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ABSTRACT 
The linearized equations governing nonadiabatic, nonradial pulsations of a slowly but uniformly 

rotating star have been derived. A large number of numerical examples are presented for near main 
sequence evolution of a 12 M0 star. All modes with / = 2 and 3 and with periods between two and 
15 hours were examined for this sequence. Other masses and values of / were studied, but to a lesser 
extent. For all modes and sequences studied it was found that slow, uniform rotation increases the 
pulsation frequency (as observed from an inertial frame) of prograde modes (m < 0), and conversely 
for retrograde modes. The effect of rotation on stability is not as clear-cut. On the main sequence 
it enhances the stability of retrograde modes and makes prograde modes less stable. As evolution 
progresses, this distinction becomes less strong. Possible implications for ß Cephei and line profile 
variables are discussed. 
Subject headings: line profiles — stars: ß Cephei — stars: pulsation — stars: rotation 

I. INTRODUCTION 

In an earlier paper, Hansen, Cox, and Carroll (1978, 
hereafter HCC) used a quasi-adiabatic analysis in an 
investigation of the effect of slow, uniform rotation on 
the pulsational stability of stellar models. They found, 
for iron white dwarfs and upper zero-age main-sequence 
stars, and for those pulsation modes considered, that 
rotation enhances the stability of the retrograde (m > 0) 
modes and diminishes the stability of the prograde 
(m < 0) modes. Here m is the azimuthal spherical 
harmonic index. The present work extends that of HCC 
to a fully nonadiabatic treatment. 

For slow rotation, terms involving powers of Q (the 
angular rotation frequency) higher than the first are 
neglected. Rotation then acts only through the Coriolis 
force; the centrifugal force is ignored completely. This 
means that the unperturbed (nonpulsating) model is that 
of a nonrotating star. In this paper, it is taken to be a 
spherically symmetric, static model of a star in hydro- 
static and thermal equilibrium, with no meridional 
currents or magnetic fields present. The assumption of 
uniform (solid body) rotation is almost certainly un- 
realistic. Still, it is hoped that the results obtained using 
this assumption will be at least qualitatively correct. For 
an adiabatic treatment of this problem using a differential 
rotation law, see Hansen, Cox, and van Horn (1977). 

In this paper we shall work exclusively in the intertial 
frame. For a uniformly rotating star (as considered here) 
the corotating frame is computationally simplier but our 
aim is to present the analysis in such a fashion that the 

extension to nonuniformly rotating stars, though not 
simple, may be made apparent. 

In § II the basic equations are developed; they are 
then “second linearized” in § III in order to isolate effects 
proportional to the rotation frequency Q. Integral 
expressions for the stability coefficient are described in 
§ IV. Section V discusses the normalization procedure 
adopted for the second linearized equations, and § VI 
contains the results of the numerical solution of these 
equations. An Appendix is included which gives the full 
set of second linearized equations and their boundary 
conditions along with expressions for the surface velocity 
field. This latter analysis may prove useful for the 
interpretation of observational data. 

II. BASIC EQUATIONS 

The equations that determine the nonradial, non- 
adiabatic motions of a star are 

dp 
dt 

d2r 
dt 

+ V • pu = 0 , 

P ~jii = -VP-pViA 

^ ds 1 _ ^ 
r- = £--v-F, 

dt p 

\2ij/ = 4nGp , 

a) 

(2) 

(3) 

(4) 

where all symbols have their usual meaning. The energy 
flux F is the sum of the radiative and convective 
contributions 

1 Presently at the University of Rochester. 
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F= Fmi + Fc. 
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In the Eddington approximation 

Frad = 
An 
3k p 

\J (5) 

which is valid in both the optically thick and thin 
limits (Unno and Spiegel 1966). Unno (1965) expresses 
J as 

r aC 1 ^ ds J = — T4 H T — 
4n Auk dt (6) 

The time derivative d/dt in the above equations is the 
Stokes or comoving derivative, 

A 
dt 

= _+L.V = (7) 

which defines the operator M. For a uniformly rotating 
star, v — Qr sin 0$ (spherical coordinates), so that 

d__<^ 
dt dt+ “ # ' 

As usual, the Lagrangian variation ôf and Eulerian 
variation /' of scalar quantities / are written as 

ôf(r> t) = ôf(r)Yr(0, W', 
r(r,t) = fWYT&W*, 

where a is the complex pulsation frequency and the 
Y™ are the spherical harmonic functions. Furthermore, 
the Lagrangian displacement ôr of a mass element 
from its equilibrium position is written as 

ôr(r, t) = Ç(r)ei<Tt. 

The components of ôr, to first order in Q, come from 
the linearized version of the momentum equation (2): 

-(<73 + 6m<72Q)fr = (<r + 4m£l)y(r)YT + 2mQß(r)Y? , 

(8) 

- (<t3 + 6ma2ii)Çe = (<r + AmQ)ß(r) ^ Tf 

+ (9) 

(<r3 + 6mff2D)^ = (cr + 4m£l) ß(r)YF 

+ 2iQ 

In the above, 

sin 0y(r)I7 + cos 0j9(r)— Y? 
do 

y(r) =-jr ^(r) + y Tôsir) 

- Ax(r) - ^'(r) - g^r(r)], 

and 

(10) 

where 

P'(r) 
X(r) = + lA'(r) 

and A is the convective stability factor 

A_
läP 1 dP 
p dr TXP dr ' 

For zero rotation, these equations reduce to the usual 
form 

£r = a0{r)Y? , (11) 

te = b0(r)^Yr, (12) 

im 
sin 6 

b0(r)YT (13) 

(see, for example, § 82 of Ledoux and Walraven 1958). 
This defines a class of modes called the spheroidal modes. 
Another possible class, the toroidal modes, is defined 
by the solution set 

+ 
im T(r) 

sin 9 r 

^ = 0, 

Y?, ^ = 
r Ô6 

YT . 

This separation of mode types is thoroughly discussed 
by Aizenman and Smeyers (1977), who also show that 
toroidal modes with a ^0 exist only in a rotating star. 
The spheroidal and toroidal modes together form a 
complete set. The complicated angular dependencies of 
Çe and ^ in equations (9) and (10) show that the 
eigenfunctions of a rotating, pulsating star must be an 
admixture of spheroidal and toroidal modes. As a result, 
the velocity of a mass element in such a star can not be 
simply expressed as the sum of a zero-rotation velocity 
plus the rotational velocity Qr sin 9$ (see Appendix). 

Following Saio and Cox (1980), the linearized versions 
of equations (l)-(6) may be manipulated to produce six 
complex first-order differential equations and seven 
associated boundary conditions (three at the stellar 
center, three at the surface, plus an arbitrary normaliza- 
tion). These are written in terms of the dimensionless 
variables 

and the dimensionless frequencies 

ß(r)=~-rX(r), CD (14) 
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For the purpose of this paper, it is sufficient to give 
only the equations for yx and y2 : 

dyi 
dr 

V „ 2mL 
^-3 +  
r ! 03 yi 

/(Z+l)^ 2m£\ V 1 2ml. 
Cico2 \ co / Fi +CiC02 co 

^3 + 
Xt 
Xp 

y s > 

r dy2 

dr yi 

(15) 

+ l — U — rA — 
2mL 

co 
Xt 

y2 + rAy3 A —y5 Xp 

This means that the normalization of the yt is not 
arbitrary. A discussion of the normalization procedure 
will be deferred to § V. 

IV. INTEGRAL EXPRESSIONS 

An integral expression for the stability coefficient 
provides an important check on the consistency of the 
numerical solution of the differential equations. The 
eigenvalue k and the value of k derived from an integral 
procedure should agree within the limits of computa- 
tional accuracy. Our starting point is equation (37) of 
Aizenman and Cox (1975), written as 

— a3J A g2Ri A (tR-R2 = iN , (21) 

where 

(16) 

The notation used here is identical to that of Saio and 
Cox (1980). 

III. SECOND LINEARIZATION 

J = J pit*- td3r , Ki = 3; J pt* • M{lt)d3r , 

Ä = j> • [P(É) + V(lt)]d3r , 

In order that effects proportional to Q may be isolated, 
the eigenfunctions ^ (i = 1, 6) and dimensionless 
eigenfrequency co are written as the sum of a zero-rotation 
part (zero subscript) plus a rotational correction (barred), 
assumed small for the case of slow rotation 

yi = yio + ÿi, co = œ0Aœ . (17) 

(This follows the treatment of HCC.) Furthermore, œ 
is expressed as 

ml(l-C). (18) 

It is the complex number C which will be solved for 
as an eigenvalue. If the pulsation frequency is written 
as the sum of real (r) and an imaginary (i) parts, 

(T — <Jr A ÍK , 

where k is the stability coefficient, then 

R2 = Í j Pt* ■ M^[P(t) + vm^r , 

In the above, M is as defined by equation (7), P and V 
are as given in Aizenman and Cox, and ¥ is the non- 
adiabatic contribution 

F P 
'¥ = SP — Sp . 

P 

(The “sp” subscript means “space part.”) The integrals 
J, Ru and R are all real; this last by the Hermiticity of 
the operators P and V (Lynden-Bell and Ostriker 1967). 
Aizenman and Cox show that, for slow, uniform rotation, 
the nonadiabatic contribution N is given by 

<7r= — mQ(l - Cr), (19) 

K = m£lCi. (20) 

If k is negative, then rotation is a destabilizing influence. 
Relations (17) and (18) are introduced into the six 

differential equations and their associated boundary 
conditions, and terms proportional to powers of Q higher 
than the first are discarded. This yields another, and 
rather complicated, set of six differential equations and 
boundary conditions, which are given in the Appendix. 
If £ = 0, these equations and boundary conditions are 
identical to the zero-rotation equations of Saio and Cox 
(1980). Once coq and the yi0 are known (by solving the 
zero-rotation equations), they are used to determine the 
rotational corrections œ (or equivalently, C) and the y*. 
Note that the eigenfunctions for the second linearized 
equations scale as 2mS/co0. That is, the quantities actually 
solved for are ^/(ImL/coo). 

Unlike the zero-rotation equations of Saio and Cox, 
these second linearized equations are not homogeneous. 

N = C — H , 

where C is the usual work integral 

d3r , 

and 

f/ = |[(^-V)Po]-(VT)^r. 

For the case of zero rotation, equation (21) reduces to 
— F = iCo • (22) 

Writing do and C0 as the sums of real and imaginary 
parts, 

&0 — & Or + i*0 ? C0 — Cor + ÍCo¿ , 

leads to an expression for k0: 

k0 =   Cpr  
f(Tor + T^í/Coi - jRo 

(23) 
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If nonadiabatic effects are small, this reduces to the 
usual result 

k0 = ~ Cpr 
2(Tor J0 

(24) 

However, equation (23) is an identity, while equation 
(24) is only an approximation (albeit a very good one 
in most cases). 

An expression for the rotational correction to the 
complex pulsation frequency may be found by writing 
each quantity (except R1 and R2 which are already 
proportional to Í2) in equation (21) as the sum of a 
zero-rotation part (zero subscript) plus a rotational 
correction (barred). To first order in D, 

_ —CqJ + öo^i + (J0R — R2 — iÑ 

3a2
0Jo-Ro ' ( ) 

An interesting aspect of this equation is that if any 
multiple of the zero-rotation integrals is added to the 
barred integrals (that is, if J -► J + nJ0, R^> R + nR0, 
and Ñ N + nN0 for any number n), the value of ö 
remains unchanged. This is because the zero-rotation 
integrals added to the numerator will exactly cancel by 
virtue of equation (22). 

V. NORMALIZATION OF THE SECOND LINEARIZED 
EQUATIONS 

As mentioned above, the second linearized equations 
are not homogeneous, and so require a nonarbitrary 
normalization. The coefficients of the are the same as 
those of the yi0 in the zero-rotation equations of Saio 
and Cox (1980). Thus, if ÿi is a solution to the second 
linearized equations, so is -1- nyi0 for any complex 
number n. Changing the value of n is equivalent to 
changing the normalization of the . 

The procedure followed here consists of solving the 
second linearized equations with some arbitrary 
normalization (ÿf = 0 at the surface was used). This yields 
the eigenvalue C, which is independent of the normaliza- 
tion. These solutions yt are related to the physically 
correct solutions ^ (whatever they may be) by 

ÿi = ëi + nyi0 

The task is to determine a “correct” value of n. For this 
purpose an orthogonality condition involving the eigen- 
function tf (corresponding to the ^) was used: 

Thus, 
j p4$ • tld3r = 0 . (26) 

n ÍPÉo-Éo^’ 

where J is the eigenfunction corresponding to any 
arbitrary normalization. The orthogonality condition 
(26) is the same as that given in Unno et al (1979, p. 155). 
Still, it has not been rigorously shown to be the physically 
relevant one. Equation (26) is equivalent to the statement 
that the zero-rotation eigenfunction £0 contains no 

rotational information. This is consistent with the 
invariance of the integral expression (25) for <r to the 
addition of multiples of £0 to £, as mentioned at the 
end of § IV. Physically, the orthogonality condition 
means that, at least in the adiabatic approximation, the 
rotational correction to the total energy 

Ë = ?GorJ + OQrÔrJo ~ 

(cf. Aizenman and Cox 1975, eq. [61]) is determined 
solely by the zero-rotation properties of the star. For 
adiabatic oscillations, J is zero by the orthogonality 
condition, and ä is determined by the zero-rotation eigen- 
functions (see, for example, § 82 of Ledoux and 
Walraven). Again, it should be stressed that the complex 
eigenvalue C, which determines the rotational correction 
to the stability coefficient, is independent of the 
normalization of the second linearized equations. The 
yh as determined above, in principle give information 
on what effect rotation has on the pulsational structure 
of the star. 

VI. NUMERICAL CALCULATIONS 

The set of second linearized equations were solved for 
four stellar models representing an evolutionary 
sequence followed by a star of 12 M0. The models, 
computed by H. Saio and used with his kind permission, 
are described in Saio and Cox (1980). Figure 1 shows 

LOG Te 

Fig. 1.—Locations on the H-R diagram of the stellar models 
examined in this paper. The evolutionary track of the 12 M0 model 
is indicated by the dashed line, and the positions of known Beta 
Cepheid variables are marked with a cross. (Adapted from Saio et al. 
1980.) 
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Fig. 2.—Propagation diagram for 12 MQ Stage 0 (ZAMS) model. The squares of the Brunt-Väisälä frequency N and the critical acoustic 
frequency SI are plotted as functions of the fractional radius r/R. 

Fig. 4.—Propagation diagram for 12 M0 Stage 2 model (same quantities as Fig. 2). 

TABLE 1 
Unperturbed Models of 12 M0 Star (X = 0.7, Z = 0.03)2 

Age log Te 
Stage (107 yr) log (L/L0) (K) log (R/RQ) Xcenler 

0.  0. 4.006 4.435 0.655 0.700 
1   1.231 4.191 4.402 0.815 0.303 
2    1.613 4.274 4.363 0.934 0.055 
3   1.707 4.325 4.400 0.885 0.000 

Taken from Saio and Cox 1980. 

the path on the H-R diagram followed by these models. 
This path winds back and forth across the ß Cephei 
instability strip. The locations of the four models are 
indicated on Figure 1; the crosses mark the locations 
of known ß Cephei variables. Stage 0 is a zero-age 
main-sequence star having an initial composition of 
X = 0J and Z = 0.03; Stage 1 is in the late core- 
hydrogen-burning phase; Stage 2 is at the location of the 
core hydrogen exhaustion, at the start of the secondary 
contraction phase; Stage 3 is at the end of the secondary 
contraction phase, at the onset of hydrogen shell burning. 

FRACTIONAL RADIUS 
Fig. 3.—Propagation diagram for 12 M0 Stage 1 model (same 

quantities as Fig. 2). 

CVJ 
o 
LU 
CO 
\ 
Q 
< 
cr 

CO 
o 
z 
< 

<\] 

Fig. 5.—Propagation diagram for 12 M0 Stage 3 model (same 
quantities as Fig. 2). 
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00 KO CM 

^0 ft 
CM 00 

Fig. 6.—Evolution diagram for 12 MG models, l = 2. The square of the dimensionless adiabatic pulsation frequency is plotted as a function 
of evolutionary age. 

Table 1 gives a brief summary of the properties of these 
four models. 

A propagation diagram is plotted for each model 
(Figs. 2-5). These diagrams display the values of N2, the 
square of the Brunt-Väisälä frequency, 

N2 = -Ag , 

and SI2 the square of the critical acoustic frequency, 

5/2_/(/+i)r1F^ 
r2p 

throughout the star. For a nonrotating star, a local 

analysis shows that a wave of frequency <7 can propagate 
only in those regions where 

a2 > N2 , a2 > SI2 (p modes), 

or 

a2 < N2 , a2 < SI2 (g modes). 

Otherwise, the wave is evanescent. The effect of rotation 
on this scheme will be discussed below. 

The numerical solutions to the set of second linearized 
differential equations were calculated using a Newton- 
Raphson relaxation program. First the zero-rotation 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 
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equations were solved, then these solutions were used 
to find the rotational corrections. The integral 
expressions described in § IV were evaluated as a check 
on the eigenfunctions. Good agreement between the 
eigenvalues and integrated values was usually obtained. 

Solutions were found for all modes having / = 2 or 3 
and periods between 2 and 15 hours. The results for 
125 modes are summarized in an extensive appendix 
in Carroll (1981). Figures 6 and 7 show coq, the square 
the dimensionless adiabatic pulsation frequency (without 
rotation), plotted as a function of the age of the stellar 

model. These “evolution diagrams” display the avoided 
crossings (circled) discussed by Osaki (1975) and 
Aizenman, Smeyers, and Weigert (1977), among others. 
Although the shapes of the lower parts of the curves is 
only a qualitative estimate, the confluence of the 1 = 3 g3 

and g4 modes between Stages 2 and 3 may be an avoided 
crossing. These diagrams also distinguish those modes 
for which Ch the imaginary part of the eigenvalue C, 
is negative. The number of modes with Q > 0 increases 
dramatically as the star evolves. 

The “pulsation constant” Q = (Period)(p//90)1/2 

AGE (I07 yr) 

Fig. 7.—Evolution diagram for 12 M0 models, 1 = 3 (same quantities as Fig. 6) 
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Fig. 8.—The real part of the eigenvalue C plotted as a function of the pulsation period for each 12 M0, 1 = 2 mode. The / mode for each 
model is connected to the p modes by a solid line. Another line connects the g modes for each model. 

(where p and pQ are the mean densities of the star 
and Sun, respectively) is proportional to l/co0 (see eq. 
[14]). From Figures 6 and 7, it is clear that Q is a constant 
only for the/and p modes. For the g modes, Q decreases 
with time (by as much as a factor of 5) in response to 
the increasing gradient of the mean molecular weight in 
the core of the star. 

Figures 8 and 9 show Cr, the real part of the eigenvalue 
C, plotted as a function of the pulsation period for each 
of the 12 M0 models. As the period increases, the values 
of Cr begin to converge to their asymptotic value of 
!/[/(/ + 1)] (see § 19.1c of Cox 1980). Although Cr is 
positive for all modes shown in these two figures, two 
negative values of Cr were found for the 1 = 4 g1 and g2 
modes. The sign and magnitude of Cr may be understood 
by examining the effect of the Coriolis force on the 

propagation diagrams, Figures 2-5. Following § 14 of 
Unno et al (1979), we define 

2mL \ . 
Ç = r3yl exp 

r¡ = gry2 exp 

-Olí* 

Oí 

CD 

2mL\ 

w 

CD ■ 
\dr' 

For adiabatic motion in the Cowling approximation 
(ij/' = 0), equations (15) and (16) may be written as 

dC 
Jr = tl — 1 

r2p 

rvp 

x exp 
r 1 ( V rA 4m£\ 

- -\7^ + rA+ )dr 

o r VFi ft) / 
, (27) 
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PERIOD (HR) 
Fig. 9.—The real part of the eigenvalue C plotted as a function of the pulsation period for each 12 M©, / = 3 mode (same quantities as 

Fig. 6). 

where Sl^ is the square of the effective critical acoustic 
frequency 

012 iO + i)rVP 
^ieff ~ /(/+!) 

and Neff is the square of the effective Brunt-Väisälä 
frequency 

For a local analysis, everything except Ç and rj is set 
equal to its local value, and Ç and rj are assumed to 
vary as exp [ikr r], where kr is the local radial wave- 
number. Then equations (27) and (28) lead to 

kr = -2 r A — 
_F 
r\ 

-1 -1 

A wave can propagate only if /c^ > 0. Recalling that A 
is negative (except in a convection zone), it is seen that 
/c, > 0, if 

g2 > Neff, (T2 > Sl2f{ (p modes), 
or if 

a2 < Neff, o’2 < S/gff (g modes). 

Otherwise, the wave is evanescent. 
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If m > 0, then both Sl^n and N^{{ are reduced below 
their zero-rotation values, while the opposite is true if 
m < 0. Thus both curves in Figures 2-5 are either lowered 
(if m > 0) or raised (if m < 0) by the effect of the Coriolis 
force. The result is that the pulsation frequencies are 
decreased below (increased above) their zero-rotation 
values for m > 0 (m < 0). From equations (19), this means 
that Cr < 1 (as is certainly true for a nonrotating star). 
This is indeed true for all modes examined. Repeating 
this argument in a corotating frame leads to the conclu- 
sion that, almost always, Cr > 0. Again, this is confirmed 
by the numerical calculations. 

Figures 10 and 11 show the ratio \k/k0\ in units of 
2mQ,/a0 for 1 = 2,3 plotted as a function of the pulsation 
period for each of the 12 M0 models. Arrows indicate 
those models for which Ci < 0. No clear trend is evident : 
although it is tempting to believe that the sign of is 
randomly determined for the Stage 2 and 3 models, this 

cannot be true for the younger Stage 0 and 1 models, 
which predominantly have > 0. These results are in 
agreement with the quasi-adiabatic calculations of HCC. 
Unfortunately, the attempts at understanding the 
physical basis for the sign of have so far been 
unsuccessful. The effect of the Coriolis force, which is the 
only one that slow rotation introduces, is not to do any 
direct work on the star since it is perpendicular to the 
velocity vector. As conjectured in HCC, the effect must 
be indirect such as a basic modification of the eigen- 
functions. 

The sign of Cj- may possibly be relevant to the 
evolutionary status of the ß Cephei variables. As 
mentioned above, as a star of the appropriate mass 
(roughly between 10 and 20 M0) evolves away from the 
main sequence, it traces out an S shaped track (shown 
in Fig. 1) as it travels back and forth through an 
instability strip. All but 3 % of a star’s lifetime in the 

Fig. 10.—The ratio |k:/k;o| in units of 2mQ/a0 as a function of the pulsation period for each 12 M0, / = 2 mode. The/mode for each model 
is indicated. 
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Fig. 11.—The ratio |k;/k:o| in units of 2mQ/a0 as a function of the pulsation period for each 12 M0, / = 3 mode. The/mode for each model is 
indicated. 

strip occurs during the core-hydrogen-burning phase of 
its evolution. Because most of the stars in the strip appear 
to be variable (Sterken and Jerzykiewicz 1980), it is likely 
that the ß Cephei stars are in the longer lasting core- 
hydrogen-burning phase. (However, Lesh and Aizenman 
1978 point out the difficulty in making such a statistical 
argument.) The periodic changes in the line profiles seen 
in ß Cephei stars allow prograde (m < 0) and retrograde 
(m > 0) pulsation modes to be clearly distinguished 
(Smith 1980a). In almost all cases where a probable 
mode identification has been made, m has been negative, 
with the m = —l mode usually present. (See, for example, 
Smith 19806 and Saio 1981). 

If the observational preference for negative m values 
has been correctly identified, and if rotationally split 
modes having < 0 are truly preferentially excited, then 
equation (20) shows that Q > 0 for almost all of the 
modes seen in the ß Cephei stars. Furthermore, if the 

stellar models used (which are not pulsationally unstable; 
none exist which are) allow an accurate determination 
of the sign of Q for the ß Cephei stars, then we can 
infer that these stars are probably nearer to Stage 1 in 
their evolution than to Stages 2 and 3. Otherwise, both 
positive and negative values of m should be observed. 
However, because this comes after several caveats, the 
most that can be said is that this conclusion is consistent 
with the statement that the ß Cephei variables are in the 
core-hydrogen-burning phase of their evolution. 

The authors wish to thank Drs. J. P. Cox, H. Saio, 
M. L. Aizenman, and E. Robinson for numerous helpful 
discussions. We also thank an almost anonymous referee 
for many useful comments. This work has been supported 
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APPENDIX 

The full set of second linearized equations and boundary conditions referred to in § III are given below: 

Æ = 
dr FT3 

2mL 
+ - 

(D0 

ÿi + 

Tío + 

CiCOq Lj 

1 

ÿ2+j^3+-4, 
4 r Ÿ5 n 4 + ico0 C4 

CíCüo 
2 [1 - Cl(l + l)]y20 - ^ Y< 

Xp (4 + icoo C4)2 50 

Xt 4 
= [ClCOo + + [!-[/- r^2 + +3-. . r is (ïr 4 T* ic0q ^4 

2mZ 

^0 I 
^ 2 ^ Xr 2iCco0 C4 CjCOoCyio — ^20 > ' ~ ^ i* 

Zp (4 + i(o0 C4) 
2 J50 

'•^=(1-i/)i'3+ÿ4, 

dÿ4 „r- - r—= + —y2 + 

1 df, 

h -Uy4-U It 

r—-=[B1+ u(U - C^coq) + 4(1 - a)]^ - 
VV dr 

B,+ 

Xp 4 + i(o0 C4 

/(/ + 1) 

- , 2mL TJ Xt 2iCm0 C4 v 
-*5 n U ^ 

®o Zp (4 + ico0 Q) 
2 '‘50 

+ 5^3 + a>i4 + 4 

2mL 

(Xt/Xp)kp - Kt 
4 + í£ü0 C4 

+ 1 

CiCOq 

?5-Í6 

(1-a) >'2 

(O0 

.dy6 

[a(l - CjCugC)- l]y10 + p. (Xr/XpK -kt v y20 ~ 2lC(O0 C4 — ^ ; 7, “^ L 

r = — [B2 + (1 — + i)]^! + B2 — od(l + 1) + >7 
Cjcog 

(4 + ¿«oC4)2 50 

y2 - [B2 - od(l + l)]ÿ3 

/B3 - too B4 \ _ 
\ 4 + !co0 C4 / 

1(1+l) 
VV 

IrriL 
(D0 

is - We + Wio + -7.—2 (! - C,(/ + i))^: 
CjCOq 

- 2^0,0 c4^
4 + Bic! 7. 

(4 + ico0C4) Y -*50 

In these equations, 

1 + 
i(co 4- mZ)C4 

y5 

All other quantities are as defined in Saio and Cox (1980). 
The boundary conditions at the stellar center are 

Ci®oii - lÿi + 
2mL 

and 

Those at the surface are 

co0 

ih-h = o, 

f, cc r' . 

— yjyio — 0 , 

[V — CíCOq — 4]jy + 

Uy, + (i + 1)^3 + y4 = 0, 

l{l+i)-v\y2 + [V-(l+l)]y3 

1 

Ci(o0 

H 1[1 — CiCOo C]yio + 
co0 \ Cicog 

(1 — Cl(l + 1)) + 1 3^201 — ^ ? 

(2 - 4Pad V)ÿ1 + 4Fad V(y2 - ÿ3) + 4y5 - ÿ6 = 0 . 
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The expressions for the components of the Lagrangian displacement Ç, equations (8)-(10), indicate that the 
velocity of a mass element in a rotatmg pulsating star is not simply the sum of its zero-rotation pulsation velocity 
plus the velocity of rotation Or sin 6$. Nevertheless, it is this form of the surface velocity field that it most often used 
in attempts to theoretically fit the observed line profiles of such stars (see, for example, Osaki 1971; Smith and 
McCall 1978). 

A more exact expression for the components of the velocity of a mass element, seen from an intertial frame and 
accurate to first order in fi, is 

—!— vr = - |a01 (k0 + m£lCi)P? cos (<rr t + m<j> + 4>a0) - |a01 (<70r + mD.Cr)P? sin (<rr t + m<f> + 4>a0) 

- \a\K0PT cos (<Trt + m(j> + $a) - \â\a0rPf sin {ort + m(f> + <pa) + |b0\mQ.PT sin (crrt + m<p + 4>b0), 

= - |h01(«o - PJ" j cos (^r t + + ^¡.o) 

— l^ol ((T0r - mQC, 
_ cos 0 

+ mQ r P? 
sin 6 

sin (<7r t + m(/> + (f)bo) 

- Ib^o^Prjcos + + [fe|<7or|^Prjsin (í7ri + m(/> + 0b), 

W~ v<t> ~ sin 9 — | fl01 ^ sin 6P™ cos (ar i + + </>a0) - | bo | ™ lm ™ Im 

m 
(a0r — mQCr) P? + & cos 6 

m 
x cos (<7r t + rruj) + (f>b0) + \ b0 \ (k0 - m£2C¡) P? sin (<rr t + mcj) + <t>b0) 

- |h|(Tor^—z^Tcos (crri + m4> + 4>b) + \b\K0-^—PT sin (art + nuj) + (¡>b). 
sm U sin u 

In deriving the above expressions, the spherical harmonics were written as 

YT = NlmPT{cos0)eim<|,, 

Fig. 12—The zero-rotation radial velocity v0r and the rotational correction vr plotted as functions of the fractional pulsation period for the 
12 M0 Stage 2, l = 3, g3 mode. v0r is normalized to unity, and vr must be multiplied by the appropriate value of 2mQ/\<j0\. 
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where 
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Nh 
_ 121+1 (l — m)\ \1/2 

\ 47T (/ + m) ! / 4n (l + m) ! 

and PJ" is the associated Legendre function. The quantities and b0 are those defined by equations (11)-(13), 

i g ao — ryioi b0—-2y2o> ao 

and 

a — r g - a = ry1 , b = ^y2 . 
Go 

These complex quantities were written in exponential form, / = |/|exp [i(j)f]. Surface values of the magnitudes and 
arguments of a0, b0, a9 and b for each mode are compiled in the Appendix of Carroll (1981). The coefficient (7r of 
the time t is the sum of the zero-rotation and rotational correction contributions: <rr = cr0r + är. Figure 12 shows a 
typical plot of the zero-rotation radical velocity v0r, plus the rotational correction vr. In the diagram, v0r is normalized 
to unity, and vr must be multiplied by 2mQ/\(T0 \ before it is added to v0r. 
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