantity,?(to) + aP(2co)+ àP(3co)+ • • • for signals, 
where û,fr,...are coefficients whose values might be 
chosen based on a guess as to the likely range of 
eccentricities. 

The existence of more than one planet in orbit around 
a star would add further to the complexity of the power 
spectrum. In principle, with the assumption that the 
periods of the several planets are not commensurate, 
each planet would produce a simple, distinct peak in the 
power spectrum—each one at a value of wy correspond- 
ing to its orbital period. This would be realized in 
practice if the sampling interval is moderately long 
compared with the longest period present. In practice, 
the data for such a system would probably be analyzed 
before the observation interval became as long as the 
longest period present, so that there would be some 
confusion at the low-frequency end of the power spec- 
trum. The existence of the shorter period planets would 
probably not be hidden—but the interpretation of the 
power spectrum would be somewhat confused, espe- 
cially if the window function has large sidelobes. 

III. EXAMPLES: THE USNO DATA FOR G96-45, G146-72, 
AND WOLF 1062 

We shall now demonstrate the results discussed in § II 
by applying them to a specific set of data. We use 
the astrometric data for three stars obtained at the 
United States Naval Observatory (USNO) (Behall and 
Harrington 1976; Harrington 1977). Dr. Harrington 
kindly provided their reduced data, in the form of 
measured x and y coordinates for each plate, covering 
the interval 1965.8-1979.3. This represents approxi- 
mately an additional 3 yr of data beyond what was 
presented in the referenced pubhcations. The following 
discussion will center on G96-45, which was analyzed 
most thoroughly. Its reported perturbation has the 
longest period, and its detection is therefore the most 
challenging. 

a) The Proper Motion Effect 

It was noted in § II that, if the length of the data 
record involving a suspected sinusoidal perturbation is 
< twice the period of that perturbation, there can be 
errors in estimating the proper motion of the star under 
study. The periods assigned by the USNO group to the 
perturbations for the three stars mentioned above are 
7.2 yr (G96-45), 6.7 yr (G146-72), and 2.3 yr (Wolf 
1062). Because its suspected period is the longest, the 
perturbation in the motion of G96-45 should lead to 
the largest error in estimating the proper motion. Using 
the equations in § II we find that the errors in estimat- 
ing the proper motion of G96-45 using the original 9.28 
yr of data are ~ +070025 yr-1 in both x and y coordi- 
nates. These errors are comparable to the actual dif- 
ference between the USNO proper motion solutions for 
the longer (12.306 yr) and shorter (9.28 yr) data records 
on G96-45, suggesting that the difference in the estimate 
of proper motion can be attributed to this effect. 

b) The Window 

We next analyze the residuals from the paral- 
lax/proper motion fit for the presence of periodic per- 
turbations. We do not attempt to correct for the proper 
motion error mentioned above because this can be done 
only in terms of a specific model of the perturbation, 
which for the purposes of this demonstration is as yet 
undiscovered. 

The first step is to compute the window function 
G(co) for the sampling times used in obtaining the 107 
plates on G96-45. Nowhere in this discussion are the 
individual data points averaged into seasonal normal 
points. The window so calculated is shown in Figure 4. 
This window is similar to that which one obtains for 
evenly spaced data (also shown in the figure for com- 
parison). The full widths at half-maximum are essen- 
tially identical for the two windows, but the sidelobe 
amplitudes of the window based on the actual sampling 
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Fig. 5.—The periodogram of the x (circles) and^ (triangles) residuals in the USNO astrometric study of G96-45. As detailed in the text, 
the peaks at frequencies corresponding to periods of about 9 yr are highly significant and verify the USNO conclusion that a periodic 
perturbation is present. 

times are somewhat greater than those for evenly spaced 
data. Thus the resolution properties of the unevenly 
spaced power spectrum are only slightly inferior to those 
of the equivalent spectrum for evenly spaced data. Loga- 
rithmic plots of this window and the ones for the other 
two stars are shown in Figure 3 of S. 

The window for the actual data is superior to that 
obtained for evenly spaced data in terms of its abasing 
characteristics. The latter window has peaks of unit 
amplitude (i.e., identical to the amplitude of the main 
lobe located at zero frequency) at the set of alias fre- 
quencies u>k = (2<nk/A/), whereas G (to) has no trace of 
a peak at any of the higher frequencies (e.g., the Nyquist 
frequency, 2t7/(A/)). This suppression arises because 
abasing depends on precise phasing deriving from equal- 
ity of the time interval between data points, and uneven 
samphng destroys these coherent phase relationships. 
The samphng intervals in the USNO data possess a high 
degree of randomness and include many rather short 
intervals (e.g., plates taken on successive nights), so that 
abasing is effectively ehminated. There remains, how- 
ever, a strong peak at oo = 27r(/= 1 yr-1) which derives 
from the annual nature of the parallax program that led 
to these data. We refer to this type of peak as a 
pseudoalias peak and stress that care must be taken in 
interpreting any spectrum at frequencies that are dis- 
placed from a strong peak by integral multiples of 2 77. 

c) The Periodogram 

Figure 5 shows the periodogram for the star G96-45, 
calculated with equation (14), using the residuals pro- 
vided by Harrington for the USNO solution (77 = 
0,.'0625±0'.,0034, /!, = (OóOl+O'.'OOOó toward position 

angle 172?0±0?1). These residuals, x and y, are in 
microns on the plate (plate scale = 13"55 mm-1), so the 
power is in units of p2. As will be detailed below, this 
means that the ordinate in Figure 5 is numerically equal 
to the power signal-to-noise ratio. The points indicate 
the power as evaluated on an evenly spaced Nyquist 
grid. As discussed, these points contain essentially all of 
the information found in the periodogram. The bnes 
drawn through the points are the interpolations ob- 
tained by evaluating the periodogram at intermediate 
frequencies. 

The first thing to note is what is not there, namely, 
power at the frequency ^ — 2tt rad yr-1. Because the 
parallactic displacement is exactly periodic at this 
frequency, the component of any perturbation at 1 
cycle yr-1 is absorbed into the parallax and should not 
appear in the spectrum. This expectation is realized, 
because the observed power at this frequency is about 1 
ja2, consistent with the level of the observational noise 
power. 

Next, a strong peak (P~70) appears near the low- 
frequency end of the spectrum, at us = 0.66. It should be 
noted that the reduction procedure—specifically the 
proper motion determination—forces the power to be 
small (or zero) at zero frequency. [It can be seen from 
eq. (14) that P^(0) is Nx2, and the fitting procedure 
forces x = 0.] Hence, if the true spectrum has a continu- 
ous low-frequency component, for example, monotoni- 
cally decreasing from a peak at zero frequency, the 
calculated spectrum can have an artificial peak at low 
frequency (Terrell and Olsen 1970). In this case it seems 
unlikely on astrophysical grounds that such a continu- 
ous component, which would indicate the presence of a 
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random perturbation with a strongly nonwhite spec- 
trum, exists. An additional reason for beheving that this 
peak corresponds to a monochromatic signal is that it 
mimics the overall shape of the window, including the 
pseudoalias peak located at 2 77 rad yr_1 above the 
signal frequency, as well as the negative spillover located 
at co = — ^+277 rad yr_1. The peaks in the range 
2 < co < 5 rad yr_ 1 are probably due to the cross-prod- 
uct term discussed in § II. These considerations can be 
made more quantitative (S), but that will not be done 
here. 

Let us now evaluate the statistical significance of the 
peak at <0 = co5. The maximum power level, at « = 1.3, is 
Ps = 77 /xm2, but this peak falls between the cow—i.e., it 
is an interpolated value and was discovered only be- 
cause Figure 5 is oversampled (we produced the figures 
by oversampling by a factor of 10). The statistical 
analysis only applies to the maximum over the co„, as 
discussed above. This maximum is Pico^ = 68.5 /im2. 
This power is converted into a signal-to-noise ratio by 
dividing by an estimate of 0%, the noise variance. We 
computed the variance in the x and y displacements for 
all time intervals less than about 0.1 yr. Since there is 
presumably no real variation on such short time scales, 
this computation should yield the variance associated 
with the observational errors. The result is 

a0 = (1.03 ±0.11) /xm, (22) 

with no statistically significant evidence for variation 
from star to star or for a difference between the x and y 
variances. It is thus convenient and accurate to adopt 
a0 = 1 /im, because then PN = a0

2 = 1 /xm2, and the sig- 
nal-to-noise ratio P — Ps /PN and the signal power Ps are 
numerically equal. Hence, one can interpret the ordinate 

in Figures 5, 6, and 7 as either power levels or signal- 
to-noise ratios. (If the estimate of a0 should ever be 
modified, the signal-to-noise values would have to be 
rescaled accordingly.) The chance probability of finding 
a peak power greater than or equal to 68.5 with no 
signal actually present is given by equation (14) of S 
with z = 68.5 and N —107/2, namely, 1.6 X10-28. Actu- 
ally N should be much smaller, because we are effec- 
tively ignoring frequencies higher than 1 yr-1, but this 
hardly matters. The maximum y power (for integer n) is 
P(co1) = 34.8, corresponding to the chance probability 
of 5.6 X10-14. Thus in both coordinates we have highly 
significant peaks, well above the threshold for any rea- 
sonable value of p0 and occurring at the same frequency 
(to the nearest integral n). The best estimates of the 
signal power are just one less than the observed power, 
which includes both the signal and the noise power. 
Another interesting quantity is the range of signal powers 
that could have yielded the observed power, at a speci- 
fied confidence level. This range can be easily read off 
of the figures given by Groth (1975) by drawing a 
vertical Une at the P value observed and reading off the 
Ps values at which this Une intersects the contours of the 
appropriate value of the cumulative distribution func- 
tion (/j in his notation). For example, with a confidence 
of 98%, the signal power Ues within the intersections 
with the contours fl = 0.01 and fx = 0.99. Thus, reading 
approximate figures from Groth’s Figure 1 and using 
the above observed power levels, we arrive at the follow- 
ing estimates of the true power: 

/>,(*) = (67.51^) Mm2, 

n(j) = (34.8i^)^in2. 
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Fig. 7.—The same as Fig. 5, for Wolf 1062 

TABLE 1 
Results of Periodogram Analysis of USNO Astrometric Data 

Results from This Paper USNO Results 
Star ^c(max) x0(ßm) Tx(yr) P, (max) y0 (tim) Ty(yr) T(yr) x0(/Am) y0(iim) 

G96-45  68.5 1.60 9.6 34.8 1.14 8.3 12 1.2 2.6 
(Interpolation)....... 69.1 1.61 10.4 56.8 1.46 8.3 

G146-72    62.0 1.45 6.1 24.6 0.91 6.4 6.7 1.9 1.1 
(Interpolation)   68.4 1.52 6.1 13.3 0.67 7.1 ... ... * ... 

Wolf 1062    42.2 1.43 2.3 97.0 2.16 2.4 2.3 1.5 2.2 
(Interpolation)   30.1 1.20 2.5 66.0 1.78 2.3 ... ... 

Shown in Table 1 are the results of the periodogram 
analysis on both the x and y residuals for the three stars 
in the USNO program. The USNO amplitudes were 
read off Figures 1 and 2 of Behall and Harrington 
(1976) and Figure 1 of Harrington (1977). It can be seen 
that (1) for these cases interpolation is not very different 
from periodogram analysis, presumably because the 
frequency of the signal is relatively low; (2) there is a 
tendency for the period to be less well determined (e.g., 
as shown by comparing the x and y results) when the 
period is of the same order as the data interval; and (3) 
the periods and amphtudes found by Harrington (based 
on several years’ less data) are in good agreement with 
our results, except for G96-45, where the spurious proper 
motion effect may be important. The comparison is 
based on slightly different data, as our results were 
obtained with the full data set and the USNO results 
were based on the data through about 1976 (the parallax 

and proper motion solutions are slightly different for the 
two data sets). 

In addition, there is a somewhat subtle point which 
arises in connection with the determination of the best 
estimates of the amplitude and frequency of the signal. 
As seen in Figure 5, the peak of the oversampled Px 

curve comes close to one of the grid frequencies given by 
equation (16), whereas for PY the peak comes approxi- 
mately midway between two of the grid frequencies. 
Thus the maximum over n of the P(con) gives estimates 
of this peak power and the corresponding frequency 
which are not the best estimates. Indeed, the best proce- 
dure is to fit the window function to the data P(con), 
allowing arbitrary shifts in frequency. The resulting 
power can be used to determine the signal amplitude 
(using eq. [7] of S). While this is a better estimate of the 
amplitude, the statistical formulae summarized in S refer 
only to the P(co„) with integer n. Because we are primar- 
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ily interested in statistical matters, the maximum powers 
(e.g., in Table 1) used here are for integer n. On the 
other hand, the periods quoted in Table 1 correspond to 
the maximum of the oversampled curves in Figures 5, 6, 
and 7—and thus give the best estimates of the period. 

IV. APPLICATION TO THE DETECTION OF OTHER 
PLANETARY SYSTEMS 

A basic goal of this paper is to provide means for 
evaluating the efficiency of various astrometric tech- 
niques for searching for other planetary systems. We 
next indicate how the statistical results summarized in 
§ II can be used in such an evaluation. There are many 
ways in which such data can be obtained, and we cannot 
analyze every possible observational scheme. What is 
presented here is a general discussion followed by appli- 
cation to one specific situation. It is hoped that this 
discussion will provide and exemplify tools that can be 
used in a variety of situations. 

a) The Basic Observational Systems 
(a Gedankenexperiment) 

We now outline a kind of gedankenexperiment which 
is an idealized representation of a possible astrometric 
program. It will be used to set up the efficiency analysis 
in a precisely defined way and is not meant to represent 
in detail any real or practical astrometric survey. 

We assume the following. Positional measurements 
are made for a set of stars, Af0 in number, each one of 
which is observed with the same accuracy. The errors of 
observation are normally distributed (with a Gaussian 
distribution function of variance a0

2 about a mean of 
zero), and therefore this assumption is the same as 
saying that a0 is the same for all stars in the program. 
The observations extend over a period of T0 yr, after 
which the data are to be analyzed via the periodogram 
for planetary-induced (i.e., periodic) signals. We ex- 
amine the periodogram calculated for each star for the 
presence of strong signals and ask, How likely is it that 
these signals are due to one or more planets around this 
star? (Alternatively, we could analyze the data as they 
are taken and continuously ask how likely it is that the 
largest signal detected so far is real. This may be closer 
to procedures used in practice, but such a scheme is 
evidently biased toward the situation where the sus- 
pected planetary period is on the same order as the 
observational interval—and this rough equality has the 
important consequences outlined in § IIa.) There are N0 

observations of each star, spaced at a constant time 
interval, Ai0, so that TQ = NQktQ. Let it further be 
assumed that M* out of the M0 stars do indeed have a 
single planet of period T* which produces an astromet- 
ric signal of amphtude X*. (To simplify the discussion 
we assume that the observations refer to a single coordi- 
nate x and ignore the orthogonal coordinate.) The phase 

of the planetary perturbation at the beginning of the 
observations will be denoted <i>*; then the perturbation 
can be written 

8X*(t) = X* sin (2fl7/r* + <i>*) (0 < ¿<r0). 

(23) 

(In general one would be concerned with averages over a 
random array of phases <i>*, and, for that matter, over 
the other parameters T* and X*. But for now we assume 
fixed constant values for these parameters.) It will fur- 
ther be assumed that it is undesirable to report the 
detection of a signal that is not present (although one 
could argue that such false alarms will be very soon 
weeded out by further, presumably intensified, observa- 
tions). Therefore, the false-alarm probability p0 will be 
made as small as is practical. 

This gedankenexperiment then has the following sys- 
tem parameters (i.e., referring to the observational proce- 
dures): 

1. The period of observation T0, 
2. The observation interval Ai0, 
3. The number of data points per star A^, 
4. The variance of the observational errors a0, 
5. The number of stars surveyed M0, 
6. The false-alarm probability per star /?0; 

and the following signal parameters (i.e., referring to the 
stars and planets): 

7. The period of the planetary orbit T*, 
8. The phase of the planetary motion <£*, 
9. The amphtude of the planetary motion X*, 

10. The number of stars in the survey with such 
planets M*. 

b) The False-Alarm Rate and Detection Efficiency 

We shall now discuss the false-alarm probability pt for 
the total gedankenexperiment in terms of the false-alarm 
rate per star, pQ. Note that, because a false alarm is due 
to noise fluctuations, pQ is independent of the signal 
parameters. If the data for each of the M0 stars in the 
gedankenexperiment are treated in the manner outlined 
in § II, then the probability of M' false alarms is given 
by 

^(M') = [l-(l-JPo)A/o]M', (24) 

= {l-[l-exp(-z0)]A'Mo}M, (25) 

where equation (17) has been used to express p0 in terms 
of the detection threshold (z0) for a single star. As one 
would expect, the probability of a single false alarm 
(M' = l) in a study of the M0 stars can be quite large 
even if the false-alarm probability for a single star (/?0) 
is small. We will examine specific quantitative examples 
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later in this section. Equation (24) can be used to define 
a detection threshold in terms of pt(M'), viz., 

z0 = -ln{[l-(l-f,)'-'"T/”'}. (26) 

We earlier defined a detection efficiency for observa- 
tions of a single star. Generalizing that concept in the 
context of our gedankenexperiment is not as straightfor- 
ward as is the case for the false-alarm probability be- 
cause the detection efficiency does depend on the signal 
parameters. Rather than introduce additional formalism 
into this discussion in terms of assumed distributions of 
signal amphtudes Y*, we shall consider only the detec- 
tion efficiency for observations of a single star (note 
that, if all of the M* stars in our sample which have 
companions also have the same signal amplitude, then 
the detection efficiency for the total experiment is iden- 
tical to the detection efficiency for the single-star case). 
The power level for the assumed planetary-induced sig- 
nal is 

and the detection efficiency DE is given by 

DE^exp [-(z0 + />*)]^(z0,P*). (28) 

The function <j> is defined by equation (21), and we have 
ignored the term (1 —/?o)1-(1/;Vo)> which for reasonably 
small values of p0 is nearly constant with N0 and is 
roughly equal to 1. 

c) Maximizing the Detection Efficiency 

It is desirable to pick the system parameters (§ TVa) 
to minimize the probability of missing a given real 
signal, while maintaining an acceptably low false-alarm 
rate p0. This is a complicated problem in general be- 
cause the detection efficiency depends on both the sig- 
nal and system parameters. What follows is a simplified 
discussion of some of the general features of this prob- 
lem. Specific quantitative examples are given in the 
following subsection. 

The system parameters for the gedankenexperiment 
fall into three categories: (1) those on which DE ex- 
plicitly depends (N0,o0), (2) those on which DE does 
not depend but which are important in evaluating detec- 
tion systems (T0, At0), and (3) those which are fixed by 
other considerations (M0,p0). It should be noted that 
DE does depend on M0 through the detection threshold 
z0 (eqs. [26] and [28]); as more stars are observed the 
threshold must be raised to maintain a fixed false-alarm 
probability for the whole gedankenexperiment. How- 
ever, the general features of maximizing DE can be seen 
by considering the single-star case (M0 — \). We will 

also assume a fixed value ol p0. This means that the 
category 3 parameters are fixed and that z0 is an explicit 
function of only one parameter, N0. 

Consider now the role of category 2 parameters— 
parameter in the case of evenly spaced data, as then 
Aíq — Tq/Nq. In this highly idealized gedankenexperi- 
ment, category 2 parameters do not enter explicitly. 
They do, however, serve to define the practical frequency 
range for a detection program in the sense that one 
would like the signal frequency us to fall in the range 
to! < co5, where ux = 2<n/TQ. It is sometimes considered 
that one should also have oos < uN — Iit/Aíq. However, 
this condition is necessary for correct determination of 
the period, not for detection of the signal. The signal can 
be detected even if co5 » uN—the problem is that the 
signal frequency will be “aliased down” only to a 
frequency between 0 and uN. These requirements on 
clearly indicate that, all things being equal, the larger 
the value of and the smaller the value of coj, the 
better off one is. We discuss possible astrophysical con- 
straints on o)5 below. 

As one would guess, it is the category 1 parameters, 
Nq and a0, which are most crucial in terms of maximiz- 
ing DE. Imagine that one has two separate instruments 
which could be used to conduct our gedankenexperi- 
ment. In comparing the merits of these two instruments 
we will assume that they are both to detect the same 
signal ( Y*), both are used for observations covering the 
same total interval of time (T0), and that we assign the 
same false-alarm probability (/?0) to each data set. We 
have then the following: 

Z0i- In [ 1 - ( 1 - A, ) ‘/"'J, 0.5 , 

DE; = 1-exp [-(z0 , + ?* ,)](29) 

where the subscript i denotes the instrument (1 or 2) and 
Nqj and a0 , are, respectively, the total number of ob- 
servations with instrument i and the noise variance of 
instrument i (Nl is the number of frequencies investi- 
gated for the presence of a signal). 

General remarks on possible ways to maximize DE 
are given in the companion paper (S), so we will only 
summarize the major points of that discussion here. If 
one assumes that the errors associated with a given 
instrument are normally distributed and independent, so 
that (Jq2, oc Y0 it then follows that DE is maximized for 
a given instrument by making N0 i as small as possible. 
This can be accomphshed chiefly in two ways. One way 
is to average the available data set, obtaining a smaller 
number of higher accuracy data points. A danger is that 
this procedure increases the effective A/0, reducing uN. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
82

A
pJ

. 
. .

26
3.

 .
85

4B
 

866 BLACK AND SCAROLE Vol. 263 

Such averaging should not lead to œN^o)s. Another 
possibility is to reduce Ni9 the number of frequencies 
examined for the presence of a signal. For a given p0, 
this reduces z0 i but leaves Pl unchanged and thereby 
increases DE. An obvious danger with this procedure is 
that one could miss the signal frequency. 

d) Quantitative Comparison of Two Idealized 
Systems 

The following discussion gives a quantitative com- 
parison between two idealized astrometric systems. For 
the purpose of this comparison we assign the following 
values to the category 3 parameters: M0 = 1,/?0 = 0.01. 
Values for the category 2 parameters, A/0 and r0, are 
estimated as follows. If we assume that gas-giant planets 
(e.g., Jupiter) can only form if the temperature in a 
putative circumstellar nebula is less than ~ 200 K, a 
temperature appropriate to condensation of icy material, 
and, if we further suppose that nebular temperatures are 
set by radiative equilibrium with the luminosity of the 
central star in that nebula, one has the following con- 
straint on r0: 

L3/4 

To^TOMn=2.1—yT, (30) 

where L* and M* are, respectively, the luminosity and 
mass of the central star expressed in solar units. (We are 
not suggesting that this approach is the correct way to 
estimate where or whether gas-giant planets will form. It 
is only intended to obtain a quantitative estimate and to 
indicate that orbital period data can be used to test 
models of planet formation.) Using equation (29) one 
obtains the T0 values shown in Table 2 as a function of 
stellar spectral type. Also given in Table 2 are values of 
A/0 under the assumption of even spacing of data (i.e., 
A/o^W = 1/2^min). 

Recalling the caveat expressed above, one can draw 
the following assumption-dependent conclusions from 
Table 2. First, it appears to be impractical to use indi- 
rect techniques such as astrometry to search for massive 
planetary companions to stars of spectral type earlier 

TABLE 2 
Estimates of Minimum Orbital Period 
and Maximum Observing Interval as 
a Function of Stellar Spectral Type 

Spectral Type TQ m{n(yv) tQ mJyv) 

B0   780 390 
A0  38 19 
F0  8 4 
GO  3 1.5 
K0  1.5 0.75 
NO.  0.5 0.25 

than about B5; the orbital periods are too long. This is 
not a serious restriction because most stars are of later 
spectral type. (Note that if Jupiter-mass planets could 
exist at temperatures of 1000 K, the associated orbital 
period around a B5 star would be ~ 6.25 yr.) Second, if 
one wishes to search for planetary companions to the 
numerous late spectral type stars (i.e., K and M spectral 
types), one must take data at least 4 times per year. We 
will return to this point below. For convenience we will 
take T0 = 5 yr and require that A ¿0 < 0.25 yr (i.e., N0 > 20 
for evenly spaced data). 

Finally, we specify the category 1 parameters, V0 and 
a0. System 1 we characterize by a0 = 10_3 arcsec and 
Nq = 200. This value of a0 is better (i.e., smaller) 
than that attainable with existing ground-based tele- 
scopes and is comparable to that expected for both 
the Space Telescope and the European Space Agency’s 
HIPPARCOS satellite. However, current developments 
in astrometric detectors indicate that <j0 = 10”3 arcsec is 
attainable for ground-based astrometric systems. The 
parameters for System 2 are a0 = 10-5 arcsec and N0 = 
20. This value of <j0 is attainable, in principle, with a 
specially designed space-based astrometric telescope. 

We compare these two gedanken systems on the basis 
of their detection efficiency as a function of signal 
amplitude. The DE of each system can also be de- 
termined for signals expected from specific sample 
planetary systems. Shown in Figure 8 are the DE char- 
acteristics of these two systems as a function of signal 
amplitude (expressed in arcsec). The solid curve is that 
for System 2 and the dotted curve is that for System 1. 
The dashed and dot-dashed curves pertain to the char- 
acteristics of current ground-based photographic ob- 
servations. The vertical lines on Figure 8 indicate the 
signal amplitude expected from a planet with the mass 
of Jupiter (J), Saturn (S), or Neptune (N) revolving 
around a K5 dwarf with a 5 yr orbital period. The 
numerical subscripts designate the distance (in pc) that 
the K5 star is from the Sun. System 1 has a DE ~ 1 for 
signals similar to those expected from a Jupiter-mass 
planet revolving around a K5 star located 5 pc from the 
Sun, but it would have a very low (~0.03) DE for 
detecting Saturn-mass planetary companions to such a 
star. In contrast, System 2 has a DE >0.8 for detecting 
either a Neptune-mass planet around any K5 star within 
30 pc of the Sun or a Jupiter-mass planet around any 
K5 star within 600 pc of the Sun. (Perhaps a more 
exciting measure of performance is that System 2 would 
have a DE ~ 0.8 for detecting Earth-mass planets around 
M dwarfs within ~ 7 pc of the Sun!) 

System 2 is clearly more effective than System 1 on 
the basis discussed above. A crucial aspect of the DE is 
the signal power to noise power ratio (eq. [28]); the 
higher the value of Ph the higher the DE for a given 
signal strength X*. Thus, while 200 data points over a 
5 yr interval with System 1 are inadequate to detect a 
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Fig. 8.—Detection efficiencies for two specific astrometric systems {solid and dotted curves), as described in the text, as functions of the 
amphtude of the unknown perturbation. Also shown are the efficiencies of currently available ground-based photographic observations 
{dashed and dot-dashed curves). 

signal of 10-4 arcsec, increasing the number of data 
points will increase the signal-to-noise ratio. Using the 
system parameters assumed above, we find that one 
must obtain 20X(10-3/10-5)2 data points with System 
1 to obtain a signal-to-noise ratio equal to that obtained 
in 20 data points with System 2. This number of data 
points, if taken at a rate of 40 per year, corresponds to 
5000 yr of observing! If we relax the requirement on 
System 1 to that of requiring a DE ~0.8 at Y* = 10“4 

arcsec, one still needs ~150 yr of data (again assuming 
40 points per year). 

It is clear that, in terms of detecting other planetary 
systems, System 2 is far superior to System 1. This 
superiority goes beyond the obvious gains attendant 
upon two orders of magnitude more accuracy; the essen- 
tial point is that the major scientific returns from a search 
for other planetary systems lie in the signal-strength realm 
o/Y*<10-4 arcsec. Given the rather sharp decrease in 
DE as a function of Y* once Y*< a0, a search program 
should employ a system with a0 < 10-4 arcsec. 

It was remarked earlier that one would need a A ¿0 of 
3 months or less to be assured of adequate data sam- 
pling. Such an observation frequency would seem to 
require a free-flying space system, rather than a shuttle- 
based instrument package. 

v. SUMMARY 

The principal goal of this paper is to present an 
objective means of analyzing astrometric data for the 
presence of a periodic signal (or signals) such as a 
perturbation in a star’s motion due to a planetary com- 
panion (or companions) to that star. The analysis method 

presented here is a type of power-spectral analysis, 
namely, the periodogram. In addition, this analysis tech- 
nique is used to obtain a quantitative comparison of the 
efficiencies of various astrometric systems for detecting 
planetary companions to stars, as well as to establish a 
guide to optimization of parameters in a planetary 
detection program. 

One finding of this study concerns an effect which 
has been overlooked or ignored in most published 
analyses of astrometric data, namely, that the linear 
component of a periodic perturbation in a star’s motion 
is erroneously absorbed into the proper motion of that 
star, leading to underestimates of both the period and 
amphtude of the perturbation. It might be thought that 
if the available data span more than a reasonable frac- 
tion of the period of the perturbation then this error will 
be small. However, as shown with numerical examples 
in § Ha, this is not the case. In particular, one obtains 
estimates for the amphtude and period of the perturba- 
tion which are, respectively, 4% and 13% smaller than 
their true values even for data covering two orbital 
periods. (The underestimates for a full period of data 
are 47% in amphtude and 25% in period.) This error can 
be avoided only if a model of the perturbation is incor- 
porated into the determination of the proper motion. 
Evidence for this error can be found in a variety of 
sequential pubhshed reports on suspected perturbations 
in the proper motions of various stars, taking the form 
of suspected periods being comparable to the total time 
that an object has been studied (i.e., the apparent period 
increases with additional data). The apparent period 
asymptotically approaches the true period when data are 
available for more than about two orbital periods. 
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TABLES 
Values of the Detection Efficiency as a Function of Signal Power and Number of Frequencies 

Vol. 263 

P0=0.1 

N= 
P 

1 10 20 40 60 80 100 200 500 1000 2000 4000 8000 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

.100 

.334 

.542 

.702 

.814 

.887 

.934 

.962 

.979 

.988 

.994 

.997 

.998 

.999 

.999 
15 .999 
16 .999 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.100 

.204 

.344 

.491 

.623 

.733 

.817 

.879 

.921 

.950 

.969 

.981 

.989 

.993 

.996 

.998 

.999 

.999 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

.100 

.170 

.280 

.410 

.539 

.655 

.751 

.826 

.882 

.922 

.949 

.968 

.980 

.988 

.992 

.996 

.997 

.998 

.999 

.999 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

.100 

.146 

.230 

.340 

.461 

.577 

.680 

.766 

.834 

.885 

.922 

.948 

.966 

.979 

.987 

.992 

.995 

.997 

.998 

.999 

.999 
1 .00 
1.00 
1.00 
1.00 
1 .00 
1.00 
1.00 
1.00 
1 .00 
1.00 
1 .00 
1.00 
1.00 
1.00 
1.00 
1.00 

.100 

.130 

.192 

.283 

.390 

.502 

.608 

.701 

.779 

.841 

.888 

.923 

.948 

.966 

.978 

.986 

.991 

.994 

.997 

.998 

.999 

.999 
1 .00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .00 
1.00 
1 .00 
1.00 
1.00 
1.00 
1.00 
1.00 

.100 

.123 

.175 

.255 

.353 

.461 

.566 

.662 

.744 

.812 

.865 

.905 

.935 

.956 

.971 

.981 

.988 

.992 

.995 

.997 

.998 

.999 

.999 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .00 
1.00 
1.00 
1.00 

.100 

.119 

.164 

.237 

.329 

.433 

.537 

.634 

.719 

.790 

.847 

.891 

.924 

.948 

.965 

.977 

.985 

.990 

.994 

.996 

.998 

.999 

.999 

.999 
1.00 
1 .00 
1.00 
1 .00 
1.00 
1.00 
1.00 
1 .00 
1.00 
1.00 
1.00 
1.00 
1.00 

.100 

.116 

.157 

.224 

.312 

.412 

.515 

.612 

.699 

.773 

.833 

.879 

.915 

.941 

.960 

.973 

.982 

.989 

.993 

.995 

.997 

.998 

.999 

.999 
1 .00 
1.00 
1.00 
1.00 
1.00 
1 .00 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .00 
1.00 

.100 

.110 

. 139 

.191 

.264 

.353 

.449 

.546 

.636 

.716 

.784 

.840 

.883 

.917 

.942 

.960 

.973 

.982 

.988 

.992 

.995 

.997 

.998 

.999 

.999 
1.00 
1.00 
1.00 
1.00 
1 .00 
1.00 
1.00 
1.00 
1 .00 
1.00 
1.00 
1.00 

.100 

.105 

.123 

.159 

.215 

.287 

.372 

.463 

.553 

.638 

.714 

.780 

.833 

.877 

.910 

.936 

.955 

.969 

.979 

.986 

.991 

.994 

.996 

.997 

.998 

.999 

.999 
1 .00 
1.00 
1 .00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

.100 

.103 

.116 

.142 

.186 

.247 

.322 

.406 

.494 

.579 

.659 

.730 

.790 

.841 

.881 

.913 

.937 

.956 

.969 

.979 

.985 

.990 

.994 

.996 

.997 

.998 

.999 

.999 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .00 
1.00 
1.00 
1.00 

.100 

.102 

.110 

.130 

.164 

.214 

.279 

.355 

.437 

.521 

.602 

.677 

.744 

.800 

.848 

.886 

.916 

.939 

.956 

.969 

.979 

.985 

.990 

.993 

.996 

.997 

.998 

.999 

.999 
1.00 
1.00 
1.00 
1.00 
1 .00 
1.00 
1.00 
1.00 

.100 

.101 

.107 

.121 

.147 

.187 

.242 

.310 

.386 

.466 

.547 

.624 

.694 

.756 

.810 

.854 

.890 

.918 

.940 

.957 

.969 

.979 

.985 

.990 

.993 

.995 

.997 

.998 

.999 

.999 

.999 
1 .00 
1.00 
1 .00 
1.00 
1.00 
1.00 

.100 

.101 

.104 

.114 

.134 

.166 

.212 

.270 

.339 

.415 

.493 

.570 

.643 

.709 

.768 

.818 

.860 

.894 

.921 

.942 

.958 

.970 

.979 

.985 

.990 

.993 

.995 

.997 

.998 

.999 

.999 

.999 
1.00 
1 .00 
1.00 
1.00 
1.00 

The periodogram was used to analyze astrometric 
data for three stars (G96-45, G146-72, and Wolf 
1062) studied by Harrington and co-workers at the 
USNO. These data, which were provided to us by Dr. 
Harrington, include three additional years of observing 
beyond that available at the time of previous publica- 
tions concerning these stars (Behall and Harrington 
1976; Harrington 1977). Our analysis focused on the 
star G96-45 because the period of the suspected per- 
turbation in its motion was longer than those for the 
other two stars and therefore provided a challenge to 
the detection technique as well as an example where the 
proper motion effect could be detected. 

The periodogram confirms the presence of periodic 
perturbations in the motions of each of these three stars 
(see Table 1) and gives good agreement with the findings 
of previous analyses in terms of perturbation amphtudes 
and periods. A mild exception concerns the amplitude 
of the 7-component of the perturbation to G96-45 
(Table 1); our results are a factor of 2 lower than those 
of Behall and Harrington (1976). 

A parametric means, based on the statistical proper- 
ties of the periodogram, was developed for intercompar- 
ing the detection efficiencies of astrometric systems. It 

was found that the detection efficiency of a system is 
determined, not unexpectedly, by its measurement accu- 
racy and the number of observations. One interesting 
result is that, if the observational errors are proportional 
to the square root of the number of data points (as in 
averaging of normally distributed errors), then one max- 
imizes the detection efficiency by minimizing the num- 
ber of data points (§ IVc). 

A comparison was made of the detection efficiency 
for an idealized ground-based astrometric system with 
that for an idealized space-based astrometric system 
(§ IW). The measurement accuracy of the former was 
taken to be 1 mas, while that of the latter was taken to 
be 10-2 mas. If one requires a detection efficiency of 0.8 
(20% chance of a missed signal) for a signal amphtude 
of 0.1 mas and a signal period of 5 yr, some 150 yr of 
data (assuming 40 observations per year) are required 
for the ground-based system. In contrast, the space-based 
system would have 100% detection efficiency for such a 
signal after only 5 yr (assuming 4 observations per year). 
In view of the fact that the major scientific returns from 
a search for other planetary systems involve signals of 
amphtude <0.1 mas, these results argue strongly for a 
space-based astrometric telescope. 
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869 

P0=0.01 

200 500 1000 2000 4000 8000 N= 1 5 
—P  

0 .010 .010 
1 .084 .037 
2 .204 .098 
3 .345 .190 
4 .487 .302 
5 .615 .421 
6 .721 .538 
7 .804 .642 
8 .867 .731 
9 .911 .804 

10 .942 .860 
11 .963 .902 
12 .977 .933 
14 .991 .970 
15 .995 .981 
16 .997 .988 
17 .998 .992 
18 .999 .995 
19 .999 .997 
20 1.00 .998 
21 1.00 .999 
22 1.00 .999 
23 1.00 1.00 
24 1.00 1.00 
25 1.00 1.00 
26 1.00 1.00 
27 1.00 1.00 
28 1.00 1.00 
29 1.00 1.00 
30 1.00 1.00 
31 1.00 1.00 
32 1.00 1.00 
33 1.00 1.0C 
34 1.00 1.00 
35 1.00 1.00 
36 1.00 1.00 

10 20 40 

.010 .010 .010 

.027 .021 .017 

.071 .052 .038 

.144 .108 .081 

.239 .187 .145 

.348 .284 .229 

.461 .389 .325 

.568 .495 .426 

.664 .595 .526 

.746 .684 .619 

.812 .759 .701 

.865 .820 .771 

.904 .869 .828 

.955 .934 .909 

.970 .955 .935 

.980 .969 .955 

.987 .979 .969 

.992 .986 .979 

.995 .991 .986 

.997 .994 .991 

.998 .996 .994 

.999 .998 .996 

.999 .999 .998 
1.00 .999 .998 
1.00 .999 .999 
1.00 1.00 .999 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 

60 80 100 

.010 .010 .010 

.015 .014 .014 

.032 .029 .027 

.068 .061 .055 

.125 .112 .103 

.200 .182 .169 

.290 .268 .251 

.388 .362 .343 

.487 .459 .439 

.581 .554 .533 

.666 .640 .620 

.740 .717 .699 

.802 .782 .766 

.891 .878 .867 

.922 .911 .902 

.945 .936 .930 

.961 .955 .950 

.973 .969 .965 

.982 .979 .976 

.988 .986 .984 

.992 .990 .989 

.995 .994 .993 

.997 .996 .995 

.998 .997 .997 

.999 .998 .998 

.999 .999 .999 

.999 .999 .999 
1.00 1.00 .999 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 

.010 .010 .010 

.012 .011 .011 

.021 .016 .014 

.042 .030 .024 

.079 .056 .043 

.133 .097 .075 

.204 .153 .122 

.287 .223 .182 

.377 .304 .255 

.469 .390 .335 

.559 .478 .420 

.641 .563 .504 

.714 .642 .585 

.830 .773 .726 

.872 .825 .784 

.905 .867 .832 

.931 .900 .872 

.951 .926 .903 

.965 .947 .928 

.976 .962 .948 

.983 .973 .962 

.989 .981 .973 

.992 .987 .981 

.995 .991 .987 

.997 .994 .991 

.998 .996 .994 

.999 .997 .996 

.999 .998 .997 

.999 .999 .998 
1.00 .999 .999 
1.00 1.00 .999 
1.00 1.00 .999 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 

.010 .010 .010 

.010 .010 .010 

.013 .012 .011 

.019 .016 .014 

.034 .027 .022 

.059 .046 .037 

.097 .077 .062 

.148 .120 .098 

.212 .175 .145 

.285 .241 .204 

.365 .315 .272 

.448 .394 .347 

.529 .474 .424 

.677 .625 .577 

.739 .692 .647 

.794 .752 .710 

.839 .803 .766 

.877 .846 .814 

.907 .881 .854 

.930 .910 .887 

.949 .932 .914 

.963 .950 .936 

.973 .964 .952 

.981 .974 .965 

.987 .981 .975 

.991 .987 .982 

.994 .991 .987 

.996 .994 .991 

.997 .996 .994 

.998 .997 .996 

.999 .998 .997 

.999 .999 .998 

.999 .999 .999 
1.00 .999 .999 
1.00 1.00 .999 
1.00 1.00 1.00 

APPENDIX 

TABLE OF THE DETECTION EFFICIENCY 

Table 3 gives the values of the detection efficiency /?* as a function of the signal power P and the number of 
frequencies A, calculated from equation (19), using equation (17) for the threshold z0 and equation (21) to evaluate the 
Bessel function integral. Separate tabulations are given for two values of /?0, 0.1 and 0.01. 
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