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ABSTRACT 
We consider time-dependent accretion onto magnetized white dwarfs. A detailed description 

of a numerical method of solution to the hydrodynamical equations is given. The postshock flow 
is cooled by optically thin bremsstrahlung and is thermally unstable. As a result the shock height 
undergoes periodic oscillations. We consider the properties of this oscillation as a function of the 
accretion rate and of the mass and radius of the white dwarf. The structure of the accretion flow 
depends on a single scaling parameter. Below a critical accretion rate, which depends on the particular 
white dwarf, the nature of the accretion flow changes and the shock propagates up the accretion 
column indefinitely. 
Subject headings: hydrodynamics — stars: accretion — stars: magnetic — stars: white dwarfs — 

X-rays: binaries 

I. INTRODUCTION 
The pulsating binary X-ray sources have been the 

object of intense observational and theoretical study 
since their discovery more than a decade ago (Giacconi 
et al 1971). The generally accepted model of the binary 
X-ray sources consists of a compact object (white dwarf, 
neutron star, or black hole) accreting matter from a 
companion star that is on or near the main sequence 
(see, e.g., Lamb, Pethick, and Pines 1973). The X-rays 
are emitted when the kinetic energy of the infalling 
matter is thermalized in a shock, or in some other 
fashion, near the surface of the accreting object. If the 
compact object is a neutron star or white dwarf with a 
strong magnetic field, the accretion flow is channeled 
onto the polar caps where it produces small, bright 
patches as the accretion energy is released. As the star 
rotates, these spots pass in and out of the line of sight 
and produce X-ray pulsations. 

The first of the pulsating X-ray sources to be dis- 
covered were the X-ray pulsars (Giacconi et ai 1971). 
These systems contain a rotating, magnetized neutron 
star which emits most of the accretion luminosity in the 
form of hard (1-20 keV) X-rays. X-ray binary systems 
containing white dwarfs were not discovered until some- 
what later (Rappaport et al 1974; Hearn and Richardson 
1977), for two reasons. First, they have a gravitational 
potential 103 times less than a neutron star and thus 
are much less luminous for a given accretion rate. 
Second, most of their luminosity is emitted in the 
extreme-ultraviolet and soft X-ray bands (Tuohy et al 
1978; Raymond et al 1919), where it is quite difficult 

to observe. Nevertheless, several of these systems have 
now been discovered and may be classified into three 
distinct groups. One group is comprised of the AM 
Herculis variables which contain a white dwarf with a 
magnetic field B ~ 107 gauss (Visvanathan and 
Wickramasinghe 1979; Schmidt, Stockman, and Margon 
1981) and emit strongly polarized optical radiation by 
the cyclotron emission process. The strong magnetic field 
prevents the formation of an accretion disk and forces 
the white dwarf to rotate synchronously (see Chiappetti, 
Tanzi, and Treves 1980, and references therein). A second 
group contains systems such as H2252 (Patterson and 
Price 1981) and AE Aquarii (Patterson et al 1980) that 
probably contain a white dwarf which is rotating much 
faster than synchronously. These systems exhibit hard 
X-ray pulsations and optical pulsations due to re- 
processing of X-rays in the atmosphere of the companion 
star. Finally, the third group contains systems such as 
SS Cyg and U Gem that show clear optical evidence 
of an accretion disk (Kiplinger 1979 ; Fabbiano et al 
1981). In these systems the magnetic field of the white 
dwarf is quite weak, and the accretion disk may extend 
all the way down to the surface of the white dwarf 
(Ricketts, King, and Raine 1979; cf. Pringle and Savonije 
1979). These three types of systems are all classified as 
cataclysmic variables and have unusual optical spectra 
which contain considerable information about the 
accretion disk, when one exists. In this paper we are 
interested in the energy released at the surface of the 
white dwarf, which comes out primarily in the form of 
extreme-ultraviolet, soft X-rays and hard X-rays. 
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Theoretical models of these systems must address the 
question of how the kinetic energy of the infalling 
material is thermalized, determine the velocity, density, 
and temperature in the flow, calculate the emitted 
radiation at all frequencies, and consider the effects of 
radiative transfer. In general these effects are coupled 
together, making a full solution difficult. As a result, 
theoretical calculations of the spectra from nonmagnetic 
white dwarfs (e.g., Cameron and Mock 1967 ; Höshi 1973 ; 
Aizu 1973; Katz 1977) and magnetic white dwarfs 
(Fabian, Pringle, and Rees 1976; King and Lasota 1979; 
Lamb and Masters 1979 ; Chanmugam and Wagner 1979) 
have not included full solutions to the hydrodynamics 
or the radiative transfer. Numerical solutions of the 
hydrodynamical equations have been presented for 
spherical accretion (Kylafis and Lamb 1979) and for 
steady state flow onto magnetic white dwarfs (Wada 
et al 1980). 

In an earlier paper (Langer, Chanmugam, and Shaviv 
1981, hereafter Paper I), we presented the first time- 
dependent numerical solutions to the hydrodynamical 
equations for accretion onto a white dwarf. We 
demonstrated that the shock height underwent a periodic 
limit cycle due to a thermal instability in the 
bremsstrahlung-dominated cooling. In this paper we 
describe in detail our method of solution and consider 
a wide range of accretion rates and white dwarf masses 
and radii. Our results demonstrate the dependence of the 
maximum shock height and the period of the limit cycle 
on the system parameters. We present a scaling law which 
shows that the structure of the accretion flow depends, 
for the cases we consider, on a single parameter which 
contains the properties of the white dwarf and the 
accretion rate. We also find that there is a critical 
accretion rate (for a magnetized white dwarf), below 
which any shock that forms moves up the accretion 
column indefinitely (see Langer and Rappaport 1982 
for a discussion of a similar phenomenon). 

This paper is organized as follows. In § II we discuss 
the importance of various physical processes in the 
accretion flow and justify several simplifying assumptions 
made in the calculation. In § III and the Appendices 
we present the numerical method used to solve the 
hydrodynamic equations. In § IV we present flow 
solutions for several different sets of system parameters. 
Section V contains a discussion of the results and derives 
several important properties of the flow solutions. 
Finally, we summarize our principal results in § VI. 

II. PHYSICAL SCALES 

In this section we first estimate some of the physical 
quantities characterizing the accretion column of the 
white dwarf. We then use these to discuss the character- 
istic relaxation and cooling time scales in the current 
problem and the relative importance of various radiative 
and dissipative processes. These estimates demonstrate 
that we can make several simplifying approximations 
to the physical processes occurring in the accretion flow. 

The free-fall velocity of the accreting material, as a 
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function of the distance r from the center of the white 
dwarf of mass M and radius R, is given by 

/ R\1/2 

Vn(r) = 5.2 x 108l </> — I cm s 1 , (1) 

where </> = (M/MQ)(R/109 cm)-1. A characteristic free- 
fall time is given by 

iff(r) = r/V(f(r) = j (t>~ 1I2R9 s • (2) 

where R9 = R/109 cm. 
The accretion luminosity is L = GMM/R, where M 

is the mass accretion rate, so that 

M = 7.5 x 1O160-1L34 g s-1 , (3) 

where L34 = L/1034 ergs s_1. The typical luminosities 
observed in the AM Her binaries are of order 1032-1034 

ergs s-1 and depend on the particular system and its 
state (e.g., “high” or “low”) (Chiappetti, Tanzi, and 
Treves 1980). For a spherically symmetric star and an 
opacity dominated by Thomson scattering, the down- 
ward force of gravity and the upward radiation force 
are equal when L is equal to the Eddington luminosity 
(1.25 x 1038M/Mo ergs s-1 for a hydrogen plasma). 
Because of magnetic confinement, accretion occurs over 
only about 0.001 of the surface, so that the amount of 
luminosity needed to reach the Eddington flux (given 
above for the case where the flux flows out over 4n 
steradians) is reduced by a factor of 1000. In spite of 
this extra factor, radiation pressure is still unimportant 
for the problem under consideration (cf. Davidson 1973). 

We shall assume that the cross-sectional area of the 
accretion column, A, and the physical properties of the 
gas are a function only of r and that near the star 

A = Acap(r/R)s (4) 

where the constant s = 3 for a dipolar magnetic field, and 
s = 2 for spherically symmetric accretion in the absence 
of a magnetic field. The area of the polar cap is roughly 
0.001-0.01 of the stellar surface for the AM Her systems 
and might reach 0.1 for systems with weaker magnetic 
fields (Fabbiano et al 1981). 

If the free-falling gas consists of ionized hydrogen, 
the electron number density in the region above the 
shock is given by 

n{( = M/(mpAV{[) 
I \-s+l/2 

= 1.2 x 1015tfr1/2'Fl-j cm“3, (5) 

where T = (M/1016 g s_1)(1016 cm12/,4cap). The accret- 
ing gas passes through a strong shock near the surface of 
the white dwarf. If we consider a stationary shock, the 
postshock gas attains a temperature Tsh given by (see, 
e.g., Höshi 1973) 

kB Tsh = 3GM/V(8K) = 26.1(f) keV = 3 x 108#b K , 

(6) 

where // = mp/2 is the mass per particle, for ionized 
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hydrogen. For a strong stationary shock, the postshock 
speed of the accreting material is Vif/A, and the electron 
number density is 4 times the value given in equation (5). 

In our calculations we assume that the electrons and 
protons have Maxwellian distributions characterized by 
the same temperature. In order to determine whether this 
is justified, we estimate the time for a proton of thermal 
velocity V = (3/cB T/nip)112 to be deflected by 90° through 
Coulomb scattering in a hydrogen plasma (see, e.g., 
Spitzer 1956), 

iD= 6.1 x 10“5Tg2ní¿(20/ln Ac)s , (7) 

where T8 = T/108 K, n16 = ne/1016 cm-3, and the 
Coulomb logarithm is 

In Ac = 18.6 + In {T¡/2nl6
1/2). (8) 

The mean free path of a proton is thus ~ 104 cm, which 
is much less than the height h of the shock front above 
the surface of the white dwarf (see below), and the protons 
may be assumed to have a Maxwellian velocity distri- 
bution. 

If the electrons and protons have Maxwellian velocity 
distributions, with temperatures Te and Tp respectively, 
the time required to establish equilibrium between them 
is (Spitzer 1956) 

íeq = 3/8 (27t) ~ll2memp kg2 

x (Te/me + Tp/mp)3l2/(nee
4 ln Ac). (9) 

If TJme S> T /m 

teq - 1.3 x 
<10> 

In evaluating ieq we have neglected the effects of the 
magnetic field. For fields B ~ 108 gauss, the corrections 
to the Coulomb logarithm are of the order of unity 
and hence do not change the above rough estimate 
significantly (see, e.g., Masters 1978). 

In our model we assume that the dominant cooling 
mechanism is optically thin bremsstrahlung radiation. 
We, therefore, compare the strength of bremsstrahlung 
and cyclotron emission to see when this assumption is 
valid. Most of the bremsstrahlung radiation from the 
shock-heated region is in the form of X-rays, which 
are not absorbed in the accretion column (see below). 
Thus, we use the optically thin approximation in deriving 
the bremsstrahlung cooling time: 

tbr = IK + np)kB T/(CbtnenpT
112) = 03Tll2/n16 s , 

(U) 
where Cbr= 1.4 x 10“27, in cgs units, for a hydrogen 
plasma (Allen 1973). This shows that ibr > teq, tD, and 
the plasma equilibrates before it cools. 

The ratio of the bremsstrahlung cooling time to the 
free-fall time above the shock is given, using equations 
(2), (5), and (11), by 

Hence bremsstrahlung cooling is strong enough to ensure 
that the preshock flow is cooled, so that no adiabatic 
heating takes place. The low preshock temperature has 
no effect on the postshock conditions and ensures 
hypersonic flow that approaches free-fall above the 
shock. 

Due to the strong magnetic field of the white dwarf, 
the emission of cyclotron radiation can be an important 
cooling mechanism. An optically thin plasma emits very 
strongly at the fundamental harmonic of the cyclotron 
line and would have a cooling time much shorter than 
any other cooling or flow time in the problem. However, 
the cyclotron radiation is strongly self-absorbed for 
frequencies up to cu* ~ 10coc, where œc is the cyclotron 
frequency (Chanmugam and Wagner 1979; Lamb and 
Masters 1979). If we assume that the flux follows a 
Rayleigh-Jeans curve up to co* and is negligible for 
higher frequencies, the cyclotron luminosity from a 
plasma slab of thickness x, surface area A, and uniform 
temperature T is 

Lcyc = Tfrt2^2> 

where the angle-averaged cyclotron opacity has been 
used. Thus, provided that the flux out the sides of the 
column can be ignored, this equation shows how the 
luminosity increases as the plasma layer is made thicker. 
The cyclotron cooling of each layer of the column is the 
difference between a Rayleigh-Jeans flux extending to 
ctf*(x) and œ*(x + dx), where x is now the distance from 
the shock. Thus, 

dLcyc _ AkBT *2 dœ* 
dx 4n2c2 œ dx 

(13) 

Wada et al (1980) have provided a simple fit to 
m* == œ*/coc based on the results of Chanmugam and 
Wagner (1979): 

m* = 9.87A?-05T¿/2 , (14) 

where the dimensionless parameter A = 4nene x/B and 
A7 = A/107. This agrees to within ~15% with the fit 
given by Masters (1978), in the range considered. From 
equations (13) and (14) it follows that 

dLcyc = AkB Tea*3 

dx 807t2c2x ' ' 

The ratio of bremsstrahlung to cyclotron cooling rates 
can be calculated using equations (11), (14), and (15). 
For a plasma with kB T = 20 keV, we find 

fCyc = 3 A(ne + np)kB TI¿Lcyc j~1 

ibr 2 tbr \ dx ) 

= 1.1 x l02n\i5x^85Bj2-85Tä2 , (16) 

where x7 = x/107 cm, and B1 = B/107 gauss. Thus, 
cyclotron cooling is important for large magnetic fields 
and close to the shock (where x is small). We consider 
systems where B is not particularly large and are willing 
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to accept errors in the cooling close to the shock. Thus, 
in this paper, we ignore cyclotron emission. 

We have assumed that all radiation emitted in the 
accretion column escapes freely. To determine the 
validity of this approximation we consider the three 
major sources of opacity: cyclotron absorption, free-free 
absorption, and Thomson scattering. We find that all 
three can be important at different places in the flow 
and for different frequencies. The electron-scattering 
optical depth across the column is 

Tes = {Alnfl2ne(r)(jj , (17) 

where oT is the Thomson scattering cross section. For 
a density equal to the postshock density, the optical 
depth is 

/ A \1/2 

(R/rfs-1)l2, (18) 

so that the column may be thick to electron scattering. 
The free-free absorption coefficient is given by 

aff(v)= 3.7 x 108v"3 

x [1 — exp ( —/jv//cb T)]T-1/2tt3 cm-1 , (19) 

permits a comparison of Lheat and the bremsstrahlung 
losses Lbr: 

LheJLhr = 11 x IO"2Tl/^2 nl6), (22) 

showing that Lheat < Lbr if h> 3 x 106 cm (for T8 = 
n16 = 1). Heat conduction is important only for 
accretion rates which produce a shock that is close 
enough to the surface that the conductive heat flux is 
a significant fraction of the accretion luminosity. 

The viscous heating per unit volume is roughly 

H^y/h2, (23) 

where the viscosity 

/ivis = 2.2 x 10-15T2-5/ln Ac g cm-1 s_1 . (24) 

The total viscous heating in the shock-heated region is 
~1030 ergs s"1, which is negligible. 

III. THE MODEL 

If the electron and ion temperatures remain the same 
throughout the flow (see eqs. [7] and [10]), the hydro- 
dynamic equations are (see Rotty 1962 ; we have included 
the gravitational field, radiative losses, viscosity, and heat 
conduction) 

where v is the frequency of the radiation and the Gaunt 
factor has been chosen as equal to 1 (Allen 1973). For 
T ~ 106 K, optical radiation would be absorbed if the 
path length were greater than 107 cm (this is relevant to 
the region above the shock). However, if the temperature 
were higher, e.g., kB T ~ 10 keV, it would require path 
lengths greater than 1010 cm to produce free-free 
absorption of optical radiation. For densities less than 
~ 1019 cm“3, 1 keV X-rays are not absorbed unless the 
path length exceeds 109 cm. We can thus ignore 
absorption of hard X-rays everywhere except in the white 
dwarf atmosphere. 

The height of the shock-heated region, h, is roughly 
106-108 cm (Lamb and Masters 1979, also see below), 
while the diameter of the accretion column near the 
surface of the white dwarf is probably ~ 108 cm 
(Fabbiano et al. 1981). Thus, there is no free-free 
absorption of X-radiation in the accretion column, con- 
firming the use of optically thin bremsstrahlung for the 
cooling. Optical radiation may undergo cyclotron 
absorption below the shock and free-free absorption 
above the shock. For the models considered in this 
paper the optical luminosity is negligible, so we ignore 
optical radiation and absorption. 

We next consider the effects of heat conduction and 
viscosity. The energy transported out of the shock-heated 
region by heat conduction is 

dT 
Lheat ~ ^^cond > (20) 

where the thermal conductivity is 

Kcond = IO“6T2'5 ergs cm"1 s"1 K"1 (21) 

(Allen 1973). The crude approximation dT/dr ~ T/h 

dm dk 
~dt = 

dk 
dt 

d k2 

dr m y 
, GM 

ÔE 
dt 

d_ 
dr 

k 
— (E + pA — gA) + JA 
m 

In these equations, 

m 
4p2A ^rad (25) 

E 

m = pA, k = pvA , 

1 
2 m 

GM 3m, ^ 
 m + --kBT , r 2 p 

(26) 

where p is the mass density, v is the flow velocity 
(positive outward), T is the temperature, p is the mass 
per particle (half the proton mass for a hydrogen 
plasma), p is the gas pressure, kB is Boltzmann’s constant, 
J is the energy flux transferred by heat conduction, 
and g is the viscous stress. The forms of the dissipative 
terms J and g are discussed in Appendix A. The final 
term in the energy equation represents the radiative 
losses. 

For optically thin thermal bremsstrahlung, erad is given 
by ehr = CbrT

1/2 ergs cm3 s_1 for a hydrogen plasma, 
with T measured in Kelvins (see eq. [11]). The value of 
£rad for cyclotron emission, including the effects of optical 
thickness, is discussed in § II. 

We solve the flow equations numerically by evaluating 
the solution at a grid of points and approximating the 
derivatives by finite differences. We impose boundary 
conditions of zero mass flux through the lower boundary 
and require that the accreting gas be in free-fall with a 
large Mach number ( > 10) and a density corresponding 
to M at the upper boundary. To prevent numerical 
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instabilities we include artificial viscosity and heat con- 
duction and apply a filter to the solution. These terms 
act to remove fluctuations on the scale of 1 or 2 mesh 
points, which are in principle too fine for the numerical 
solution to determine. 

The details of the finite difference method and the 
filter are presented in the Appendices. However, we 
summarize several key points here. There are many ways 
to write finite difference representations of a set of 
differential equations which are accurate to a given order. 
We have taken advantage of this freedom to impose 
several constraints on the difference equations. The first 
establishes mass conservation to within the precision of 
the computer. Energy is not conserved to the same 
accuracy because of the form of the filter (see 
Appendices). We have also chosen forms of the equations 
which have analytic solutions for free-fall and a hydro- 
static, isothermal atmosphere. The advantage of this is 
that we may choose an initial solution which does not 
need to relax before the interesting portions of the flow 
can be studied. 

We also employ an implicit form of the difference 
equations. This means that the terms on the right of 
equations (25) are evaluated in terms of the flow variables 
at the end of the current time step. This is a standard 
technique for improving the numerical stability of the 
equations and therefore permitting the use of larger time 
steps. In spite of the many orders of magnitude by which 
the temperature, density, and velocity change across the 
model, we have found that approximately 100 mesh 
points provide adequate coverage of the solution if their 
locations are properly chosen. 

The combination of the Shuman filter (see Appendix B) 
and artificial dissipation prevents the growth of 
numerical instabilities in the solution. We have reduced 
the strength of the artificial dissipation to the minimum 
value necessary to prevent the formation of instabilities 
and have chosen functional forms such that the 
dissipation acts only over small portions of the flow. The 
solutions are insensitive to moderate increases in the 
strength of the dissipation above the chosen values, thus 
indicating that these dissipative terms have a negligible 
effect on the solution. 

We may recast the hydrodynamic equations (25) in 
dimensionless fqrmj)y defining r = r/R, t= tv±/R, m = 
mvJM, k = k/M, Ë = E/(Mv*), p = pAcap/(Mv*\ J = 
JA^JiMvl), and <x = AcJ(Mv*), where u* = 
(2GM/R)112. The resulting equations are 

An important special case occurs when both heat con- 

duction and viscosity are unimportant. Then the system 
parameters are contained solely in the term containing 
£rad in equation (27). If we further assume that 
bremsstrahlung radiation dominates the cooling, this 
term becomes C^f112/?8, where f = T/T*, T* = 
GMmp/(RkB), and 

Cj = 0.29¥iM>-3/2^J2 . (28) 

The differential equation has a one-parameter (Ci) set 
of solutions, if the boundary conditions (in dimensionless 
form) do not depend on the system parameters. The 
upper boundary condition of cold gas in free fall does 
not contain the system parameters. The lower boundary 
condition serves primarily to determine the point where 
the cooling gas comes to a halt and thus, in some 
sense, simply determines R9. The equations indicate, and 
the models show, that the dimensionless solutions depend 
only on C1. By adding the proper dimensions, solutions 
obtained for one choice of </> can be used to determine 
the solutions for another (j). 

IV. RESULTS 

We have studied the behavior of the accretion flow 
for several different accretion rates and white dwarf 
parameters. In all cases we choose an initial model where 
the gas is in free fall well above the surface of the white 
dwarf and then smoothly joins onto a hydrostatic white 
dwarf atmosphere. The results should not depend on the 
initial conditions, so we are free to use this convenient 
starting point. 

We have used a polar cap area 2lcap = 1016 cm2 in 
all of our models. It is shown in § III that the solutions 
depend only on the combination M/Acap, for a particular 
white dwarf, so this assumption does not restrict the 
validity of our results. We have considered several models 
with R ~ 109 cm, M ~ Mq. Figure 1 shows the velocity, 
density, pressure, temperature, and radiative losses as a 
function of radius at a time when the shock height was 
~20% of the white dwarf radius. In this model 
R = 109 cm, M = 0.5 M0, and M = 2.5 x 1015 g s"1. 
The density jumps by a factor of 4 across the shock, 
while the velocity drops by a factor of 10, and the 
temperature jumps to 2 x 108 K. This is a strong shock, 
but the velocity does not drop by a factor of 4 as in the 
usual Rankine-Hugoniot relation. This is because the 
shock is moving upward (with a speed ~ Vff/5), and the 
jump conditions apply in the frame where the shock is 
stationary. 

Behind the shock there is a fairly thick region of 
material at the postshock temperature which is falling 
at subsonic speeds and cooling by emitting bremsstrah- 
lung. At roughly 107 cm above the surface the tempera- 
ture begins to drop rapidly, with the cooling time 
becoming ever shorter as the temperature decreases. We 
refer to this region as the cooling zone. Eventually the 
temperature would drop to a point where the accretion 
column became optically thick and then level off at the 
temperature of the white dwarf’s atmosphere. For 
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Fig. la Fig. lb 

Fig. le Fig. Id 
Fig. 1.—(a) The density, pressure, and magnitude of the velocity are shown as functions of radius for accretion onto a star with mass 0.5 M0 and 

radius 109 cm. The accretion rate is 2.5 x 1015 g s-1 along a dipolar magnetic flux tube with area 1016 cm2 at the surface of the star. These 
curves are shown for a time when the shock is moving upward and is at roughly half of its maximum height. The shock is at rsh and the 
bottom of the cooling zone is at rc. The pressure does not begin to increase until the flow has come nearly to a halt. Half of the luminosity is 
emitted above the point L1/2. (b) The temperature and radiative losses as a function of radius. The regions marked (1) and (2) are used in 
calculating the cyclotron luminosity, (c) Same as Fig. la but with a smaller scale and centered on the cooling region. The dip in p is numerical 
noise, (d) Same as Fig. lb. If the radiative cooling law had not been modified (see text), Lx would peak more sharply and then drop to zero. 

numerical reasons, we have adjusted the radiative losses 
so that the cooling time never drops below imin, which 
is chosen as ~0.1% of the oscillation period. The 
radiative cooling is set to zero below the surface 
temperature of the white dwarf. This has little effect on 
the solutions because the cooling zone is still very thin 
and the accretion luminosity is completely radiated away. 
Note that, due to this modification of the cooling law, 
the minimum value of rsh has no physical meaning. 
Figure 1c shows that the velocity drops rapidly and the 

density increases rapidly, in the cooling zone. The 
pressure, however, remains nearly constant throughout 
the cooling zone. The arrow labeled L1/2 in Figure \a 
shows the point in the flow above which half of the 
luminosity is emitted. In all of our solutions, this point 
is fairly close to the surface. Although the losses are 
greatest near the bottom of the cooling zone, the radiating 
volumes are such that most of the luminosity comes 
from the high-temperature regions. 

These velocity, temperature, and density profiles are 
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TIME (s) 
Fig. 2a 

TIME (s) 
Fig. 2b 

Fig. 2.—Properties of the shocked gas as a function of time for the same model as in Fig. 1: (a) the shock radius and the bottom of the 
cooling region; (b) the maximum temperature (solid curve) of the postshock gas and the bremsstrahlung luminosity (dashed curve). The numbers 
indicate the times for which spectra are shown in Fig. 5. 

characteristic of most of our models. In particular, a 
region at nearly the postshock temperature followed by 
a narrow cooling zone is present in all of our models, 
although the temperatures and thicknesses vary. 

In Paper I we showed that the accretion flow is un- 
stable (see, e.g., Field 1965) and undergoes a periodic 
limit cycle when bremsstrahlung dominates the radiative 
losses. Figure 2 shows the postshock temperature, the 
distance between the shock and the base of the cooling 
zone, and the instantaneous luminosity as a function of 
time for the same model as in Figure 1. The temperature 
shows the same steep rise and slower decline found in 
Paper I. The shock height follows a curve with a period 
of 12.2 seconds and a cusp at minimum height. The 
luminosity has been smoothed slightly to remove 
numerical noise and exhibits a gentle rise, followed by a 
sharp drop. The same approximate shapes occur in 
all our models and are characteristic of the instability. 

In Figure 3 we show the maximum shock height during 
an oscillation and the period of the oscillation as a 
function of the accretion rate (actually M/Acap) for 
R = 109 cm and M = 0.5 M© and 1 M0. The shock 
moves upward and the period increases as M/Acap 
decreases because the lower postshock density leads to a 
longer radiative cooling time. For M/Acap < 0.2 g s-1 

cm-2 and M = 0.5 M© (and ~0.6 g s-1 cm-2 for 
M = M0), there are no oscillatory solutions; the shock 
simply moves upward forever, or at least until the 
assumptions of our model break down. This phenom- 
enon is discussed in more detail in § V. It occurs because 
the radiative cooling is never strong enough to let the 
accreting matter cool and settle onto the white dwarf. 

In Figure 4 we show how the maximum shock height 
and the period of the oscillations depend on M/Acap 
and the mass of the white dwarf. The radius of the white 
dwarf has been determined from the relation R/5 x 108 

cm ~ Mq/M given by Hamada and Salpeter (1961). The 
shock height and the period both decrease as the mass 
of the white dwarf decreases. This happens because the 
lower gravitational potential leads to a lower postshock 
temperature and, therefore, a shorter cooling time. 
Figure 4 shows that the properties of the accretion flow 

Fig. 3.—The dependence of the maximum shock height (dashed 
curve, x ) and the oscillation period (solid curve, O) on the accretion 
rate. The white dwarf has a radius of 109 cm, and the polar cap area 
is 1016 cm2 for both models. The curves toward the lower left are for 
a white dwarf with M = 0.5 M0 ; those toward the upper right are for 
M — M0. 
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Fig. 4.—The dependence of the maximum shock height (dashed 
curve, x ) and the oscillation period (solid curve, O ) on the white 
dwarf mass for accretion rates of 2 x 1016 g s_1 (right) and 
1017 g s_1 (left). The white dwarf radius is 5 x 108 cm divided by its 
mass in units of the solar mass. The accretion column has an area of 
1016 cm2. 

are strong functions of the white dwarf mass when 
M/Acap is held constant. This variation would be even 
more pronounced if we held the luminosity fixed as M 
was varied. The flow solutions obey a simple scaling 
law which is discussed in § V. 

In Figure 5 we show the hard X-ray spectrum at 
several points in the cycle for the model used in 
Figure 1. The radiation is emitted at a range of tempera- 
tures and has an effective temperature significantly less 
than the peak temperature in the flow. As shown in the 
figure, a single-temperature thermal bremsstrahlung 
spectrum does not provide a good fit to the results. 
The basic difference is that the model spectra have 
additional emission at energies below ~ 10 keV. We note 
that observations of AM Her (Rothschild et al 1981) 
have shown that the hard X-ray spectrum is not con- 
sistent with a single-temperature bremsstrahlung spec- 
trum. 

Our solutions are summarized in Table 1. The average 
properties of the flow are comparable to earlier steady 
state solutions (see, e.g., Wada et al 1980). The shock 
height and oscillation period agree with the results 
presented in Paper I. However, our improved treatment 
of the radiative cooling prevents the buildup of material 
at temperatures ~107 K (see Fig. 1 of Paper I) and 
yields a cusp, instead of a smooth curve, in the vicinity 
of the minimum shock height (see Figs. 2 of Paper I 
and this paper). This improvement has no effect on the 
conclusions of Paper I. The agreement between the two 
calculations also shows that the oscillation period and the 
maximum shock height are insensitive to the radiative 
cooling law at low temperatures. 

Fig. 5.—The X-ray spectrum at four different times during the cycle 
(see Fig. 2b) for the model of Fig. 2. The dashed curves show single- 
temperature bremsstrahlung spectra for temperatures bracketing the 
range of peak temperatures found in the flow. The model spectra always 
have an excess of soft photons when compared to the spectra emitted 
at the hottest point in the flow. 

TABLE 1 
Time-Dependent Solutions3 

M M 
109 cm 

^sh 
~R Ph 

0' (^9 

0.3 . . 
0.5 .. 
0.5 .. 
0.5 .. 
0.5 .. 
0.5 .. 
0.5 .. 
0.5 .. 
0.5 .. 
0.7 .. 
0.7 .. 
1.0 .. 
1.0 .. 
1.0 .. 
1.0 .. 
1.0 .. 
1.0 .. 
1.0 .. 
1.0 .. 
1.0 .. 

1.67 
1 
1 
1 
1 
1 
1 
1 
1 
0.71 
0.71 
1 
1 
1 
1 
1 
1 
1 
0.5 
0.5 

2.0 
10.0 
5.0 
2.0 
0.885 
0.5 
0.4 
0.25 
0.2 

10.0 
2.0 
5.0 
2.5 
1.5 
1.0 
0.8 
0.7 
0.6 

10.0 
8.0 

0.0030 
0.0059 
0.0092 
0.0235 
0.073 
0.133 
0.25 
0.39 
0.66 
0.019 
0.12 
0.040 
0.09 
0.15 
0.26 
0.34 
0.46 
0.64 
0.084 
0.13 

0.32 
0.174 
0.38 
0.91 
2.33 
4.22 
6.2 

11.0 
18.6 
0.37 
2.1 
0.86 
1.9 
3.25 
4.7 
6.7 
9.1 

12.2 
0.79 
0.95 

0.042 
0.063 
0.138 
0.33 
0.85 
1.54 
2.26 
4.01 
6.77 
0.27 
1.5 
0.44 
0.98 
1.67 
2.42 
3.45 
4.69 
6.28 
1.15 
1.38 

43.9 
28.2 
14.1 
5.66 
2.50 
1.41 
1.13 
0.71 
0.57 
7.25 
1.45 
5.00 
2.50 
1.50 
1.00 
0.80 
0.70 
0.60 
1.77 
1.41 

3 Acap = 1016 cm2. 
b P is the period of the oscillation in seconds. 
c iff is the free-fall time at the surface of the white dwarf. 
d 'F = M/Acap in cgs units and </> is the dimensionless gravitational 

potential (see eq. [1]). 
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V. DISCUSSION 

In this section we provide physical explanations of 
our numerical results and quantify some of their 
properties. We show that the period of the limit cycle 
and the maximum shock height can be explained in terms 
of the radiative cooling time and a typical flow velocity. 
We discuss the source of the instability and show that 
its existence depends upon the form of the radiative 
cooling law. Finally, we discuss the conditions under 
which cyclotron emission can be ignored and present a 
simple scaling law for the period of the cycle and the 
maximum shock height. 

a) Comparison with Simple Models 
The gas crossing the shock must first cool off before 

it can settle onto the photosphere and leave the accretion 
column. The cooling time just behind the shock is (see 
eq. [11]) 

tbr= U^^s, (29) 

where the postshock density of 4% (eq. [5]) and tempera- 
ture ^sh (eq. [6]) appropriate for a strong stationary 
shock have been inserted. In steady state, the shock height 
will be just high enough that the flow time to the surface 
is equal to the time required by the gas to cool to the 
photospheric temperature. Most of this distance is 
covered while the matter is still traveling at the postshock 
velocity. Thus, the equilibrium shock height is 

Kq ~ thT V{{/4 = 1.4 x lO8^3^-1 cm . (30) 

As an example we compare heq to the maximum shock 
height for Acap = 1016 cm2 and 0=1. For M16 in the 
range from 0.6 to 5, /ieq lies in the range (0.28-2.4) x 108 

cm, while the maximum shock height (see Table 1) lies 
in the range (0.4-6.4) x 108 cm. The two heights show 
the same dependence on M, and the maximum shock 
height is, as expected, bigger than the approximate value 
for the equilibrium height. 

The period of the cycle is the time required by the 
shock to travel from its minimum to its maximum height 
and back again. The shock velocity is 0 at maximum 
shock height and Fff/3 (by the jump conditions) when the 
shock starts its upward motion. The period should be 
roughly 2/ieq divided by V{{/6. This equals 3ibr, which is 
in good agreement with the numerical result of ~4ibr 

(see Table 1). This discussion has explained the 
magnitudes of the limit cycle period and the maximum 
shock height, and how they depend on the accretion 
rate and the properties of the white dwarf. 

Previous papers on these systems have generally solved 
the time-independent hydrodynamic equations to obtain 
the equilibrium flow solution. This does not, of course, 
guarantee that such a solution is stable. We would now 
like to present a simple model that checks for the 
stability of the equilibrium solution. As a first step we 
note that the strong shock jump conditions, when 
modified to account for a nonzero velocity J^, are 

F = (-Kff + 3Fs)/4, 

T = 3n(V({ + Vs)
2/(l6kB). (31) 

The density increases by a factor of 4. In some 
situations, bremsstrahlung will not be the dominant 
radiative cooling process. To account for this possibility 
we multiply the radiative losses by a factor of 
(T/T*)“-1/2 (see eq. [28] for T*) so that the cooling is 
proportional to n2T*. When the modified cooling law 
and the new jump conditions are employed, the estimate 
for the cooling length (which need not be the same as 
the shock height) is 

h = heq(l - 3FS/Fff)(l + . (32) 

We now consider perturbations where a shock at heq 
is given a small velocity 1^. The perturbation changes 
the postshock velocity and cooling time so that the flow 
requires a different distance to cool and come to a halt. If 
h > heq, the material crossing the shock will not cool off 
before reaching the photosphere. The resulting 
accumulation of matter behind the shock produces an 
excess pressure which acts to force the shock upward. 
lî h < heq, the shock is forced downward due to a 
lowered postshock pressure. If the flow is to be stable, 
h > hQq must hold when Fs<0 (a downward velocity), 
and vice versa. An analysis of equation (32) shows that 
the solutions are stable only if a > — ^. 

This model is very approximate, so it is not surprising 
that the numerical models indicate that stability occurs 
only for a > 1.6 (see Paper I ; note that a = 1.1 there is 
the same as a= 1.6 in the present paper). The main 
point to recognize is that the steady state solution 
requires a balance between the amount of material 
crossing the shock and the amount cooling and settling 
onto the photosphere. When a perturbation is made, the 
rates for both processes change. Stability requires that 
the response to a downward perturbation of the shock 
must be that matter crosses the shock faster than it cools 
off. This results in an excess pressure which pushes the 
shock back up to its equilibrium position. The 
importance of the dependence on a is that other radiative 
processes, e.g., cyclotron emission, have a different 
dependence on temperature than bremsstrahlung. Most 
radiative cooling processes do not have a simple n2Ta 

dependence. However, we have shown that, if this form 
can be made to fit across the relevant temperature range, 
the cooling law must be roughly one power of T steeper 
than bremsstrahlung to achieve stability. 

b) Minimum M 
An interesting feature of the results presented in § IV 

(where M = 0.5 M0, R= 109 cm, Acap = 1016 cm2) is 
that, for M < 2 x 1015 g s - \ the shock radius rsh moves 
steadily outwards as time increases. We will now attempt 
to gain some insight into this phenomenon from a 
qualitative analysis of the steady state shock. 

If we generalize equation (30) for the steady state shock 
height to include the variation of A, n, T, and Vn with 
radial distance, we find that 

r R- 

(see eq. [11] for Cbr). 

(ÁMb) ür” 
(33) 
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If we set y = rsh/R, the shock height, in units of R, is 
given by the roots (y > 1) of the equation, 

f(y) = ßys~312 -y+i = 0, (34) 

where 

ß^O.Ucf)312^-1 . (35) 

Since ß > 0, we note that /(l) > 0. The function f(y) is 
plotted for several values of s and ß in Figure 6. For 
s < 5/2, we find that there is always a unique root off (y). 
For s = 5/2, there is a unique root if /? < 1. For s > 5/2, 
we find that there are two roots if 

ß<ßc = (s- 3/2)" - l/(s - 3/2)]s-5/2 < 1 , (36) 

and no roots if ß > ßc. For the case s = 3, this requires 
ß < 2/[3(3)1/2]. This predicts that there is no standing 
shock if M < 1.3 x 1015(v4cap/1016 cm2) g s_1 for M = 
0.5 Mq, R=109 cm (the numerical solution gives 
M < 2 x 1015 g s"1). The reason for this behavior is 
that the rapid increase in the area, combined with a 
constant mass flux, leads to a rapidly decreasing post- 
shock density when the shock moves more than ~R/2 
above the surface. The resulting increase in the cooling 
time is so rapid that, even accounting for the increasing 
flow distance, the gas never has time to cool before 
reaching the surface. If ß < 2/[3(3)1/2], one root occurs 
for y < 3 and the other for y > 3. The latter root is 

y 
Fig. 6.—Plot off(y) vs. y for various values of ß and s. The roots 

of f(y) = 0 give the shock height in units of the stellar radius for the 
simple static model. For s > 5/2 there are two roots for ß < ßc and 
no roots for/?>/?c. 

unphysical since the assumptions of constant physical 
parameters in the postshock region breaks down. These 
results can easily be extended to arbitrary values of M, R, 
and Acap (see eq. [34]). 

The above analysis assumes that the cooling is due to 
bremsstrahlung radiation. If cyclotron cooling is 
important, it is possible that a steady state shock could 
form for low M and large magnetic fields (see Langer 
and Rappaport 1982). The simple model also suggests 
that for radial accretion (s = 2) an equilibrium shock 
height can be found, no matter how small M becomes. 

c) Cyclotron Emission 
We have ignored cyclotron emission in computing 

our solutions. We now estimate the conditions for which 
the neglect of this emission is justified. We divide the 
postshock region into three zones, each of roughly 
constant density and temperature, and assume the 
magnetic field is uniform throughout the postshock 
region. We then estimate the cyclotron radiation from 
each zone, ignoring absorption in zones above it, and 
using the angle-averaged cyclotron absorption co- 
efficient. The cyclotron radiation would then be self- 
absorbed, following a Rayleigh-Jeans curve, up to a 
frequency co* = m*coC9 with negligible emission for 
co > co*. If we use the fit for ra* given in equation (14), 
we find (see Table 2) that m* is highest in zone 1 and 
decreases in zones 2 and 3. Here, zone 1 is at nearly the 
postshock temperature, while zones 2 and 3 are farther 
down in the cooling zone (see Figs, lb and Id). This 
shows that the principal cyclotron emission comes from 
the top (hottest) zone. This zone would also absorb the 
cyclotron emission from the zones below it. The value 
of m* is slightly larger for the lower accretion rate 
because of its greater shock height. The cyclotron 
radiation for both models peaks at optical wavelengths 
when B = 107 gauss. The cyclotron luminosity is less than 
the accretion luminosity if the magnetic field is small 
enough. For a white dwarf with a mass M = 0.5 M0 

and a radius of 109 cm, we require Æ < 1.4 x 107 gauss 
when M = 2.5 x 1015 g s_1, and B <3.4 x 107 gauss 
when M = 2 x 1016 g s_1, to ensure that cyclotron 
emission is unimportant. This shows that our models, 
which include only bremsstrahlung emission, are 
accurate for B < 107 gauss. 

d) The Scaling Law 
We have found that our results obey a simple scaling 

law. Figure 7 shows the maximum shock height (in units 
of the stellar radius) and the limit cycle period (in units 
of the free-fall time) as a function of the scaling param- 
eter, *¥Rg cj)~3/2. The scaling law can be roughly 
approximated by (see Fig. 7) 

10(rsh ~rc)^P ^ 2 
R ~ tff~'VRg<t>-il2 ’ K n 

where P is the oscillation period and the bottom of the 
cooling zone lies at rc. This shows that 

P oc (M/R)(Ac¡¡p/M). (38) 
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TABLE 2 
Self-absorbed Cyclotron Radiation in the Shock-heated Region3 

Electron 
Accretion Number _3 

Rate Thickness Density T (¿*B7)
d {^cyc \ 

(gs_1) Zoneb (cm) (cm-3) (K) m*c (Â) \ L ) 

2.5 x 1015  1 1.5 x 108 1.2 x 1015 1.7xl08 14.5 7390 0.34 
2 3.9 x 107 2.4 x 1015 1.1 x 108 11.3 9480 0.074 
3 8.5 x 106 4.5 x 1015 6.0 x 107 8.0 13,400 0.014 

2 x 1016   1 1.1 x 107 1.5 x 1016 1.7 x 108 14.4 7440 0.026 
2 3.1 x 106 2.3 x 1016 1.1 x 108 11.1 9650 0.008 
3 1.9 xlO6 3.5 x 1016 6.5 x 107 8.5 12,600 0.002 

3 The cross sectionali area of the column = 1016 cm2 at the surface of the white dwarf of mass 
M = 0.5 M0, R = 109 cm. 

b Zones of roughly constant density and temperature. Zone 1 is just below the shock front. Zones 2 and 
3 are below that. See Fig. 1. 

c Cyclotron radiation is self-absorbed up to a frequency m*œc where m* is from the fit to the results 
of Chanmugam and Wagner 1979 found by Wada et al. 1980. 

d A* = 2nc/m*cDc is the peak wavelength for the cyclotron radiation. B7 = magnetic field in units of 
107 gauss. 

e LcyJL = ratio of cyclotron luminosity to accretion luminosity. 

e) The Minimum Shock Height 
The shock moves upward when there is more gas 

crossing the shock than gas cooling to the photospheric 
temperature, and it moves downward when the opposite 
relation holds. This response must occur to preserve an 
approximate balance between the ram pressure of the 
accreting gas and the thermal pressure of the postshock 
gas. When the shock is moving downward (J^ < 0), the 
postshock temperature is less than when > 0 (see eq. 

Fig. 7.—The shock height in units of the white dwarf radius and 
the period in units of the free-fall time as functions of the dimensionless 
scaling parameter (see text). The results for different white dwarf 
masses and radii cluster along a single curve. The scatter in the points 
is mostly due to numerical uncertainty. 

[31]). The lower temperature allows the gas to cool more 
rapidly and thus enhances the downward motion of the 
shock. Our solutions show that the downward motion 
is so rapid that the postshock Mach number reaches 
~0.8 and significant pressure gradients develop. This is 
in sharp contrast to the situation for Fs>0 when the 
Mach number is ~0.1, allowing sound waves to equalize 
the pressure between the shock and the photosphere 
(see Fig. 1). The downward motion of the shock con- 
tinues until the reservoir of hot gas built up while 
1^ > 0 is depleted. The gas at the photospheric temper- 
ature is optically thick and does not cool efficiently. 
It is this cutoff in the cooling that causes a halt to the 
downward motion of the shock (the ram pressure is not 
great enough for the shock to enter the photosphere). 
Because the photosphere does not move, any gas 
crossing the shock after the minimum height is reached 
must have zero flow velocity. The jump equations (31) 
show that the shock must then begin to move upward 
with a velocity of Iff/3. This rapid change of Vs 
explains the cusp at minimum shock height in Figure 
2a. An interesting point to note is that when the shock 
is moving upward and crosses the equilibrium height 
the postshock temperature is too high to allow the 
gas to cool before reaching the surface. The shock thus 
continues upward until the gas does have enough time 
to cool, and then stops. The gas then has the same 
postshock temperature as the equilibrium solution, but 
the shock is too high. When the shock reaches the 
equilibrium height with 1^ < 0, the postshock tempera- 
ture is lower, so the gas is cooling too rapidly and the 
shock continues downward. As a result, the shock con- 
tinues to move up and down, instead of stopping at the 
equilibrium height. 

Our numerical model finds a solution on a gird of 
points which is too coarse to resolve fully the flow 
structure that would occur in a real accretion column 
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near minimum shock height. In addition we do not 
properly treat the transition to optically thick radiative 
cooling. As a result, our model does not obtain an 
accurate solution to the flow for a short time interval 
around the minimum shock height. However, the details 
of the flow are irrelevant because the shock must quickly 
start to move upward at a velocity Fff/3 after getting 
very close to the photosphere, and the numerical model 
reproduces this behavior. In Paper I we used a different 
treatment of the radiative cooling and found a different 
behavior near minimum shock height. However, the limit 
cycle period and the maximum shock height obtained in 
Paper I are the same as in the current work, demonstrat- 
ing the insensitivity of the results to the treatment of the 
flow near minimum shock height. 

Our model cannot determine exactly how close the 
shock comes to the photosphere. It is even possible that 
the flow might become nonhydrodynamic with the 
accretion energy being deposited within a mean free path 
of the accreting ions. However, such a condition cannot 
persist for long because the amount of material within a 
Coulomb stopping length is incapable of radiating away 
the accretion luminosity, unless the accretion rate is 
extremely small. The material in the stopping region 
would rapidly heat up, and the interface where thermal- 
ization occurs (over a mean free path) would move up 
the column. Such an interface is commonly known as a 
shock. The flow thus rapidly reverts to being hydro- 
dynamic, and our model once again applies. The details 
of the flow during this short time interval do not influence 
the rest of the cycle and may safely be ignored. 

Heat conductivity should become important whenever 
there are large temperature gradients. The largest 
temperature gradients occur when the shock is at its 
minimum height. Heat conduction will act to prevent 
excessively steep temperature gradients and might serve 
to determine the minimum shock height. Because of our 
numerical treatment of the radiative cooling we cannot 
answer this question. However, heat conductivity cannot 
prevent the upward motion of the shock which serves 
to reduce the temperature gradients and hence the heat 
flux. In a short time, the shock is high enough that our 
numerical results apply, and heat conduction is then 
unimportant for the rest of the cycle. 

In summary, we have shown that the precise behavior 
of the flow at minimum shock height has no influence 
on the rest of the cycle. This short time interval should 
have no observable consequences, so we have chosen a 
numerically convenient treatment which preserves the 
overall behavior, in spite of its failure to provide the 
precise radial dependence of the temperature, velocity, 
etc., during this short time interval. 

VI. CONCLUSIONS 

In this paper we have considered one-dimensional, 
time-dependent accretion onto magnetized white dwarfs, 
where the principal cooling mechanism is optically thin 
bremsstrahlung. We have found: 

1. The flow is thermally unstable and the height of 
the shock undergoes periodic oscillations. For white 

dwarfs with masses in the range from 0.5 to 1 M0, the 
periods range from a fraction of a second to ~10 s, 
depending on the accretion rate per unit area. We have 
also shown that if some process other than bremsstrah- 
lung dominates the cooling, the flow may be stable. 

2. For accretion rates below a certain critical value, 
which depends on the properties of the white dwarf, the 
solution changes character and the shock moves upward 
indefinitely. At approximately the same M, the steady 
state equations cease to have a solution. 

3. The flow solution depends on a single dimensionless 
parameter which in turn is a function of the mass and 
radius of the white dwarf and the accretion rate per unit 
area. 

The observed luminosities in the different energy bands 
provide a way to determine the basic properties of the 
accretion flow without recourse to a detailed model of the 
accretion column. Quantities that can be determined 
include the accretion rate, the area of the accretion 
column, the density of the postshock gas, and the volume 
of the hard X-ray-emitting region. These values set the 
range of accretion rates and accretion column areas 
which theories must consider and provide a consistency 
check on the predictions of the resulting model. However, 
caution must be used in attempting to deduce the param- 
eters of the flow from the observations because no 
observations have been made in the extreme ultraviolet 
at the peak of the blackbody flux. As a result, the quoted 
values for the blackbody temperature and luminosity 
may be in error. Thus, observations of the AM Her stars 
in the extreme-ultraviolet would be extremely helpful in 
determining the properties of the accretion column. 

In making the calculations presented in this paper, we 
have considered system parameters which are not directly 
relevant to the AM Her stars. For other conditions, 
processes such as cyclotron emission, heat conduction, 
and nuclear burning on the surface of the white dwarf 
can significantly affect the predicted spectrum and other 
results. These questions will be dealt with in subsequent 
papers. 

X-ray and optical pulsations can provide useful 
comparisons between observations and theory. The 
AM Her stars have been observed to flicker (Panek 
1980; Bond, Chanmugam, and Grauer 1979) on time 
scales longer than 30 seconds. Our model predicts periods 
significantly shorter than this for which few observations 
are available. We note that, if the accretion rate per 
unit area is not uniform across the accretion column, 
there should be a range of oscillation periods. In 
addition, different flux tubes may oscillate independently 
with random relative phases. As a result, we expect that 
the radiation will exhibit short-term variability with 
periods corresponding to the mean accretion rate per unit 
area. We also note that the luminosity of the AM Her 
systems can vary by 50 % on a time scale of 100 seconds 
(see, e.g., Panek 1980). This shows that the oscillations 
will be disrupted by large amplitude perturbations every 
10-1000 cycles. Thus, there might be no way to tell 
observationally if the oscillations are damped, provided 
Q > 100. The recent results reported by Middleditch 
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(1982) suggest that this type of instability, with a 
characteristic period of the order of 1.7 s, is present in 
the systems An UMa and E1405-451. Further observa- 
tions of variability on roughly this time scale are clearly 
of great interest. 
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APPENDIX A 

THE DIFFERENCE EQUATIONS 

The flow equations (25) are solved numerically by an implicit finite difference method on an Eulerian grid of 
points r¿. There are N zones of width Ar* centered at the points rt [by definition r;+i = r* + y(Arf + Ari+1)]. Thus, 
the lower boundary of our system is at 7^ — Arj/2 and the upper boundary is at rN + ArN/2. As a boundary condition 
at rN we specify ENi kN, and mN in terms of the accretion rate M, an initial temperature, and the velocity (generally we 
assume free fall, VN = (2GM/rN)1/2). We place the lower boundary well inside the nearly hydrostatic portion of the 
stellar atmosphere where the pressure is much greater than the ram pressure of the accreting gas. As a result, the 
solution does not depend on the exact form of the boundary condition, which we have taken as zero mass flux 
through the lower boundary at — ArJ2 (i.e., /c1/2 = 0). This avoids the use of a rigid lower boundary at a point 
where this would influence the solution. 

The following form has been adopted for the mass difference equation 

m- /fr?+i/2 
At [ Ar, /’ 

kn+1 = Ki+l/2 — 
kUl + k n+ 1 

(Al) 

where i designates a radius, and n, a time. This equation is implicit and conserves mass, as can be seen from the 
following calculation 

N N-l 
Am = £ Ari(m"+l - ml) = -At £ (k^în ~ ^"-1/2) + W21 - mn

N)ArN = -At kn
N
+J1/2 = At MN_ 1/2 (A2) 

The boundary conditions that there is no flow through the lower boundary (/c1/2 = 0) and that the upper boundary 
is static (mn

N
+1 = m%) have been used in simplifying this expression. The result is that the change in mass is the mass 

flux at the lower boundary of the top zone, —/cN_1/2, times the time step Ai. The ability to ensure numerical con- 
servation of mass was one reason for placing boundary conditions at rt — jArl9 not at 

The chosen form for the energy difference equation is 

£?+1 -EÏ 
At Ar,- (JAytln-iJAr1 1/2 + 

m 
(E + pA — aA) 

i+l/2 

-(E + pA- aA) 
m 

where 

— (E pA — oÁ) 
m i+l/2 

= [EiUn + (PA - aA)nil2] ■ m i+ 1/2 

All quantities at i + 1/2 are evaluated as in equation (Al). 
Equation (25) is equivalent to: 

dk 
dt 

k dk 
m dr 

d ÍGM lk2\ d n s, ^ 
+ mór[—-2ñ¡l-órl(l’-'’)A] + -rip-'’)A- 

where 

, 2 / GM _1_^\ 
2 m2/ 

(A3) 

(A4) 

(A5) 

(A6) 
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We write the difference equation as 

k"+1 - /c? i f/afc\"+1 I 
At 2 [\di/i+1/2 \5t/i_1/2j 

where 

/dfe\n+1 (ki+l + ki)(ki+l - kj) | (n^+mj+ij/GM GM 1 kf+l | 1 kf \ 
\dtji+m (mi+í + mi)(ri+1-ri) 2(r¡+1 - r¡) \ri+1 r¡ 2m?+1 2m?/ 

[(P - gM]¡+i - [(P - a)Al , . {[(P - + [(P - 
ri+i-n (fi + fi+i) 

(A7) 

(A8) 

and all quantities on the right-hand side are evaluated at time tn+1. Note that when the Lagrangian derivative 
[(dk/dt) + (k/m)(dk/dr)] and (p — a) are zero, the difference equation is satisfied by the exact free-fall solution 
k^/m2 = 2GM/r. This equation also admits a simple recursive solution for a hydrostatic, isothermal atmosphere: 

m¿+i = 
2kB Ts 

Ari+i + r¡) 

GM 

rt+Si 

1 GM kB T i 1 s 

ri+i + r¡ 
(A9) 

This solution eliminates the need to wait for the dense, nearly static portions of the atmosphere to relax when a 
model is started up. The energy and momentum equations (eqs. [A3] and [A7]) have both been written so that the 
term at ï — | is zero for i = 1 (except for the heat flux) by the boundary condition of no mass flux through the 
bottom (/c1/2 = 0). Because of the presence of gravity, the momentum equation cannot be written in a conservative 
form. 

As written, these equations are nonlinear in the future solution. We treat this by linearizing in the future 
solution. For example, we write 

(fcr1)2 

m?+1 

k? 
>2—„kr1 

mï 1 (AlO) 

In practice we have found that, with time steps chosen so that the solution does not change greatly between time tn 
and iM+1, this linearization accurately approximates the implicit system. 

It is convenient to express the equations (25) in matrix form. Let 

Then equations (25) can be reduced to the form: 

Ä, Ulti — B¡ U”+l + C, U"!} = U" + S" , 

(All) 

(A12) 

where v4f, Bh and are 3x3 matrices which depend on conditions at the “present” time (corresponding to 
superscript n). The right-hand side contains the present solution and a source term S" which does not involve any 
“future” variables. We next make the Ansatz 

ur1 = Ei+lu"+i + pm, (A13) 

where £i+1 is a 3 x 3 matrix, Fi+1 is a 3 x 1 matrix, and both sets of matrices Ëi+1 and Fi+1 are as yet un- 
determined. This may be substituted into equation (A12) to obtain 

+S?). (A14) 

A comparison of equations (A13) and (A14) shows that 

(A15) 

while 

Fi+1= -tö-C^rM^-C^ + S?)- (A16) 

An iterative solution for and may then be obtained with the use of the boundary conditions. The future 
solution ur1 can then be obtained by back substitution in equation (A 13). 

To deal with the numerical instabilities induced by the discontinuity at the shock and the large temperature 
gradient at the base of the cooling zone, we have introduced artificial dissipation into the flow equations. This includes 
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artificial viscosity and heat conductivity and the use of a Shuman filter (Harten and Zwas 1972). The stress due to 
artificial viscosity is 

4 Z’ mi(ki+l/2 1/2 \ 
39vis ~T I I 

Ai \ wii + 1/2 mi-l/2/ 
(A17) 

for ôV/ôr < 0, and zero for dV/dr > 0. Thus, there is a nonzero viscous stress only when the fluid is undergoing 
compression (dV/dr < 0). The dimensionless constant /vis is employed to control the strength of the viscosity. The 
chosen form means that viscosity acts in regions where large absolute changes in the velocity occur. In practice, the 
artificial viscosity spreads the shock across several zones of the numerical mesh and has little effect elsewhere. For 
purposes of comparison, the stress due to real viscosity is 

^real 37Ais 
d k 
dr m ’ 

(A18) 

where /¿vis is a constant depending on the temperature (see eq. [24]). This stress is small enough that it has no effect 
on the solution and thus has not been included in the equations. 

The energy flux due to heat conduction is 

s) T 
J=-K — , (A19) 

where T = pA/(/¿kBm). We include the real heat conduction (see eq. [21]), but it has little effect for the models 
presented in this paper. The following form has been chosen for the artificial heat conductivity: 

Ki ./cond 
Tí+í + T, 

(A20) 

where /cond is a constant that can be adjusted to achieve the desired heat flux. This heat conduction is important 
wherever there are large fractional changes in the temperature. In practice, this occurs across the shock and at the 
base of the cooling zone. We have chosen /cond so that its value in the cooling region is 40% of its value across 
the shock. 

After each time step we apply a series of filters to the solution to smooth out rapid variations. We construct 
Shuman filters (see Harten and Zwas 1972) which remove components in the solution whose wavelength is close to the 
mesh spacing. The mesh is not capable of resolving variations on this small a distance scale so the filter does not 
throw away any real information, and the smoothing prevents instabilities due to inaccurate numerical estimates 
of derivatives (see Appendix B). 

APPENDIX B 

THE SHUMAN FILTER 

The filter equation we employ (see Harten and Zwas 1972) is of the form 

xi = xi + ei+1/2(xi+1-xi)-ei-1/2(xi-xi_1)9 (bi) 

where is the new (filtered) value for the variable This form of the filter has the property that it preserves 
the sum of X, i.e., 

N-1 N-l 
£ = I , (B2) 
i=l i=l 

provided 01/2 = 0N-a/2) = 0. This property allows us to ensure the numerical conservation of mass established in the 
difference equation by filtering only the quantity miAr^. We first employ a filter designed to smooth out small 
deviations from free fall in the region above the shock. Next we filter out relative maxima and minima in the 
density, velocity, and temperature which are only one zone wide, and therefore below the resolution of the mesh. The 
remaining task is to choose the quantities to be filtered and the values of the filter constant 0. We have been guided 
in this choice by the types of instabilities which have occurred in our numerical models. 

The first filter we employ is designed to remove small variations away from free fall in the highly supersonic flow 
above the shock. The filter constant has been chosen as 

v) i 
mij (mVff)i+l + (mVf()i ’ 

(B3) 
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where/m is an adjustable constant controlling the strength of the filter and Lff is the free-fall velocity. This filter 
is adjusted by setting 0i+1/2 to zero at any point where 0¿+i/2 < 2 x \0~3fm or if 

(Ar¡+1mi+1 — Arimi)(mf+1 — Wj) < 0 . (B4) 

The second condition prevents filtering when the mesh spacing is varying more rapidly than the density, so that 
filtering would act to increase undesired variations. 

We apply this filter to the density by setting Xi toT^Arf in equation (Bl). The new density, mh is smooth in the 
free-fall region, and the total mass has been conserved in the process because 01/2 and 0N-i/2 were set to zero. 
It should be noted that the filter is never applied at the point rN because the boundary condition fixes the solution 
at that point. We next apply the same filter to the sum of the kinetic and thermal energy (the gravitational potential 
energy is smooth due to the previous filter). The filter equation is 

ËiAri = EiAri + 6i+1/2 

— ^i— 1/2 

{^ GM „ \ A T GM \ 
Ari+1l£i+1 + —mí+1 I - Ard ^ — mf I 

. GM A A I GM „ \ 
(B5) 

This filter conserves the total energy and does not redistribute gravitational potential energy. 
We next compute the velocity and temperature, 

Mi 3/cB\ml. rt 2 mi) 
(B6) 

and apply a second group of filters. These filters are designed to smooth out the density, temperature, and velocity 
at points where they have relative maxima or minima that are only one zone wide (the mesh is not fine enough for 
the solution to contain any information on that scale). This may be accomplished by setting 0i+1/2 and öi_1/2 to a 
constant /w if 

(B7) 

and otherwise setting them to zero. The constant fw lies between 0 and 1 and is chosen to give the desired level 
of filtering. This filter is applied to and 7J, to produce filtered quantities ^ and % A similar filter is applied to 
Ar¿ rhi to set A^m;, but the previously determined 0i+1/2 is set to 0 for any point satisfying equation (B4). These 
filtered quantities are then used to set a filtered solution: 

, ki^ mi Vi , 

and 

Et 1 ® T/2 i S rri 
WiVi + 2 7Tmi7* 

GM z  mi . 
n 

(B8) 

The filtered solution then serves as the starting point for the next time step. This process conserves the total mass 
but yields a mild nonconservation of energy and momentum. 
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