
19
82

A
pJ

. 
. .

26
3 

. .
83

5S
 

The Astrophysical Journal, 263:835-853, 1982 December 15 
© 1982. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. II. 
STATISTICAL ASPECTS OF SPECTRAL ANALYSIS 

OF UNEVENLY SPACED DATA 

Jeffrey D. Scargle 
Theoretical and Planetary Studies Branch, Space Science Division, Ames Research Center, NASA 

Received 1982 January 11; accepted 1982 April 26 

ABSTRACT 
Detection of a periodic signal hidden in noise is frequently a goal in astronomical data analysis. 

This paper does not introduce a new detection technique, but instead studies the reliability and 
efficiency of detection with the most commonly used technique, the periodogram, in the case where 
the observation times are unevenly spaced. This choice was made because, of the methods in current 
use, it appears to have the simplest statistical behavior. A modification of the classical definition of 
the periodogram is necessary in order to retain the simple statistical behavior of the evenly spaced 
case. With this modification, periodogram analysis and least-squares fitting of sine waves to the data 
are exactly equivalent. Certain difficulties with the use of the periodogram are less important than 
commonly beheved in the case of detection of strictly periodic signals. In addition, the standard 
method for mitigating these difficulties (tapering) can be used just as well if the sampling is uneven. 
An analysis of the statistical significance of signal detections is presented, with examples. 

Subject heading: numerical methods 

I. THE SIGNAL DETECTION PROBLEM 

Time series analysis has long been important in 
astronomy, but the application of automatic data 
acquisition systems has recently emphasized the need for 
this kind of mathematics. The first paper of this series 
(Scargle 1981, hereafter Paper I) reviewed astronomical 
time series in general and developed time domain analy- 
sis techniques for random phenomena. The opposite 
case, namely deterministic processes, leads naturally into 
the opposite (i.e., the frequency) domain. This paper is 
concerned with the detection of a special kind of de- 
terministic signal, namely those which are strictly peri- 
odic. While time-domain techniques are well suited for 
the random case, the frequency domain has advantages 
for periodic processes (see, e.g., Blackman and Tukey 
1958; Jenkins and Watts 1968; or, for an astronomical 
flavor, Brault and White 1971). 

This paper discusses a specific frequency-domain ap- 
proach to the detection problem, namely estimation of 
the power spectrum by means of the periodogram. The 
treatment includes the common situation where the ob- 
servation times are not evenly spaced. In § II û it is 
shown that the periodogram’s infamous statistical diffi- 
culty is not severe if the signal is rigidly periodic. In 
addition, the same smoothing techniques used to im- 
prove statistical and leakage properties in the evenly 
spaced case can be used if the sampling is uneven. If the 
sample times are at the observer’s disposal, there is a 

new degree of freedom in the tailoring of the shape of 
the spectral response function. Further, uneven spacing 
can be desirable if abasing (the appearance of high- 
frequency signals in the low-frequency part of the spec- 
trum) is an important problem (see Appendix D). This 
paper does not propose a new technique for the detec- 
tion of periodic signals, but rather presents a statistical 
analysis of the standard workhorse technique, namely 
periodogram analysis. When an error in the classical 
definition of the periodogram for unevenly sampled 
data is corrected (§ lib), three results follow: (1) the 
statistical behavior of the periodogram for uneven spac- 
ing is essentially identical to that for the case of even 
spacing (Appendix A); (2) periodogram analysis is ex- 
actly equivalent to least-squares fitting of sinusoids to 
the data (Appendix C); and (3) time-translation invari- 
ance is retained (Appendix B). Section III is an elabora- 
tion of Groth’s (1975) statistical analysis, and includes 
expressions for the false alarm rate and the detection 
efficiency of a signal detection scheme using either 
periodogram or least-squares analysis. In § IV it is 
shown how to maximize the efficiency of a detection 
scheme. Specific examples of all of these concepts ap- 
pear in § V. Some of the statistical results are applied to 
the planetary detection problem in an accompanying 
paper (Black and Scargle 1982, hereafter BS). 

The basic problem considered throughout this paper 
is: A physical variable X is measured at a set of times ¿z; 
the resulting time series data, { Y(¿z), / = 1,2,..., V0}, are 
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assumed to be the sum of a signal and random observa- 
tional errors: 

^ = *(0 = ^(0+*('/). (1) 

sampled1 data set, / = l,2,...,Ao}, as 

FT^(co) = 2 X(^)exp(-/^). 
j = i 

(2) 

Throughout this paper the signal will be taken to be 
strictly periodic. Because of the assumed additive rela- 
tionship between the signal and the errors in measuring 
it, the latter is often called noise. We assume throughout 
that the errors at different times are independent; that 
is, R(ti) is statistically independent of R(tj) for i not 
equal to j. We also assume that /?(/,) is normally 
distributed with zero mean and constant variance, Oq. 
The problem then is to establish the existence of a 
signal, despite the presence of the noise. This is called 
signal detection. Additional problems are the estimation 
of the harmonic content (i.e., the amphtudes of the 
fundamental and its multiples) as well as the period of 
the signal. 

Good procedures for solving this detection problem 
will obviously make use of the periodic nature of the 
expected signal. One example is folding and averaging 
the data with respect to various periods, and then ex- 
amining the appearance of the resulting average curves. 
This examination is often subjective. An objective proce- 
dure related to folding is least-squares fitting of 
sine waves of various periods to the data (e.g., Earning 
1963; Vanicek 1969, 1971; Lomb 1976; Faulkner 1977). 
Another approach is periodogram analysis (Schuster 
1898; Bartlett 1950; Wehlau and Leung 1964; Gray and 
Desikachary 1973 ; Deeming 1975 ; Groth 1975 ; Faulkner 
1977). Some authors have pointed out the close relation- 
ship of these two methods (Lomb 1976; Faulkner 1977; 
Meisel 1978, 1979). The present paper establishes, ap- 
parently for the first time, that (with the proposed 
modifications) these two methods are exactly equivalent. 

Several other techniques should be mentioned for the 
sake of completeness. Lafler and Kinman (1965) de- 
scribe a procedure which involves trial-period folding 
followed by a minimization of the differences between 
observations of adjacent phase. The procedure proposed 
by Feraz-Mello (1981) directly attacks the nonor- 
thogonahty of the basis functions when the sampling is 
uneven, using the Gram-Schmidt orthogonalization pro- 
cedure. Kuhn (1982) discusses two procedures for re- 
covering an approximation to the discrete Fourier trans- 
form. The omission of such approaches from this paper 
is not to be taken as a negative comment, but has been 
made simply because it appears that the statistical prop- 
erties of these methods would be very difficult to unfold. 

II. THE PERIODOGRAM 

A basic tool of spectral analysis is the discrete Fourier 
transform (DFT) which can be defined for an arbitrarily 

The periodogram is then conventionally defined as 

/V(<o) = -i-|FT;r(<o)|2 

3Vo 

K 

2 *(*,) exp (-/«?,.) 
y=i 

12 Xjcos to tj j + j 2 s'n “0 ) 

(3) 

(Schuster 1898; Thompson 1971; Deeming 1975). This 
function will be called the classical periodogram. It can 
be evaluated for any value of the frequency. The reason 
for using the periodogram is that if X contains a 
sinusoidal component of frequency co0, then at and near 
oo = co0 the factors X{t) and exp (—/coi) are in phase 
and make a large contribution to the sums in equation 
(3). At other values of co the terms in the sum are 
randomly positive and negative, and the resulting 
cancellation yields a small sum. Hence the presence of a 
sinusoid is indicated by a large value of P near one value 
of co—i.e., as a distinct narrow peak in the spectrum.2 If 
the observation times are evenly spaced, at interval Ai, 
it is customary to take Ai = 1, tj = j, and Xj = 2i(iy), so 
that 

Px(") = N0 
2 Xj exp (— y’co) . 

y=i 
(4) 

While this expression can also be evaluated at any 
frequency, it is traditionally evaluated only at a special 
set of 

N = N0/2 (5) 

evenly spaced frequencies (see Appendix D). That equa- 
tion (4) can be quickly evaluated at frequencies (Dl) 

^he set of observation times, {/;}, in deference to probability 
theory, is called the sampling. We encounter even sampling (A^ = 
ti+1 — tj — constant), and uneven sampling (arbitrary r/s). 

2We use the terms {power) spectrum and periodogram inter- 
changeably, although strictly speaking the power spectrum is a 
theoretical quantity defined as an integral over continuous time, 
and of which the periodogram is merely an estimate based on a 
finite amount of discrete data. 
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with the fast Fourier transform (EFT) explains, in part, 
its popularity. 

a) Critique of the Periodogram 

Modem work (e.g., Richards 1967; Tukey 1967; Kay 
and Marple 1981) has moved away from equations (3) 
and (4) because of two problems: statistical difficulties 
and spectral leakage. The main statistical problem is 
that the function P(co) is very noisy, even when the data 
are only slightly noisy. Moreover, the noise does not 
diminish in amplitude with increasing sample size. For if 
Y is a normally distributed noise process, the relative 
variance oP/(P) is of order unity (Bartlett 1950 and 
references therein; Richards 1967), no matter how many 
data points there are. The reason is that as more data 
are added, the number of available frequencies increases 
in proportion (see eq. [5]), so the noise is not averaged 
out. 

This noise problem has been repeatedly emphasized 
in the literature. Richards (1967) says that the periodo- 
gram, our equation (4), “is almost useless for practical 
computations, except in cases so simple as to be of little 
interest. ... Experience has repeatedly shown that, with 
a noisy signal...[4] gives a very erratic spectrum, P((o), 
which fails to converge no matter how large T [the total 
time interval] is made or how small Ans chosen.” Tukey 
(1967) makes similar remarks, noting that spectral can 
refer to either spectra or spectres. He adds: “If we dealt 
with problems involving the superposition of a few 
simple periodic phenomena, as do astronomers inter- 
ested in binary stars and related problems [that’s us!], 
we can learn much from the periodogram.” 

What saves the periodogram in such problems is that, 
as more data are acquired, even though the size of the 
noise remains large, the signal-to-noise ratio (which is 
the relevant quantity) increases. For if the observed 
process is 

Z(i,.) = XoSin(Wo/,. + <i>) + Ä(i,), i' = l,2,...,Af0, 

(6) 

it can be shown that the expected value of the power 
due to the signal, at the signal frequency, is 

Px = N0(X0/2)2, (7) 

and that due to the observational errors is (the variance) 

Pr=(R2) = o¿. (8) 

Hence the signal-to-noise ratio, 

P = Px/Pr = N0(X0/2o0)
2, (9) 

increases proportionally to the number of samples, N0. 
The explanation is that the power per unit bandwidth of 

a monochromatic signal, in the passband containing the 
signal frequency, increases because the bandwidth is a 
decreasing function of N0, whereas the noise power is 
constant per unit bandwidth. For signals with a continu- 
ous spectrum3 the same argument leads to a constant 
signal-to-noise ratio, the result alluded to above. 

The second problem, spectral leakage, is simply that 
for a sinusoidal signal at a given frequency, co0, the 
power in the periodogram not only appears at co0, but 
also leaks to other frequencies. This problem is inherent 
to frequency analysis with a finite amount of data. 
There are several forms of spectral leakage. Leakage to 
nearby frequencies (sidelobes) is due to the finite total 
interval over which the data is sampled. Leakage to 
distant frequencies is due to the finite size of the interval 
between samples. 

In particular, the well-known phenomenon of aliasing 
is a leakage of power from high frequencies to much 
lower frequencies. The way in which it arises makes it 
sensitive to a very precisely maintained evenness to the 
sampling (see Fig. 8.4 of Kanasewich 1975, for a graph 
which makes this point particularly well). Hence any- 
thing from a slight to a major unevenness in the spacing 
substantially reduces aliasing. The theoretical frame- 
work for this statement has been well established (e.g., 
Beutler 1966, 1970; Masry and Lui 1975; Higgins 1976; 
Wiley 1978; Gaster and Roberts 1975, 1977; Kar, 
Hornkohl, and Farmer 1981; Ludeman 1981). Error-free 
recovery of a band-limited signal [i.e., reproduction of 
the entire function X{t) from the samples X(t¿)] can be 
achieved with irregular sampling as long as the mean 
sampling rate exceeds the Nyquist rate (i.e., the average 
number of samples per unit time must exceed twice the 
highest frequency component in the signal). Indeed, 
only the (infinite) past need be sampled at such a rate to 
ensure error-free recovery. Surprisingly, such recovery is 
possible in some cases even if the mean sampling rate is 
less than the Nyquist rate (Beutler 1966). Beutler (1970) 
also exhibits an example in which one-sided sampling 
(i.e., of the past only, or of the future only) at a mean 
rate which is an arbitrarily small fraction of the Nyquist 
rate produces ahas-free recovery of the spectrum of the 
process! Another surprising result is that the spectrum 
of a process can be estimated even if the sampling times 
are not recorded—only the order of the samples need be 
retained (Beutler 1970). Because these results depend on 
sampling over an infinite time interval, their practical 
significance is unclear. 

Beutler (1970) also discusses the effects on abasing of 
two different perturbations from even sampling: ran- 

3 In general, random processes have continuous spectra, while 
deterministic (e.g., periodic) signals have discrete, or line, spectra. 
This explains, in part, why frequency-domain techniques are good 
for periodic signals, while time-domain ones are good for random 
signals. 
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dom independent deletion of samples (see also Sturrock 
and Shoub 1981) and jittered sampling, in which the 
sampling times are randomly perturbed about the evenly 
spaced values. Such jitter is common when electrome- 
chanical devices control the sampling, as in some forms 
of Fourier transform spectroscopy. See also Deeming 
(1975), although his examples are with semiregular sam- 
pling for which the reduction of the aliasing is less 
dramatic than it is, say, for random sampling. 

Astronomical sampling is typically irregular enough 
that aliasing is effectively eliminated. However, there is 
sometimes an enforced regularity that produces distant 
sidelobes that are very similar in effect to conventional 
aliasing (see Fig. 2 of Deeming 1975, and our Fig. 3 
below). The most common example is the yearly peri- 
odicity imposed by the influence of the Sun on the 
observations. Typically, even when such specific peri- 
odicities are not present, the sampling tends to be 
semiregular—i.e., intermediate between randomly and 
evenly spaced. The result is significant leakage of power 
into sidelobes (see Fig. 3 below), which can cause prob- 
lems. 

The canonical attack on both the statistical and 
leakage problems is the use of procedures which are all 
equivalent to smoothing in the spectral domain. One 
example is the multiplication of the data by a function 
which goes smoothly to zero at the ends of the sampling 
interval. This is called data windowing or tapering. 
Another example is the analogous treatment of the 
autocorrelation function. By elementary means it can be 
shown that these are both equivalent to convolving the 
spectrum with a spectral window function (Harris 1978). 
Such convolution reduces the variance because it aver- 
ages (smooths) the spectrum. At the same time spectral 
leakage can be controlled, because the window function 
can be chosen (tailored or, even more colorfully, 
carpentered) so that the amplitudes of the sidelobes are 
reduced. Many different windows have been proposed, 
tested, and used. Harris (1978) presents graphs of the 
sidelobe suppression for about 45 data windows. What 
at first appears to be a different averaging procedure, 
segmented averaging (analyzing subsegments of the data 
separately and then averaging), is really equivalent to 
windowing the autocorrelation function (Richards 1967). 

It is important to realize that all of these spectral 
smoothing techniques, although developed for evenly 
sampled data, can be readily applied to the periodogram 
with arbitrary sampling (see Thompson 1971). In the 
case of direct time-domain windowing, this will be out- 
lined below (§ Yd) in the section on window carpentry. 
A disadvantage of any such smoothing, shared by both 
the evenly and the unevenly sampled cases, is that the 
spectrum values at different frequencies are no longer 
independent, so that the joint statistical properties are 
more complicated. 

A different approach to the leakage problem is to try 
to remove it from the spectrum. A variety of such 

techniques has been suggested (e.g., Wehlau and Leung 
1964; Fitch and Wehlau 1965; Baming 1963; Gray and 
Desikachary 1973; Meisel 1978; Swan 1981), in both the 
time domain (where it is called prewhitening) and the 
frequency domain. Unfortunately, most of these decon- 
volution techniques are somewhat ill conditioned in the 
sense that the inevitable observational noise is amplified 
in the process. 

In summary, the statistical and leakage problems are 
problems with the use of the unsmoothed periodogram, 
not with the use of the periodogram itself, and not with 
the extension to uneven spacing. In addition, the statisti- 
cal problem is less severe than commonly believed when 
the signal is strictly periodic. The periodogram is not 
claimed to be the best tool for even this restricted 
problem, as I have not made a systematic comparison 
with other techniques. But the simplicity of the statisti- 
cal behavior of the periodogram does make it useful 
when evaluation of the reliability of a possible detection 
is important. 

h) A New Definition of the Periodogram 

The statistical distribution of the periodogram (see 
§ III for comments on the meaning of this concept) is 
simple and well known for the even-samphng case (e.g., 
Groth 1975). The most important result is that if X is 
pure Gaussian noise, Px is exponentially distributed 
(Groth’s eq. [13] with n — 1). The analogous result for 
equation (3) does not seem to have been previously 
derived, and is given in Appendix A. Indeed, the statisti- 
cal behavior of the spectral estimator in equation (3) as 
it stands is considerably more complicated than that of 
the even sampling periodogram in equation (4). How- 
ever, a slightly modified version of the periodogram has 
the same exponential distribution as in the even-samphng 
case. This redefinition is 

2 cos ío(/7 — t) 

2 cos2io(^ —t) 

+ 

^l^sinco^y —t) 

2 sin2 — t) 
(10) 

where r is defined by 

tan(2a>T)= I 2 sin20)^1 /(S cos2(o^j. (11) 

The term slightly modified was used because the actual 
values are typically not changed much (see Figs. 4 and 5 
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below), even though the form is significantly changed. I 
propose to replace the classical definition of the peri- 
odogram, equation (3), with equation (10), which is 
preferable for two reasons: it has a simple statistical 
behavior (Appendix A), and is equivalent to the reduc- 
tion of the sum of squares in least-squares fitting of sine 
waves to the data (Appendix C). Like the classical 
periodogram, it reduces to equation (4) if the spacing is 
even, and has time-translation invariance (Appendix B). 
The computation of (10) is not substantially more dif- 
ficult than that of (3), so that even though the numerical 
differences are small, the theoretically preferable form 
should probably be used in all but the most casual 
applications. 

III. STATISTICS OF THE PERIODOGRAM 

I want to clearly define what is meant by the statisti- 
cal behavior of the periodogram because it is such an 
important concept. X is often a random variable—e.g., 
pure noise, or noise plus a signal. Hence Px, through 
any of equations (3), (4), or (10), is also a random 
variable. The statistical distribution of this random vari- 
able is important... so important that we sculptured the 
very definition of the periodogram to ensure simple 
statistical behavior. The basic point is: since the peri- 
odogram of noisy data is noisy (§ lia), surprisingly large 
spurious spectral peaks can occur and be erroneously taken 
to indicate the presence of a periodic signal. Hence it is 
important to critically analyze the statistical significance 
of a suspected spectral feature, by answering the ques- 
tion: “What is the probability that this feature could 
have arisen from chance (noise) fluctuations?” 

a) The Distribution of P(cú) 

The answer to this last question is completely con- 
tained in the probability distribution of the random 
variable Px(u) for the case where X is pure noise. We 
now summarize the well-known results (following Groth 
1975) for the evenly spaced case, keeping in mind that 
we have arranged in Appendix A for the same distribu- 
tion to apply to the case of arbitrary sampling. 

We emphasize the cumulative distribution function 
(CDF) for three reasons: (1) Estimates of the CDF can 
be constructed without binning of the data (see paper I). 
In contrast, estimates of the differential probability dis- 
tribution,/?(z), invariably depend on the arbitrary selec- 
tion of the bin sizes and locations. There is always some 
information loss in binning. (2) The CDF of the maxi- 
mum of a set of random variables is equal to the 
product of the CDFs of the variable (Papoulis 1965, 
§ 7.1, application 3). This feature is especially useful 
since we are usually interested not in the power at a 
known preselected frequency, but in the maximum power 
over a set of frequencies. (3) Most of the subsidiary 
quantities of interest here (thresholds, false alarm rates, 
missed signal probabilities) can be read off a graph of 

the CDF directly, in terms of values of the ordinate or 
abscissa (see Fig. 1 below). A disadvantage of the CDF 
is that the differences between various distributions tend 
to be washed out by the integration that leads to the 
CDF (eq. [13] below). Hence all CDFs tend to look 
alike, whereas the differential distributions are more 
distinctive (but correspondingly noisier). 

The starting point of the statistical analysis is the 
simple but very useful result that the power at a given 
frequency is exponentially distributed (Appendix A). 
Letting Z = Px(u), we have for the probability distribu- 
tion 

Pz(z) dz — Pr(z < Z<z + dz) — exp (— z) dz. (12) 

Here and henceforth the noise variance will be taken to 
be unity (i.e., P will be measured in units of ofi). Hence 
the cumulative distribution function is 

Fz(z) = Pr{Z<z}=fpz(z')dz' Jo 

= 1—exp(-z). (13) 

A more useful quantity is Pr{Z> z} = exp (— z), which 
gives the statistical significance of a large observed 
power at a preselected frequency. That is, as the ob- 
served power (really, the signal-power to noise-power 
ratio) becomes larger, it becomes exponentially unlikely 
that such a power level (or greater) can be due to a 
chance noise fluctuation. 

Now consider the maximum value (peak) in the spec- 
trum. Let Z = maxn P(con), where the maximum is over 
some set of N frequencies such that the P(oofl) are 
independent random variables (see Appendix D). Then 
the multiplicative property mentioned above yields for 
this case 

Pr{Z>z}=l-Fz(z) 

= 1 -[1-exp (-z)]"[Z = max„/>(wj]. 

(14) 

This formula contains the statistical penalty for inspec- 
ting a large number of frequencies and selecting the 
largest value of P. For if N independent experiments are 
carried out, even if each one individually has a very 
small probability of succeeding, the chance of one of 
them succeeding is very large if N is large enough 
(approaching certainty as N approaches infinity). In- 
deed, a simple calculation shows that the expected value 
of the maximum of a pure noise spectrum, over a set of 
N frequencies at which the power is independent, is 

N 
(Z(max)) = 2 

k — 1 
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a series well known to diverge logarithmically with N. 
The lesson: If many frequencies are inspected for a 
spectral peak, expect to find a large peak power even if 
no signal is present. 

If a signal is present, the distributions are different. 
Let Ps(u) be the power which the signal alone (i.e., with 
the noise magically turned off) would produce, and 
denote the signal-to-noise ratio as P = PS/PR. Then the 
CDF of the observed signal-to-noise ratio Z is [Groth 
1975, eq. (16) with n = \] 

iz(^) = l-exp [-(z + P)]^(z,/>), (15) 

where <i> is an integral of a Bessel function, with the 
series expansion 

oo m 
<>(x,y)= 2 2 xkym/(klm\). (16) 

m = 0 A: = 0 

If the signal is present at a single unknown frequency 
among a set of N frequencies, then the CDF of Z = 
maxwP(coJ is 

iv(z) = [l-exp(-z)]A,_1Fz(z), (17) 

where again it is assumed that the P(un) are indepen- 
dent. The factors of [1 — exp (— z)] come from the N — 1 
frequencies at which the signal is not present, while the 
other factor is from the signal frequency (which is, of 
course, unknown). 

b) The Joint Distribution of P(w) and P(o)') 

At the important matter of the mutual dependence of 
the P(un), the evenly and unevenly sampled cases fi- 
nally part company. If the data are evenly spaced, the 
P(coJ, with the con given by equation (Dl) below, are 
strictly independent random variables. But this indepen- 
dence is lost if the sampling is uneven. The underlying 
mathematical reason is that, while the sine and cosine 
functions are orthogonal with respect to summation over 
evenly spaced time, this orthogonality disappears if the 
times are unevenly spaced. There appears to be no way 
to restore orthogonality without transforming to basis 
functions which mix various frequencies together. This 
mixing defeats the purpose of spectral analysis, and 
cannot be considered a viable procedure in the present 
context. 

But luckily if the frequency grid is well chosen, the 
degree of dependence between the powers at the differ- 
ent frequencies is usually small. To see this, we need the 
correlation coefficient between P(u) and P(oi') for arbi- 
trary a) and co'. Lomb (1976) calculated this quantity, 
and showed that it is equal to the window function 
G(co), evaluated at <o —co'. The window function, de- 
fined in Appendix D, is a very useful quantity: It 

contains all relevant information about dependencies 
and correlations. If G(co) has a set of evenly spaced 
nulls at the frequencies o)n = no)un = 1,2,3,..., then the 
P(o)n) are uncorrelated. [Note that the nulls must be 
evenly spaced in order for all of the P(o>n) to be 
uncorrelated with each other.] This does not mean that 
they are independent, as independence is a stronger 
condition than uncorrelation (Paper I). But it will be 
assumed that if G is small or zero at a set of evenly 
spaced frequencies, un, then the P(un) are nearly inde- 
pendent. This assumption can be rigorously justified for 
Gaussian processes, because for them lack of correlation 
does imply independence. With a wide variety of sam- 
pling schemes G((o) does have nulls, or relatively small 
minima, that are approximately evenly spaced (see the 
examples in Figs. 3 and 4). Such nulls comprise a set of 
natural frequencies at which to evaluate the periodo- 
gram. At these frequencies the P(u) form a set of 
approximately independent random variables—thus 
closely simulating the situation with evenly spaced data. 

c) The False Alarm Probability 

It is desired to find a power level, z0, such that if we 
claim the detection of a signal only if the observed 
power exceeds this level, we will be wrong (fooled by 
fluctuations) only a small fraction, say p0, of the time. 
From the distribution in equation (14) this detection 
threshold is: 

Zo = —In [l~(l~.Po)1/,V]> (18) 

where N is the number of frequencies searched for the 
maximum. The false alarm probability, pQ, is a fixed 
small number (in examples we take pQ — 0.01). Note 
that, for small 

z0~ln(A7/>0), (19) 

= 4.6+ln {N) {for/>0 = 0.01}. (20) 

Thus with TV = 30, Z must be greater than 8 to permit 
reporting a signal with 99% confidence. This signal-to- 
noise ratio seems very high, but is not as striking when 
converted to the amplitude signal-to-noise ratio (see eq. 
[9]), viz., Z0/a0~l. 

d) The Detection Efficiency 

From the discussion in the previous section it can be 
seen that only rather large signals can be detected 
reliably. If the power falls below the threshold, z0, the 
signal will not be detected. The probability of thus 
missing a signal of power P is given by the correspond- 
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Fig. 1.—The dotted curve is the cumulative distribution func- 
tion (CDF) for the power at a single, preselected frequency, in the 
no-signal case (eq. [13]). The point where this curve crosses \ ~ pQ 
(indicated by the horizontal dashed line) gives the value of z such 
that the probability of a noise fluctuation exceeding z is p0. 
Similarly, the dashed curve is the CDF for the maximum over 
N — 25 frequencies, again with no signal present (eq. [14]). The 
value of z where this curve reaches 1 — /?0 (/?0 is the desired small 
false alarm rate) is called z0 (eq. [18]). The reason that this value of 
z, indicated in the figure by a vertical dot-dash line, is called the 
detection threshold is that signal powers above this threshold are 
spurious only a fraction pQ of the time. The solid lines are CDFs 
for the maximum power when signals are present, the upper one 
with P = 4 and the lower one with P = 10. Since detection can be 
claimed only if P exceeds z0, the probabilities of not detecting 
these signals are given by the corresponding ordinates of the CDF 
at z0 (i.e./?*; see eq. [22]). 

ing CDF evaluated at the detection threshold: 

P) = Pr{miss} = 7v(z0) 

[-Oo + ^Ol^Oo.-P)}. 

(21) 

where <i> is given in equation (16), p0 is a constant, and z0 

is given as a function of N in equation (18). The factor 
(1 —Po)1-1/;V in this equation is a very slowly varying 
function, ranging monotonically from 1 to 1 — p0 = 0.99 
as N goes from 1 to oo. Dropping this essentially 
constant factor yields 

p*(N,P) = 1—exp [ —(z0 + ^)]<Kzo>^>)- (22) 

This equation can be used to compare the detection 
efficiencies of two different observational schemes, in 
terms of their parameters N and P. The detection ef- 
ficiency is defined as the probability of detecting a 
signal of power P, and is just 

DE = 1-/?*(Y,P). (23) 

Note from equation (9) that P depends on not only the 
signal amplitude, Y0, but also the observational parame- 
ters a0 and N. 

Figure 1 demonstrates the concepts of detection ef- 
ficiency and false alarm rate, by showing how they 
relate to the CDF of the peak power with and without a 
signal present. One can see from the figure that the 
signal-to-noise ratio must be relatively large before 
the probability of missing the signal is low—especially if 
the chance of falsely claiming signal detection is desired 
to be very small. 

IV. MAXIMIZATION OF THE DETECTION EFFICIENCY 

One application of these results is the adjustment of 
the parameters to maximize the detection efficiency. In 
practice this is best done subject to a constraint that P 
have some functional relationship to N. For example, it 
may be true that the error variance Oq is proportional to 
N. Consider the case of a set of Nx data points, with 
error variance af, averaged4 to form a set of N2<NX 

points of greater accuracy (o2< aj). The assumption 
that the errors are independent and normally distributed 
yields 

o2 = (N2/N,y/2o„ (24) 

i.e., aocAT1/2 with this relationship P is constant with 
N (see eq. [9]) and it is then easy to see that /?* is a 
monotonically increasing function of N, for FN(z0) is 
monotonically increasing with z0 (all CDFs are nonde- 
creasing by virtue of the definition in eq. [13]). And 
from equation (18) one can see that z0 is an increasing 
function of N. It follows, using equation (21), that p* is 
an increasing function of N. Thus with o2ccN the 
missed signal rate is minimized by making N as small as 
possible. The main reason for this behavior is the statis- 
tical penalty discussed in § Ilia. Smaller N means that 
fewer trials are being performed, so that a spectral peak 
of a given size becomes more significant. 

This result implies that one way to improve the 
detection efficiency is to heavily average the data, even 
to the point that N = 1 (i.e., just two data points). This 
would be true but for one problem: averaging the data 
increases the effective sampling interval A/, thus de- 
creasing the Nyquist frequency. It is undesirable for the 
Nyquist frequency to fall below the signal frequency, as 
it can then be very difficult (but not impossible) to 
detect the signal. Lacking a priori knowledge about the 
signal frequency, one cannot average the data without 
running this risk. These considerations suggest trying a 

4 By this is meant that groups of data points are replaced by 
their mean values. It is important that the groups be nonoverlap- 
ping, so that the corresponding means are statistically independent. 
This makes the statistical properties very simple, in contrast to the 
situation when running (nonindependent) means are used. 
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range of degrees of averaging of the data. Unfor- 
tunately, a rigorous statistical analysis of such noninde- 
pendent trials would be difficult. 

There is another important way that the detection 
efficiency can be improved, namely by decreasing the 
number of frequencies that are inspected. The relation- 
ship that the number of frequencies is half the number 
of data points, equation (5), only means that the maxi- 
mum number of statistically independent P( co )’s is N0 /2. 
But one could choose on physical grounds to inspect a 
restricted number of frequencies, say many fewer than 
N0/2. This would leave P unchanged, because it is 
determined by N0 (eq. [9]), whereas z0 would be reduced 
because it depends on N (eq. [18]). Hence, the detection 
efficiency derived using equation (22) is always im- 
proved if N is decreased below N0 /2. This should be 
done if and only if one is confident that no interesting 
signals could be present in the range of frequencies 
ignored—otherwise one would be discarding informa- 
tion and risking missing a real signal actually in the 
data. For a fixed N, it is easy to show that p is an 
increasing function of N0 /a0

2, and so is maximized (for 
fixed o0) by making N0 as large as possible, and is 
constant if N0 oc a0

2. This confirms the intuitively com- 
pelling notion that the acquisition of more data should 
improve the detection efficiency. 

It appears to be impossible to overemphasize that 
choices of this kind must be made before the data are 
analyzed—otherwise the statistical analysis of the re- 
sults is completely changed. 

Further, it is easy to see that if P is a nonincreasing 
function of N (and this includes the constant case dis- 
cussed above), the p* is an increasing function of N, and 
again A should be as small as possible. The remaining 
case, P an increasing function of N (or, if we are 
comparing two distinct schemes, N2 > N} and P2 > P\), 
cannot be treated as easily, because the results depend 
on how strongly increasing the function is. Figure 2 
shows contours of constant p* in the P-N plane, based 
on approximations given in Appendix E. This figure 
verifies the above conclusions for the constant P case, 
and shows how strongly P must increase with N to 
reverse the situation and make p* a. decreasing function 
of N. 

V. SAMPLE COMPUTATIONS 

Sample computations are useful to demonstrate the 
theoretical concepts presented above. 

a) The Classical Periodogram 

The response of the classical periodogram (eq. [3]) to 
a sinusoidal signal is completely described by the window 
function (eqs. [D3] and [D4]) through the relation in 
equation (D2). Note that the window depends only on 
the observation times, {/,}. Figure 3 shows window 
functions calculated for the epochs of photographic 

Fig. 2.—Contours of constant detection efficiency (DE = 1 — 
/?*), as functions of the signal strength, P, and the number of 
samples, N. The curves, labeled with the value of DE, are from the 
approximation given in eq. (El2), while the +’s are exact and were 
calculated from eqs. (16), (21), and (23). 

plates obtained for a parallax program at the U.S. Naval 
Observatory. Dr. Harrington kindly provided the 
raw data for three stars in which a perturbation due 
to an unseen (stellar) companion was discovered in the 
course of this program (Behall and Harrington 1976; 
Harrington 1977). Even though all three stars were 
observed in more or less the same way, in the fashion 
typical of parallax programs, the vagaries of astronomi- 
cal observations show up as differences in the three 
windows. Nevertheless there are similarities, and all 
three are generally similar to the standard “sine2” 
window for even spacing. In particular, all three have a 
narrow central peak, the main lobe, the width of which is 
of order Itt/T. At the first null of the sine2 function, 
one window has a null, and two have minima. The 
sidelobe structure is different from star to star, but all 
can be described as having roughly evenly spaced lobes, 
with amplitudes considerably larger than those of the 
rapidly declining sine2 function. The real windows have 
one thing absent in the sine2 function, namely rather 
large peaks on either side of the main lobe and displaced 
from it by 1 cycle per year (co = 2 77 radians per year). 
This is due to the 1 yr rough periodicity characteristic of 
any parallax program, as discussed above (§ lia). The 
sine2 window has one thing absent in the real windows, 
namely a series of large peaks on either side of the main 
lobe and displaced from it by integer multiples of 1 
cycle per sampling interval (i.e., the Nyquist frequency). 
This abasing is due to the regularity of the sampling, as 
described in § II û. 

b) The Modified Periodogram 

We now wish to compare the classical periodogram 
with the modified form in equations (10) and (11). As 
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Fig. 3.—Logarithmic plots of the classical 
periodogram windows obtained from astrometric 
data for the stars: (a) G96-45, (b) G146-72, 
and (c) Wolf 1062. In each case, the solid Une is 
the window calculated from the classical for- 
mulas (D3) and (D4), while the dotted Une shows 
for comparison the window function for even 
spacing with the same total time interval and 
number of data points. The open octagonal 
symbols are the window function evaluated at the 
grid of frequencies defined in eq. (Dl), while the 
solid curve is oversampled by a factor of 10 
relative to this grid. 
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Fig. 4.—Comparison of the classical periodogram (50//J /me) 
from eq. (3) with the modified form (dot-dash line) from eq. (10). 
Since, as explained in the text, the spectral response of the mod- 
ified periodogram cannot be written in the form in eq. (D2), 
strictly speaking the window function is not defined. Hence what is 
shown here is a pseudowindow, namely the response to a high- 
frequency sinusoid (co^lO), with sampling as in Fig. 3a. The 
dotted line is the classical periodogram computed from the same 
data interpolated to even spacing. 

detailed in Appendix D, the response of the modified 
periodogram to a sinusoidal input cannot, strictly speak- 
ing, be described in terms of a window function because 
it cannot be written in the form in equation (D2). But 
we can directly calculate the response to a sinusoid of a 
specific frequency, sampled at the particular set of //s 
under consideration. The synthetic signal will be of the 
form 

Figure 4 also shows the periodogram (dotted line) of 
the same data linearly interpolated to even spacing. 
Such interpolation is very bad for a high frequency 
signal, as can be readily seen from the figure, since much 
of the oscillation is lost in the interpolation, by being 
replaced with linear segments. Hence it should not be 
surprising that the spectrum of the interpolated data 
almost completely misses the main peak. Interpolation is 
not nearly so bad for low frequency sinusoids, but 
probably should never be used if an alternative is avail- 
able. One of the main points of this paper is that an 
alternative is available—the periodogram. For more in- 
formation on how interpolation affects the power spec- 
trum, consult Horowitz (1974), who discusses the effects 
of different orders of spline interpolation on the power 
spectrum. 

Figure 5 depicts another view of the effect of the 
modification of the periodogram. It shows the de- 
nominator terms which appear in the modified periodo- 
gram, as a function of frequency (see eq. [10]). The 
10-20% variations seen here are typical of moderately 
irregular sampling. 

c) Noisy Data 

Figure 6 shows how the periodogram degenerates as 
increasing amounts of noise are added to the process 
analyzed in Figure 4. The power signal-to-noise levels, 
calculated from equation (9) with = 1, Nq — 107, and 
a0 = 0.64a, are: (a) 65, (b) 2.6, and (c) 0.65. The signal 
is clearly detected in («), while in (b) the noise is such 
that detection could be claimed only for a rather large 
threshold (and thus running considerable false alarm 
risk). Quantitatively, the peak power divided by the 

XÂ ti ) = sin ust¡ + aRi, (25) 

where the term aRl represents the noise. The process R 
was generated by adding five random variables uni- 
formly distributed on the interval ( — 1,2)» thereby pro- 
ducing a pseudo-Gaussian random variable of variance 
0.64. 

Figure 4 shows the modified periodogram for the case 
^ 10 and û = 0, with sampling as in Figure 3«. It is 

presumed that this frequency is large enough that the 
overlap terms and negative frequency spillover described 
in Appendix D are not important, so that the periodo- 
grams shown are much like effective, or approximate, 
windows shifted to the frequency origin co5. The asym- 
metry of the curves in this figure is probably due mostly 
to the overlap and spillover effects (similar compu- 
tations with higher signal frequencies give windows that 
are more nearly symmetric). It can be seen in Figure 4 
that the difference between the modified periodogram 
and the classical periodogram is not large. The biggest 
effect is a small change in the relative amplitudes of the 
main lobe and the quasi-alias sidelobes. 

FREQUENCY, rad/yr 

Fig. 5.—The expressions cos2 utj (top) and sin2 <x>tj (bot- 
tom). These are the denominators in the corrected periodogram, 
eq. (A14). The classical periodogram, eq. (3), is obtained if these 
denominators are approximated with the constant NQ /2, indicated 
by the tick mark in the middle of the ordinate scale ( A0 = 107 in 
this example). The times {/,} are as in Fig. 3a. 
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Fig. 6. — Pseudowindows determined by 
analyzing artificial data, as in Fig. 4, but noise 
has been added according to eq. (25), with: (a) 
a =2, (b) ö = 4, and (c) a — 10 (the correspond- 
ing signal-to-noise ratios are 16, 4, and 0.65). The 
solid line is the classical periodogram, and the 
dotted Une is the modified one; the dot-dash line 
is the (classical) periodogram of the noise alone. 
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noise power in Figure 6b is about 8.2; and with NQ —107, 
equation (14) shows that this signal-to-noise ratio corre- 
sponds to detection with 97.0% confidence—moderately 
good, but not overwhelming. If this is an acceptable 
detection, then a sine wave of amplitude 1 has been 
detected in the presence of noise of variance more than 
2.5 times as great. This result demonstrates the claims 
made in § II a that the periodogram is well suited to the 
problem of detecting a periodic signal in the presence of 
noise. In Figure 6 c the main peak is no longer even at 
the signal frequency; detection could not be claimed, as 
the peak signal-to-noise is about 5, corresponding to 
roughly 50% chance of being a random accident. 

d) Window Carpentry 

Spectral leakage is another issue in the use of the 
periodogram. Indeed, the sidelobes of the periodogram 
windows shown in Figures 3 and 4 are substantially 
larger than the lobes of the sine2 window, indicating 
that there is significant leakage away from the input 
frequency. In addition the quasi-alias peaks, due to the 
annual regularity in the sampling, are bothersome and 
would be a major source of confusion in dealing with all 
but the simplest signals. 

The classical approach to plugging up spectral leakage 
is through windowing of the data or mathematically 
equivalent techniques. The basic idea is to multiply the 
data samples by a function of the time index that goes 
smoothly to zero at the ends of the data, but is unity 
over the central region of the sampling interval. Rather 
subtle differences in the shape of this function (which is 
sometimes called the data window) can make large dif- 
ferences in the way in which the sidelobe amplitudes fall 
off with frequency. The paper by Harris (1978) gives a 
catalog of many such data windows and the correspond- 
ing sidelobe structure. 

The periodogram for unevenly spaced data allows two 
different forms of spectral window adjustment: (1) ap- 
plication of time-domain (data) windows, and (2) ad- 
justment of the locations of the sampling times (which 
can be done, of course, only if these are at the experi- 
menter’s disposal). The first of these can be effected 
simply by replacing X(^), everywhere it appears in the 
periodogram formula (eqs. [3] and [10]), with w^t^X^t^) 
(Thompson 1971). The function w{t) can be represented 
either as a continuous function of time or as a set of 
weights, wt = w(^), one for each of the sampling times. 

Several numerical experiments have been performed, 
the details of which will be given in a subsequent paper 
in this series. Here only a brief summary will be given. 
Experiments were carried out in which the weighting 
function w{t) was varied, or the sampling times tl were 
varied, or both. One must choose some aspect of the 
window function which is to be minimized; examples 
are (1) the amplitude of a particular sidelobe, (2) the 
sum of the amplitudes of the sidelobes from the first up 

to some specific frequency, such as the Nyquist 
frequency, (3) the amplitude of the peak at the Nyquist 
frequency (this is one way to measure the amount of 
aliasing), (4) the width of the main lobe (this is a 
measure of resolution). For an ideal system, the delta- 
function spectral response corresponds to zero for each 
of the quantities listed above. Indeed, this is the reason 
for minimizing the quantities in the first place. 

The results of these numerical studies can be sum- 
marized as follows: (1) the time points (/,) control the 
power in the window function which leaks to the Nyquist 
frequency and beyond (i.e., the abasing), while (2) the 
weights (wj control the sidelobes, and (3) there is very 
little cross-talk between (1) and (2). This is not unex- 
pected from elementary considerations, such as those 
given in § II above. Window functions closely ap- 
proximating the Hanning weights, and other standard 
weights, are the solutions to optimization problems in 
which the weights are free parameters and the integrated 
sidelobe power is the quantity to be minimized. 

In addition, more specialized problems have been 
considered. For example, suppression of the window 
response over a specific range of frequencies can be 
easily accomphshed. Such “passband” windows might 
be of use when a weak signal is suspected at a frequency 
offset by a known amount from a strong signal. Some 
additional experiments were preformed, in which the 
weights {w¿} were allowed to be complex numbers. This 
is equivalent to introducing a variable phase shift be- 
tween the components, not unlike “beam steering” in 
radio astronomy, where interferometer antennas are 
connected with variable delay lines. The general result 
seems to be what would be expected from this analogy, 
namely that the phase shifts cause the power to move 
away from the main lobe—and this is generally unde- 
sirable. On the other hand, there seem to be some cases, 
such as the passband experiments mentioned above, 
where the complex weights appear to be of some in- 
fluence on the final window shape. 

VI. SUMMARY AND FURTHER WORK 

Some general aspects of the use of the periodogram 
for the detection of periodic signals hidden in noise have 
been given, with emphasis on the analysis of unevenly 
spaced data. The statistical distribution of this estimator 
of the power spectrum is simple and easy to use, espe- 
cially if the classical definition is slightly modified. In 
particular, simple formulae can be used to (1) define a 
threshold power level above which a peak in the peri- 
odogram indicates that a signal is almost certainly (with 
probability [1 — /?0]) present (eq. [18]), (2) calculate the 
probability of a chance noise fluctuation exceeding a 
given power level (eq. [14]), and (3) calculate the proba- 
bility that a signal of a given amplitude (relative to the 
noise) will be detected (eqs. [21] and [23]). The discus- 
sion in § II should clarify some of the practical issues in 
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the use of the periodogram, and aid one in deciding 
when it is a good tool to use. 

Further work needs to be done in window carpentry. 
In particular, the relationship between the standard 
window functions and the minimization problems 
sketched in § Nd should be clarified. Such problems 
should probably be formulated in terms of a weighting 
function (in the frequency domain) which specifies the 
relative importance of different aspects of the spectral 
response function. It is presumed that the minimization 
problem corresponding to each such function defines a 
unique data window, and that the standard data windows 
can be defined in this way. In addition, a systematic 
study of the nature of the spectral window, as a function 

of the sampling, needs to be carried out. The possibility 
that complex weights can be of use also needs study. 
Preliminary remarks on these matters have been made 
above, and more detailed results will be published sub- 
sequently. 

It is a pleasure to thank Dave Black for suggesting the 
problem (see BS) which led to this work, as well as for 
continued encouragement. Paul Swan and Gary Villere 
made useful suggestions regarding the presentation. 
Robert Harrington provided the data used in some of 
the numerical examples. The referee made several useful 
suggestions. 

APPENDIX A 

STATISTICAL DISTRIBUTION OF THE PERIODOGRAM 

Consider the following generalization of the discrete Fourier transform (DFT): 

FTx(u) = (N(i/2)X/2 2 cosco^ + íSsincoí,]; (Al) 
i = i 

A and B are as yet unspecified functions of co, and may depend on the sampling, {/y}, but not on the data, { Y(/7)}, nor 
on the summation index y. The corresponding periodogram is 

Px{u) = {\/N0)\FTx{u)\2 

= (A2/2) 
l2 

2 x(^ ) cos CO tj 
j 

+ (52/2) 
l2 

2 sinco/3 . 
j 

(A2) 

If ^ = (2/Ao)1/2, equations (Al) and (A2) reduce to the classical definitions. The basic rationale behind these 
definitions is that for even sampling FTX reduces to the DFT (and in the limit A / ^ 0, A oo, is proportional to the 
Fourier transform); similarly for Px and the power spectrum. But this reduction is not unique: there are other choices 
for A and B which reduce to the same expressions for even sampling, as we shall soon see. Hence, additional conditions 
must be imposed to determine A and B. In particular, the statistical distribution of the generalized periodogram will be 
made as closely as possible the same as it is in the evenly spaced case. 

This can be achieved with simple choices for A and B. Consider the important case in which X is pure 
noise—independently and normally distributed noise, with zero mean and constant variance aj. Then the quantity 

C(<o) = 2Í 2 Y(/y) COS COtj 
j 

(A3) 

is a linear combination of independent normal random variables, since the A cos co/y are simply constant coefficients in 
this context. But a linear combination of normally distributed random variables is also normal (Parzen 1962, § 3.4, 
Theorem 4A, p. 90). The mean and variance of C are: (C) = 0 and 

ac
2 = (C2(w))=^22 2 (■^(i,)^/*)) coswycoswi* (A4) 

j k 

= y42A0ao2 cos2cor,, (A5) 
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since the cross terms (j^k) vanish due to the assumed independence. Similarly, 

j 

is normal with zero mean and variance 

a/ = B2NqOq^ sin2 <0/3. 
j 

Now equation (A2) can be written 

^(«) = f[c2(«) + 52(W)], 

(A6) 

(A7) 

(A8) 

so that P is the sum of the squares of two normally distributed, zero-mean random variables. It is well known (e.g., 
Papoulis 1965, § 7.1, example 7-7, pp. 194-195) that such a sum has an exponential probability distribution, but only if 
the variances of the two normal variables are the same. Let X and Y be two zero-mean random variables with variances 
af and a2

2, respectively. Then the methods in Papoulis (1965) yield that Z = V2 + 72 is distributed according to 

Pz(z) 
exp(-z/2ai) ^ 
 ö— ^ Z<Ji 02 

(z/4) 
1 

where 

G(x) = exp (— x)I0(x) 

(A9) 

(A10) 

and 70 is the modified Bessel function of the first kind. For 0! = a2 = 0, this reduces to the usual result for the sum of 
squares of two normal variables of equal variance (and mean), namely the exponential distribution 

7>
z(z) = (l/2a2)exp(-z/2a2). (All) 

But if 0j ^ 02, distribution (A9) is quite different from (All). From equations (A5) and (A7) it can be seen that the 
choices 

/ \-l/2 
^(w) = ô(«)| h COS2(0^1 (A12) 

and 

/ \_1/2 

Æ(co) = 0(<o)| 2 sin2<0^1 (A13) 

give the necessary equality of the variances, namely oc = of = 0O). In these equations ß(<o) is an arbitrary function of 
co. Its proper value, ß(co) = 1, is determined by the condition that P have the same mean value as in the evenly spaced 
case. The resulting periodogram, namely 

iv(») = 
(? 

Xj cos CO tj 2 Xj sin 00 tj j 

- + - 
2 COS2 CO/3 2 sin2 60tj 
j j 

(A14) 

has exactly the same (exponential) probability distribution as for even spacing. However, the joint distributions are 
different, as discussed in Appendix D. For evenly spaced tj it can be shown with elementary trigonometry that 
A(oo) = B(co) = (2/N0)

l/2 whenever oo — oon (see eq. [Dl]). But A and B can be very far from these values for other 
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values of <o. For uneven spacing, A and B are not equal, even at the co„. Nevertheless, unless the sampling is 
pathological, (2/Y0)

1/2 for the relevant values of co. Thus A = B = (2/N0)
l/2, which reduces (Al) and (A2) to 

the classical definitions, is not a bad approximation in many cases. 
The form of the power spectrum in (A 14) was also arrived at, using a least-squares regression not unlike that of 

Lomb (1976), by Kar, Homkohl, and Farmer (1981). They propose this form as an approximation to the power 
spectrum, for randomly sampled data, which is computationally faster and requires less computer storage than 
conventional methods, and in one example also provides somewhat superior stop-band rejection. 

APPENDIX B 

TIME-TRANSLATION INVARIANCE OF THE PERIODOGRAM 

Invariance to time translation is a useful property possessed by the classical periodogram. That is, if there is a shift of 
the time origin, say tj -> tj 4- jP0 for every y, then the periodogram in equation (4) (or eq. [3]) is unchanged: there is 
simply a phase factor exp (/cor0) of modulus unity inside the absolute value. Our periodogram, equation (A 14), does 
not have this property. Even though the actual changes in the values brought about by time translation are usually 
small, it is nevertheless satisfying to find a way of restoring invariance. After all, the power spectrum is meant to 
measure harmonic content of signals without regard to phase. There are many ways to restore invariance. The 
following procedure—while it appears capricious at the moment—is chosen for reasons that will become transparent 
in Appendix C. Insert a delay r into all of the time arguments in equation (A14) as follows: 

and define 

px{")=\ 

2 Y/cosío(^ —t) 
T 2 

■ + 

2 ^sinco^ — t) 

2 cos2o)(tj — r) 2 sin2co(/7 —t) 
J j 

r = (l/2(o)tan 1 

2 sin 2<o ¿y 
j 

2 cos 2 co tj 
j 

(Bl) 

(B2) 

The formula for the tangent of a sum can be used to show that if tj becomes tj + T0, then r becomes r + T0; hence T0 

cancels out in the arguments co(/y —r) in equation (Bl). Further, this change does not alter the statistical results in 
Appendix A. Equation (Bl), with (B2), is the definition we adopt: it has time-translation invariance, a simple statistical 
behavior virtually identical to that for even sampling, and it reduces to the ordinary periodogram, equation (4), if the 
sampling is even (for in this case r = 0). The computation of (Bl) is somewhat more complicated than that of the 
classical periodogram, equation (3). The only tricky part is dealing with the 27t ambiguity in the arctangent function in 
(B2). The secret is to impose continuity on r as a function of w, and to use sufficiently high frequency resolution so that 
no phase jumps are missed. It is also important to note that 

Mm T(a>) = (l/V0) 2 (B3) 
y. = 1 

and to circumvent the indeterminacy in the second term of (Bl) at co — 0 [both the numerator and denominator are 
O(co2)]. The computation time depends on N0 in the same way for (Bl) as for the classical periodogram. Note that t,A, 
and B can be calculated once and for all for a given sampling. 

APPENDIX C 

EQUIVALENCE OF PERIODOGRAM AND HARMONIC LEAST-SQUARES ANALYSIS 

An alternate approach to the detection problem outlined in § I is the fitting, in the least-squares sense, of sine waves 
directly to the data. That is, we define 

Xf(t) =A coswt + B sinœt, (Cl) 
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and seek to minimize the mean square difference between this model and the data, viz., 

Vol. 263 

E(U)= Í [X^-X^tj)}1. (C2) 

Since A and B enter the residual in a linear way, in contrast to co, they may be determined by standard linear 
least-squares techniques. The resulting minimized value of E, £MIN(co), can then be minimized as a function of co 
numerically or graphically. Equivalently, one may define the reduction in the sum of squares as 

N° 9 
A£(w)= 2 [*(',)] -£min(“>), (C3) 

7 = 1 

and seek a maximum in Ais(ci>). The details of this procedure can be found in Lomb (1976), who generalizes (Cl) to 

JÇ^/) = T cosco(¿ — t) +Æ sin<o(/— t). (C4) 

Lomb introduces the redundant parameter r because, if it can be chosen so that 

No 
2 cos co(^ — r) sin ¿o (^ — r) = 0, (C5) 

7 = 1 

then his complicated explicit formula for A£(co) simplifies to 

A£(<o) 

cosco(^ —t) sin CO (/y — t) 

cos 
- + -k 

2 sin2 — t) 
(C6) 

The solution to equation (C5) is precisely the expression for r which gives time translation invariance (eq. [B2]). Note 
that, despite their very different meanings and derivations, AE(co) and Px(u) are exactly the same (eqs. [10] and [C6])! 
A maximum in the periodogram occurs at the same frequency which minimizes the sum of squares of the residuals of 
the fit of a sine wave to the data. And clearly any theoretical results for the periodogram—e.g., the statistical 
discussion above—apply equally to least-squares analysis, and vice versa. 

APPENDIX D 

NATURAL FREQUENCIES AND THE SPECTRAL WINDOW 

In practice one is faced with the problem of choosing a finite set of frequencies at which to evaluate the 
periodogram. For the case of even spacing there is a well-known natural set of frequencies, defined by 

œn = 27rn/T {n = - N0/2,..., +N0/2} (Dl) 

(T is the total time interval). The significance of this set of frequencies is that the DFT (eq. [2]), evaluated at these 
frequencies, contains just enough information to recover the original data. Indeed, an explicit formula can be written 
for Xn in terms of the FT(con). Since the periodogram of real data is symmetric [Pi— co) = P(<o)], all of its information 
is contained in the positive frequencies, n = 0,1,2,...,A( = 7Vo/2). Roughly half of the information in the data has 
been thrown away by going from the DFT to the periodogram (the absolute value discards the phase, but retains the 
amplitude), so half as many frequencies are necessary. Evaluation of the periodogram at intermediate frequencies gives 
plots that look smoother. For example, all of the periodograms shown in this paper are plotted at 10 times N0/2 
frequencies. This oversampling is really a kind of interpolation that adds no information. Furthermore, the random 
variables P(un) are independent of each other—whereas the P(co) at intermediate frequencies are dependent variables. 

An intuitive way of looking at the meaning of the set of frequencies defined above is that the fundamental 
frequency, o)x = 2w/T, corresponds to a sine wave of period equal to the whole interval T. This is roughly the lowest 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
82

A
pJ

. 
. .

26
3 

. .
83

5S
 

TIME SERIES ANALYSIS 851 No. 2, 1982 

frequency about which there is information in the data. The so-called Nyquist frequency, coN = /h^t) = tiN^/T 
(ht = T/N0 is the sampling interval) is roughly the highest frequency about which there is information, because ht is 
the shortest time interval spanned. 

If the sampling is uneven, the fundamental frequency is basically unchanged in both meaning and value, since the 
interval max^) —min(A) is still well defined. However, the meaning of the Nyquist frequency is more com- 
plicated. The highest frequency about which there is information is tt divided by A/min = min(¿/+ j — ¿z), but the average 
value oî ht might better be used in defining a generalized Nyquist frequency—but which mean is appropriate: 
algebraic, geometrical, harmonic,...? We will now see that the best way of choosing the natural frequencies is through 
consideration of the spectral response function, sometimes called the spectral window. 

Roughly speaking, the spectral window is used to describe the response of the entire data analysis system to a 
monochromatic (i.e., single frequency) sine wave. This is not a unique definition, to the extent that the periodogram is a 
function of the phase of the sine wave. However, this dependence is usually weak, and one can meaningfully average 
over phase. Deeming (1975, eq. [8]) has shown that the expectation value of the classical periodogram is equal to the 
convolution of the true power spectrum with the spectral window function for the particular sampling used (see eq. 
[D3] below). Thus the window function is a kind of Green’s function. One reason for its importance lies in the fact that 
all spectral leakage effects (aliasing, sidelobes, interference phenomena, ghosts, etc.) are manifested directly in the 
window and can be easily evaluated quantitatively (Deeming 1975). Lomb (1976) has derived expressions for the 
periodogram due to a sinusoidal signal. The exact expression is rather messy, but when averaged over phase and 
simplified with the approximations that reduce the full modified periodogram in equation (10) to the classical 
periodogram in equation (3), it reduces to 

/>J(W) = |^(to-Wj)+^(W + cos)|
2; (D2) 

Ps is the periodogram due to a sine wave of frequency of cov, and W is the DFT of the time-domain observing window: 

^(w) = (l/AT0) 2 exp (iutj). 
/ = i 

(D3) 

It can be seen from (D2) that P5(co) consists of three contributions: the function 

G(a)) = |jr(co)|2, (D4) 

with its origin shifted to the signal frequency [i.e., | jr(a> — co5)|
2], plus a similar term shifted to — ois [i.e., 

I jr(co + io,)|2], plus the overlap term 2JT(co — cov)ÍT(co + cov). If JT(co) is narrowly peaked about <0 = 0 and coy is not 
too small, then for <o > 0 the second and third terms are negligible, and the basic response is G(<o — <oJ. Hence G is 
called the periodogram window, or spectral window. For the modified periodogram we can derive, from expressions 
given by Lomb (1976) for least-squares analysis, the following formula for the phase-averaged sine wave response: 

(2 cos <o5 tj cos <o tj ) (2 cos co5 tj sin <o tj ) 

^ ^ (2 cos2 <o5/y)(2 cos2 co/y) (2 cos2 <o5¿y)(2 sin2 <0/2) 

+ 
(2 sin ustj cos co/7) 

(2 si sin2 cô,tj){2 cos2œt 
■ + 

(2 sin œstj sin coíy) 

v) (2 sin2 tj ) (2 sin2 <0^ )’ 
(D5) 

where the — r terms have been suppressed for simplicity, but are assumed present with every tj. It does not appear 
possible to rewrite this expression in the form (D2), so a window function in the sense of the expression in equation 
(D4) cannot be defined. In particular, the following seemingly straightforward generalization of the classical window 
function (cf. eqs. [3], [D4], and [10]), 

P(<o) = 1 /2* 

2 cos <0 ( tj T ) 2 sin<o(/y —t) 

2 cos2<o(^ —t) 
j 

2 sin2 <o(/y — t) 
j 

(D6) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
82

A
pJ

. 
. .

26
3 

. .
83

5S
 

852 SCAROLE Vol. 263 

is not a correct window function. In lieu of having a formula for the window, one can calculate the periodogram for 
synthetic data consisting of a sine wave of high frequency, so that the negative frequency and overlap contributions 
would be expected to be small. Figure 4 shows a pseudowindow determined in this way. Similar computations verify 
that the shape of this pseudowindow does not depend much on the frequency of the sine wave (as long as it is large). 
There is a mild phase sensitivity, in that the relative amphtudes of the sidelobes change somewhat as the phase of the 
sine wave is altered. As described in the text, the pseudowindows have the general character of the classic window: 
main lobe, nulls near u — Itt/T, sidelobes, pseudo-ahas peaks, etc. 

APPENDIX E 

DETECTION EFFICIENCY CONTOURS 
Equation (21) is an explicit formula for the missed signal probabihty, which is 1 minus the detection efficiency. Since 

it involves Bessel function integrals, it is not a convenient expression. A simple but accurate formula can be derived for 
the contours of equal p* in the N-P plane. Along such contours 

dp* = {'àp*/ÜN)dN + ('àp*/,àP)dP, (El) 

so that the contour slope is 

dP/dN=-{‘àp*/'àN)/('àp*/'àP), (E2) 

and from the form in equation (22) it is readily shown that 

dP/dN = P(dz/dN)A(z0P), (E3) 

where 

Mx)=4'i(x)/'p2(x)> m 

4'i(x)= 2 xm/(m\)2, (E5) 
m = 0 

oo 
4'2(x)= 2 xm+'/[(m + \)(m\)2] (4'i = 'I'2)> (E6) 

m = 0 

and from equation (18) 

_ jy-2(l-j?o)l/;vln(l-j,0) 

The following asymptotic forms are easily derived: 

A(x) 
x 1 ^ 

x-'/2 

as x 0 

as x oo. 

(E7) 

(E8 ) 

(E9) 

The first comes from the series expansions for and \p2, while the second is based on numerical evaluations. The 
approximation 

A(x)«(l + x)“1|x1/2 + |- + x_lj (E10) 

is good over the entire range of x, but somewhat awkward to deal with. But z0 is ~ 8 (cf. eq. [20]) and P must be 
greater than 1 in order for the detection efficiency to be reasonably high, so that typical values of x = z0P will be large 
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compared to 1. Accordingly we use (E9), together with the close approximation dz0/dN» N~\ to obtain: 

853 

dP/dN=(P/N)[Pln(N/p0)] ,/2. (Ell) 

This equation has the exact integral 

i> = {[ln(Ar/p0)]
1/2-c}2, (El 2) 

where C is a constant of integration. Exact evaluation of equation (22) shows that the error in P calculated from this 
approximation is less than 0.1 over the entire range of P and N covered in Figure 1, and the typical relative error is on 
the order of 1%. The error is smaller for the larger values of PzQ, as expected. In these computations it was verified that 
dropping of the factor — PoŸ~x/N in going from equation (21) to (22) results in an entirely negligible error. 
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