THE ASTROPHYSICAL JOURNAL, **259**:L51-L56, 1982 August 15 © 1982. The American Astronomical Society. All rights reserved. Printed in U.S.A.

A CATALOG OF GAMMA-RAY BURSTS WITH EARTH CROSSING TIMES

R. KLEBESADEL, W. D. EVANS, J. G. LAROS, AND I. B. STRONG Los Alamos National Laboratories

> T. L. CLINE, U. DESAI, AND B. J. TEEGARDEN Goddard Space Flight Center, Greenbelt, Maryland

C. BARAT, K. HURLEY, M. NIEL, AND G. VEDRENNE Centre d'Etude Spatiale des Rayonnements, Toulouse, France

I. V. ESTULIN, A. V. KUZNETSOV, AND V. M. ZENCHENKO Institute for Space Research, Moscow, USSR Received 1982 January 29; accepted 1982 May 6

ABSTRACT

A catalog of 111 confirmed gamma-ray bursts detected between 1967 July and 1979 June is presented. Both localization information and Earth crossing times for the gamma-ray wave fronts are given. Data which have appeared in some previous catalogs have been revised; many previously unpublished events detected by an international network of dedicated deep space and near-Earth experiments since 1976 are also presented.

Subject heading: gamma rays: bursts

I. INTRODUCTION

Although many confirmed gamma-ray bursts have been observed since 1967, no complete catalog exists at present. Partial or preliminary catalogs or lists have appeared (Strong, Klebesadel, and Olson 1974; Klebesadel and Strong 1976; Hurley 1980; Mazets et al. 1981), but none of these are complete. Since 1976, an increasing number of interplanetary spacecraft have been equipped with dedicated gamma-ray burst detectors; the limiting positional accuracy of the network which was in operation from 1978 to 1980 has been demonstrated to be on the order of several tens of arc seconds (Cline et al. 1982). Data on the time histories, spectra, and precise error boxes of the events detected by this network are believed to warrant separate publication in many cases. The purpose of this catalog (see Table 1) is to provide approximate localization data and Earth crossing times for the gamma-ray wave fronts, which may aid co-workers using radio, atmospheric Cerenkov, spark chamber, or other techniques which do not always require the accuracy needed for complete optical searches. For convenience, some data which have appeared in previous catalogs have been included in this catalog, although, in most cases, the data have been reexamined to include more accurate localizations or Earth crossing times, or both.

II. EVENT CRITERIA AND NOMENCLATURE

An event, in order to be considered a confirmed cosmic gamma-ray burst, must have been detected by at least two instruments on separate spacecraft. Data from the following spacecraft have been searched: Vela 5A, 5B, 6A, and 6B; Orbiting Geophysical Observatory 3 and 5; International Monitoring Platform 6 and 7; Orbiting Solar Observatory 6, 7, and 8: Solrad 11A and 11B; Helios 2; Prognoz 6 and 7; SIGNE 3; International Sun-Earth Explorer 3; Pioneer Venus Orbiter; and Venera 11 and 12 (Franco-Soviet SIGNE experiments). In addition, confirmation of some events has been found in the catalog of Mazets et al. (1981). Data from the period 1967 July to 1979 June have been included; for the coverage during this period, see Hurley (1980).

Solar events have been excluded by one or more of the following methods: (1) by arrival time differences at various satellites, (2) by examination of the event time history, (3) by examination of the event energy spectrum, and (4) by lack of solar activity at the time of the observation. This last method is the least reliable and is used only in conjunction with method (2) or (3). Where an event can be localized to a single error box, the nomenclature GBS, followed by the right ascension in hours and minutes and the declination in degrees (e.g., GBS 1144 + 78) is used. For events which cannot be localized to a single error box, the nomenclature GB followed by the year, month, and day of the observation (e.g., GB 691017A) is used, with the letters A, B, and C added where needed to indicate, respectively, the first, second, and third events on this date.

III. EARTH CROSSING TIMES AND ARRIVAL DIRECTIONS

It has been assumed that the events observed consist of plane waves of gamma-rays, i.e., that the source

	Earth Crossing Time			Тіме	UNCERTAINTY^a			
No.	Year	Month	Day	Seconds	(s)	Name	References	LOCALIZATION
1	1967	Jul	2	51568	3	GB 670702	1.2	
2	1969	Jul	3	26233		GB 690703	1, 2, 3	R.A. = 191, decl. = +20,
								R = 27 (3.5)
3	1969	Jul	19	13604	•••	GB 690719	2	
4	1969	Oct	7	26790	•••	GB 691007	1, 2, 3, 4	R.A. = 236, decl. = +33,
-	10/0	_	0					R = 50(5)
5	1969	Oct	8	59442	•••	GB 691008		D = 102 + 1 = -27
0	1909	Oct	17	11927	•••	GB 09101/A	1,2	R.A. = 102, deci. = -27, R = 96(2)
7	1060	Oct	17	78113		GR 601017R	1 2 3	$R = 156 decl = \pm 1$
/	1909	001	17	70115	•••	GB 091017B	1, 2, 5	R = 83(2)
8	1970	Jan	25	18090		GB 700125	5	See Ref. 5.
9	1970	Jul	10	19066		GB 700710	1.2	
10	1970	Aug	22	60569		GB 700822	1, 2, 3	R.A. = 142, decl. = +62 or
		U						R.A. = 210, decl. = -29(3)
11	1970	Oct	1	56530		GB 701001	2,5	See Ref. 5.
12	1970	Dec	1	72059	•••	GB 701201	1, 2, 3	R.A. = 91, decl. = -29 ,
		_						R = 68(3)
13	1970	Dec	30	25337		GB 701230	1,2	R.A. = 96.6, decl. = -28.9,
1.4	1071	T .	2	(005(CD 710103		R = 44.4(3)
14	19/1	Jan	2	69036	•••	GB /10102	1, 2, 3	$R.A. = 1/0, decl. = \pm 40.01$ $R.A. = 104. decl. = \pm 5(5)$
15	1071	Feb	27	62854		CB 710227	1.2	K.A. = 194, decl. = + 5(5)
16	1971	Mar	15	40827	• • •	GB 710315	1,2	R A = 4 decl = -21.
10	17/1	Iviai	15	40027		GB /10515	1, 2, 5, 0	R = 82(See Ref. 3.)
17	1971	Mar	18	55685		GB 710318	1, 2, 3, 6	R.A. = 69, decl. = +12 or
								R.A. = 115, decl. = $-71(3)$
18	1971	Apr	21	11919		GB 710421	1,2	R.A. = 247, decl. = +34,
								R = 81(3)
19	1971	Jun	30	63059		GB 710630	1, 2, 3, 6	R.A. = 207, decl. = +30,
•	1050			(0.5.5.(R = 6/(2)
20	1972	Jan	17	63556	•••	GB /2011/	1, 2, 6	R.A. = 322 , decl. = + 50 or $P_{A} = 262$, decl. = $-16(5)$
21	1072	Mor	12	57104		CP 720212	1.2	R.A. = 202, deci. = -10(3)
21	1972	Mar	28	49587	• • •	GB 720312	1,2	B A = 283 decl = +22
22	1772	Iviai	20	47507		GB 720520	1, 2, 0	R = 11(11)
23	1972	Apr	27	39512		GB 720427	1.2.7	See Ref. 7.
24	1972	May	14	13591		GBS 1144+78	1, 2, 6, 8	R.A. = 176, decl. = +78(3)
25	1972	Nov	1	68206		GB 721101	1,2	R.A. = 11, decl. = +19 or
								R.A. = 305,
24	1072	N	12		0	CD 731113	2 (decl. = -48(3.5)
26	1972	Nov	13	57758	9	GB /21113 GB 721218	2,6	P = 0.00 deal = -33
27	1972	Dec	10	/3659	•••	GD /21210	2, 6, 9, 10	R = 70(5)
28	1973	Jan	25	54910	9	GB 730125	2.6	K = 70(5)
29	1973	Mar	2	84475		GB 730302	2, 6, 10	$R_{.}A_{.} = 59$, decl. = 59 or
							, -,	R.A. = 211, decl. = -47(8)
30	1973	Apr	16	45553	9	GB 730416	2,6	••••
31	1973	May	7	29071		GB 730507	1, 2, 10	R.A. = 342, decl. = $+56$ or
								R.A. = 254,
		-						decl. = -33(3.5)
32	1973	Jun	6	25648	• • •	GB 730606A	2, 6, 10	See Ref. 10.
33	1973	Jun	6	37859	•••	GB 730606B	2 (10	 C D - C 10
34	1973	Jun	10	07029	•••	GB 730610	2, 6, 10	See Kel. 10. $P = 68 \text{ decl} = \pm 13 \text{ or}$
55	1775	Jun	10	15562	•••	GB 750010	1,0	R = 127 decl = -64(3)
36	1973	Jul	21	32113		GB 730721	2.6	R A = 47 decl = +37 or
		~ ~**	21			50 150121	2,0	R.A. = 192, decl. = +65(10)
37	1973	Jul	25	61673		GB 730725	2,6	R.A. = 75, decl. = $+30$ or
								R.A. = 154, decl. = $-52(5)$
38	1973	Sep	18	18632		GB 730918	2	
39	1973	Sep	26	57893	9	GB 730926	2,6	
40	1973	Dec	17	29348		GB 731217	2,6	
41	1973	Dec	23	2387	•••	GB 731223	2,6	

 TABLE 1

 Gamma-Ray Bursts with Earth Crossing Times

L52

	EARTH CROSSING TIME				UNCERTAINTY ^a			
No.	Year	Month	Day	Seconds	(s)	NAME	References	LOCALIZATION
42	1974	Jan	21	65143		GB 740121	6	
43	1974	Apr	2	66031	9	GB 740402	6	
44	1974	Jul	23	47487		GB 740723	•••	
45	1974	Jul	24	11804	9	GB 740724		
46	1974	Aug	23	52544	9	GB 740823	6	
47	1974	Sen	29	67903		GB 740929	2	
47	1974	Dec	14	36874	9	GB 741214	6	
40	1075	Nov	2	/3518	,	GB 751102	Ū.	
50	1075	Dec	2	86308	•••	GB 751202	•••	•••
50	1975	Ion	2	26060	•••	$GPS 0708 \pm 12$	11	R A = 107 decl = +12
51	1970	Jan	20	20909	•••	0030700+12	11	(See Ref. 11)
52	1976	Mar	22	55528		GB 760322	12	R.A. = 184.352 , decl. = -1.967 , R = 64.75 (0.05)
53	1976	Apr	7	10464		GB 760407	12	(See Ref. 12.) R.A. = 1.561 , decl. = $+0.715$, R = 89.181 (0.016)
								(See Ref. 12.)
54	1976	Apr	19	26771		GB 760419	12	R.A. = 12.777, decl. = $+5.487$, R = 34.453(0.015)
								(See Ref. 12.)
55	1976	Jun	12	68619		GB 760612	13	
56	1976	Aug	16	58532		GB 760816	14	See Ref. 14.
57	1976	Sep	3	1453		GB 760903		
58	1976	Nov	23	68873		GB 761123		
59	1976	Dec	4	79853	9	GB 761204		
60	1976	Dec	9	3858		GBS 1748-71		R.A. = 267. decl. = -71.5(5)
61	1976	Dec	20	63512		GBS 2248-40		R A = 342 decl = -40(10)
62	1977	Ian	20	79531		GB 770107		
63	1077	Ian	31	37762		GB 770131		
64	1077	Mar	10	38394		GB 770310	12	$\mathbf{R} = 29160 \text{ decl} = +11.032$
04	19/7	Mai	10	36334		01 //0510	12	R = 61.38(0.08) (See Ref. 12.)
65	1977	Apr	10	48447		GB 770410		
66	1977	Mav	1	76559		GB 770501		
67	1977	Jul	8	46230		GB 770708	12	R.A. = 105.258
			Ū					decl. = $+22.676$, R = 14.86(0.06) (See Ref. 12.)
68	1977	Oct	20	28496	•••	GB 771020	15, 16	R.A. = 214, decl. = -14 , R = 61(2)
69	1977	Oct	29	42084		GB 771029	15	R.A. = 51, decl. = +19, R = 78(2)
70	1977	Nov	10	61965		GB 771110	15, 16	R.A. = 244, decl. = -21, R = 86(2)
71	1978	May	8	72878		GB 780508		R.A. = 32, decl. = +13, R = 49(2)
72	1978	May	19	26509		GB 780519		R.A. = 47, decl. = +18, R = 22(2)
73	1978	May	21	78826		GB 780521		Intersection of R.A. = 50.7 , decl. = $+18.6$,
74	1070	Gau	14	(0120	e	CB 780014		R = 41.4(0.1) and R.A. = 12.0, decl. = +11.9, R = 25.75(25.75)
74	1978	Sep	14	60130	5	GD 700914	•••	R.A. = 02.2 , deci. = 27.7 , R = 38.1(.3) R = 220.11 = $1 = -1.20$ 5(7.0)
75	1978	Sep	18	71374		GR \80918		R.A. = 229., aecl. = +38.5(7.0) or R.A. = 255.75, decl. = +39.6(7.2)
76	1978	Sep	21	14159		GBS 0852+34		R.A. = 133, decl. = $+34(2)$
77	1978	Oct	6	39593		GB 781006A	17	•••
78	1978	Oct	6	51899		GB 781006B	17	R.A. = 34.6, decl. = -5.2, R = 33.7(2.7)
79	1978	Oct	12	62029	35	GB 781012	17	
80	1978	Oct	13	53676	36	GB 781013		

TABLE 1-Continued

L53

KLEBESADEL ET AL.

		Earth Cro	DSSING '	Тіме	UNCERTAINTY ^a			
No.	Year	Month	Day	Seconds	(s)	Name	REFERENCE	s Localization
81	1978	Oct	19	66407		GB 781019		R.A. = 180.8, decl. = $-7.8(3.3)$ or R.A. = 228.3, decl. = $+35.7(4.2)$
82	1978	Oct	23	62619	52	GB 781023		
83	1978	Oct	25	85982		GB 781025	17	
84	1978	Oct	26	29034	56	GB 781026	17	
85	1978	Nov	4	58667		GBS 2006-22	17, 18,	R.A. = 301.5,
							19	decl. = -21.6(0.5)
86	1978	Nov	15	76044		GBS 1400+52	17	R.A. = 210, decl. = +52(1.5)
87	1978	Nov	19	34021		GBS 0117-29	20, 21	R.A. = 19.13, decl. = $-28.9(0.1)$
88	1978	Nov	21	5736		GBS 1703+01		R.A. = 255.7, decl. = +0.9(0.3)
89	1978	Nov	24	14130		GBS 1201+22	17	R.A. = 180, decl. = +22(1)
90	1978	Dec	17	73375	5	GB 781217		
91	1979	Jan	1	604	4	GB 790101	17	R.A. = 230.4, decl. = -15.9, R = 55.9(0.5)
92	1979	Jan	5	29017	•••	GB 790105	•••	R.A. = 134.0, decl. = +26.4, R = 86.0(3.0)
93	1979	Jan	7	20155		GB 790107	17	
94	1979	Jan	13	27360		GBS 1630-76	17	R.A. = 247.5, decl. = -76.5(0.5)
95	1979	Feb	11	41967	5	GB 790211	17	
96	1979	Mar	5	29252	268	GB 790305	••••	R.A. = 6.6, decl. = +12.6, R = 33.5(1)
97	1979	Mar	5	57125		GBS 0526-66	17, 22, 23, 24	R.A. = 81.49, decl. = $-66.12(0.02)$
98	1979	Mar	7	80327		GBS 1400-47	17	R.A. = 209.8, decl. = $-46.8(0.5)$
99	1979	Mar	13	62636		GB 790313		R.A. = 94, decl. = -46 or R.A = 221, decl. = +73(0.5)
100	1979	Mar	25	49488	•••	GB 790325	17	R.A. = 333.9, decl. = $-83.3(8.3)$ or R A = 272.2 decl = $+31.9(1.3)$
101	1979	Mar	29	80512		GB 790329	17	R.A. = 153.9, decl. = +11.6, R = 34.5(1.0)
102	1979	Mar	31	76172		GBS 1925+05	17	R = 291 decl = +5(2)
102	1979	Anr	2	34981	616	GB 790402	17	
104	1979	Anr	6	42.447		GBS 2311-50	17.19.	$R_{1}A_{2} = 347.80$
104		· •p1	Ũ				25	decl = -49.93(0.02)
105	1979	Apr	12	79346	653	GB 790412	17	
106	1979	Apr	18	27660		GBS 0552-07	17, 19	R.A. = 88, decl. = $-7(0.5)$
107	1979	Apr	19	57406		GB 790419	17	R.A. = 356.3, decl. = -3.2 , R = 43(1.5)
108	1979	May	2	15707	694	GB 790502	17	
109	1979	May	9	1635	392	GB 790509		R.A. = 235.8, decl. = -20.5, R = 59.9(0.1)
110	1979	Mav	14	64308	440	GB 790514	17	
111	1979	Jun	13	50755	••••	GBS 1412+79	17	R.A. = 213, decl. = +79(0.5)

^aWhere no uncertainty is given, a value of ± 1 s may be assumed.

REFERENCES.—(1) Strong, Klebesadel, and Olson 1974; (2) Klebesadel and Strong 1976; (3) Kane and Anderson 1976; (4) Palumbo, Pizzichini, and Vespignani 1974; (5) Share 1976; (6) Cline and Desai 1976; (7) Trombka et al. 1974; (8) Wheaton et al. 1973; (9) Imhof et al. 1974; (10) Ogelman et al. 1975; (11) Cline et al. 1979b; (12) Cline et al. 1979a; (13) Laros et al. 1977; (14) Sommer and Muller 1978; (15) Kuznetsov et al. 1979; (16) Estulin et al. 1979; (17) Mazets et al. 1981; (18) Zenchenko et al. 1979; (19) Estulin et al. 1981; (20) Zenchenko et al. 1980; (21) Cline et al. 1981; (22) Vedrenne et al. 1980; (23) Evans et al. 1980; (24) Cline et al. 1982; (25) Laros et al. 1981.

distances are much greater than the typical spacecraft separations. Nevertheless, due to the wide variety of instruments used to observe the events, there exists a range in the time dispersion which may be associated with the Earth crossing. The events themselves have durations ranging from several tenths of seconds to tens of seconds; different instruments, having different energy thresholds (ranging from ~ 50 to ~ 300 keV) and detection criteria, will initiate the storage of high time resolution data into their memories upon observations of features in the time history which may differ by several seconds in some cases. The Earth crossing times given here represent the times at which some feature of the event, usually the first large peak in the time history, would theoretically pass through the Earth's center. Except as noted, a maximum uncertainty of ± 1 s can be assigned to the Earth crossing times due to the localization method alone. No. 2, 1982

CATALOG OF GAMMA-RAY BURSTS

Where an event may be localized, two types of localization data may exist. A gamma-ray burst may be localized (1) to an annulus or part of an annulus defined by two concentric, small circles on the celestial sphere; this results from a two-satellite arrival time analysis and is indicated by a right ascension, a declination, a radius, and an uncertainty, all in degrees. Thus, R.A. = 191, decl. = +20, R = 27(3.5) means that the localization region is an annulus centered at a right ascension of 191°, a declination of $+20^\circ$, with radii of 23°5 and 30°5. Alternatively, an event may be localized (2) to one or two irregularly shaped error boxes. This is a result of a localization using three or more satellites, sometimes with Earth or satellite blocking used to exclude various regions of the sky; it is indicated by a right ascension, a declination, and an uncertainty, all in degrees. Thus R.A. = 142, decl. = +62 or R.A. = 210, decl. = -29(3) gives the centers of two possible localization regions and indicates that each has a radius of 3°. A localization by

four or more widely separated spacecraft is redundant; that is, the solution to the equations which define it is overdetermined. In any case, where references are given, they should be consulted for further details concerning the localization. Finally, for some events, a true localization is not possible, but a region of the sky may be excluded by Earth or satellite shadowing; this is indicated simply by a reference to published data. All coordinates in this catalog are for the 1950.0 equinox.

Some events, while meeting the separate spacecraft criterion for confirmation, have not been localized. In the case of the early events, this is due to the fact that all of the satellites were Earth orbiters, and the resulting localization included too large a portion of the sky to be meaningful. In the case of the later events, where interplanetary spacecraft were involved, a localization could not be achieved either because (1) the confirmation came from a rate increase in the real time data of a spacecraft and not a triggered response, resulting in a very crude localization at best, or (2) the confirmation came from the catalog of Mazets et al. (1981), for which accurate timing and time history information could not be obtained.

IV. COMPARISON WITH OTHER CATALOGS

Twenty-two of the first 35 events in this catalog have appeared in Strong, Klebesadel, and Olson (1974). The information given here supercedes this older list, reflecting updated spacecraft positional or timing information. Mazets et al. (1981) give positional information for 25 of the events in the present catalog; locations are given here for 15 of these events. Of the 15, 5 positions are found to be inconsistent with those of Mazets et al. (1981): the positional information for events 85, 91, 98, 101, and 111 in this catalog differs from that in Mazets et al. by varying amounts, although the differences are of the order of the characteristic dimension of the Mazets et al. error box in each case. In one of the five cases (event 85), our localization is redundant; in the other four cases, our localization results from a twospacecraft or three-spacecraft arrival time analysis, and systematic errors, if present, could not be detected. While there is no reason to suspect that such errors exist in the data, the possibility cannot be excluded. We note that, in some cases, where these inconsistencies exist, our data are consistent with the annulus of location derived by Mazets et al. from a two-spacecraft arrival time analysis using Venera 11 and 12 but inconsistent with that part of the annulus isolated using the cosine law detector response. This suggests that systematic errors (e.g., due to backscattering in the spacecraft, detector gain shifts, or spacecraft attitude determination) may have caused the latter procedure to give an incorrect result. Such inconsistencies were noted previously by Hurley (1981) based on the Mazets et al. catalog in preprint form; some positions, however, were corrected before inclusion in Mazets et al.

V. BIBLIOGRAPHY

The reference list given below is not meant to be exhaustive. References are given to indicate the appearance of an event in a previous catalog or to indicate the existence of some type of localization information, or for both purposes. In particular, references have not been given to papers including only spectral or time history information.

On the French side, this work was supported by CNES contracts 80-212 and 81-212. The effort at Los Alamos National Laboratories was supported by the Department of Energy and the National Aeronautics and Space Administration. We are indebted to G. Share for HEAO A-1 data which were used for event no. 78.

REFERENCES

- Cline, T. L., and Desai, U. D. 1976, Ap. Space Sci, 42, 17. Cline, T. L., Desai, U. D., Pizzichini, G., Spizzichino, A., Trainor, J. H., Klebesadel, R. W., and Helmken, H. 1979a, Ap. J. (Letters), **232**, L1. Cline, T. L., Desai, U. D., Pizzichini, G., Spizzichino, A., Trainor,
- J., Klebesadel, R., Ricketts, M., and Helmken, H. 1979b, Ap. J. (Letters), 229, L47

- Estulin, I. V., et al. 1979, Soviet Astr. Letters, 5, 313.
- 1981, Soviet Astr. Letters, 7, 12.
- Evans, W. D., et al. 1980, Ap. J. (Letters), 237, L7. Hurley, K. 1980, Non Solar Gamma Rays (COSPAR), ed. R. Cowsik and R. D. Wills (Oxford: Pergamon), p. 123.
- . 1982, in Gamma-Ray Transients and Related Astrophysical Phenomena, ed. R. Lingenfelter, H. Hudson, and D. Worrall, Am. Inst. Phys. Conf. Proc., no. 77, p. 85.

L56

KLEBESADEL ET AL.

- Imhof, W. L., Nakano, G. H., Johnson, R. G., Kilner, J. R., Reagan, J. B., Klebesadel, R. W., and Strong, I. B. 1974, Ap. J. (Letters), 191, L7. (Letters), 191, L7. Kane, S. R., and Anderson, K. A. 1976, Ap. J., 210, 875. Klebesadel, R. W., and Strong, I. B. 1976, Ap. Space Sci., 42, 3. Kuznetsov, A. V., et al. 1979, Soviet Astr. Letters, 5, 147. Laros, J., et al. 1977, Nature, 267, 131. _______. 1981, Ap. J. (Letters), 245, L65. Mazets, E. P., et al. 1981, Ap. Space Sci., 80, 1. Ogelman, H., et al. 1975, Nature, 255, 208. Palumbo, G. G. C., Pizzichini, G., and Vespignani, G. R. 1974, Ap. J. (Letters), 189, L9.

- Share, G. H. 1976, *Ap. Space Sci.*, **42**, 29. Sommer, M., and Muller, D. 1978, *Ap. J. (Letters)*, **222**, L17. Strong, Ian B., Klebesadel, Ray W., and Olson, Roy A. 1974, *Ap.* J. (Letters), 188, L1. Trombka, J. I., Eller, E. L., Schmadebeck, R. L., Adler, I., Metzger, A. E., Gilman, D., Gorenstein, P., and P. Bjorkholm. 1974, Ap. J. (Letters), **194**, L2 Vedrenne, G., et al. 1980, Soviet Astr. Letters, **5**, 314. Wheaton, W. A., et al. 1973, Ap. J. (Letters), **185**, L57. Zenchenko, V. M., et al. 1979, Kosm. Issledovaniya, **17**, 820. . 1980, Soviet Astr. Letters, 6, 114.
- C. BARAT, K. HURLEY, M. NIEL, and G. VEDRENNE: Centre d'Etude Spatiale des Rayonnements, B.P. 4346, 31029 Toulouse Cedex, France

T. L. CLINE, U. D. DESAI, and B. J. TEEGARDEN: NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771

I. V. ESTULIN, A. V. KUZNETSOV, and V. M. ZENCHENKO: Institute for Space Research (IKI), Profsoyouznaya 88, 117810 Moscow, USSR

W. D. EVANS, R. KLEBESADEL, J. G. LAROS, and I. B. STRONG: Los Alamos National Laboratories, Los Alamos, NM 87544