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ABSTRACT 
We present new theoretical models for X-ray induced stellar winds in binary systems. We 

numerically solve the hydrodynamic equations in one dimension, utilizing a simplified model of the 
physics of an X-ray heated plasma. The character of the solutions depends on three dimensionless 
parameters: (1) the ratio of the X-ray spectral temperature to the photospheric temperature; (2) the 
ratio of the X-ray temperature to a temperature characterizing the escape energy from the stellar 
surface; and (3) the ratio of the flow time to the heating time. Holding the first parameter fixed 
at a high value (= 100), we explore the complete range of solutions produced by variations in the 
other two parameters. 

The primary results of the calculations are the temperature and density profiles and the mass 
flux in the wind. If the flow time is much greater than the heating time, a narrow transition 
between the photosphere and the corona occurs. Otherwise the transition is gradual. If the escape 
temperature is small compared to the X-ray temperature, the sonic point occurs at a height small 
compared to the coronal pressure scale height. The density is relatively high, and the mass flux is 
large. If the escape temperature is high, the corona is nearly static and isothermal with an 
exponential decay of density prior to the sonic point; in this case, the mass flux is small. We 
locate the known X-ray binary systems in the parameter space of our model and estimate the 
mass-loss rates from them. 
Subject headings: hydrodynamics — stars: binaries — stars: winds — X-rays: binaries 

I. INTRODUCTION 
Winds from the normal stars in X-ray binary systems 

are a source of matter to power the X-ray emission. They 
may also play a role in the evolution of the systems by 
carrying away mass and angular momentum. The X-ray 
illumination of the stellar atmosphere can greatly 
influence the wind. The effect is of interest mainly in 
late-type stars in which the intrinsic mass loss may be 
small and in which the X-rays have a large effect on the 
normal star’s atmosphere. There are five such systems 
known, and approximately 20 of the 100 known optical 
counterparts of X-ray sources have X-ray luminosity 
greater than optical and are candidates for such processes 
(Bradt, Doxsey, and Jernigan 1979). 

In this paper we deal with the calculation of the 
structure and mass loss of a stellar wind, given the 
binary separation, and the stellar sizes, masses, and 
luminosities. In a previous paper, London, McCray, and 
Auer (1981, hereafter LMA) point out that the general 
problem of X-ray illuminated stellar atmospheres can be 
divided into two parts (see also Anderson 1981). This is 
possible because a narrow transition zone divides the 
atmosphere into a photosphere-chromosphere region 
and a corona, much like the solar atmosphere. The lower 
region is nearly static, and its structure is not affected 
by the optically thin corona. They determined the 

structure of the lower atmosphere and the location of 
the transition region with a hydrostatic, thermal 
equilibrium radiative transfer model. In this paper we 
address the second part of the problem: the structure 
of the outflowing corona. This requires solving hydro- 
dynamic equations, since the flow velocity becomes 
supersonic, and dynamic terms in the momentum and 
energy balance are important. The radiation field in the 
corona can be specified from the results of the lower 
atmosphere models. The approximation of an optically 
thin corona is checked for consistency after the calcula- 
tions. 

Although models for X-ray induced stellar winds have 
been presented previously, we feel that no model has 
yet incorporated an accurate treatment of the hydro- 
dynamics, the essential physical processes, and a clear 
discussion of the relationship of the input physics to the 
solutions. Our goal in this paper is twofold : we present 
a new technique for solving steady state flow problems 
with sonic transitions, and we present accurate solutions 
of the hydrodynamic equations for this problem from 
which the relationship of input parameters to the results 
is easily shown. Although we shall estimate mass-loss 
rates, we do not claim them to be extremely accurate 
because we make simplifications in the atomic physics 
and geometry to render this problem tractable. 
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With this goal in mind, we shall ultilize an idealized 
model for the atomic processes involved in heating and 
cooling the gas. This model, described in § II, has a few 
parameters whose values we choose to account for the 
important atomic contributors to the energy exchange 
in a radiation field as calculated by LMA. The advantage 
of using the simplified model is that the physical 
behavior of the flowing gas can be clearly understood. 
We find that the results depend on only three dimension- 
less parameters, which are ratios of characteristic 
temperatures and time scales. By estimating these tem- 
peratures and time scales for more realistic physics, we 
can apply our findings to a more realistic model. 

Before we describe our model in detail, let us discuss 
some of the past work in order to explain why we take 
another look at this problem. 

Early work by Arons (1973), Basko and Sunyaev 
(1973), and McCray and Hatchett (1975) first suggested 
the importance of the X-ray induced wind. Two more 
recent papers deal with the problem in somewhat more 
detail. 

Alme and Wilson (1974) present a very detailed gas 
dynamic model for X-ray induced winds. They solve one- 
dimensional, time dependent, coupled, radiative transfer, 
and hydrodynamic equations using a sophisticated 
numerical code. Using physical parameters appropriate 
to the HZ Her system, they examine how the mass flux 
in steady state, relaxed solutions varies with the incident 
X-rays, the abundance of the heavier elements, and the 
distance from the photosphere to the gravitational 
saddle (L^ point in a Roche potential. Although they 
describe the general trends of the calculations, they do 
not provide a clear description of the connection between 
the results and the input physics. An additional problem 
with their calculations is that in certain cases they find 
persistent oscillations in the solutions which they cannot 
explain in physical terms. 

Basko et a/. (1977) give a clear picture of some of the 
underlying physics of the wind. They point out the two 
distinct zones in the atmosphere: the photosphere and 
corona. By assuming that the flow in the corona is 
isothermal, they estimate the mass loss. Their argument 
is based on guesses of heating and flow time scales, and 
they claim their results are uncertain to a factor of 3. 
They do not solve the flow equations but only suggest 
how their approximation could be improved by knowing 
the correct time scales. 

We proceed in this paper to present the details of our 
model and the method of solution in § II, the solutions 
and discussion in § III, and a discussion of the application 
of our model to the X-ray binaries in § IV. 

II. THE WIND MODEL 

a) Description and Equations 

We consider one-dimensional, plane-parallel flow in a 
gravitational field appropriate to the region near the Lt 
point in a Roche potential. We assume that the stellar 
surface, defined by the location of the transition region, 
is at a significant distance from the Li point so that 

there is no Roche lobe overflow at the photospheric 
temperature. We solve the steady flow equations 
describing the gas structure as a function of distance 
from the star, looking for wind solutions which have 
free streaming far from the surface. In effect, the 
possibility of a subsonic settling solution on the compact 
star is ignored. We consider heating by X-ray and 
ultraviolet radiation but ignore radiation pressure. 
Thermal conduction is not important as it is in the solar 
corona, since the X-ray heating dominates the energy 
balance. We ignore Coriolis forces. The appropriate 
equations for conservation of mass, momentum, and 
energy are: 

0, 

— (P + pv2) = -pg , 
dz 

A 
dz 

= . 

(1) 

(2) 

(3) 

Here the independent variable z measures height above 
the stellar surface; p, v, and P are the density, velocity, 
and pressure of the gas; g and </> are the gravity and 
gravitational potential; and is the net radiative 
heating per unit mass. The gas temperature, T, is found 
from the equation of state : 

T = 
mpP 
2pk ’ (4) 

where mp is the proton mass. We have assumed an ionized 
hydrogen plasma. With a suitable definition of mean 
atomic weight, this could be generalized to include the 
contribution of helium. 

For the gravity, we use a first-order expansion of the 
effective gravity along the line of centers in the Roche 
potential: 

(5) 

This is accurate as long as z0 < 0.2 A, the binary 
separation. The potential is quadratic in z with a 
maximum at z = z0. 

We model the heating by a simple analytic formula 
including X-ray heating by either photoionization of the 
heavy elements (C, N, O, Fe, etc.) or Compton scattering 
(cf. London 1979) and continuum radiative processes of 
hydrogen. The X-ray heating is given by: 

^x=^„(1-^). (6) 

The value at low temperature, J£?X0, is calculated from 
the X-ray flux and spectrum. The heating cuts off at high 
temperature, as T -> Tx. The value of Tx depends on the 
X-ray spectral temperature when modeling Compton 
heating, or the low-energy X-ray spectrum and the 
atomic cross sections and abundances when modeling 
photoionization. The second part of the net heating is 
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due to photoionization and recombination of hydrogen: 

2’„ = — [froPT-3l2(TR-T)]. (7) 
mp 

Here a0 is the recombination constant (recombination 
rate coefficient is a0T

_1/2), and TR is the radiation 
temperature of the photosphere (TR ^ 104 K). We have 
assumed, in writing equation (7), that the ionized 
fraction of hydrogen is determined by a balance of 
photoionization and radiative recombination. The photo- 
ionization is dominated by the photospheric (mostly 
reprocessed X-rays) radiation, rather than the incident 
X-rays. At high temperature = constant x T-1/2, 
approximating bremsstrahlung cooling. 

The important feature of the heating function is the 
shape of the thermal equilibrium curve. In Figure 1 
we show the equilibrium temperature at which if = 0, 
as a function of pressure. At high pressure (deep in the 
atmosphere) T ^>TR. At low pressure (high in the 
atmosphere) T Tx. In between there is a region where 
the temperature has three equilibrium values at a given 
pressure. The middle solution is unstable. The correct 
choice between the other two depends on the thermal 
history of the gas. In the case of outflow from high to low 
pressure, a transition from TR to Tx takes place in a thin 
zone near the pressure Pmin = 33/2P0, where P0 is the 
pressure scale defined below. 

A more realistic treatment of the heating and cooling 
gives the same qualitative behavior, with perhaps several 
twists in the equilibrium curve (cf. McCray and Hatchett 
1975; Kallman 1980). 

To facilitate finding and understanding solutions of the 
flow equations, we reduce them to nondimensional form. 

Fig. 1.—Pressure-temperature curves. We show the dimensionless 
pressure and temperature defined in § lia. The solid curve labeled 
“thermal equilibrium” is derived by setting the net heating equal to 
zero. The other curves are the results of the model calculations. The 
sonic point of each model is labeled by the letter used in Table 1. 
The diagonal-dashed lines are mass flux contours specifying the 
pressure and temperature at the sonic point for given values of A. 

We scale the distance to z0, temperature to Tx, velocity 
to t;o = (kTx/mp)112, and pressure to 

Po = 
m. CO T 1/2 

^ x0 
£R 

a0 
(8) 

The natural density scale is then p = mpP0/kTx. The 
mass flux scale is 

¿o = Povo = Po 
kTx 

-1/2 
(9) 

The scale for the gravity is the surface value g09 and for 
the potential it is </>0 = g0

zo (twice the potential from 
the surface to the Lx point). After dividing out the scale 
factors we are left with three nondimensional parameters 
in the equations. These are chosen to be: 

Pi — Tx/Tr, R2 — TJT^ and P3 — tf/th . (10) 

Here tf = z0/v0 is a time characteristic of the flow, xH is 
a time characteristic of heating, and 7^ is a temperature 
characteristic of the potential drop from to the stellar 
surface. Note that at T# the thermal energy of the gas 
per unit mass (3kT/mp) exceeds the energy required to 
escape from the gravitational potential (</>/2) by a factor 
of 6. Thus, when P2 is small the potential barrier is 
high, and when P2 approaches unity the potential barrier 
is shallow (for gas at T = 7^). The actual temperature 
at which gas reaches the sonic point depends on 
additional interactions, especially on P3 which 
determines whether or not heating, or adiabatic cooling, 
can occur. 

Using the same symbols for the physical variables as 
in equations (1-3) and the scaling described in the 
previous paragraph, and introducing the dimensionless 
mass flux A, we write the nondimensional wind equations 
as follows: 

dz 
A = 0, 

d_ 
dz 

d_ 
dz 

(5 P 1 

K)=-f 

= R3P2’. 
{2p 2‘ 

The dimensionless heating function is 

The equation of state is 

^ 1P 
T = ö-- 2 P 

(H) 

(12) 

(13) 

(14) 

(15) 

Equations (11), (12), and (13) are three coupled first-order 
equations with dependent variables P, p, and 2. We seek 
solutions which match the hydrostatic stellar atmosphere 
at the surface and are supersonic at large distance from 
the star. We must specify three boundary conditions to 
find a unique solution. Two boundary conditions are 
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applied at the surface. We choose the pressure there and 
also require thermal equilibrium (if = 0). The exact 
choice of pressure is unimportant as long as the flow 
speed is small compared to the sound speed and the local 
thermal time scale is short compared to the flow time 
scale. This requires choosing the pressure about a factor 
of 2 larger than Pmin. In fact, with such a choice of 
pressure, the requirement of thermal equilibrium is not 
important since the gas would reach equilibrium quickly 
in any case. The third boundary condition is applied at 
the sonic point. By combining equations (11-13) we find 
that the following condition is necessary to ensure a 
regular solution when the adiabatic Mach number is 
unity: 

R2R3p2’=-Ug. (16) 

b) Numerical Techniques 

Because a singularity occurs in the differential 
equations at the sonic point, standard methods often fail 
to provide accurate solutions for the transonic wind. The 
correct solution is characterized by a transition to 
supersonic flow at the sonic point zs, and a unique mass 
flux 2S, but a priori neither zs nor Às are known. 

However, given a set of surface boundary conditions, 
e.g., P(0), p(0), and 2, the coupled, ordinary, differential 
equations can be solved as an initial value problem. 
As the integration proceeds outward and the Mach 
number approaches unity, the influence of the singularity 
forces the solution into an unphysical regime, unless the 
sonic condition (eq. [16]) is precisely satisfied. One 
standard technique for these problems, the “shooting 
method,” uses this approach; one seeks to satisfy the 
sonic condition by iteratively correcting the trial surface 
boundary conditions. This method readily determines the 
mass flux with high accuracy, but often fails to determine 
the location of the sonic point to even a few percent: 
that is the case here. 

Rather than approaching the equations as an initial 
value problem with an adjustable parameter, we have 
developed a method which treats the equations as a 
two-point boundary value problem. We use a relaxation 
technique, as described in Kippenhahn, Weigert, and 
Hofmeister (1968), which replaces the differential 
equations with algebraic difference equations on a finite 
mesh. The solution consists of a set of variables, defined 
at each point in the mesh, from which we can calculate 
terms in the difference equations. Given an initial trial 
solution, we iteratively improve the solution using a 
Newton-Raphson procedure until the equations are 
satisfied to some tolerance. The difficulty with applying 
relaxation here is that the location of the sonic point is 
not known, so the spatial range of the mesh cannot be 
preset. We use an approach similar in spirit to Eggleton’s 
(1971) formulation of the stellar structure relaxation 
problem on a non-Lagrangian grid. At the expense of 
introducing two additional differential equations, we 
transform to a new independent variable, q(z), which 
gives us the freedom to adjust the mesh and to impose 
the sonic boundary condition directly. 

We define a transformation which allows us to express 
a differential equation with respect to z in terms of a new 
independent variable q. For example the equation 

is transformed to 

dF -G — 
dq dq 

(17) 

(18) 

We construct the transformation by first specifying a 
“mesh spacing function,” g(z), which is monotonie, has 
a known derivative with respect to z, and increases by a 
constant amount, i/j, between mesh points. The following 
equations describe this function: 

and 

(19) 

(20) 

Since we require that Q(z) have a known derivative 

f-ew, PD 

the transformation from z to g can be written as 

dz _dQ dz _il/ 
dq dq dQ 6 

It is convenient to scale the continuous variable q as an 
index which labels the mesh points, i.e., for an N-point 
grid, g = 1, 2, 3, ... iV at the mesh points. This can be 
done by appropriately scaling \¡/. 

As an example, first consider the case of the wind 
equations as an initial value problem, without a sonic 
point, on the interval zx < z <z2, with, for instance, 
Q{z) = log z. The overall problem consists of the two 
mesh spacing equations (eqs. [19] and [20]) plus the 
three wind equations (eqs. [11-13]) transformed from z 
to q as independent variable. In this case the five 
boundary conditions on the AT-point mesh are at g = 1 : 

z = Zi , P = Pl , if = 0 , and 2 = 20 , (23) 

and Sit q = N: 

z = z2 . (24) 

An appropriate choice of variables to define the solution 
at each point in the grid might be: 2, P, p, z, and i/s. 
Little has been gained here except for logarithmic mesh 
spacing in z, which might be of some advantage. 

The utility of the method becomes apparent when one 
considers the transonic wind problem. Here we replace 
two of the previous boundary conditions, on mass flux 
(eq. [23]), and on the physical location of the outer 
edge of the grid (eq. [24]), by the two sonic conditions 
at g = JV : 

^=1, and R2R3if=-f20, (25) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
82

A
pJ

. 
. .

25
8 

. .
26

0L
 

264 LONDON AND FLANNERY Vol. 258 

where Ji is the adiabatic Mach number 
\Jt = F/(5/3P/p)]1/2. Note that neither the location of 
the sonic point z(AT) nor the mass flux X needs to be 
specified. Nonetheless, the algebraic relations given by 
the finite difference representation of the equations and 
boundary conditions lead to a unique solution. As the 
iterations proceed, both X and the spacing of the mesh 
are simultaneously adjusted to satisfy the constraints at 
the surface and the sonic point. 

In practice, we use logarithmic variables and a more 
complicated formula for the mesh spacing which allows 
us to resolve the narrow transition region. We start the 
relaxation scheme with an initial trial solution, obtained 
from a Runge-Kutta integration, in which the Mach 
number at the outer edge of the grid is ~0.8. Typically, 
during iterations the edge of the grid, zs, will adjust by 
as much as 50%, and the model will converge to the 
true solution in only three or four iterations. The 
solution valid for one set of parameters (Rl5 R2> and R3) 
can serve as an initial guess for a moderately perturbed 
(ARj < 30% ) new set of parameters. 

III. RESULTS OF MODEL CALCULATIONS 

d) Solution Space 
Using the numerical techniques described above, we 

have explored the two-dimensional solution space of the 
wind equations generated by varying R2 = TJT# and 
R3 = tf/th, as shown in Figure 2. We have examined 
the effects of varying Rx — Tx/TR by computing several 
models with 102 < Rx < 103. We find that the exact 
value does not qualitatively change the solution, nor does 
it change the mass flux by more than 25%. We therefore 
keep Ri fixed at a value of 100 since we expect it to be of 
this order or larger in all cases of interest. 

In Table 1 we show the parameters and important 

TABLE 1 
Four Limiting Models 

Model R2(TX/T<t>) R3(tf/th) X Ts
a Zs 

A  0.1 10 0.092 0.71 1.26 
B   10 10 1.910 0.84 3.31 
C....  0.1 0.1 0.0039 0.094 1.01 
D   10 0.1 4.090 0.083 1.92 

a Temperature at the sonic point. 

results for four models with R2 and R3 taking on values 
of 0.1 and 10. These models demonstrate the typical range 
of behavior of solutions. The solutions take on asymp- 
totic behavior which we can describe analytically for 
values outside this range. In Figure 3 we show the 
temperature and pressure profiles of these models. The 
pressure at the surface was fixed at the same value 
for all models. It decreases outward in all cases. Larger 
decreases in pressure result in lower mass flux. The 
temperature profiles in models A, B, and C are similar 
in that they have a sharp rise from T ~ to T ~ Tx 

at a pressure approximately equal to Pmin. This can be 
understood by looking at Figure 1, where we show 
curves of pressure versus temperature for the models as 
well as for thermal equilibrium. The transition region is 
not at the same position for all models in Figure 3 (it 
depends on R2 = TJT#) because of the choice of the 
distance scaling factor. The temperature drop in Model C 
near z = 1 is due to expansion cooling. In Model D the 
temperature never approaches Tx because the flow goes 
supersonic at T ~ which is 0.1 Tx. Figure 4 shows the 
Mach number profiles. We note that the curves all end 
at ^ = 1, as specified by our boundary conditions. 
Figure 5 shows X, the dimensionless mass loss, as a 

Fig. 2 Fig. 3 
Fig. 2.—Solution parameter space. The filled circles are the models in Table 1, the stars are the positions of the binary systems in Table 2 

using the unperturbed gravity. The open circles are for the binary systems with the flow assumed to be along the line of centers and the 
parameter A = 0.1. The lines adjoining the circles indicate the values of the parameters as A is lowered from 0.1. Tx is taken to be 106 K. 
Fig. 3.—Pressure and temperature profiles for four wind models lettered according to Table 1 
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Fig. 4.—We show the adiabatic Mach number profiles of the four 
models labeled according to Table 1 

function of R2 for three values of R3. We now proceed 
to discuss the four limiting solutions in slightly greater 
detail. 

b) tf $> th: Models A and B 
In models A and B, xF = 10th, and the heating is so 

fast that the temperature jumps to a value near Tx in the 
transition region and remains there throughout the 
corona. The mass flux can be estimated with an 
isothermal wind model. Following Basko et al (1977), 
we find the transonic solution of the continuity and 

Fig. 5.—The dimensionless mass flux for several values of R3 is 
plotted as a function of R2 

momentum equations (eqs. [11] and [12]) with constant 
temperature Tx. By applying jump conditions across the 
transition region, the mass flux can be expressed as : 

1 = 3(f)1/2 o 
1 -f Q2 (26) 

Here J?0 is the isothermal Mach number at the base of 
the corona. It is found from the following algebraic 
relation, derived from the flow equations : 

Jt0
2 - In ^o2 = 1 + (z2 - z + 1)/2R2 . (27) 

For Tx Tq, we find: 

^ ~ 3(f)1/2 exp (-1/4R2). (28) 
In this case, which corresponds to model A, the thermal 
energy of the gas in the lower corona is less than that 
needed to escape; we therefore have a hydrostatic region 
in which the pressure drops exponentially. Only when 
the gas gets close enough to the point to escape at 
Tx does the Mach number approach unity. The mass 
flux is small in this limit and drops exponentially as 
TJT# gets larger. 

For TXP T0, equation (26) gives À ~ 1.84. This 
corresponds to Model B. Note that our model breaks 
down as is lowered beyond 0.1T* and, therefore, 
approaches TR. In that case, the star would fill its Roche 
lobe and spill over the saddle with very little heating. 
There is good agreement between the analytic results and 
the numerical results for models A and B. 

c) tf < th: Models C and D 

In Model C with tf = 0.1th, adiabatic cooling is 
important in the corona. Even though the flow time is 
“short,” the gas heats to Tx in the lower corona. This 
occurs because, when Tx 7^, the Mach number remains 
small in the transition region, thus prolonging the 
residence time long enough for heating to occur. Higher 
up in the corona, where the local escape temperature 
drops to Tx, the gas picks up speed and flows out. 
Then the gas cools adiabatically because the flow time 
becomes shorter than the heating time. In the adiabatic 
region, the pressure drops faster ; the mass flux in this 
limit is very small. 

The final case is Model D with Tx$> T^. At pressures 
lower than Pmin, the gas heats toward Tx. Since the flow 
time is short compared to the heating time, Tapproaches 

and the gas flows over the saddle point. Here the 
mass loss is large, À = 4.09. In fact, this case is close to 
Roche lobe overflow, since the thermal energy of gas at 
the stellar surface nearly equals the gravitational binding 
energy. Nonetheless, the calculation remains consistent, 
since the Mach number is small at the surface. To test 
whether or not X-ray heating was essential to outflow 
in case D, we examined another model with the same 
value for Tx/T^, but with TX/TR increased to 1000, so that 
the gravitational barrier would be greater with respect 
to the surface temperature. This reduced the rate of mass 
loss by only 25%, which indicates that X-ray heating 
was significant in case D. As T^/T^, gets even larger, so 
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that T0 ~ Tr, the mass flux approaches the limiting 
value of 10. This is because the scale for the mass flux 
becomes dépendent on the sound speed at TR rather 
than at Tx (see eq. [9] for the mass flux scale). At this 
point our assumptions break down, since we have bona 
fide Roche lobe overflow with significant flow velocity 
at the surface. 

d) Relationship to Spherical Winds 
Basko et al (1977) discuss isothermal winds similar 

to our models A and B in plane-parallel and spherical 
geometry. As they show, the isothermal solutions are 
similar in the different geometries if one uses the 
appropriate dimensionless parameters. There is, how- 
ever, a misunderstanding in the paper by Basko et al 
in locating the sonic point for a spherical wind 
corresponding to our model B, which we wish to clarify. 
In plane-parallel winds, the sonic point occurs at or 
beyond the saddle point at Z = 1. This can be deduced 
from equation (16), knowing that the net heating is 
always positive. However, in spherical isothermal winds, 
the sonic radius is Rs = GMmp/4kT. For T > T0, this 
condition gives a sonic point inside the star, which is 
incompatible with the actual temperature below the 
transition region, of order TR . At TR the isothermal sonic 
point is far outside the surface. Basko et al claim that 
the temperature will jump in the transition to T® and 
then slowly increase to Tx, with the sonic point occurring 
at some distance above the surface. This is incorrect. 
The condition vF > xH ensures that the temperature rises 
to Tx in a distance much smaller than the stellar 
radius. 

The situation is shown in Figure 6, where we plot the 
velocity squared versus the radius for spherical 
isothermal flows at temperatures TR and Tx. The usual 
critical point solution topology (cf. Parker 1963) is 
evident. For T = Tx= 107^, the sonic point would be 
inside the star, while for T = TR =1/107^, it would be 
outside. The transition from TR to Tx is fixed by the local 
pressure and occurs slightly above the stellar surface. 

The correct solution follows a subsonic branch at TR 
and then jumps to a barely supersonic branch at Tx. 
This supersonic branch is one which does not represent 
a valid solution in a strictly isothermal wind since it does 
not reach the stellar surface. Only with a temperature 
jump can the gas get to this branch. 

We may find the location of the sonic point analytically 
by considering the continuity and momentum equations 
in a similar manner to the isothermal wind, but with an 
appropriate nonconstant temperature profile (Holzer 
1980). In this case, the sonic condition is found to be: 

_ _ GMmp Rsd\n T , . 
s 2/cT + 2 d ln R ' ^ 

Using a temperature profile that has a steep, but smooth, 
transition from TR to Tx, and with Tx> TR, we 
find that the sonic point occurs near the top of the 
transition zone where T ~ Tx and d ln 7yd ln R = 2. 
In this case the mass flux is 

X = (f)3/2 = 1.8 . (30) 

Fig. 6.—Critical point topology for isothermal transonic winds in 
spherical geometry with units scaled relative to the sound speed and 
sonic radius at the X-ray temperature. Using the approximations in 
eq. (31) to extend our definitions of parameters to spherical geometry, 
we locate the stellar radius at R* = 8T/T#. (The heavy, dashed line 
indicates R* when T/T# = 6.3.) Schematically, in our case B (Tx = 1OT0, 
tf = 10th) a nonadiabatic solution could be approximated by two 
isothermal segments. Flow leaves the star along a subsonic branch 
appropriate to TR and encounters the chromospheric transition once the 
pressure drops below Pmin. The gas then heats to Tx in a short distance, 
passing through the sonic point during the thermal transition. The flow 
matches onto the outflowing section of the appropriate double-valued, 
high-temperature solution. That section does not join with the origin 
and would be inaccessible without heating. 

e) Comparison to Previous Work 
We wish briefly to compare our one-dimensional 

hydrodynamic models with previous results. Basko et al 
(1977) derive a formula for mass flux from an isothermal 
corona, which they apply to the case of HZ Her. 
However, in their discussion they seem to claim that the 
approximation of isothermal spherical winds is valid in 
the limit tf th and can be applied to HZ Her. Thus, 
we agree with their formula and its application, but find 
that their range of validity was incorrectly stated and, 
for them, incorrectly applied. The results of Alme and 
Wilson (1974) are similar to ours, but they only consider 
cases with Tx$> T#. 

IV. MASS LOSS IN BINARY SYSTEMS 

To estimate the mass loss for real systems, we first 
estimate the parameters Ru R2, and R3. From these and 
the results of § III (i.e., Fig. 5), we estimate the mass 
flux in the wind. Then, using the geometrical parameters 
of the binary systems, we estimate the area over which 
this mass loss takes place and, thereby, a mass-loss rate. 

a) Model Parameters 
As we discussed in § II, TR is typically 104 K, while 

Tx is 106 K or 107 K. Therefore, R1 is always large and 
its precise value is not important. We can estimate R2 
and R3 in two ways. 
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The first method, which we call case I, assumes that the 
normal star is unperturbed by its companion and the 
gravity has the usual inverse square dependence. In this 
case, 

T0 = 2 
GMmp R 
 and tf = —, (31) 

kR v0 

where M is the stellar mass and R its radius. We then use 
equations (10) to find: 

R2 

*3 

"•-(■»er - »> 
^ = 2.1 x 
T<t> 

These estimates apply when the star is well inside its 
critical Roche lobe. Here the wind will blow from the 
illuminated surface in an almost uniform manner. This 
also may be used for a crude estimate of the mass flux 
in the wind from surface points away from Lu even 
when the star nearly fills its critical lobe. 

In case II, we consider the flow along the line of 
centers for a star close to filling its critical Roche lobe. 
We measure the escape potential from the surface to the 
Lj point as in the original definition of in § II. The 
first-order expansion of the gravity near Li is: 

(34) 

where / = M/(M + Mx) is the mass fraction in the 
normal star, Mx being the mass of the compact 
component. Here, a is an expansion coefficient shown 
in Figure 7, A is the binary separation, and A is the 
distance from the L1 point divided by Æ To ensure the 
validity of equation (34), we limit ourselves to A < 0.2. 

Fig. 7.—Dimensionless geometrical functions for the Roche 
potential used for estimating R2, R3, and mass-loss rates plotted vs. 
binary mass fraction 

Using the original definitions of and tf in § II, we find 
parameters : 

r2 5 = 4.3 x 1(T2 

T* 
2 

(35) 

and 

Hsn»)* » 
R* = — = 93 x 103 — 

A given binary system traces out a curve with R3cc R2~ 2, 
as we vary A as shown in Figure 2 for several binary 
systems. 

In Table 2 we list physical parameters for several 
systems. The first three systems are low-mass binaries in 
which the X-ray induced wind may be important, while 
the last two entries are higher mass systems in which 
the intrinsic stellar wind is probably larger. We have 
calculated the X-ray heating constant using the X-ray 
luminosity (Lx) and the distance from the X-ray source 
to the surface (D) with the following formula: 

^xo = 6.0^r2y 
4nD2 (37) 

where y is a dimensionless factor which depends on the 
X-ray spectrum. The details of the calculation of the 
heating rate are discussed by LMA. We have designed 
this formula so that y is 1 for a 20 keV exponential 
spectrum. The value is mainly sensitive to the soft X-ray 
flux of the source. 

In Figure d we show the values of R2 and R3 for the 
systems listed in Table 2. The stars indicate the values 
using the unperturbed gravitational potential (eqs. [32] 
and [33]), while the circles indicate the positions using 
equations (35) and (36) with A = 0.1. The lines show the 
values as A is lowered, representing the stars getting 
closer to their critical lobes. 

b) Integral over the Surface 
The final step in calculating the mass loss is to integrate 

the mass flux over the stellar surface: 

M = J pvdS . (38) 

The mass-loss problem is really a three-dimensional one. 
There is no plane-parallel symmetry, and radiation and 
Coriolis forces may be important in a binary star. Also, 
nonsynchronous rotation would alter the boundary 
conditions used here. We make a very rough estimate 
of the mass loss and the fraction transferred to the 
compact star by considering the two limiting cases 
described above in the calculation of the dimensionless 
parameters. We approximate equation (38) by 

M=(HaveAS. (39) 
In the first case, we consider the “hemispherical” mass 
loss from a detached star. The appropriate area here is 
that illuminated by X-rays: about ¿ of the stellar surface 
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TABLE 2 
Adopted Parameters and Estimated Mass-Loss Rates for X-Ray Binaries 

L.x A LXo Mi Mu 
Source M/M0 MJM0 (ergss-1) (cm) (ergsg-1^-1) (gs_1) (gs_1) (gs“1) 

HZ Her-Her X-la  2.2 1.3 2 x 1037 6.3 x 10“ 1.2 x 1014 3.9 x 1016 7.7 x 1017 2.2 x 1017 

2129 + 47b  0.65 1.3 6 x 1034 1.3 x 10“ 4.8 x 1012 8.7 x lO10 2.1 x 1014 6.7 x 1014 

(i i v in13 

Il X 1015d 

1700 —37e   27 1.3 6 x 1035 2.0 x 1012 1.3 x 1012 1.6 x 1011 2.5 x 1016 6.7 x 1015 

Cyg X-le    21 13.0 7 x 1036 3.0 x 1012 1.8 x lO12 2.7 x 1013 7.8 x 1016 7.5 x 1016 

aCf. LMA. 
b Thorstensen et al. 1979, McClintock, Remillard, and Margon 1981. 
c Patterson and Price 1981; Patterson and Jablonski 1981. 
d Assuming the compact star is a white dwarf. 
e Conti 1978. 

area. Most of this mass loss will escape the system. The 
calculation of the fate of this matter is complicated. We 
estimate the fraction captured by the compact star by 
applying a theory for accretion by a star from a uniform, 
plane-parallel flow (cf. McCray and Hatchett 1975): 

where 7} is the final temperature of the wind, of the 
order of the X-ray spectral temperature (generally 
> 107 K). 

In case II, the appropriate area may be estimated by 
assuming that near Ll the wind extends perpendicular 
to the line of centers to a distance at which the 
gravitational potential relative to that at Lx is equal to 
thermal energy (cf. Lubow and Shu 1975). We then find 
an area: 

ASU = nA2 kTx 

GMmJA 
(41) 

where ß(/), shown in Figure 7, is derived from a second- 
order expansion of the Roche potential near Lv 

By combining equation (9) for the mass flux scale with 
equation (37) for the X-ray heating rate and the area 
factors, we now estimate the mass loss for cases I and II. 
We define dimensionless mass-loss rates, /i, by dividing 
M by Mx = Lx/ec, the accreted mass needed to power 
the X-ray emission. We find for the two cases of mass loss : 

« = myiu?) (¿)- (421 

and 

<«> 
where y = (R/D)2, and ô = (A/D)2Iß. 

To see how the mass loss will scale with binary 
parameters, we calculate y and à assuming Roche lobe 
filling. These functions then depend only on the mass 
fraction and are shown in Figure 7. All other things 
being constant, we see that the mass-loss rates decrease 
with mass fraction and are quite small for / < 0.1. 

We list estimated mass-loss rates for several known 
X-ray binary systems in Table 2. The entries for Cyg X-l 
and 1700 — 37 are for comparison only. These systems 
contain massive stars which probably have radiation 
pressure driven mass loss exceeding the X-ray induced 
mass loss. 

We have taken Tx to be 106 K for the estimates in 
Table 2. For gas temperatures above this, the lighter 
elements (C, N, and O) become ionized and their strong 
photoionization heating cuts off. Above 106 K, slower 
heating up to a few x 107 K by Fe and Compton 
heating may occur (Kallman 1980). We estimate X in 
each case from Figure 5, using the determinations of 
R2 and R3 shown in Figure 2. For case I we find that 
X is quite small (<10-2). For case II we use a value of 
A = 0.1 and find in all cases X~ LMA calculate Pmin 
using a more detailed treatment of the heating and 
cooling processes in the lower atmosphere than we have 
included. We adopt, from their models for HZ Her, a 
linear relationship between Pmin and : — 
1.6x10 12^X0, where Fmin = 33/2P0- The accretion 
rates needed to power the X-ray emission listed for the 
binaries assume e = 0.1, appropriate for a neutron star. 
For H2252-37 we also list M for e = 0.001, in the 
event that the compact star is a white dwarf. 

For cases in which 7^/7^, is small we are probably 
underestimating the mass loss, since the residual heating 
above 106 K will help the gas overcome the gravitational 
potential and enhance the mass-loss rate. Future work 
on this problem should include a more complete 
treatment of the heating and cooling processes of the 
gas at all temperatures. 

A comparison of the mass-loss rates for HZ Her with 
those estimated by Basko et al (1977) shows that our 
case II mass-loss rate is about the same as their maximum 
value. However, the physics which goes into these results 
is quite different. We believe that their method is in error 
in two ways: they include helium line cooling in 
estimating Pmin and get a value about 10 times lower than 
ours, and they take the area of flow to be the whole 
illuminated area rather than a value some 5 times 
smaller, which we estimate using equation (41). Our 
results are about an order of magnitude larger than 
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ones of Alme and Wilson (1974), most likely due to a 
difference in the value of Pmin by this much. 

It appears from Table 2 that stars which are not close 
to their critical Roche lobes (for which we use case I 
mass-loss rates) have too small a mass-loss rate to power 
the X-ray emission. However, as the stars come close to 
filling the Roche lobe, the mass loss turns on. For the 
stars with A = 0.1, we get considerable mass loss. Thus, 
X-ray induced winds may play a considerable role in the 
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mass transfer of low-mass stars, but only if they have 
already expanded to nearly fill their Roche lobes. 
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